Seuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117

Koko: px
Aloita esitys sivulta:

Download "Seuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117"

Transkriptio

1 Seuraava luento ti on salissa XXII Lineaarialgebra (muut ko) p. 1/117

2 Lineaarialgebra (muut ko) p. 2/117 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 ) Skalaarilla kertominen (a R): au = (au 1,au 2 ) Kommutatiivisuus Assosiatiivisuus u+v = v+u (u+v)+w = u+(v+w)

3 Lineaarialgebra (muut ko) p. 3/117 Pituus ja sisätulo Vektorin u = (u 1,u 2 ) R 2 pituus u = u 2 1 +u2 2 Vektorien u = (u 1,u 2 ) ja v = (v 1,v 2 ) sisätulo Pituudelle ax = a x (u,v) = u v = u 1 v 1 +u 2 v 2. Muistetaan, että u 2 = (u,u). Ortogonaalisuus: u v (u,v) = 0

4 Lineaarialgebra (muut ko) p. 4/117 Sisätulo Sisätulon ominaisuuksia (s.3) (u,u) 0 (u,u) = 0 u = 0 (u,v) = (v,u) (u+v,w) = (u,w)+(v,w). (au,v) = a(u,v), a R.

5 Lineaarialgebra (muut ko) p. 5/117 Sisätulo Sisätulon ominaisuuksia (s.3) (u,u) 0 (u,u) = 0 u = 0 (u,v) = (v,u) (u+v,w) = (u,w)+(v,w). (au,v) = a(u,v), a R. Myös (u,v+w) = (u,v)+(u,w) ja(u v,w) = (u,w) (v,w).

6 Lineaarialgebra (muut ko) p. 6/117 Avaruusvektorit, s. 4 Avaruusvektorien joukko R 3 = {(x,y,z) x,y,z R}. Vektoreille u = (u 1,u 2,u 3 ) ja v = (v 1,v 2,v 3 ) operaatiot Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2,u 3 +v 3 ) Skalaarilla kertominen (a R): au = (au 1,au 2,au 3 )

7 Lineaarialgebra (muut ko) p. 7/117 Avaruusvektorit Avaruusvektoreille u = (u 1,u 2,u 3 ) ja v = (v 1,v 2,v 3 ) aiemmat tulokset (1.3) (1.7) toimivat myös R 3 :ssa, kun määritellään u = u 2 1 +u2 2 +u2 3 ja (u,v) = u 1 v 1 +u 2 v 2 +u 3 v 3.

8 Lineaarialgebra (muut ko) p. 8/117 Suorat Suoran L standardiesitys L : x x 0 a = y y 0 b = z z 0 c missä P = (x 0,y 0,z 0 ) on jokin L:n piste ja s = (a,b,c) (0,0,0) on suoran suuntavektori P

9 Lineaarialgebra (muut ko) p. 9/117 Suorat Suoran L standardiesitys L : x x 0 a = y y 0 b = z z 0 c missä P = (x 0,y 0,z 0 ) on jokin L:n piste ja s = (a,b,c) (0,0,0) on suoran suuntavektori P s

10 Lineaarialgebra (muut ko) p. 10/117 Parametriesitys Suoran L koordinaattimuotoinen parametriesitys x = x 0 +ta y = y 0 +tb z = z 0 +tc (t R)

11 Lineaarialgebra (muut ko) p. 11/117 Parametriesitys Suoran L koordinaattimuotoinen parametriesitys x = x 0 +ta y = y 0 +tb z = z 0 +tc t = 1 (t R) P ts vektoreina r = r 0 +ts, t R.

12 Lineaarialgebra (muut ko) p. 12/117 Parametriesitys Suoran L koordinaattimuotoinen parametriesitys x = x 0 +ta y = y 0 +tb z = z 0 +tc (t R) P t = 2 ts vektoreina r = r 0 +ts, t R.

13 Lineaarialgebra (muut ko) p. 13/117 Erikoistapaukset (standardiesitys) Tapaus c = 0: L : Tapaus b = c = 0: x x 0 a = y y 0 b, z = z 0 L : y = y 0, z = z 0

14 Lineaarialgebra (muut ko) p. 14/117 Tasot Tason piste P = (x 0,y 0,z 0 ) ja normaalivektori n = (a,b,c) (0,0,0). Tason T koordinaattimuotoinen esitys T : ax+by +cz = d missä d = ax 0 +by 0 +cz 0.

15 Lineaarialgebra (muut ko) p. 15/117 Mitä yhtälöryhmälle saa tehdä? 1) Yhtälön voi kertoa vakiolla 0 2) Yhtälön voi lisätä toiseen vakiolla kerrottuna 3) Yhtälöiden järjestystä voi vaihtaa

16 Lineaarialgebra (muut ko) p. 16/117 n-ulotteinen avaruus, s.9 Vektorien joukko R n = {(x 1,x 2,...,x n ) x 1,x 2,...,x n R}. Vektoreille u = (u 1,u 2,...,u n ) ja v = (v 1,v 2,...,v n ) operaatiot Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2,...,u n +v n ) Skalaarilla kertominen (a R): au = (au 1,au 2,...,au n )

17 Lineaarialgebra (muut ko) p. 17/117 n-ulotteinen avaruus, s.9 Vektoreille u = (u 1,u 2,...,u n ) ja v = (v 1,v 2,...,v n ) aiemmat tulokset (1.3) (1.7) toimivat myös R n :ssa, kun määritellään u = u 2 1 +u u2 n ja (u,v) = u 1 v 1 +u 2 v 2 + +u n v n.

18 Lineaarialgebra (muut ko) p. 18/117 MATRIISIT: Johdanto (k = 20) { 2x+3y = 0 4x+ky = 0 Ratkaisuja 1, kun 2 k 3 4 0, Ratkaisuja, kun 2 k 3 4 = 0 (eli k = 6).

