Insinöörimatematiikka D

Koko: px
Aloita esitys sivulta:

Download "Insinöörimatematiikka D"

Transkriptio

1 Insinöörimatematiikka D M. Hirvensalo V. Junnila Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo V. Junnila Luentokalvot 3 1 of 23

2 Kertausta Lineaarikombinaatiot Vektoriavaruuden V vektoreiden {v 1, v 2,..., v k } lineaarikombinaatioiden joukko on L(v 1,..., v k ) = {c 1 v c k v k c 1,..., c k K}. L(v 1,..., v k ) on V:n aliavaruus. On voimassa u L(v 1,..., v k ) L(v 1,..., v k ) = L(v 1,..., v k, u). M. Hirvensalo V. Junnila Luentokalvot 3 2 of 23

3 Kertausta Lineaarinen riippuvuus Vektorijoukko {v 1, v 2,..., v k } on lineaarisesti riippumaton, jos vektoreiden v 1,..., v k lineaarikombinaationa voidaan nollavektori muodostaa vain ilmeisellä tavalla 0 v v v k = 0. Jos on muitakin tapoja, on joukko lineaarisesti riippuva. Lineaarinen riippuvuus jokin joukon vektoreista voidaan esittää muiden avulla: v i = c 1 v c i 1 v i 1 + c i+1 v i c k v k L(v 1,..., v k ) = L(v 1,..., v i 1, v i+1,..., v k ) M. Hirvensalo V. Junnila Luentokalvot 3 3 of 23

4 Vektoriavaruudet Lause Olkoot v 1,..., v k R n ja A k n matriisi: A = v 1. v k. Jos A B ja niin B = u 1. u k, L(v 1,..., v k ) = L(u 1,..., u k ) M. Hirvensalo V. Junnila Luentokalvot 3 4 of 23

5 Vektoriavaruudet Seuraus Olkoon S = {v 1,..., v k } ja A matriisi, jonka riveinä ovat nämä vektorit. Olkoon A B, missä B on redusoitu porrasmatriisi. Vektorijoukko S on lineaarisesti riippuva tarkalleen silloin kun matriisissa B on nollarivi. Esimerkki 24 Olkoon S = {(1, 2, 1), ( 2, 3, 1), (4, 1, 3)}. Koska on S lineaarisesti riippuva. Lisäksi , V = L((1, 2, 1), ( 2, 3, 1), (4, 1, 3)) = L((1, 0, 5 7 ), (0, 1, 1 7 )). M. Hirvensalo V. Junnila Luentokalvot 3 5 of 23

6 Vektoriavaruudet Määritelmä Joukko B on vektoriavaruuden V kanta, jos V = L(B). B on lineaarisesti riippumaton. Esimerkki 24 (jatkoa) Joukko B = {(1, 0, 5 7 ), (0, 1, 1 7 )} on vektoriavaruuden V = L((1, 2, 1), ( 2, 3, 1), (4, 1, 3)) kanta, sillä V = L((1, 0, 5 7 ), (0, 1, 1 7 )) ja {(1, 0, 5 7 ), (0, 1, 1 7 )} on lineaarisesti riippumaton. M. Hirvensalo V. Junnila Luentokalvot 3 6 of 23

7 Lause Vektoriavaruuden kaikissa kannoissa on yhtä monta vektoria. Määritelmä Jos V :n kanta B = {v 1,..., v k } on äärellinen, sanotaan että V on k-ulotteinen. Merkintä: dimensio dim(v ) = k. Vektoriavaruuden V = {0} kannaksi sovitaan tyhjä joukko; dim({0}) = 0 Jos vektoriavaruudella V ei ole äärellistä kantaa, sanotaan, että V on ääretönulotteinen; dim(v ) = Esimerkki 24 (jatkoa) Dimensio dim(l((1, 2, 1), ( 2, 3, 1), (4, 1, 3))) = 2. M. Hirvensalo V. Junnila Luentokalvot 3 7 of 23

8 Vektoriavaruudet Esimerkki {e 1, e 2,..., e n } on R n :n kanta, ns. luonnollinen kanta, sillä R n = L(e 1, e 2,..., e n ) ja {e 1, e 2,..., e n } on lineaarisesti riippumaton. Dimensio dim(r n ) = n. Lause Jos B = {b 1,..., b n } on avaruuden V kanta, niin jokaisella x V on yksikäsitteinen esitys kantavektoreiden lineaarikombinaationa: x = x 1 b x n b n M. Hirvensalo V. Junnila Luentokalvot 3 8 of 23

