3.1 Lineaarikuvaukset. MS-A0007 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
|
|
- Aila Honkanen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 3 MS-A7 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 925 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita ratkotaan mm sähkömagnetiikassa, mekaniikassa, tietotekniikassa, taloustieteissä, ekologiassa jne Määritelmä Funktio T : R n R m on lineaarinen (eli lineaarikuvaus), jos (i) T (u + v) T (u) + T (v) kaikille u, v R n (ii) T (cu) ct (u) kaikille c R ja kaikille u R n / 45 N Hyvönen, c R Kangaslampi 3 2 / 45 N Hyvönen, c R Kangaslampi Huomioita Ehdot (i) ja (ii) voidaan lausua myös yhdessä: T (cu + dv) ct (u) + dt (v) kaikille c, d R ja kaikille u, v R n Edelleen (induktiolla) T (c u + + c k u k ) c T (u ) + + c k T (u k ) kaikille k N, kaikille c,, c k R ja kaikille u,, u k R n Lineaarikuvaus säilyttää lineaarikombinaatiot Mielivaltaiselle u R n pätee T () T (u) T (u) Lineaarikuvaus pitää origon paikallaan Matriisin A R m n määräämä kuvaus T (u) Au on lineaarinen (määritelmä toteutuu) Lineaarikuvaus R n R m voidaan aina esittää matriisikuvauksena (nähdään esimerkin jälkeen) 3 / 45 N Hyvönen, c R Kangaslampi 3 Esimerkki 2 (lasketaan luennolla) Määritellään lineaarikuvaus T : R 2 R 2, T (x) Ax, missä A ( ) Määritä pisteiden u (4, ), v (2, 3) ja u + v (6, 4) kuvapisteet Totea, että T (u + v) T (u) + T (v) 4 / 45 N Hyvönen, c R Kangaslampi 3
2 3 3 Standardikantavektorit avaruudessa R n ovat e (,,,, ), e 2 (,,,, ), e n (,,,, ) Identtinen matriisi I n on matriisi, jonka j:s sarake (yhtä lailla rivi) on j:s standardikantavektori: I n ( ) e e n Lause 3 Jokainen lineaarikuvaus T : R n R m voidaan esittää matriisikuvauksena T (x) Ax, missä matriisin A sarakkeet ovat kantavektorien e j kuvat: Esimerkki 4 A ( T (e ) T (e n ) ) Olkoon T : R 2 R 3 lineaarikuvaus, jolle T (e ) (5, 7, 2) ja T (e 2 ) ( 3, 8, ) Etsitään matriisi A R 3 2 siten, että T (x) Ax kaikille x R 2 5 / 45 N Hyvönen, c R Kangaslampi 3 6 / 45 N Hyvönen, c R Kangaslampi Esimerkki 5 (jatkuu) Koska mielivaltainen x (x, x 2 ) R 2 voidaan esittää muodossa x x e + x 2 e 2 ja koska T on lineaarinen, niin T (x) T (x e + x 2 e 2 ) x T (e ) + x 2 T (e 2 ) x (5, 7, 2) + x 2 ( 3, 8, ) (5x 3x 2, 7x + 8x 2, 2x + x 2 ) eli sarakemuodossa 5x 3x 2 T (x) 7x + 8x 2 2x + x ( ) x x 2 Ax Avaruuden R n suora on joukko {u + tv t R} R n, missä u R n on eräs suoran piste ja v R n on suoran suuntavektori Lause 6 Lineaarikuvaus kuvaa suoran suoraksi Todistus Luentoharjoitus Matriisi A on lineaarikuvauksen T esitys standardikannassa 7 / 45 N Hyvönen, c R Kangaslampi 3 8 / 45 N Hyvönen, c R Kangaslampi 3
3 3 3 Kaikki tason lineaarikuvaukset (eli kuvaukset R 2 R 2 ovat) venytyksiä peilauksia kiertoja projektioita tai näiden yhdisteitä Projektiomatriiseja Projektio x-akselille: Projektio y-akselille: Venytysmatriiseja Venytys x-suunnassa kertoimella k: Venytys y-suunnassa kertoimella k: [ k ] [ ] k 9 / 45 N Hyvönen, c R Kangaslampi 3 / 45 N Hyvönen, c R Kangaslampi Peilausten matriiseja Peilaus x-akselin suhteen: Peilaus y-akselin suhteen: Peilaus suoran y x suhteen: Peilaus suoran y x suhteen: Peilaus origon suhteen: Pyöritysmatriisi Matriisi [ cos(ϕ) ] sin(ϕ) sin(ϕ) cos(ϕ) pyörittää xy-tason pistettä kulman ϕ verran origon ympäri vastapäivään Esimerkki 7 Matlab-esimerkki: Talon lineaarikuvaukset / 45 N Hyvönen, c R Kangaslampi 3 2 / 45 N Hyvönen, c R Kangaslampi 3