19 Lineaarialgebra (muut ko) p. 18/117 MATRIISIT: Johdanto (k = 7) { 2x+3y = 0 4x+ky = 0 Ratkaisuja 1, kun 2 k 3 4 0, Ratkaisuja, kun 2 k 3 4 = 0 (eli k = 6).

20 Lineaarialgebra (muut ko) p. 18/117 MATRIISIT: Johdanto { 2x+3y = 1 4x+ky = 5 Ratkaisuja 1, kun 2 k 3 4 0,

21 Lineaarialgebra (muut ko) p. 18/117 MATRIISIT: Johdanto { 2x+3y = 1 4x+ky = 5 Ei ratkaisuja, kun 2 k 3 4 = 0, eli k = 6.

22 Lineaarialgebra (muut ko) p. 19/117 MATRIISIT: Johdanto Kertoimista "matriisi" ( k ) ja "determinantti" k = 2 k 3 4

23 Lineaarialgebra (muut ko) p. 20/117 MATRIISIT: Johdanto Kertoimista "matriisi" ( k ) ja "determinantti" k = 2k 3 4 "vakiot"pystyvektorina ( 1 5 )

24 Lineaarialgebra (muut ko) p. 21/117 MATRIISIT: Johdanto Yleistyykö edellinen tarkastelu? Entä kun tuntemattomia ja yhtälöitä eri määrä? Onko yhtälöryhmää, jossa tarkalleen 17 ratkaisua?

25 Lineaarialgebra (muut ko) p. 22/117 Matriiseista Samaa tyyppiä olevat m n-matriisit voidaan laskea yhteen A+B Nollamatriisi O = (0) m n Transponointi A T ( ) T =

26 Lineaarialgebra (muut ko) p. 23/117 Matriisien tulo, s. 13 Matriisien A = (a ij ) m s ja B = (b ij ) s n tulo on AB = (u ij ) m n missä kaikilla i, j. u ij = a i1 b 1j +a i2 b 2j + +a is b sj

27 Lineaarialgebra (muut ko) p. 24/117 Matriisien tulo Matriisitulo ( ) 2 2 ( ) 2 3 =

28 Lineaarialgebra (muut ko) p. 25/117 Matriisien tulo Matriisitulo ( ) 2 2 ( ) 2 3 = ( )

29 Lineaarialgebra (muut ko) p. 26/117 Matriisien tulo Matriisitulo ( ) 2 2 ( ) 2 3 = ( )

30 Lineaarialgebra (muut ko) p. 27/117 Matriisien tulo Yleensä ei KOMMUTOI AB BA

31 Lineaarialgebra (muut ko) p. 28/117 Matriisien tulo Kaikkien m n-matriisien joukko M m n

32 Lineaarialgebra (muut ko) p. 29/117 Laskusääntöjä, s. 18 skalaari r R (AB)C = A(BC) A(B +C) = AB +AC (A+B)C = AC +BC r(ab) = A(rB)

33 Lineaarialgebra (muut ko) p. 30/117 Johdanto yhtälöryhmiin Tutkitaan ratkaisuja 5x + y + t = 1 3x y + 2z t = 2 x + y z = 0

34 Lineaarialgebra (muut ko) p. 31/117 Johdanto yhtälöryhmiin Tutkitaan ratkaisuja 5x 1 + x 2 + x 4 = 1 3x 1 x 2 + 2x 3 x 4 = 2 x 1 + x 2 x 3 = 0

35 Lineaarialgebra (muut ko) p. 32/117 Johdanto yhtälöryhmiin Tutkitaan ratkaisuja 5x 1 + x 2 + x 4 = 1 3x 1 x 2 + 2x 3 x 4 = 2 x 1 + x 2 x 3 = 0 Tästä matriisit , x 1 x 2 x 3 x 4, 1 2 0

36 Lineaarialgebra (muut ko) p. 33/117 Johdanto yhtälöryhmiin, s.16 Tutkitaan ratkaisuja 5x 1 + x 2 + x 4 = 1 3x 1 x 2 + 2x 3 x 4 = 2 x 1 + x 2 x 3 = 0 Tästä matriisit , 1 } 1 1 {{ 0 } kerroinmatriisi x 1 x 2 x 3 x 4, }{{} tuntemattomat }{{} vakiot

37 Lineaarialgebra (muut ko) p. 34/117 Esimerkiksi { 2x + 3y = 1 4x + 5y = 3

38 Lineaarialgebra (muut ko) p. 35/117 Esimerkiksi { 2x 1 + 3x 2 = 1 4x 1 + 5x 2 = 3

39 Lineaarialgebra (muut ko) p. 36/117 Esimerkiksi { 2x 1 + 3x 2 = 1 4x 1 + 5x 2 = 3 A = ( ) x = ( x 1 x 2 ) c = ( 1 3 ) Matriisikielellä Ax = c

40 Lineaarialgebra (muut ko) p. 37/ Lineaariset yhtälöryhmät Monisteessa (2.3) a 11 x 1 + a 12 x a 1n x n = c 1 a 21 x 1 + a 22 x a 2n x n = c 2... a m1 x 1 + a m2 x a mn x n = c m

41 Lineaarialgebra (muut ko) p. 38/117 Matriisien avulla Ax = c, missä A = a 11 a a 1n a 12 a a 2n , a m1 a m2... a mn ja x = x 1 x 2. c = c 1 c 2. x n c m

42 Lineaarialgebra (muut ko) p. 39/117 Homogeenisuus Yhtälöryhmä on homogeeninen, jos Monisteessa (2.5) a 11 x 1 + a 12 x a 1n x n = 0 a 21 x 1 + a 22 x a 2n x n = 0... a m1 x 1 + a m2 x a mn x n = 0 eli matriisimuodossa Ax = 0. Muutoin epähomogeeninen

43 Lineaarialgebra (muut ko) p. 40/117 Esimerkiksi Epähomogeeninen { 2x 1 + 3x 2 = 1 4x 1 + 5x 2 = 3 Homogeeninen { 2x 1 + 3x 2 = 0 4x 1 + 5x 2 = 0

44 Lineaarialgebra (muut ko) p. 41/117 Yhtälöryhmistä Olkoon x 0 yksittäisratkaisu epähomogeeniselle yhtälöryhmälle Ax = c. Silloin sen kaikki ratkaisut ovat muotoa x = x 0 +y missä y on homogeenisen yhtälöryhmän Ax = 0 kaikki ratkaisut.