9 Vektoriavaruudet Määritelmä Olkoon x V ja B = {b 1,..., b n } on avaruuden V (reaalinen tai kompleksinen) kanta ja x = x 1 b x n b n. Lukuja x 1,..., x n kutsutaan vektorin x koordinaateiksi kannan B suhteen. Vektoria x B = (x 1,..., x n ) ( R n tai C n ) sanotaan x:n koordinaattivektoriksi kannan B suhteen. Esimerkki 26 Jos x = (x 1,..., x n ) ja B = {e 1,..., e n } on luonnollinen kanta, niin x = x 1 e x n e n x B = (x 1,..., x n ). M. Hirvensalo V. Junnila Luentokalvot 3 9 of 23

10 Vektoriavaruudet Esimerkki 29 Olkoon P = {c 0 + c 1 x 1 + c 2 x c n x n c i R} reaalikertoimisten polynomien joukko. P on vektoriavaruus ja eräs sen kanta on B = {1, x, x 2, x 3,...}, sillä P = L(B) ja B on lineaarisesti riippumaton. P:llä ei ole äärellistä kantaa, sillä kaikissa P:n kannoissa on yhtä monta alkiota. Esimerkki 30 Myös P 5 = {c 0 + c 1 x 1 + c 2 x 2 + c 3 x 3 + c 4 x 4 c i R} on vektoriavaruus ja eräs sen kanta on B = {1, x, x 2, x 3, x 4 }, sillä P 5 = L(B) ja B on lineaarisesti riippumaton. Dimensio dim(p 5 ) = 5. M. Hirvensalo V. Junnila Luentokalvot 3 10 of 23

11 Vektoriavaruudet Huomautus Jos V = L(v 1,..., v k ), mutta S = {v 1,..., v k } ei ole avaruuden V, kanta, on S välttämättä lineaarisesti riippuva. Tällöin jokin vektori, esim. v k L(v 1,..., v k 1 ) ja siksi V = L(v 1,..., v k 1 ). Poistamista voidaan jatkaa, kunnes saadaan kanta. Esimerkki Esimerkki 32 M. Hirvensalo V. Junnila Luentokalvot 3 11 of 23

12 Vektoriavaruudet Lause Jos V on äärellisesti generoitu, ja U V, voidaan U:n kanta täydentää V :n kannaksi. Esimerkki Täydennetään B = {(1, 0, 5 7 ), (0, 1, 1 7 )} R3 :n kannaksi. Valitaan e 3 = (0, 0, 1) / L(B). Huomataan, että Joten B {e 3 } on R 3 :n kanta, sillä R 3 = L(B {e 3 }) ja se on lineaarisesti riippumaton. M. Hirvensalo V. Junnila Luentokalvot 3 12 of 23

13 Vektoriavaruudet Seuraus Jos U V, on dim(u) dim(v ) Jos n = dim(v ), on jokainen V :n osajoukko, jossa on enemmän kuin n vektoria, lineaarisesti riippuva. Esimerkki Joukko {i, j, i + j} R 2 on lineaarisesti riippuva, sillä dim(r 2 ) = 2. M. Hirvensalo V. Junnila Luentokalvot 3 13 of 23

14 Matriisit Määritelmä Matriisi A on kaavio A = A 11 A A 1n A 21 A A 2n A m1 A m2... A mn. Tyyppi m n: m riviä, n saraketta. A ij : matriisin alkiot A ij R: reaalinen matriisi A ij C: kompleksinen matriisi M. Hirvensalo V. Junnila Luentokalvot 3 14 of 23

15 Matriisit Määritelmä 1 n-matriisia A = (A 11 A A 1n ) kutsutaan vaakavektoriksi tai rivivektoriksi. A 11 A 21 m 1-matriisia A = kutsutaan pystyvektoriksi tai. sarakevektoriksi. Huomautus A m1 Sekä pysty- että vaakavektori voidaan tulkita avaruuden R n (tai C n ) alkioksi. Näissä käytetään yleensä vain yksinkertaista indeksointia. M. Hirvensalo V. Junnila Luentokalvot 3 15 of 23

16 Matriisit Määritelmä Nollamatriisi O on matriisi, jonka kaikki alkiot ovat nollia Neliömatriisi on matriisi, jossa rivien määrä on sama kuin sarakkeiden määrä Esimerkki neliömatriisista M. Hirvensalo V. Junnila Luentokalvot 3 16 of 23

17 Matriisit Määritelmä Diagonaalimatriisi on neliömatriisi D, jolle pätee i j D ij = 0. Identiteettimatriisi I n on diagonaalimatriisi, jonka kaikki diagonaalialkiot ovat ykkösiä. Esimerkki diagonaalimatriisista A = Esimerkki identiteettimatriisista I 3 = M. Hirvensalo V. Junnila Luentokalvot 3 17 of 23