4 32 Idea: Lineaarikuvausten laskutoimitusten avulla määritellään vastaavat matriisien laskutoimitukset Vakiolla kertominen ja summa Olkoon t R ja A, B R n m Silloin ta, A + B R n m ja määritellään ta ta 2 ta m ta 2 ta 22 ta 2m ta, ta n ta n2 ta nm A + B A 2 + B 2 A m + B m A 2 + B 2 A 22 + B 22 A 2m + B 2m A + B A n + B n A n2 + B n2 A nm + B nm 32 Esimerkki ( 2) [ ] Huom Jotta A + B olisi määritelty, on matriisien A ja B oltava samankokoiset!, 3 / 45 N Hyvönen, c R Kangaslampi 3 4 / 45 N Hyvönen, c R Kangaslampi Olkoon F : R m R n ja G : R n R p Yhdistetty kuvaus on mielekäs vain muodossa G F : R m R p Jos F ja G ovat lineaarikuvauksia, niin G F :kin on Olkoon B kuvauksen F matriisi ja A kuvauksen G matriisi Tällöin G F on AB on matriisitulo (G F )(x) G(F (x)) A(B(x)) ABx 5 / 45 N Hyvönen, c R Kangaslampi 3 Määritelmä 9 Olkoot missä A }{{} p n Muistisääntö: (α ij ) ja B }{{} n m C }{{} p m (β ij ) Tällöin }{{} C AB (γ ij ), p m γ ij }{{} A }{{} B p n n m n α ik β kj k Huom! Matriisitulo ei ole vaihdannainen eli se ei kommutoi: yleisesti AB BA! Huom! Tulo voi olla nolla, vaikka kumpikaan matriisi ei olisi nollamatriisi! 6 / 45 N Hyvönen, c R Kangaslampi 3
5 32 32 Olkoot 9 8 B 7 6 ja A 5 4 [ ] Nyt A + B, AB ja BB eivät ole mielekkäitä (vastaavilla lineaarikuvauksilla menisivät dimensiot solmuun tällaisista yhdistelmistä) Kuitenkin voidaan laskea BA ja 9( ) + 8( 3) 7( ) + 6( 3) 5( ) + 4( 3) 9( 2) + 8( 4) ( 2) + 6( 4) ( 2) + 4( 4) 7 26 A 2 : AA ( )( ) + ( 2)( 3) ( )( 2) + ( 2)( 4) ( 3)( ) + ( 4)( 3) ( 3)( 2) + ( 4)( 4) / 45 N Hyvönen, c R Kangaslampi 3 8 / 45 N Hyvönen, c R Kangaslampi Esimerkki (lasketaan luennolla) Olkoot A, B Laske AB, AC, BC ja CB 2 3 ja C Vastaus: AB B, AC C (vrt x x), 4 8 BC ja CB [ 3 ] 2 2 Esimerkki Olkoon x (, 2, 3) R 3 ja lineaarikuvauksen F : R 3 R 2 matriisi A F Silloin A F x ( ) + 3( 2) + 4( 3) 5( ) + 6( 2) + 7( 3) 2 38, joten F (, 2, 3) A F x ( 2, 38) 9 / 45 N Hyvönen, c R Kangaslampi 3 2 / 45 N Hyvönen, c R Kangaslampi 3
6 32 32 Esimerkki 2 Tason suorakulmion sivut ovat koordinaattiakselien suuntaisia ja sen kulmat ovat vastapäivään lueteltuina a (2, ), b, c (4, 4) ja d Suorakulmiolle suoritetaan muunnos f, joka kuvaa sen peilatuksi neliöksi toiseen paikkaan tasossa Suorakulmion kulmat kuvautuvat muunnoksessa siten, että f (a) (, ) ja f (c) (, ), sivut koordinaattiakelien suuntaiset ja kulmat ovat vastapäivään lueteltaessa f (a), f (d), f (c) ja f (b) Etsi matriisi, jolla voit esittää muunnoksen, ja selvitä mikä on pisteen (3, ) kuva muunnoksessa Huom: Kyseessä ei ole lineaarikuvaus, mutta käyttämällä ns homogeenisia koordinaatteja eli kirjoittamalla piste (x, y) muodossa (x, y, ) se voidaan esittää matriiseilla! 2 / 45 N Hyvönen, c R Kangaslampi 3 Ratkaisu: Piirretään ensin kuvat: d a (2, ) c (4, 4) b f (b) f (c) (, ) f (a) f (d) Muunnoksen voi toteuttaa siirtämällä kuvio ensin siten, että sen piste (2, ) tulee origoon (matriisi M ), pienentämällä kuvio puolittamalla x-koordinaattiarvot ja jakamalla y-koordinaattiarvot luvulla 4 (matriisi M 2 ) ja lopulta peilaamalla suoran x y suhteen (koordinaattiarvojen vaihto keskenään, matriisi M 3 ) 22 / 45 N Hyvönen, c R Kangaslampi 3 32 Jotta saisimme myös siirron (joka ei ole lineaarikuvaus tasossa!) esitettyä matriisilla, tarkastellaan pisteen (x, y) sijaan pistettä (x, y, ) Viimeinen koordinaatti on vain apuna mukana, kaksi ensimmäistä esittävät todellisuudessa tarkasteltavaa tason pistettä Nyt siirto (x, y, ) (x 2, y, ) voidaan esittää matriisilla seuraavasti: 2 } {{ } M x x 2 y y 32 Matriisi, joka kutistaa puoleen x-suunnassa ja neljännekseen y-suunnassa, eli tekee operaation (x, y, ) (x/2, y/4, ) on /2 /4 } {{ } M 2 x x/2 y y/4 Lopuksi vielä peilaus (x, y, ) (y, x, ): x y y x } {{ } M 2 23 / 45 N Hyvönen, c R Kangaslampi 3 24 / 45 N Hyvönen, c R Kangaslampi 3