45 Lineaarialgebra (muut ko) p. 42/117 Tulon transponointi (AB) T = B T A T Matriisi on symmetrinen, jos järjestys! A T = A Identiteettimatriisi I = I n = Neliömatriisille A: AI = IA = A

46 Lineaarialgebra (muut ko) p. 43/117 Matriisin potenssi Kun kokonaisluku k 1 A k = A A A }{{} k Lisäksi A 0 = I

47 Lineaarialgebra (muut ko) p. 44/117 Matriisiyhtälöistä (s. 20) Matriisiyhtälöitä voidaan käsitellä kuten reaalilukuyhtälöitä, kunhan ei käytetä jakolaskua eikä kommutatiivisuutta Ei siis voi yleensä supistaa AB = AC B = C

48 Lineaarialgebra (muut ko) p. 45/117 Käänteismatriisi Määritelmä neliömatriisin A käänteismatriisille eli EI MERKITÄ 1 A vaana 1 Ei aina olemassa, esim A = AB = BA = I AA 1 = A 1 A = I ( ).

49 Lineaarialgebra (muut ko) p. 46/117 Säännöllisyys A on säännöllinen, jos A 1 on olemassa.

50 Lineaarialgebra (muut ko) p. 47/117 Säännöllisyys A on säännöllinen, jos A 1 on olemassa. Jos matriisin A = ( a b c d ) kertoimille ad bc 0, niin A 1 = 1 ad bc ( d b c a )

51 Lineaarialgebra (muut ko) p. 48/117 Laskusääntöjä Olkoot A ja B säännöllisiä matriiseja: (AB) 1 = B 1 A 1 (A T ) 1 = (A 1 ) T

52 Lineaarialgebra (muut ko) p. 49/117 Laskusääntöjä Olkoot A ja B matriiseja, missä pystyrivien avulla B = (b 1 b k ). Silloin kertolasku AB = (Ab 1 Ab k )

53 Lineaarialgebra (muut ko) p. 50/ Matriisien kertominen lohkomuodossa Lohkominen ( A B C D )( 1 0 a b 0 1 c d A B C D ) = ( ( I A O I ) AA +BC AB +BD CA +DC CB +DD ) Esimerkiksi ( I A O I )( A O I B ) = ( O AB I B )

54 Lineaarialgebra (muut ko) p. 51/117 Determinantti Neliömatriisille A: det(a) = a 11 a a 1n a 21 a a 2n a n1 a n2... a nn = kaikki permutaatiot(j 1,j 2,...,j n ) sign(j 1,j 2,...,j n )a 1j1 a 2j2...a njn

55 Lineaarialgebra (muut ko) p. 52/117 2-rivinen determinantti a b c d = ad cb

56 Lineaarialgebra (muut ko) p. 53/117 Perusominaisuuksia, s. 26 1) 2) a ca 1k... a 1n a ca 2k... a 2n a n1... ca nk... a nn det(a T ) = det(a) = c a a 1k... a 1n a a 2k... a 2n a n1... a nk... a nn vastaavasti vaakariville

57 Lineaarialgebra (muut ko) p. 54/117 Perusominaisuuksia, s. 27 3) a a 1k +b 1k... a 1n a a 2k +b 2k... a 2n a n1... a nk +b nk... a nn = a a 1k... a 1n a a 2k... a 2n a n1... a nk... a nn + a b 1k... a 1n a b 2k... a 2n a n1... b nk... a nn vastaavasti vaakariville

58 Lineaarialgebra (muut ko) p. 55/117 Perusominaisuuksia, s. 27 4) Jos pysty- tai vaakarivi on nollarivi, niin det(a) = 0. 5) Jos kaksi samaa pystyriviä (tai kaksi samaa vaakariviä), niin det(a) = 0. 6) Jos kaksi vaakariviä (tai kaksi pystyriviä) vaihdetaan keskenään, niin determinantti muuttuu vastaluvukseen. a 11 a a 1n a 21 a a 2n a n1 a n2... a nn = a 21 a a 2n a 11 a a 1n a n1 a n2... a nn

59 Lineaarialgebra (muut ko) p. 56/117 Perusominaisuuksia, s. 27 7) c + a a 1h... a 1k... a 1n a a 2h... a 2k... a 2n a n1... a nh... a nk... a nn = a a 1h... a 1k +ca 1h... a 1n a a 2h... a 2k +ca 2h... a 2n a n1... a nh... a nk +ca nh... a nn vastaavasti vaakariville

60 Lineaarialgebra (muut ko) p. 57/117 Tulon determinantti det(ab) = det(a) det(b) Jos A on säännöllinen, niin det(a 1 ) = 1 det(a)

61 Lineaarialgebra (muut ko) p. 58/117 Alkion komplementti Matriisin alkion a ij komplementti C ij = ( 1) i+j det(a ij ) missä A ij saatu poistamalla matriisista A vaakarivi i ja pystyrivi j. Deteminantin rivikehitelmät (vaakariville) det(a) = a i1 C i1 + +a in C in