18 Matriisit Määritelmä Transpoosi (A T ) ij = A ji. Esimerkki A = ja AT = M. Hirvensalo V. Junnila Luentokalvot 3 18 of 23

19 Matriisit Määritelmä Neliömatriisi A on symmetrinen, jos A T = A. Esimerkki on symmetrinen matriisi A = = A T M. Hirvensalo V. Junnila Luentokalvot 3 19 of 23

20 Matriisit Määritelmä Matriisin A:n vastamatriisi A määritellään asettamalla ( A) ij = A ij. Esimerkki = M. Hirvensalo V. Junnila Luentokalvot 3 20 of 23

21 Matriisit Skalaarikertolasku Jos A on m n-matriisi ja c joko kompleksi- tai reaaliluku, on ca m n-matriisi, jolle pätee (ca) ij = ca ij (kertolasku alkioittain). Matriisien yhteenlasku Jos A on m n-matriisi ja B r s-matriisi, summa A + B määritellään vain jos m = r ja n = s. Tällöin (A + B) ij = A ij + B ij Huomautus m n-matriisit muodostavat vektoriavaruuden yhteenlaskun ja skalaarikertolaskun suhteen. M. Hirvensalo V. Junnila Luentokalvot 3 21 of 23

22 Matriisit Esimerkki 33 ( ) A = on 2 3-matriisi, 5A = Esimerkki ( ) A = on 2 3-matriisi ja B = matriisi. Summaa A + B ei ole määritelty. ( ) ( ) A + B T = + = ( ) ( ) M. Hirvensalo V. Junnila Luentokalvot 3 22 of 23

23 Matriisit Esimerkki 36 ( x + 3, x 1, x) = ( x, x, x) + (3, 1, 0) = x( 1, 1, 1) + (3, 1, 0) M. Hirvensalo V. Junnila Luentokalvot 3 23 of 23

Mika Hirvensalo. Insinöörimatematiikka D 2015

Mika Hirvensalo. Insinöörimatematiikka D 2015 Mika Hirvensalo Insinöörimatematiikka D 2015 Sisältö 1 Lineaarialgebran peruskäsitteitä............................................... 5 1.1 Lineaariset yhtälöryhmät..................................................

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Yleiset lineaarimuunnokset

Yleiset lineaarimuunnokset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen

Lisätiedot

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät 1 1 LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT Muotoa 11 Lineaariset yhtälöryhmät (1) a 1 x 1 + a x + + a n x n b oleva yhtälö on tuntemattomien x 1,, x n lineaarinen yhtälö, jonka kertoimet ovat luvut a 1,,

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

LINEAARIALGEBRA, osat a ja b

LINEAARIALGEBRA, osat a ja b LINEAARIALGEBRA, osat a ja b Martti E. Pesonen Epsilon ry. huhtikuuta 06 LUKIJALLE Lineaarialgebran kursseja edeltäviksi opinnoiksi suositellaan jotain lukion matematiikkaa teoreettiselta kannalta täydentävää

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0 Tensorialgebroista Esitysteorian kesäopintopiiri, Turun yliopisto, 2012 Jyrki Lahtonen Olkoon k jokin skalaarikunta. Kerrataan k-algebran käsite: A on k-algebra, jos se on sekä rengas että vektoriavaruus

Lisätiedot

Polynomimatriisit. Antti Lindberg. Matematiikan pro gradu -tutkielma

Polynomimatriisit. Antti Lindberg. Matematiikan pro gradu -tutkielma Polynomimatriisit Antti Lindberg Matematiikan pro gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kesä 2014 Tiivistelmä: Antti Lindberg, Polynomimatriisit, Matematiikan pro

Lisätiedot

Matemaattinen Analyysi, k2011, L2

Matemaattinen Analyysi, k2011, L2 Matemaattinen Analyysi, k2011, L2 Lineaarikombinaatio 1 Esimerkki 1 Olkoon yrityksen A osakkeen arvo 20eja yrityksen B osakkeen arvo 10e. Sijoittaja tarkastelee omaisuutensa rakennetta ryhmittelemällä

Lisätiedot

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

OPTIMOINNIN PERUSTEET. Keijo Ruotsalainen

OPTIMOINNIN PERUSTEET. Keijo Ruotsalainen OPTIMOINNIN PERUSTEET Keijo Ruotsalainen 23. marraskuuta 2009 2 Johdanto Kurssin tavoitteena on tutustuttaa tavallisimpiin optimointi-algoritmeihin ja niiden käyttöön sovellutuksissa. Kurssimateriaali