7 32 32 Koko operaation suorittava matriisi saadaan tekemällä nämä peräjälkeen: /2 2 M M 3 M 2 M /4 /4 /2 Piste (x, y) kuvautuu siis pisteeksi (y/4, x/2 ) ja erityisesti pisteen (3, ) kuva on (/4, /2) Matriiseille voidaan lisäksi määritellä laskutoimitus, joka tekee n m-matriisista m n-matriisin vaihtamalla rivit ja sarakkeet Määritelmä 3 (Transpoosi) Olkoon }{{} A (α ij ) Tällöin matriisin A transpoosi on matriisi n m A T (γ ij ), missä γ ij α ji Yhdistetylle kuvaukselle C AB pätee C T B T A T 25 / 45 N Hyvönen, c R Kangaslampi 3 26 / 45 N Hyvönen, c R Kangaslampi Määritelmä 4 Matriisi B on matriisin A käänteismatriisi, jos AB I ja BA I, missä I on sopivan kokoinen identiteettimatriisi Käänteismatriisia merkitään A Lause 5 Jos käänteismatriisi on olemassa, niin se on yksikäsitteinen Huom Jos matriisi A on kääntyvä, niin myös matriisi A on kääntyvä, ja (A ) A Jos A ja B ovat kääntyviä matriiseja, niin myös AB on kääntyvä, ja (AB) B A Jos A on kääntyvä, niin myös A T on kääntyvä, ja (A T ) (A ) T 27 / 45 N Hyvönen, c R Kangaslampi 3 28 / 45 N Hyvönen, c R Kangaslampi 3
8 32 Käänteismatriisin laskeminen: Olkoon A R n n kääntyvä Miten lasketaan A R n n? Nyt AA I n eli jos x j on matriisin A j:s sarake,niin saadaan n kpl lineaarisia yhtälöitä Ax j e j (j,, n) Ratkotaan nämä n yhtälöä yhtä aikaa Gauss-eliminaatiolla: liittomatriisi A A 2 A n A 2 A 22 A 2n A In A n A n2 A nn muunnetaan liittomatriisiksi [ I n A ] Siis [ A In ] [ I n A ] 32 Esimerkki 6 Lasketaan matriisin A [ A I2 ] Siten A käänteismatriisi: [ 3 ] 5 2 (Tarkista kertolaskulla!) [ I 2 A ] 29 / 45 N Hyvönen, c R Kangaslampi 3 3 / 45 N Hyvönen, c R Kangaslampi 3 32 Esimerkki 7 (lasketaan luennolla) Mikä on matriisin transpoosi? A Esimerkki 8 (lasketaan luennolla) Etsi matriisien käänteismatriisit A ( ) ja B 3 / 45 N Hyvönen, c R Kangaslampi 3 ( ) Terminologiaa: }{{} A on neliömatriisi; symmetrinen, jos A A T n n A on säännöllinen (sanotaan myös kääntyvä), jos käänteismatriisi on olemassa, muutoin singulaarinen A diag(α, α 2,, α nn ) α α 2 α (n )(n ) α nn on lävistäjä- eli diagonaalimatriisi 32 / 45 N Hyvönen, c R Kangaslampi 3
9 32 33 Yläkolmiomatriisi: α jk, kun j > k Alakolmiomatriisi: α jk, kun j < k A on ortogonaalinen, jos A A T Esimerkki 9 (lasketaan luennolla) Laadi 3 3-esimerkkimatriisit näistä kaikista Idea: Matriisin A R n n determinantti det(a) R ilmaisee miten paljon matriisia vastaava lineaarikuvaus skaalaa&peilaa avaruutta R n : Kuution [, ] n : {x R n j : x j [, ]} n-tilavuus on (-tilpituus, 2-tilpinta-ala, 3-tiltavallinen tilavuus, ) ja A:n sarakkeiden virittämän särmiön A[, ] n {Ax R n x [, ] n } n-tilavuus on det(a) (determinantin etumerkki kertoo peilautumisista) Determinantin laskemiseen tarvitaan neljä lakia: 33 / 45 N Hyvönen, c R Kangaslampi 3 34 / 45 N Hyvönen, c R Kangaslampi Laki : det(i n ) Tulkinta : Identiteettikuvaus x I n (x) x ei muuta n-tilavuutta tai suuntia Laki 2: Matriisin sarake t kertaistuu determinantti t kertaistuu Tulkinta 2: Särmiön n-tilavuus t-kertaistuu yhden särmän t-kertaistuessa Esimerkki det ( 2)(3) det det 5 2 (6)(5)(4) det det () det / 45 N Hyvönen, c R Kangaslampi 3 36 / 45 N Hyvönen, c R Kangaslampi 3