62 Lineaarialgebra (muut ko) p. 59/117 Alkion komplementti Matriisin alkion a ij komplementti C ij = ( 1) i+j det(a ij ) missä A ij saatu poistamalla matriisista A vaakarivi i ja pystyrivi j. Deteminantin rivikehitelmät (vaakariville) ( = ) ( ) ( )

63 Lineaarialgebra (muut ko) p. 60/117 Alkion komplementti Matriisin alkion a ij komplementti C ij = ( 1) i+j det(a ij ) missä A ij saatu poistamalla matriisista A vaakarivi i ja pystyrivi j. Deteminantin rivikehitelmät (vaakariville) det(a) = a i1 C i1 + +a in C in = n a ik C ik k=1 ja pystyriville det(a) = n a kj C kj k=1

64 Lineaarialgebra (muut ko) p. 61/117 Käänteismatriisin kaava Matriisin A liittomatriisi adj(a) = (C ij ) T Jos A on säännöllinen, niin A 1 = 1 det(a) (C ij) T A on säännöllinen det(a) 0

65 Lineaarialgebra (muut ko) p. 62/117 Cramerin sääntö Jos yhtälöryhmän Ax = c kerroinmatriisi A on säännöllinen, niin sillä on yksikäsitteinen ratkaisu x j = det(a j) det(a) missä x = x 1 x 2. x n ja A j saadaan korvaamalla j:s pystyrivi c:llä

66 Lineaarialgebra (muut ko) p. 63/117 Ristitulo, s. 34 Tarkastelussa vain R 3 Olkoon u = (u 1,u 2,u 3 ) R 3 v = (v 1,v 2,v 3 ) R 3 u v = (C 11,C 12,C 13 ).

67 Lineaarialgebra (muut ko) p. 64/117 Ristitulo, s. 34 Tarkastelussa vain R 3 Olkoon u = (u 1,u 2,u 3 ) R 3 u v = v = (v 1,v 2,v 3 ) R 3 u 2 u 3 u 1 u 3 u 1 u 2,, v 2 v 3 v 1 v 3 v 1 v 2. }{{}}{{}}{{} C 11 C 12 C 13

68 Lineaarialgebra (muut ko) p. 65/117 Ristitulo Eli (u,u v) = u 1 C 11 +u 2 C 12 +u 3 C 13 ( ) u 2 u 3 = u 1 v 2 v 3 +u u 1 u 3 2 v 1 v 3 +u 3 u 1 u 2 v 1 v 2 ja samoin (v,u v) = v 1 C 11 +v 2 C 12 +v 3 C 13 ( ) u 2 u 3 = v 1 v 2 v 3 +v u 1 u 3 u 1 u 2 2 +v 3 v 1 v 3 v 1 v 2 Johtavat determinantteihin (kehittämällä 1. vaakarivi) u 1 u 2 u 3 v 1 v 2 v 3 u 1 u 2 u 3 u 1 u 2 u 3 v 1 v 2 v 3 v 1 v 2 v 3

69 Lineaarialgebra (muut ko) p. 66/117 Ristitulo Eli (u,u v) = u 1 C 11 +u 2 C 12 +u 3 C 13 ( ) u 2 u 3 = u 1 v 2 v 3 +u u 1 u 3 2 v 1 v 3 +u 3 u 1 u 2 v 1 v 2 ja samoin (v,u v) = v 1 C 11 +v 2 C 12 +v 3 C 13 ( ) u 2 u 3 = v 1 v 2 v 3 +v u 1 u 3 u 1 u 2 2 +v 3 v 1 v 3 v 1 v 2 Johtavat determinantteihin (kehittämällä 1. vaakarivi) u 1 u 2 u 3 v 1 v 2 v 3 u 1 u 2 u 3 = 0 = u 1 u 2 u 3 v 1 v 2 v 3 v 1 v 2 v 3

70 Lineaarialgebra (muut ko) p. 67/117 Ristitulo Siis u (C 11,C 12,C 13 ) = 0 v (C 11,C 12,C 13 ) = 0

71 Lineaarialgebra (muut ko) p. 68/117 Muistisääntö Ristitulo (vain R 3 :ssa) Vektoreille u = (u 1,u 2,u 3 ) ja v = (v 1,v 2,v 3 ) u v = i j k u 1 u 2 u 3 v 1 v 2 v 3 Jos u ja v eivät nollavektoreita ja α on niiden välinen kulma, niin u v = u v sinα. Vertaa (1.4): (u,v) = u v cosα. u u v ja v u v

72 Lineaarialgebra (muut ko) p. 69/117 Muistisääntö Ristitulo (vain R 3 :ssa) Vektoreille u = (u 1,u 2,u 3 ) ja v = (v 1,v 2,v 3 ) u v = Ei kommutatiivinen i j k u 1 u 2 u 3 v 1 v 2 v 3 u v = v u Ei myöskään assosiatiivinen eli yleensä u (v w) (u v) w.

73 Lineaarialgebra (muut ko) p. 70/117 Skalaarikolmitulo Skalaarikolmitulo vektoreille u = (u 1,u 2,u 3 ), v = (v 1,v 2,v 3 ) ja w = (w 1,w 2,w 3 ): u (v w) = u 1 u 2 u 3 v 1 v 2 v 3 w 1 w 2 w 3 Vektorien määräämän suuntaissärmiön (kts. kuva alla) tilavuus saadaan itseisarvosta u (v w) u w v

74 Lineaarialgebra (muut ko) p. 71/117 Aliavaruus Aliavaruudelle U R n kolme ehtoa: 1) U 2) u,v U u+v U 3) a R, u U au U.

75 Lineaarialgebra (muut ko) p. 72/117 Aliavaruus Aliavaruudelle U R n kolme ehtoa: 1) U 2) u,v U u+v U 3) a R, u U au U.