Lisätiedot

Liite 2. Ryhmien ja kuntien perusteet

Liite 2. Ryhmien ja kuntien perusteet Liite 2. Ryhmien ja kuntien perusteet 1. Ryhmät 1.1 Johdanto Erilaisissa matematiikan probleemoissa törmätään usein muotoa a + x = b tai a x = b oleviin yhtälöihin, joissa tuntematon muuttuja on x. Lukujoukkoja

Lisätiedot

Äärellisesti generoitujen Abelin ryhmien peruslause

Äärellisesti generoitujen Abelin ryhmien peruslause Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x 8. Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme näiltä kahdella laskutoimituksella varustetuilta

Lisätiedot

Matriisilaskenta. Ville Tilvis

Matriisilaskenta. Ville Tilvis Matriisilaskenta Ville Tilvis 1 joulukuuta 2013 Sisältö Johdanto 1 1 Matriisit ja vektorit 2 11 Nimityksiä 2 12 Peruslaskutoimitukset 4 2 Lineaariset yhtälöryhmät 10 21 Lineaarinen yhtälö ja yhtälöryhmä

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:

Lisätiedot

ALGEBRA. Tauno Metsänkylä. K f. id K

ALGEBRA. Tauno Metsänkylä. K f. id K ALGEBRA Tauno Metsänkylä K f τ K f τ 1 K(α 1 ) K(α 1 ) K id K K SISÄLTÖ 1 Sisältö 1 MODULI 4 1.1 Moduli; alimoduli................................ 4 1.2 Modulihomomorfia; tekijämoduli.......................

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori Jarkko Peltomäki Aliryhmän sentralisaattori ja normalisaattori Matematiikan aine Turun yliopisto Syyskuu 2009 Sisältö 1 Johdanto 2 2 Määritelmiä ja perusominaisuuksia 3 2.1 Aliryhmän sentralisaattori ja

Lisätiedot

Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen.

Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Pns ratkaisu (Kr. 20.5, Lay 6.5 C-II/KP-II, 20, Kari Eloranta Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Määritelmä Jos A on

Lisätiedot

Jos havaitaan päivän ylin lämpötila, mittaustuloksissa voi esiintyä seuraavantyyppisiä virheitä:

Jos havaitaan päivän ylin lämpötila, mittaustuloksissa voi esiintyä seuraavantyyppisiä virheitä: Mittausten virheet Jos havaitaan päivän ylin lämpötila, mittaustuloksissa voi esiintyä seuraavantyyppisiä virheitä: 1. Luemme lämpömittarin vain asteen tarkkuudella. Ehkä kyseessä on digitaalimittari,

Lisätiedot

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan

Lisätiedot

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

TAMPEREEN TEKNILLINEN YLIOPISTO Teknis-luonnontieteellinen osasto

TAMPEREEN TEKNILLINEN YLIOPISTO Teknis-luonnontieteellinen osasto TAMPEREEN TEKNILLINEN YLIOPISTO Teknis-luonnontieteellinen osasto Minna Honkiniemi TEKNILLISEN YLIOPISTON PERUSMATEMATIIKAN OPISKELIJOIDEN OPISKELUORIENTAATIOIDEN JA OPINTOMENESTYKSEN TUTKIMINEN ITSEORGANISOITUVIEN

Lisätiedot

Johdatus peliteoriaan

Johdatus peliteoriaan Johdatus peliteoriaan Kahden pelaajan nollasummapelien ratkaiseminen ja Nashin tasapainojen olemassaolo usean pelaajan yleisessä summapelissä Henri Nousiainen Matematiikan pro gradu Jyväskylän yliopisto

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

H = H(12) = {id, (12)},

H = H(12) = {id, (12)}, 7. Normaali aliryhmä ja tekijäryhmä Tarkastelemme luvun aluksi ryhmän ja sen aliryhmien suhdetta. Olkoon G ryhmä ja olkoon H G. Alkiong G vasen sivuluokka (aliryhmän H suhteen) on gh = {gh : h H} ja sen

Lisätiedot

Matriisilaskenta. Luentomoniste JOUNI SAMPO

Matriisilaskenta. Luentomoniste JOUNI SAMPO Matriisilaskenta Luentomoniste JOUNI SAMPO Kevät 2014 BM20A1601 Matriisilaskenta (4 op) Viikko 1 Lineaariset yhtälöryhmät ja matriisit, sovellustilanteita lämpöjakauma levyssä interpolaatiopolynomi numeerinen

Lisätiedot

Nollasummapelit ja muut yleisemmät summapelit

Nollasummapelit ja muut yleisemmät summapelit Nollasummapelit ja muut yleisemmät summapelit Teemu Orjatsalo Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Syksy 2013 Tiivistelmä: Teemu Orjatsalo, Nollasummapelit