10 33 33 Laki 3: Jos matriisissa A R n n on (ainakin) kaksi samaa saraketta, niin det(a) Tulkinta 3: Tällöin särmiö A[, ] n R n on litistynyt ja sen n-tilavuus on Esimerkki 2 Laki 4: Olkoon A j matriisin A R n n j:s sarake Kun A k B k + C k jollakin k {,, n}, niin det [ A A k B k + C k A k+ A n ] det [ A A k B k A k+ A n ] + det [ A A k C k A k+ A n ] 5 det , det , det Tulkinta 4: Särmiön yhden särmän summaus näkyy n-tilavuudessa summana 37 / 45 N Hyvönen, c R Kangaslampi 3 38 / 45 N Hyvönen, c R Kangaslampi Esimerkki 22 3 det 4 det 3, det joten det 4 det + det +, + det + det 39 / 45 N Hyvönen, c R Kangaslampi 3 + det Esimerkki 23 (lasketaan luennolla) a b Laske matriisin determinantti lakien - 4 avulla c d Ratkaisu: a b 4 a b b det det + det c d d c d 4 a a b b det + det + det + det d c c d 2 addet(i ) + abdet + bcdet + cddet & 3 ad + bc +, sillä äsken laskettiin det 4 / 45 N Hyvönen, c R Kangaslampi 3
11 33 33 Lait, 2, 3, 4 ovat ristiriidattomat ja riittävät determinantin laskemiseen Käytännössä determinantit kuitenkin lasketaan käsin muistamalla, että a b det c d ad bc a merkitään myös lyhyesti pystyviivoilla: Esimerkki 24 M : det(m), kun M on matriisi ja purkamalla matriisi 2 2-osiin alideterminanttisäännöllä det(a) ( ) k i ( ) i A ki det(a ki ), missä k on jokin rivinumero ja A ki matriisi A, josta on poistettu rivi k ja sarake i a b c d e f g h i a e f h i b d f g i + c d e g h a(ei fh) + b(fg di) + c(dh eg) 4 / 45 N Hyvönen, c R Kangaslampi 3 42 / 45 N Hyvönen, c R Kangaslampi Huom Myös 3 3-matriisin determinantille on muistisääntö: a b c d e f aei + bfg + cdh afh bdi ceg g h i alamäkeen positiivisina, ylämäkeen negatiivisina Lause 26 Olkoon A R n n Silloin A det(a) ja det(a T ) det(a) Esimerkki 25 (lasketaan luennolla) 2 3 Laske matriisin A Vastaus: det(a) 42 determinantti Lause 27 Todistukset kirjassa det(ab) det(a) det(b) 43 / 45 N Hyvönen, c R Kangaslampi 3 44 / 45 N Hyvönen, c R Kangaslampi 3
12 33 Esimerkki 28 (lasketaan luennolla) Millä[ kertoimia ] a, b, c, d R koskevalla ehdolla matriisilla a b A on käänteismatriisi? c d Mikä silloin on käänteismatriisi A? Tarkista, että A A I AA 45 / 45 N Hyvönen, c R Kangaslampi 3
3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset
32 Idea: Lineaarikuvausten laskutoimitusten avulla määritellään vastaavat matriisien laskutoimitukset Vakiolla kertominen ja summa Olkoon t R ja A, B R n m Silloin ta, A + B R n m ja määritellään ta ta
3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA =
3 3 Olkoot 9 8 B 7 6 ja A 5 4 [ 3 4 Nyt A + B, AB ja BB eivät ole mielekkäitä (vastaavilla lineaarikuvauksilla menisivät dimensiot solmuun tällaisista yhdistelmistä) Kuitenkin voidaan laskea BA ja 9( )
3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.
ja kompleksiluvut ja kompleksiluvut. MS-A0004/A0006 Matriisilaskenta. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.205 Reaalinen n-ulotteinen
Matematiikka B2 - Avoin yliopisto
6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:
11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta
Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä
Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty
Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007
Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear
Insinöörimatematiikka D
Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1
Matematiikka B2 - TUDI
Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )
MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47
MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi
Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään
Talousmatematiikan perusteet: Luento 10. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti
Talousmatematiikan perusteet: Luento 1 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,
Lineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.
Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210 Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2
Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
1.1. Määritelmiä ja nimityksiä
1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x
BM20A0700, Matematiikka KoTiB2
BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin
Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
Lineaarialgebra (muut ko)
Lineaarialgebra (muut ko) p. 1/103 Lineaarialgebra (muut ko) Tero Laihonen Lineaarialgebra (muut ko) p. 2/103 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v
MS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
Lineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 4.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Viimeiset harjoitukset on palautettava torstaina 13.6. Laskaripisteensä ja läsnäolonsa voi kukin tarkistaa
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
Lineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
Käänteismatriisi 1 / 14
1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella
Kuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
Seuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117
Seuraava luento ti 31.10 on salissa XXII Lineaarialgebra (muut ko) p. 1/117 Lineaarialgebra (muut ko) p. 2/117 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v
Ortogonaalinen ja ortonormaali kanta
Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä
Lineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
Determinantti. Määritelmä
Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi. Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j). (a) Jos n = 1, niin det(a) = a 11. (b) Muussa tapauksessa n det(a)
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
Matriisialgebra harjoitukset, syksy 2016
MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 7 Onko kuvaus F : R R, F(x 1,x = (x 1 +x,5x 1, x 1 +6x lineaarinen kuvaus? Jos on, niin määrää sen matriisi luonnollisen kannan suhteen Jos ei ole, niin
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Lineaarikuvaukset Lineaarikuvaus Olkoot U ja V
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus
Johdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 5. luento.2.27 Lineaarialgebraa - Miksi? Neuroverkon parametreihin liittyvät kaavat annetaan monesti
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot
Determinantti. Määritelmä
Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j) (a) Jos n = 1, niin det(a) = a 11 (b) Muussa tapauksessa n det(a)
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä
Ennakkotehtävän ratkaisu
Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
9 Matriisit. 9.1 Matriisien laskutoimituksia
9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä
1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen
Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi
Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku
Lineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä
Ortogonaaliset matriisit, määritelmä 1
, määritelmä 1 Määritelmä (a). Neliömatriisi Q on ortogonaalinen, jos Q T Q = I. Määritelmästä voidaan antaa samaa tarkoittavat, mutta erilaiselta näyttävät muodot: Määritelmä (b). n n neliömatriisi Q,
Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen
Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisit..............................