76 Lineaarialgebra (muut ko) p. 73/117 Aliavaruus Aliavaruudelle U R n kolme ehtoa: 1) U 2) u,v U u+v U 3) a R, u U au U. 0 kuuluu aina aliavaruuteen! U = {x R n Ax = 0} on R n :n aliavaruus Triviaalit aliavaruudet: {0} ja R n.

77 Lineaarialgebra (muut ko) p. 74/117 Ratkaisuavaruus (Lause 4.1.8) Lineaarisen homogeenisen yhtälöryhmän a 11 x 1 + a 12 x a 1n x n = 0 a 21 x 1 + a 22 x a 2n x n = 0... a n1 x 1 + a n2 x a nn x n = 0 ratkaisut x = x 1. x n muodostavat aliavaruuden (ns. ratkaisuavaruuden)

78 Lineaarialgebra (muut ko) p. 75/117 Ratkaisuavaruus (Lause 4.1.8) Lineaarisen homogeenisen yhtälöryhmän Ax = 0 ratkaisut x = x 1. x n muodostavat aliavaruuden (ns. ratkaisuavaruuden)

79 Lineaarialgebra (muut ko) p. 76/117 AliavaruudetR 3 :ssa {0} origon kautta kulkevat suorat origon kautta kulkevat tasot R 3

80 Lineaarialgebra (muut ko) p. 77/117 Viritetty aliavaruus vektorien x 1,x 2,...,x k R n lineaarikombinaatio vektorien virittämä aliavaruus c 1 x 1 +c 2 x c k x k L(x 1,x 2,...,x k ) = {c 1 x 1 +c 2 x c k x k c 1,c 2,...,c k R}

81 Lineaarialgebra (muut ko) p. 78/117 Viritetty aliavaruus vektorien x 1,x 2,...,x k R n lineaarikombinaatio vektorien virittämä aliavaruus c 1 x 1 +c 2 x c k x k L(x 1,x 2,...,x k ) = {c 1 x 1 +c 2 x c k x k c 1,c 2,...,c k R} Esimerkiksi a(1,1)+b(1,0) ja L((1,1),(1,0)) sisältää mm. vektorit (0,0),(1,1),(1,0),(2,1),(0,1),( 2,0),...

82 Lineaarialgebra (muut ko) p. 79/117 Matriisien avulla Pystyrivien lineaarikombinaatio A = (a 1 a 2... a n ) Ac = c 1 a 1 + +c n a n

83 Lineaarialgebra (muut ko) p. 80/117 Matriisien avulla matriisin pystyriveille A = (a 1 a 2... a n ) m n Lause 4.2.8: neliömatriisille L(a 1,a 2,...,a n ) = {Ac c R n } L(a 1,a 2,...,a n ) = R n A on säännöllinen

84 Lineaarialgebra (muut ko) p. 81/117 Matriisien avulla matriisin pystyriveille A = (a 1 a 2... a n ) m n Lause 4.2.8: neliömatriisille L(a 1,a 2,...,a n ) = {Ac c R n } L(a 1,a 2,...,a n ) = R n A on säännöllinen Esimerkiksi L((1,1),(1,0)) = R 2, sillä

85 Lineaarialgebra (muut ko) p. 82/117 Johdanto: Lineaarinen riippumattomuus Olkoot x = (1,1,0) ja y = ( 2, 2,0). Näille lineaarikombinaatioina 0 x+0 y = (0,0,0) 2 x+1 y = (0,0,0) 20 x+10 y = (0,0,0).

86 Lineaarialgebra (muut ko) p. 83/117 Lineaarinen riippumattomuus Lineaarinen riippuvuus c 1 x c m x m = 0 missä jokin c j 0 Lineaarinen riippumattomuus c 1 x c m x m = 0 = c 1 = c 2 =... = c m = 0

87 Lineaarialgebra (muut ko) p. 84/117 Matriisien avulla Lause : Neliömatriisin A = (a 1 a 2... a n ) pystyriveille: Pystyrivit ovat lin. riippumattomia A on säännöllinen

88 Lineaarialgebra (muut ko) p. 85/117 Lineaarinen riippumattomuus Lause sanoo: Vektorit ovat lineaarisesti riippuvia jokin niistä saadaan muiden lineaarikombinaationa x j = c 1 x 1 + +c j 1 x j 1 +c j+1 x j+1 + +c m x m

89 Lineaarialgebra (muut ko) p. 86/117 Lineaarinen riippumattomuus Kaksi vektoria ovat lineaarisesti riippuvia toinen on toisen skalaarimonikerta Varoitus: ei toimi useammalla vektorilla: (1,1,0),(1,0,0),(0,1,0) vaikka t (1,0,0) (0,1,0) s (1,0,0) (1,1,0) r (0,1,0) (1,1,0) kaikilla t,r,s R, niin silti lin. riippuvuus (1,1,0) = (1,0,0)+(0,1,0)

90 Lineaarialgebra (muut ko) p. 87/117 Johdanto: kanta Jokainen vektori lin.kombinaationa? (x,y) = c 1 (2,2)

91 Lineaarialgebra (muut ko) p. 88/117 Johdanto: kanta Jokainen vektori lin.kombinaationa? (x,y) = c 1 (2,2)

92 Lineaarialgebra (muut ko) p. 89/117 Johdanto: kanta Jokainen vektori lin.kombinaationa: (x,y) = c 1 (2,2)+c 2 ( 4,2) = 12 0

93 Lineaarialgebra (muut ko) p. 90/117 Johdanto: kanta Jokainen vektori lin.kombinaationa: (x,y) = c 1 (2,2)+c 2 ( 4, 4)

94 Lineaarialgebra (muut ko) p. 91/117 Johdanto: kanta Jokainen vektori lin.kombinaationa (yksikäsitteisesti): (1, 2) = 1 2 (2,2) 1 2 ( 4,2)+0 (1, 2) (1, 2) = 0 (2,2)+0 ( 4,2)+1 (1, 2)

95 Lineaarialgebra (muut ko) p. 92/117 Kanta Vektorit u 1,...,u k muodostavat aliavaruuden U kannan, jos (i) ovat lineaarisesti riippumattomia, (ii) virittävät koko U:n.

96 Lineaarialgebra (muut ko) p. 93/117 Kanta Vektorit u 1,...,u k muodostavat aliavaruuden U kannan, jos (i) ovat lineaarisesti riippumattomia eli c 1 u 1 + +c m u k = 0 c 1 = = c k = 0, (ii) virittävät koko U:n eli L(u 1,...,u k ) = {c 1 u 1 + +c k u k c 1,...,c k R} = U.

97 Lineaarialgebra (muut ko) p. 94/117 Kannan merkitys Yksikäsitteinen kantaesitys vektorille u U R 4 :n luonnollinen kanta u = c 1 u 1 + +c k u k. {e 1,e 2,e 3,e 4 } = Jos U = R n, niin determinantit käteviä, mutta U R n eivät yleensä sovellu.

98 Lineaarialgebra (muut ko) p. 95/117 Kannan merkitys Yksikäsitteinen kantaesitys vektorille u U R 4 :n luonnollinen kanta u = c 1 u 1 + +c k u k. {e 1,e 2,e 3,e 4 } = {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}. Jos U = R n, niin determinantit käteviä, mutta U R n eivät yleensä sovellu.

99 Lineaarialgebra (muut ko) p. 96/117 Perusominaisuuksia s. 45 1) Jokaisella aliavaruudella U on kanta. 2) Jokaisessa U:n kannassa on sama määrä vektoreita. 3) Lineaarisesti riippumaton U:n joukko {u 1,...,u k } voidaan täydentää U:n kannaksi {u 1,...,u k,u k+1,...u m }. 4) Jos L(u 1,...,u t ) = U, niin tästä saadaan kanta U:lle jättämällä ylimääräiset pois (kunnes lin. riippumaton).

100 Lineaarialgebra (muut ko) p. 97/117 Dimension ominaisuuksia s. 46 Olkoot U,V R n aliavaruuksia: 1) dimu n 2) Jos U V, niin dimu dimv. 3) Jos U V, niin dimu < dimv. 4) Jos u 1,...,u k U ja k < dimu, niin eivät viritä U:ta. 5) Jos u 1,...,u k U ja k > dimu, niin ovat lineaarisesti riippuvia.

101 Lineaarialgebra (muut ko) p. 98/117 Dimension ominaisuuksia s. 46 6) Vektorit u 1,...,u k U muodostavat kannan, jos kaksi seuraavista voimassa: (i) u 1,...,u k ovat lineaarisesti riippumattomia, (ii) U = L(u 1,...,u k ), (ii) k = dimu.

102 Lineaarialgebra (muut ko) p. 99/117 Dimension ominaisuuksia s. 46 7) Olkoon u 1,...,u k kanta U:lle ja vektoreiden v 1,...,v k U kantaesitykset v j = k a ij u i (j = 1,...,k). i=1 Vektorit v 1,...v k muodostavat kannan, jos on säännöllinen. A = (a ij ) k k

103 Lineaarialgebra (muut ko) p. 100/117 Tunnettuja dimensioita Aliavaruuden U R n dimensio dim U = kantavektoreiden lukumäärä Koko avaruudelle dimr n = n. Tasolle (origon kautta) T R 3 dimt = 2. Suoralle (origon kautta) L R 3 diml = 1.

104 Lineaarialgebra (muut ko) p. 101/117 Vaaka- ja pystyriviavaruus Matriisin A = vaakariviavaruus ja pystyriviavaruus V(A) = L((1,3),(0,1),(1,2)) P(A) = L((1,0,1),(3,1,2))

105 Lineaarialgebra (muut ko) p. 102/117 Vaaka- ja pystyriviavaruus Nähtiin dimv(a) = 2 = dimp(a) Pitääkö yleisesti paikkansa kaikille A?

106 Lineaarialgebra (muut ko) p. 103/117 Vaaka- ja pystyriviavaruus P(AB) P(A) V(AB) V(B) jos C ja C ovat säännöllisiä, niin P(AC) = P(A) V(C A) = V(A)

107 Lineaarialgebra (muut ko) p. 104/117 Hajotelma Matriisi A M m n saadaan hajotettua A = }{{} B }{{} C m r r n Esimerkiksi

108 Lineaarialgebra (muut ko) p. 105/117 Hajotelma Matriisi A M m n saadaan hajotettua A = }{{} B }{{} C m r r n Esimerkiksi kanta

109 Lineaarialgebra (muut ko) p. 106/117 Hajotelma Matriisi A M m n saadaan hajotettua A = }{{} B }{{} C m r r n Esimerkiksi kanta = ( )

110 Lineaarialgebra (muut ko) p. 107/117 Hajotelma Matriisi A M m n saadaan hajotettua A = }{{} B }{{} C m r r n Esimerkiksi kanta = ( ) V(A) = V(BC) V(C) Saadaan dimv(a) dimp(a) ja dimv(a) = dimp(a)

111 Lineaarialgebra (muut ko) p. 108/117 Matriisin aste Matriisin aste r(a) = dimv(a) = dimp(a) Lause r(ab) r(a) r(ab) r(b) A säännöllinen r(ab) = r(b) B säännöllinen r(ab) = r(a) A = }{{} B }{{} C m r(a) r(a) n r(a T ) = r(a)

112 Lineaarialgebra (muut ko) p. 109/117 Alideterminantti, s. 56 Matriisin A M m n alideterminantti on determinantti det(b), missä B on neliömatriisi, joka saadaan A:sta pyyhkimällä pois jotkin sen vaaka- ja pystyriveistä. Alideterminantin riviluku on B:n riviluku Lause r(a) = A:n nollasta eroavien alideterminanttien suurin riviluku

113 Lineaarialgebra (muut ko) p. 110/117 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna

114 Lineaarialgebra (muut ko) p. 111/117 Käänteismuunnokset AM1: Kahden vaakarivin vaihto Käänteismuunnos: Vaihdetaan vaakarivit takaisin AM2: Vaakarivin kertominen skalaarilla c 0 Käänteismuunnos: Kerrotaan vaakarivi skalaarilla 1/c AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna Käänteismuunnos: Lisätään vaakarivi toiseen skalaarilla c kerrottuna

115 Lineaarialgebra (muut ko) p. 112/117 Riviekvivalenssi ( ) ( ) ( ) ( )

116 Lineaarialgebra (muut ko) p. 113/117 Riviekvivalenssi ( ) ( ) ( ) ( ) vastaavat alkeismatriisit E 1 = ( ), E 2 = ( ), E 3 = ( ) eli E 3 E 2 E 1 ( ) = ( ).

117 Lineaarialgebra (muut ko) p. 114/117 Redusoitu porrasmuoto Matriisin redusoitu porrasmuoto

118 Lineaarialgebra (muut ko) p. 115/117 Redusoitu porrasmuoto Matriisin redusoitu porrasmuoto aste r(a) =porrasluku ja V(A):n kanta on portaiden vaakarivit.

119 Lineaarialgebra (muut ko) p. 116/117 Redusoitu porrasmuoto Eli aste r(a) = 2 ja vaakariviavaruuden V(A) kanta {(1,1,0,2),(0,0,1,1)}.

120 Lineaarialgebra (muut ko) p. 117/117 Redusoitu porrasmuoto Myös I on redusoitu porrasmuoto Lause A on säännöllinen A I

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210 Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210 Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2

Lisätiedot

Lineaarialgebra (muut ko)

Lineaarialgebra (muut ko) Lineaarialgebra (muut ko) p. 1/103 Lineaarialgebra (muut ko) Tero Laihonen Lineaarialgebra (muut ko) p. 2/103 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v

Lisätiedot

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81 Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )

Lisätiedot

Muistutus: Matikkapaja ke Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta yms.

Muistutus: Matikkapaja ke Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta yms. Lineaarialgebra (muut ko) p. 1/139 Ensi viikon luennot salissa X Muistutus: Matikkapaja ke 14-16 Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta

Lisätiedot

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/159

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/159 Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/159 Lineaarialgebra (muut ko) p. 2/159 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 ) Skalaarilla

Lisätiedot

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162 Tällä viikolla viimeiset luennot ja demot Lineaarialgebra (muut ko) p. 1/162 Lineaarialgebra (muut ko) p. 2/162 Kertausta Vektorin u = (u 1,u 2 ) R 2 pituus u = u 2 1 +u2 2 Vektorien u ja v = (v 1,v 2

Lisätiedot

Alkeismuunnokset matriisille, sivu 57

Alkeismuunnokset matriisille, sivu 57 Lineaarialgebra (muut ko) p. 1/88 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Johdatus lineaarialgebraan. Juha Honkala 2017

Johdatus lineaarialgebraan. Juha Honkala 2017 Johdatus lineaarialgebraan Juha Honkala 2017 Sisällysluettelo 1 Lineaariset yhtälöryhmät ja matriisit 11 Lineaariset yhtälöryhmät 12 Matriisit 13 Matriisien alkeismuunnokset ja porrasmatriisit 14 Yhtälöryhmien

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66 Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/66 Lineaarialgebra (muut ko) p. 2/66 Redusoitu porrasmuoto 1 1 2 4 1 1 4 6 2 2 5 9 1 1 0 2 0 0 1 1 0 0 0 0 Eli aste r(a) = 2 ja vaakariviavaruuden

Lisätiedot

Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104

Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104 Lineaarialgebra (muut ko) p. 1/104 Ensi viikolla luennot salissa X Torstaina 7.12. viimeiset demot (12.12. ja 13.12. viimeiset luennot). Torstaina 14.12 on välikoe 2, muista ilmoittautua! Demorastitiedot

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Matematiikka B2 - TUDI

Matematiikka B2 - TUDI Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

1.1. Määritelmiä ja nimityksiä

1.1. Määritelmiä ja nimityksiä 1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)

Lisätiedot

Avaruuden R n aliavaruus

Avaruuden R n aliavaruus Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti

Talousmatematiikan perusteet: Luento 10. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti Talousmatematiikan perusteet: Luento 1 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset 32 Idea: Lineaarikuvausten laskutoimitusten avulla määritellään vastaavat matriisien laskutoimitukset Vakiolla kertominen ja summa Olkoon t R ja A, B R n m Silloin ta, A + B R n m ja määritellään ta ta

Lisätiedot

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisit..............................

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio 6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218 Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.

Lisätiedot

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset 31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita

Lisätiedot

Käänteismatriisin ominaisuuksia

Käänteismatriisin ominaisuuksia Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä

Lisätiedot

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................

Lisätiedot

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Matriisilaskenta Harjoitusten ratkaisut (Kevät 9). Olkoot ja A = B = 5. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Tapa Käänteismatriisin määritelmän nojalla riittää osoittaa, että AB

Lisätiedot

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.

Lisätiedot

Talousmatematiikan perusteet: Luento 9. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo

Talousmatematiikan perusteet: Luento 9. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo Talousmatematiikan perusteet: Luento 9 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

Käänteismatriisi 1 / 14

Käänteismatriisi 1 / 14 1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 4.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Viimeiset harjoitukset on palautettava torstaina 13.6. Laskaripisteensä ja läsnäolonsa voi kukin tarkistaa

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Ortogonaalinen ja ortonormaali kanta

Ortogonaalinen ja ortonormaali kanta Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

BM20A0700, Matematiikka KoTiB2

BM20A0700, Matematiikka KoTiB2 BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista 29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 5. luento.2.27 Lineaarialgebraa - Miksi? Neuroverkon parametreihin liittyvät kaavat annetaan monesti

Lisätiedot

9 Matriisit. 9.1 Matriisien laskutoimituksia

9 Matriisit. 9.1 Matriisien laskutoimituksia 9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä

Lisätiedot

Determinantti. Määritelmä

Determinantti. Määritelmä Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi. Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j). (a) Jos n = 1, niin det(a) = a 11. (b) Muussa tapauksessa n det(a)

Lisätiedot

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili 6 4 2 x 2 x 3 15 10 5 0 5 15 5 3 2 1 1 2 3 2 0 x 2 = 1 2x 1 0 4 x 2 = 3 x 1 x 5 2 5 x 1 10 x 1 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili Sisältö

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät 1 1 LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT Muotoa 11 Lineaariset yhtälöryhmät (1) a 1 x 1 + a x + + a n x n b oleva yhtälö on tuntemattomien x 1,, x n lineaarinen yhtälö, jonka kertoimet ovat luvut a 1,,

Lisätiedot

ominaisvektorit. Nyt 2 3 6

ominaisvektorit. Nyt 2 3 6 Esimerkki 2 6 8 Olkoon A = 40 0 6 5. Etsitäänmatriisinominaisarvotja 0 0 2 ominaisvektorit. Nyt 2 0 2 6 8 2 6 8 I A = 40 05 40 0 6 5 = 4 0 6 5 0 0 0 0 2 0 0 2 15 / 172 Täten c A ( )=det( I A) =( ) ( 2)

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Lotta Oinonen ja Johanna Rämö 6. joulukuuta 2012 Helsingin yliopisto Matematiikan ja tilastotieteen laitos 2012 Sisältö 1 Avaruus R n 4 1 Avaruuksien R 2 ja R 3 vektorit.....................

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/310 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa. LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,

Lisätiedot

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................

Lisätiedot

3.1 Lineaarikuvaukset. MS-A0007 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

3.1 Lineaarikuvaukset. MS-A0007 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset 3 MS-A7 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 925 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita ratkotaan

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA =

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA = 3 3 Olkoot 9 8 B 7 6 ja A 5 4 [ 3 4 Nyt A + B, AB ja BB eivät ole mielekkäitä (vastaavilla lineaarikuvauksilla menisivät dimensiot solmuun tällaisista yhdistelmistä) Kuitenkin voidaan laskea BA ja 9( )

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

2.8. Kannanvaihto R n :ssä

2.8. Kannanvaihto R n :ssä 28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus

Lisätiedot

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on? Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään

Lisätiedot

Ennakkotehtävän ratkaisu

Ennakkotehtävän ratkaisu Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47 MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

Lineaariset yhtälöryhmät ja matriisit

Lineaariset yhtälöryhmät ja matriisit Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää

Lisätiedot

Determinantti 1 / 30

Determinantti 1 / 30 1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen

Lisätiedot

Matriisialgebra harjoitukset, syksy x 1 + x 2 = a 0

Matriisialgebra harjoitukset, syksy x 1 + x 2 = a 0 MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 22 Virittääkö vektorijoukko S vektoriavaruuden V, kun a V = R 3 ja S = {(1,0, 1,(2,0,4,( 5,0,2,(0,0,1} b V = P 2 (R ja S = {t1,t 2 1,t 2 t} ( ( 1 0 c

Lisätiedot

Lineaarialgebra I. Oulun yliopisto Matemaattisten tieteiden laitos Esa Järvenpää Kirjoittanut Tuula Ripatti

Lineaarialgebra I. Oulun yliopisto Matemaattisten tieteiden laitos Esa Järvenpää Kirjoittanut Tuula Ripatti Lineaarialgebra I Oulun yliopisto Matemaattisten tieteiden laitos 2011 Esa Järvenpää Kirjoittanut Tuula Ripatti 2 1 Lineaarinen yhtälöryhmä 11 Esimerkki (a) Ratkaise yhtälö 5x = 7 Kerrotaan yhtälö puolittain

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

802120P Matriisilaskenta (5 op)

802120P Matriisilaskenta (5 op) 802120P Matriisilaskenta (5 op) Marko Leinonen Matemaattiset tieteet Syksy 2016 1 / 220 Luennoitsija: Marko Leinonen marko.leinonen@oulu.fi MA333 Kurssilla käytetään Noppaa (noppa.oulu.fi) Luentomoniste

Lisätiedot

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin

Lisätiedot

LU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24

LU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24 LU-hajotelma 1 / 24 LU-hajotelma Seuravassa tarkastellaan kuinka neliömatriisi voidaan esittää kahden kolmiomatriisin tulona. Käytämme alkeismatriiseja tälläisen esityksen löytämiseen. Edellä mainittua

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden

Lisätiedot

Lineaarialgebra. Osa 1. Turun yliopisto. Markku Koppinen

Lineaarialgebra. Osa 1. Turun yliopisto. Markku Koppinen Lineaarialgebra Osa 1 Turun yliopisto Markku Koppinen Alkusanat 9 elokuuta 2006 Lineaarialgebra on niitä perusteorioita, joita tarvitaan lähes kaikilla matematiikan aloilla ja monissa muissakin tieteissä

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla: 11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta

Lisätiedot