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

Hahmon etsiminen syotteesta (johdatteleva esimerkki)

Hahmon etsiminen syotteesta (johdatteleva esimerkki) Hahmon etsiminen syotteesta (johdatteleva esimerkki) Unix-komennolla grep hahmo [ tiedosto ] voidaan etsia hahmon esiintymia tiedostosta (tai syotevirrasta): $ grep Kisaveikot SM-tulokset.txt $ ps aux

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

HILBERTIN AVARUUDET 802652S MIKAEL LINDSTRÖM KEVÄÄN 2010 ANALYYSI 3 -LUENTOJEN PERUSTEELLA TOIMITTANEET TOMI ALASTE JA LAURI BERKOVITS

HILBERTIN AVARUUDET 802652S MIKAEL LINDSTRÖM KEVÄÄN 2010 ANALYYSI 3 -LUENTOJEN PERUSTEELLA TOIMITTANEET TOMI ALASTE JA LAURI BERKOVITS HILBRTIN AVARUUDT 802652S MIKAL LINDSTRÖM KVÄÄN 2010 ANALYYSI 3 -LUNTOJN PRUSTLLA TOIMITTANT TOMI ALAST JA LAURI BRKOVITS Sisältö 1 Hilbertin Avaruudet 3 1.1 Normi- ja L p -avaruudet........................

Lisätiedot

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Renkaat ja modulit Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Tekijärenkaassa nollan ekvivalenssiluokka on alkuperäisen renkaan ideaali. Ideaalin käsitteen

Lisätiedot

Luento 3: 3D katselu. Sisältö

Luento 3: 3D katselu. Sisältö Tietokonegrafiikan perusteet T-.43 3 op Luento 3: 3D katselu Lauri Savioja Janne Kontkanen /27 3D katselu / Sisältö Kertaus: koordinaattimuunnokset ja homogeeniset koordinaatit Näkymänmuodostus Kameran

Lisätiedot

2. Polynomien jakamisesta tekijöihin

2. Polynomien jakamisesta tekijöihin Imaginaariluvut mielikuvitustako Koska yhtälön x 2 x 1=0 diskriminantti on negatiivinen, ei yhtälöllä ole reaalilukuratkaisua Tästä taas seuraa, että yhtälöä vastaava paraabeli y=x 2 x 1 ei leikkaa y-akselia

Lisätiedot

73125 MATEMAATTINEN OPTIMOINTITEORIA 2

73125 MATEMAATTINEN OPTIMOINTITEORIA 2 73125 MATEMAATTINEN OPTIMOINTITEORIA 2 Risto Silvennoinen Tampereen teknillinen yliopisto, kevät 2004 1. Peruskäsitteet Optimointiteoria on sovelletun matematiikan osa-alue, jossa tutkitaan funktioiden

Lisätiedot

Algebra II. Syksy 2004 Pentti Haukkanen

Algebra II. Syksy 2004 Pentti Haukkanen Algebra II Syksy 2004 Pentti Haukkanen 1 Sisällys 1 Ryhmäteoriaa 3 1.1 Ryhmän määritelmä.... 3 1.2 Aliryhmä... 3 1.3 Sivuluokat...... 4 1.4 Sykliset ryhmät... 7 1.5 Ryhmäisomorfismi..... 11 2 Polynomeista

Lisätiedot

Oktoniot, Fanon taso ja Kirkmanin koulutyttöongelma

Oktoniot, Fanon taso ja Kirkmanin koulutyttöongelma Oktoniot, Fanon taso ja Kirkmanin koulutyttöongelma Jorma Merikoski Professori Matematiikan, tilastotieteen ja filosofian laitos, Tampereen yliopisto Johdanto Kirjoitin viitteessä [5], että koska laajennuksessa

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

Kvaterniot. Anna-Kaisa Markkanen. Matematiikan pro gradu -tutkielma

Kvaterniot. Anna-Kaisa Markkanen. Matematiikan pro gradu -tutkielma Kvaterniot Anna-Kaisa Markkanen Matematiikan pro gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kesä 014 Tiivistelmä: A-K. Markkanen, Kvaterniot (engl. Quaternions), matematiikan

Lisätiedot

TMA.111 Matemaattinen analyysi c Matti Laaksonen, 2003

TMA.111 Matemaattinen analyysi c Matti Laaksonen, 2003 TMA.111 Matemaattinen analyysi c Matti Laaksonen, 2003 Vaasan Yliopisto, 2003 Teknillinen tiedekunta Matemaattisten tieteiden laitos PL 700 (Wolffintie 34) 65101 VAASA Vaasan yliopisto Matemaattinen analyysi

Lisätiedot

Matlab-perusteet. Jukka Jauhiainen. OAMK / Tekniikan yksikkö. Hyvinvointiteknologian koulutusohjelma

Matlab-perusteet. Jukka Jauhiainen. OAMK / Tekniikan yksikkö. Hyvinvointiteknologian koulutusohjelma Matlab-perusteet Jukka Jauhiainen OAMK / Tekniikan yksikkö Hyvinvointiteknologian koulutusohjelma Tämän materiaalin tarkoitus on antaa opiskelijalle lyhyehkö johdanto Matlabohjelmiston perusteisiin. Matlabin

Lisätiedot

Alijärjestelmän mittaus ja muita epätäydellisiä mittauksia

Alijärjestelmän mittaus ja muita epätäydellisiä mittauksia T-79.4001 Tietojenkäsittelyteorian seminaari 0..008 1 Alijärjestelmän mittaus ja muita epätäydellisiä mittauksia Loepp & Wootters, Protecting Information, luvut.4-.5 T-79.4001 Tietojenkäsittelyteorian

Lisätiedot

Esipuhe. Sirkka-Liisa Eriksson

Esipuhe. Sirkka-Liisa Eriksson 3 Esipuhe Matematiikka tieteiden kuningatar ja palvelija on lukioihin ja ammattikorkeakouluihin suunnattuun koulukohtaiseen valinnaiseen syventävään kurssiin perustuva kirja. Kirjan tarkoituksena on kerrata

Lisätiedot

Laskennallinen lineaarinen algebra ja geometria

Laskennallinen lineaarinen algebra ja geometria Laskennallinen lineaarinen algebra ja geometria Matti Vihola 2 Sisältö Numeriikkaa äärellinen esitystarkkuus numeerisen laskennan etuja ja haittoja virhekäsitteitä Numeerista lineaarista algebraa matriisinormi

Lisätiedot

Symmetriaryhmät ja niiden esitykset. Symmetriaryhmät, 10.1.2013 1/26

Symmetriaryhmät ja niiden esitykset. Symmetriaryhmät, 10.1.2013 1/26 Symmetriaryhmät ja niiden esitykset Symmetriaryhmät, 10.1.2013 1/26 Osa I: Symmetriaryhmät Symmetriaryhmät, 10.1.2013 2/26 Peilisymmetria Symmetriaryhmät, 10.1.2013 3/26 Kiertosymmetria Symmetriaryhmät,

Lisätiedot

Lisää ryhmästä A 5 1 / 28. Lisää ryhmästä

Lisää ryhmästä A 5 1 / 28. Lisää ryhmästä 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 1 / 28 14A.1 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 Tehtävä: Määrää ryhmän karakteritaulu,

Lisätiedot

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen

Lisätiedot

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten

Lisätiedot

Outoja funktioita. 0 < x x 0 < δ ε f(x) a < ε.

Outoja funktioita. 0 < x x 0 < δ ε f(x) a < ε. Outoja funktioita Differentiaalilaskentaa harjoitettiin miltei 200 vuotta ennen kuin sen perustana olevat reaaliluvut sekä funktio ja sen raja-arvo määriteltiin täsmällisesti turvautumatta geometriseen

Lisätiedot

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja.

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja. IsoInt Tietokoneiden muisti koostuu yksittäisistä muistisanoista, jotka nykyaikaisissa koneissa ovat 64 bitin pituisia. Muistisanan koko asettaa teknisen rajoituksen sille, kuinka suuria lukuja tietokone

Lisätiedot

Insinöörimatematiikka IA

Insinöörimatematiikka IA Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

169. 170. 171. 172. 173. 174. 5. Geometriset avaruudet. 5.1. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus

169. 170. 171. 172. 173. 174. 5. Geometriset avaruudet. 5.1. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus 5. Geometriset avaruudet 5.. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus 69. Olkoon {b,b 2 } tason E 2 kanta ja olkoon u = 2b + 3b 2, v = 3b + 2b 2, w = b 2b 2. Määritä vektoreiden 2u v + w ja

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

Affiini kombinaatio ja riippuvuus: Affmenin arvoitus

Affiini kombinaatio ja riippuvuus: Affmenin arvoitus Solmu 1/2014 1 Affiini kombinaatio ja riippuvuus: Affmenin arvoitus Noora Karvinen Tämän kirjoituksen tarkoitus on kertoa affiineista kombinaatioista ja riippuvuudesta mielenkiintoisella ja uudella tavalla.

Lisätiedot

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. Kaksi järjestettyä paria ovat samat, jos niillä on samat ensimmäiset alkiot ja samat toiset alkiot:

Lisätiedot

(Monisteen Esimerkki 2.6.8) Olkoon R polynomifunktioiden rengas R[x]. Kiinnitetään c R. Merkitään

(Monisteen Esimerkki 2.6.8) Olkoon R polynomifunktioiden rengas R[x]. Kiinnitetään c R. Merkitään Monisteen Esimerkki 2.6.8 Olkoon R polynomifunktioiden rengas R[x]. Kiinnitetään c R. Merkitään I c = {px R pc = 0}. Osoitetaan, että I c on renkaan R ihanne. Ratkaisu: Vakiofunktio 0 R I c joten I c.

Lisätiedot

Algebra I. Jokke Häsä ja Johanna Rämö. Matematiikan ja tilastotieteen laitos Helsingin yliopisto

Algebra I. Jokke Häsä ja Johanna Rämö. Matematiikan ja tilastotieteen laitos Helsingin yliopisto Algebra I Jokke Häsä ja Johanna Rämö Matematiikan ja tilastotieteen laitos Helsingin yliopisto Kevät 2011 Sisältö 1 Laskutoimitukset 6 1.1 Työkalu: Joukot ja kuvaukset..................... 6 1.1.1 Joukko..............................

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2011 Maarit Järvenpää 1 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Lisätiedot

(2) C on joukko, jonka alkioita kutsutaan sala(kirjoite)tuiksi viesteiksi (engl. ciphertext);

(2) C on joukko, jonka alkioita kutsutaan sala(kirjoite)tuiksi viesteiksi (engl. ciphertext); 2. Salausjärjestelmä Salausjärjestelmien kuvaamisessa käytetään usein apuna kolmea henkilöä : Liisa (engl. Alice), Pentti (engl. Bob) ja Erkki (eng. Eve eavesdrop 10 ). Salausjärjestelmillä pyritään viestin

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 25.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 25.2.2009 1 / 34 Syötteessä useita lukuja samalla rivillä Seuraavassa esimerkissä käyttäjä antaa useita lukuja samalla

Lisätiedot

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut Kompleksiluvut 1/6 Sisältö Kompleksitaso Lukukäsitteen vaiheittainen laajennus johtaa luonnollisista luvuista kokonaislukujen ja rationaalilukujen kautta reaalilukuihin. Jokaisessa vaiheessa ratkeavien

Lisätiedot

1 Euklidiset avaruudet R n

1 Euklidiset avaruudet R n 1 Euklidiset avaruudet R n Tässä osiossa käymme läpi Euklidisten avaruuksien R n perusominaisuuksia. Olkoon n N + positiivinen kokonaisluku. Euklidinen avaruus R n on joukko R n = {(x 1, x 2,..., x n )

Lisätiedot

Vektorilla on suunta ja suuruus. Suunta kertoo minne päin ja suuruus kuinka paljon. Se on siinä.

Vektorilla on suunta ja suuruus. Suunta kertoo minne päin ja suuruus kuinka paljon. Se on siinä. Koska varsinkin toistensa suhteen liikkuvien kappaleiden liikkeen esittäminen suorastaan houkuttelee käyttämään vektoreita, mutta koska ne eivät kaikille ehkä ole kuitenkaan niin tuttuja kuin ansaitsisivat,

Lisätiedot

Kompleksiluvut ja kvaterniot kiertoina

Kompleksiluvut ja kvaterniot kiertoina Kompleksiluvut ja kvaterniot kiertoina Heikki Polvinen Matematiikan pro gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Syksy 0 Tiivistelmä: Heikki Polvinen, Kompleksiluvut

Lisätiedot

Vektorimatematiikkaa Pisteet ja vektorit

Vektorimatematiikkaa Pisteet ja vektorit Geometriaa Vektorimatematiikkaa Pisteet ja vektorit Käytössä vektoriavaruus R 3 Merkitsemme pistettä p = x y z voidaan tilanteen mukaan esittää sekä pysty- että vaakavektorina (1 3 tai 3 1-matriisina)

Lisätiedot

Vektorit. Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi)

Vektorit. Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi) Vektorit Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi) Sisällys Vektorit Nimeäminen Vektorien kertolasku Vektorien yhteenlasku Suuntasopimus Esimerkki: laivan nopeus Vektorit Vektoreilla

Lisätiedot

Vektorit. Vektorin luominen... 192 Vektorin tuominen näyttöön... 195 Vektorin koon ja alkioiden muokkaaminen... 195 Vektorin poistaminen...

Vektorit. Vektorin luominen... 192 Vektorin tuominen näyttöön... 195 Vektorin koon ja alkioiden muokkaaminen... 195 Vektorin poistaminen... 12 Vektorit Vektorin luominen... 192 Vektorin tuominen näyttöön... 195 Vektorin koon ja alkioiden muokkaaminen... 195 Vektorin poistaminen... 196 TI -86 M1 M2 M3 M4 M5 F1 F2 F3 F4 F5 192 Luku 12: Vektorit

Lisätiedot

Talousmatematiikan perusteet ORMS.1030

Talousmatematiikan perusteet ORMS.1030 kevät 2014 Talousmatematiikan perusteet Matti Laaksonen, (Matemaattiset tieteet / Vaasan yliopisto) Vastaanotto to 11-12 huone D110/Tervahovi Sähköposti: matti.laaksonen@uva.fi Opettajan kotisivu: http://lipas.uwasa.fi/

Lisätiedot

Neljän alkion kunta, solitaire-peli ja

Neljän alkion kunta, solitaire-peli ja Neljän alkion kunta, solitaire-peli ja taikaneliöt Kalle Ranto ja Petri Rosendahl Matematiikan laitos, Turun yliopisto Nykyisissä tietoliikennesovelluksissa käytetään paljon tekniikoita, jotka perustuvat

Lisätiedot

Peliteoria ja huutokauppamekanismit

Peliteoria ja huutokauppamekanismit Peliteoria ja huutokauppamekanismit Satu Ruotsalainen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2015 Tiivistelmä: Satu Ruotsalainen, Peliteoria ja huutokauppamekanismit

Lisätiedot

ANALYYSI 2. Camilla Hollanti. Tampereen yliopisto 2010. x 3. a x 1. x 4 x 11. x 2

ANALYYSI 2. Camilla Hollanti. Tampereen yliopisto 2010. x 3. a x 1. x 4 x 11. x 2 ANALYYSI 2 Camilla Hollanti _ M M a x x 2 x 3 x 4 x b Tampereen yliopisto 200 Sisältö. Preliminäärejä 3 2. Riemann-integraali 5 2.. Pinta-alat ja porrasfunktiot....................... 5 2... Pinta-ala

Lisätiedot

Survo-ristikon ratkaiseminen matriiseilla

Survo-ristikon ratkaiseminen matriiseilla Survo-ristikon ratkaiseminen matriiseilla Kimmo Vehkalahti 9.6.2011 1 Taustaa Harrastettuani Survo-ristikoita tiiviisti keväästä 2006 lähtien, toisin sanoen siitä asti, kun Seppo Mustonen tuon koukuttavan

Lisätiedot

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Kertausta kurssilta Lukuteoria ja ryhmät

Lisätiedot

1. Kuinka monta erilaista tapaa on 10 hengen seurueella istuutua pyöreän pöydän ympärille?

1. Kuinka monta erilaista tapaa on 10 hengen seurueella istuutua pyöreän pöydän ympärille? Diskreetti matematiikka, syksy 00 Harjoitus -, ratkaisuista. Kuinka monta erilaista tapaa on 0 hengen seurueella istuutua pyöreän pöydän ympärille? Ratkaisu. Paikat identtisiä, istumajärjestys oleellinen,

Lisätiedot

Talousmatematiikan perusteet ORMS.1030

Talousmatematiikan perusteet ORMS.1030 orms.1030 Vaasan avoin yliopisto / kevät 2013 1 Talousmatematiikan perusteet Matti Laaksonen Matemaattiset tieteet Vaasan yliopisto Vastaanotto to 11-12 huone D110/Tervahovi Sähköposti: matti.laaksonen@uva.fi

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 3. helmikuuta 2011 Matemaattisten tieteiden laitos Sisältö Kurssi koostuu kuudesta (seitsemästä) toisistaan riippumattomasta luennosta. Aihepiirit ovat:

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Vastaavuus puolestaan on erikoistapaus relaatiosta.

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 16.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 16.2.2010 1 / 41 Kännykkäpalautetteen antajia kaivataan edelleen! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti

Lisätiedot

Aaltoputket. 11. helmikuuta 2008

Aaltoputket. 11. helmikuuta 2008 Aaltoputket TEM-aaltojen lisäk si aaltojoh d oissa v oi ed etä m y ös m u ita aaltom u otoja, tark em m in sanottu na TE- ja TM-aaltom u otoja. A ik aisem m in on tod ettu, että TEM-aalto etenee v ain

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jarno Haapaniemi. Youngin taulut

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jarno Haapaniemi. Youngin taulut TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jarno Haapaniemi Youngin taulut Informaatiotieteiden yksikkö Matematiikka Maaliskuu 2011 Tampereen yliopisto Informaatiotieteiden yksikkö HAAPANIEMI, JARNO: Youngin

Lisätiedot