Determinantti 1 / 30
1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen
1 Matriisit ja lineaariset yhtälöryhmät
1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
Matriisihajotelmat. MS-A0007 Matriisilaskenta. 5.1 Diagonalisointi. 5.1 Diagonalisointi
MS-A0007 Matriisilaskenta 5. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 25.11.2015 Laskentaongelmissa käsiteltävät matriisit ovat tyypillisesti valtavia.
110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3
4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon
Insinöörimatematiikka D
Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus
Ominaisarvo ja ominaisvektori
Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1
Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon
Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen
Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................
Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2
8. Geometriset kuvaukset 8.1. Euklidiset kuvaukset 344. Esitä muodossa x = Ax + b se avaruuden E 3 peilauskuvaus, jonka symmetriatasona on x 1 3x + x 3 = 6. A = 1 3 6 6 3, b = 1 1 18. 3 6 6 345. Tason
Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja
7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien
x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili
6 4 2 x 2 x 3 15 10 5 0 5 15 5 3 2 1 1 2 3 2 0 x 2 = 1 2x 1 0 4 x 2 = 3 x 1 x 5 2 5 x 1 10 x 1 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili Sisältö
Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.
Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (
Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )
Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma
Lineaariset kongruenssiyhtälöryhmät
Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................
Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.
Matriisilaskenta Harjoitusten ratkaisut (Kevät 9). Olkoot ja A = B = 5. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Tapa Käänteismatriisin määritelmän nojalla riittää osoittaa, että AB
5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
Talousmatematiikan perusteet: Luento 9. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo
Talousmatematiikan perusteet: Luento 9 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,
Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen
Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma
Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5
MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää
1 Ominaisarvot ja ominaisvektorit
1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin
2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio
x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A
Lineaarikuvauksista ja niiden geometrisesta tulkinnasta
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Katri Syvänen Lineaarikuvauksista ja niiden geometrisesta tulkinnasta Matematiikan ja tilastotieteen laitos Matematiikka Tammikuu 2009 Tampereen yliopisto Matematiikan
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /
MS-A3/A5 Matriisilaskenta, II/27 MS-A3/A5 Matriisilaskenta Laskuharjoitus 3 / 3. 7..27 Tehtävä (L): Etsi kaikki yhtälön Ax = b ratkaisut, kun 3 5 4 A = 3 2 4 ja b = 6 8 7 4. Ratkaisu : Koetetaan ratkaista
2.8. Kannanvaihto R n :ssä
28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
2.5. Matriisin avaruudet ja tunnusluvut
2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja
Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.
1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:
Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/159
Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/159 Lineaarialgebra (muut ko) p. 2/159 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 ) Skalaarilla
Muistutus: Matikkapaja ke Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta yms.
Lineaarialgebra (muut ko) p. 1/139 Ensi viikon luennot salissa X Muistutus: Matikkapaja ke 14-16 Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta
802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus
Johdatus lineaarialgebraan. Juha Honkala 2017
Johdatus lineaarialgebraan Juha Honkala 2017 Sisällysluettelo 1 Lineaariset yhtälöryhmät ja matriisit 11 Lineaariset yhtälöryhmät 12 Matriisit 13 Matriisien alkeismuunnokset ja porrasmatriisit 14 Yhtälöryhmien
Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.
Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi
Matriisit, kertausta Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Kaavio kirjoitetaan kaarisulkujen väliin
Matemaattinen Analyysi / kertaus
Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen
sitä vastaava Cliffordin algebran kannan alkio. Merkitään I = e 1 e 2 e n
Määritelmä 1.1 Algebran A keskus C on joukko C (A) = {a A ax = xa x A}. Lause 1. Olkoon Cl n Cliffordin algebra, jonka generoi joukko {e 1,..., e n }. Jos n on parillinen, niin C (Cl n ) = {λ λ R}. Jos
(1.1) Ae j = a k,j e k.
Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim
Käänteismatriisin. Aiheet. Käänteismatriisin ominaisuuksia. Rivioperaatiot matriisitulona. Matriisin kääntäminen rivioperaatioiden avulla
Käänteismatriisi, L5 1 Tässä kalvosarjassa käsittelemme neliömatriiseja. Ilman asian jatkuvaa toistamista oletamme seuraavassa, että kaikki käsittelemämme matriisit ovat neliömatriiseja. Määritelmä. Olkoon
Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi
Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja
Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen
Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................
Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n.
Matriisipotenssi Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: Määritelmä Oletetaan, että A on n n -matriisi (siis neliömatriisi) ja k
1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen