Ennakkotehtävän ratkaisu

Koko: px
Aloita esitys sivulta:

Download "Ennakkotehtävän ratkaisu"

Transkriptio

1 Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] A = ja B = [ ] [ ] a) BA = = [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] c) Bb = = = d) Vektori [ ] [ ] x1 5 = 2 on eräs ratkaisu. e) Onko muita ratkaisuja? Milloin voi näin toimia? x 2 1 / 43

2 Käänteismatriisi 2 / 43

3 Käänteismatriisi Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella matriisilla ei kuitenkaan ole käänteismatriisia. Ensinnäkin, matriisissa täytyy olla yhtä monta riviä ja saraketta, jotta käänteismatriisi voi olla olemassa. Se ei ole vielä riittävä ehto, vaan tarvitaan menetelmiä käänteismatriisin ja sen olemassaolon määräämiseksi. Määritellään ensin ykkösalkio matriiseille. 3 / 43

4 Käänteismatriisi Määritelmä 1 Matriisi A on neliömatriisi, jos A M(n, n) jollakin n N. Neliömatriisi A = [a ij ] on diagonaalimatriisi, jos a ij = 0 kaikilla i j. Diagonaalimatriisi I = [δ ij ] = M(n, n) on yksikkömatriisi eli identtinen matriisi. Tässä { 1, i = j δ ij = 0, i j. 4 / 43

5 Käänteismatriisi Lause 1 Olkoon A M(n, n). Tällöin IA = AI = A. Todistus. Olkoon A = [a ij ] M(n, n). Nyt (AI ) ij = n A ip I pj = p=1 n a ip δ pj = a ij δ jj = a ij 1 = a ij = A ij, p=1 kaikilla i = 1,..., n ja j = 1,..., n. Näin ollen AI = A. Lisäksi (IA) ij = n I ip A pj = p=1 n δ ip a pj = δ ii a ij = 1 a ij = a ji = A ij, p=1 kaikilla i = 1,..., n ja j = 1,..., n, joten IA = A. 5 / 43

6 Käänteismatriisi Määritelmä 2 Neliömatriisi A M(n, n) on kääntyvä, jos on olemassa B M(n, n), jolle AB = BA = I. Tällöin B on A:n käänteismatriisi ja sitä merkitään B = A 1. Esimerkki 1 Matriisi A = [ ] [ ] on kääntyvä ja A =, sillä 3 2 [ ] [ ] = [ ] [ = ] [ ] / 43

7 Käänteismatriisi Esimerkki 2 Matriisi A = [ a b B = c d [ ] 1 2 ei ole kääntyvä. Jos nimittäin olisi 2 4 ], jolle [ ] [ ] [ ] 1 2 a b a + 2c b + 2d = = 2 4 c d 2a + 4c 2b + 4d [ ] 1 0, 0 1 niin a + 2c = 1 b + 2d = 0 2a + 4c = 0 2b + 4d = 1. { a + 2c = 1 2a + 4c = 0 mikä on ristiriita. Täten B:tä ei ole. { 0 = 1 a = 2c, 7 / 43

8 Käänteismatriisi Käänteismatriisi Kun matriisia kerrotaan käänteismatriisilla, saadaan ykkösalkio (yksikkömatriisi) Jokaisella matriisilla ei ole käänteismatriisia Ensimmäinen ehto on, että matriisissa täytyy olla yhtä monta riviä ja saraketta Edes jokaisella n n-matriisilla ei ole käänteismatriisia Tarvitaan menetelmiä käänteismatriisin ja sen olemassaolon määräämiseksi 8 / 43

9 Käänteismatriisi Lause 2 (a) Jos neliömatriisilla A on käänteismatriisi, niin se on yksikäsitteinen. Erityisesti (A 1 ) 1 = A. (b) Jos A, B M(n, n) ovat kääntyviä, niin AB on kääntyvä ja (AB) 1 = B 1 A 1. 9 / 43

10 Käänteismatriisi Todistus. (a) Olkoot B ja C matriisin A käänteismatriiseja (AB = I = BA ja AC = CA = I ). Tällöin B= BI = B(AC) = (BA)C = IC = C. Siis B = C eli käänteismatriisi on yksikäsitteinen. Koska A 1 A = I = AA 1, on A = (A 1 ) 1. (b) Nyt B 1 A 1 M(n, n) ja (AB)(B 1 A 1 ) = A(BB 1 )A 1 = AIA 1 = AA 1 = I sekä (B 1 A 1 )(AB) = B 1 (A 1 A)B = B 1 IB = B 1 B = I. Täten (AB) 1 = B 1 A / 43

11 Käänteismatriisi Esimerkki 3 Jos A on kääntyvä, niin A 2 = AA on kääntyvä ja (A 2 ) 1 = (AA) 1 = A 1 A 1 = (A 1 ) 2. Lause 3 (Työnpuolituslause) Olkoot A, B M(n, n). Jos AB = I tai BA = I, niin A ja B ovat kääntyviä sekä A = B 1 ja B = A 1. Todistus. Sivuutetaan. 11 / 43

12 Käänteismatriisi Lause 4 Olkoon A M(n, n) kääntyvä. Tällöin kaikilla b R n yhtälöllä Ax = b on yksikäsitteinen ratkaisu x = A 1 b. 12 / 43

13 Todistus Todistus. Olkoon b R n mielivaltainen. Ensin osoitetaan, että ratkaisu on olemassa. Vektori A 1 b on yhtälön Ax = b ratkaisu, sillä sijoittamalla se muuttujan x paikalle saadaan Ax = A(A 1 b)= (AA 1 )b= Ib = b. Vielä täytyy osoittaa, että ratkaisu on yksikäsitteinen. Oletetaan, että y R n on mikä tahansa yhtälön Ay = b ratkaisu ja osoitetaan, että y = A 1 b. Kertomalla yhtälöä Ay = b puolittain käänteismatriisilla A 1 saadaan A 1 (Ay) = A 1 b (A 1 A)y = A 1 b Iy = A 1 b, joten y = A 1 b. 13 / 43

14 Käänteismatriisi Esimerkki 4 Ratkaise yhtälöryhmä { 2x1 + x 2 = 3 3x 1 + x 2 = 5. [ ] 2 1 Tästä saadaan matriisi yhtälö Ax = b, missä A =, 3 1 [ ] [ ] [ ] x x = ja b =. Koska A on kääntyvä ja A x = 3 2 ( ) esim. 1(a), niin [ ] [ ] [ ] { x = A 1 x1 = 2 b = = eli x 2 = 1 on yhtälöryhmän ainoa ratkaisu. 14 / 43

15 Huomautus 1 Matriisi A M(k, n) voidaan ajatella kuvauksena f A : R n R k, jolle f A (x) = Ax kaikilla x R n. Mitä tarkoittaa yhtälöryhmän Ax = b yksikäsitteisen ratkaisun olemassaolo? Entä mitä tarkoittaa matriisin A M(n, n) kääntyvyys? 15 / 43

16 Alkeismatriisit 16 / 43

17 Alkeismatriisit Määritelmä 3 Alkeismatriisi on sellainen matriisi, joka on saatu yksikkömatriisista I yhdellä rivioperaatiolla. Rivioperaatioita olivat P ij : vaihdetaan yhtälöt i ja j keskenään. M i (c): kerrotaan yhtälö i luvulla c 0. A ij (c): kerrotaan yhtälö i luvulla c R ja lisätään se yhtälöön j, missä i j. 17 / 43

18 Alkeismatriisit Esimerkki 5 Olkoot E 1 = 0 1 0, E 2 = 1 0 0, E 3 = 0 1 0, a b c A = d e f. g h i Matriisit E 1, E 2 ja E 3 ovat alkeismatriiseja. Nyt a b c d e f E 1 A = d e f, E 2 A = a b c, g 4a h 4b i 4c g h i a b c E 3 A = d e f. 5g 5h 5i 18 / 43

19 Alkeismatriisit Esimerkki 5 Matriisilla E 1 kertominen on siis sama kuin rivioperaatio, jossa ensimmäistä riviä kerrotaan luvulla 4 ja lisätään se kolmanteen riviin. Matriisilla E 2 kertominen vaihtaa ensimmäisen ja toisen rivin paikkaa. Matriisilla E 3 kertominen kertoo kolmannen rivin alkiot viidellä. Edellinen esimerkki pätee myös yleisesti. 19 / 43

20 Alkeismatriisit Lause 5 Olkoon A M(m, n) ja olkoon E M(m, m) tietyllä rivioperaatiolla saatu alkeismatriisi. Tällöin tulo EA tuottaa saman matriisin kuin saman rivioperaation tekeminen matriisiin A. Todistus. Olkoon A 1 A n. A i A =., A j. missä A i on matriisin A i:s rivi ja A j on j:s rivi. 20 / 43

21 Alkeismatriisit Todistus. Olkoon E 1 matriisi, joka on saatu vaihtamalla rivit i ja j keskenään yksikkömatriisissa eli e 1. e j E 1 =., e i. missä e i = [ ] ja 1 on i:nnessä sarakkeessa. e n 21 / 43

22 Alkeismatriisit Todistus. Tällöin E 1 A = e 1 A. e j A. e i A. e n A = A 1. A j. A i. A n. Sama matriisi saadaan soveltamalla rivioperaatio P ij matriisiin A, joten väite pätee operaatiolle P ij. Muut kohdat vastaavasti. 22 / 43

23 Alkeismatriisit Seuraavan lauseen todistuksessa tarvitaan tietoa, että jokaisella rivioperaatiolla on käänteinen rivioperaatio, jolla yhtälöryhmä (tai matriisi) saadaan alkuperäiseen muotoonsa. Lause 6 Jokaisella alkeismatriisilla on olemassa käänteismatriisi ja käänteismatriisi on myös alkeismatriisi. Todistus. Olkoon E alkeismatriisi ja olkoon F käänteisellä rivioperaatiolla saatu alkeismatriisi. Lauseen 5 nojalla matriiseilla E ja F kertominen kumoavat toisensa eli Täten E 1 = F. EF = I ja FE = I. 23 / 43

24 Ennakkotehtävä seuraavalle luentokerralle Määritelmä Olkoon A M(k, n). Matriisin A transpoosi on A T M(n, k), missä (A T ) ij = A ji kaikilla i = 1,..., n ja j = 1,..., k. Huomautus 2 Transpoosin rivit ovat alkuperäisen matriisin sarakkeita ja transpoosin sarakkeet ovat alkuperäisen matriisin rivejä. Ennakkotehtävä Määrää matriisin (a) A = [ ] (b) A = transpoosi A T. 24 / 43

25 Alkeismatriisit Määritelmä 4 Matriisi A on riviekvivalentti matriisin B kanssa, jos B saadaan matriisista A rivioperaatioilla. Lause 7 Olkoon A M(n, n). Tällöin seuraavat väitteet ovat yhtäpitäviä: (a) Matriisi A on kääntyvä. (b) Yhtälöllä Ax = b on täsmälleen yksi ratkaisu kaikilla b R n. (c) Homogeeniyhtälöllä Ax = 0 on vain triviaaliratkaisu x = 0. (d) Matriisi A on riviekvivalentti yksikkömatriisin I M(n, n) kanssa (eli Gaussin ja Jordanin menetelmä muuttaa A:n identtiseksi matriisiksi). (e) Matriisi A on alkeismatriisien tulo. 25 / 43

26 Alkeismatriisit Todistus Osoitetaan, että (a) (b) (c) (d) (e) (a). (a) (b): Väite pätee Lauseen 9 nojalla. (b) (c): Koska yhtälöllä Ax = b on täsmälleen yksi ratkaisu kaikilla b R n, niin myös yhtälöllä Ax = 0 on täsmälleen yksi ratkaisu. Koska homogeeniyhtälöllä Ax = 0 on aina triviaaliratkaisu x = 0, sen täytyy olla ainoa ratkaisu. 26 / 43

27 Alkeismatriisit Todistus (c) (d): Oletetaan, että homogeeniyhtälöllä Ax = 0 on vain triviaaliratkaisu. Kun merkitään a 11 a 12 a 1n x 1 a 21 a 22 a 2n A =... ja x = x 2., a n1 a n2 a nn x n niin yhtälöä Ax = 0 vastaava yhtälöryhmä on a 11 x 1 + a 12 x a 1n x n = 0 a 21 x 1 + a 22 x a 2n x n = 0. a n1 x 1 + a n2 x a nn x n = / 43

28 Alkeismatriisit Todistus Koska yhtälöllä Ax = 0 on täsmälleen yksi ratkaisu x = 0, niin Gaussin ja Jordanin eliminointimenetelmän täytyy johtaa tilanteeseen x 1 = 0 x 2 = 0. x n = 0. Tämä tarkoittaa sitä, että matriisi A muuttuu rivioperaatioilla yksikkömatriisiksi I eli A on riviekvivalentti yksikkömatriisin kanssa. 28 / 43

29 Alkeismatriisit Todistus (d) (e): Oletetaan, että matriisi A on riviekvivalentti yksikkömatriisin I n kanssa. Tällöin Lauseen 5 nojalla on olemassa sellaiset alkeismatriisit E 1,..., E k, että E 1 E k A = I. Koska alkeismatriisit ovat kääntyviä, niin yhtälöä voidaan kertoa vasemmalta puolittain matriisilla E1 1 ja saadaan E 2 E k A = E 1 Seuraavaksi kerrotaan matriisilla E2 1, jolloin E 3 E k A = E2 1 E 1 1. Jatketaan, kunnes viimeisenä kerrotaan matriisilla E 1 k ja on saatu yhtälö A = E 1 k E2 1 E 1 1. Koska alkeismatriisien käänteismatriisit ovat alkeismatriiseja, kohta (e) pätee / 43

30 Alkeismatriisit Todistus. (e) (a):oletetaan, että A = E 1 E 2 E k, missä E 1,..., E k ovat alkeismatriiseja.matriisi B = E 1 k E2 1 E 1 1. on matriisin A käänteismatriisi, sillä Täten A on kääntyvä. AB = (E 1 E 2 E k )(E 1 k E2 1 = E 1 E 2 (E k E 1 k ) E 1 1 ) 2 E 1 1 = E 1 E 2 E k 1 IE 1 k 1 E 2 1 E 1 1 = E 1 E 2 (E k 1 E 1 k 1 ) E 2 1 E 1 1 = E 1 E1 1 = I. 30 / 43

31 Huomautus 3 Jos matriisi ei ole kääntyvä, niin Lauseen 7 nojalla se ei ole riviekvivalentti yksikkömatriisin I kanssa. Tämä tarkoittaa sitä, että matriisin redusoidussa porrasmatriisissa on vähintään yksi nollarivi. 31 / 43

32 Mitä on saatu? Jokaista rivioperaatiota vastaa jokin alkeismatriisi E. Matriisi A M(n, n) on kääntyvä jos ja vain jos se on riviekvivalentti identiteettimatriisin kanssa. Siis A M(n, n) on kääntyvä jos ja vain jos E k E 2 E 1 A = I, joillakin alkeismatriiseilla E 1, E 2,..., E k M(n, n). Siis jos matriisi A on kääntyvä, niin Työnpuolituslauseen nojalla A 1 = E k E 2 E 1 = E k E 2 E 1 I Kysymys: Miten saadaan käänteismatriisi selville? 32 / 43

33 Gaussin ja Jordanin algoritmi käänteismatriisin määräämiseksi 33 / 43

34 G J -algoritmi käänteismatriisin määräämiseksi Matriisin A M(n, n) kääntyvyys voidaan testata ja A 1 voidaan etsiä Gaussin ja Jordanin menetelmällä seuraavasti: (1) Tarkastellaan laajennettua kerroinmatriisia [ A I ]. (2) Sovelletaan Gaussin ja Jordanin menetelmää. (3) Jos A muuttuu I :ksi, on viivan oikealla puolella A 1 eli [ I A 1 ]. Jos A ei voi muuttua I :ksi, A ei ole kääntyvä. 34 / 43

35 G J -algoritmi käänteismatriisin määräämiseksi Esimerkki Määrätään matriisin A = käänteismatriisi Laajennettu kerroinmatriisi on A 12 ( 2) A 13 ( 3) A 21 ( 1) A 23 (2) A 32 ( 1) / 43

36 G J -algoritmi käänteismatriisin määräämiseksi Esimerkki 6 Täten A 1 = Tarkistetaan ratkaisu: AA 1 = = / 43

37 G J -algoritmi käänteismatriisin määräämiseksi Esimerkki Onko A = Nyt [ ] 1 2 kääntyvä? 2 4 [ ] [ A 12 ( 2) joten tuloksena on vasemmalle puolelle nollarivi. Näin ollen matriisista A ei saa rivimuunnoksilla matriisia I eli A ei ole kääntyvä. ], 37 / 43

38 Matriisin transpoosi 38 / 43

39 Matriisin transpoosi Määritelmä 5 Olkoon A M(k, n). Matriisin A transpoosi on A T M(n, k), missä (A T ) ij = A ji kaikilla i = 1,..., n ja j = 1,..., k. Huomautus 4 Transpoosin rivit ovat alkuperäisen matriisin sarakkeita ja transpoosin sarakkeet ovat alkuperäisen matriisin rivejä. Esimerkki Matriisin A = transpoosi A T = [ ] ja matriisin B = transpoosi B T = / 43

40 Matriisin transpoosi Lause 8 Olkoot A, B M(k, n), C M(n, l) ja λ R. Tällöin (a) (A T ) T = A. (b) (A + B) T = A T + B T. (c) (λa) T = λa T. (d) (AC) T = C T A T. Todistus. (a) Nyt A M(k, n), joten A T M(n, k). Näin (A T ) T M(k, n). Nyt ( (A T ) T ) ij = (AT ) ji = A ij kaikilla i = 1,..., k ja j = 1,..., n. Täten (A T ) T = A. (b) Harjoitustehtävä 40 / 43

41 Matriisin transpoosi Todistus. (c) Nyt λa M(k, n), joten (λa) T M(n, k). Lisäksi A T M(n, k), joten λa T M(n, k) Nyt ( (λa) T ) ij = (λa) ji = λa ji = λ(a T ) ij = (λa T ) ij kaikilla i = 1,..., n ja j = 1,..., k. Täten (λa) T = λa T. (d) Nyt AC M(k, l) on määritelty, joten (AC) T M(l, k). Lisäksi C T M(l, n) ja A T M(n, k), joten C T A T M(l, k). Nyt ( (AC) T ) ij = (AC) ji = n p=1 A jpc pi = n p=1 C pia jp = n p=1 (C T ) ip (A T ) pj = (C T A T ) ij kaikilla i = 1,..., l ja j = 1,..., k. Täten (AC) T = C T A T. 41 / 43

42 Matriisin transpoosi Lause 9 Olkoon A M(n, n) kääntyvä. Tällöin A T on kääntyvä ja (A T ) 1 = (A 1 ) T. Todistus. Harjoitustehtävä 42 / 43

43 Ennakkotehtävä seuraavalle luentokerralle Ennakkotehtävä Milloin matriisi [ ] a b A = c d on kääntyvä? Määrää tällöin matriisin A käänteismatriisi. 43 / 43

Käänteismatriisi 1 / 14

Käänteismatriisi 1 / 14 1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Matriisilaskenta Harjoitusten ratkaisut (Kevät 9). Olkoot ja A = B = 5. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Tapa Käänteismatriisin määritelmän nojalla riittää osoittaa, että AB

Lisätiedot

Lineaariset yhtälöryhmät ja matriisit

Lineaariset yhtälöryhmät ja matriisit Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää

Lisätiedot

10 Matriisit ja yhtälöryhmät

10 Matriisit ja yhtälöryhmät 10 Matriisit ja yhtälöryhmät Tässä luvussa esitellään uusi tapa kirjoittaa lineaarinen yhtälöryhmä matriisien avulla käyttäen hyväksi matriisikertolaskua sekä sarakevektoreita Pilkotaan sitä varten yhtälöryhmän

Lisätiedot

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili 6 4 2 x 2 x 3 15 10 5 0 5 15 5 3 2 1 1 2 3 2 0 x 2 = 1 2x 1 0 4 x 2 = 3 x 1 x 5 2 5 x 1 10 x 1 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili Sisältö

Lisätiedot

802120P Matriisilaskenta (5 op)

802120P Matriisilaskenta (5 op) 802120P Matriisilaskenta (5 op) Marko Leinonen Matemaattiset tieteet Syksy 2016 1 / 220 Luennoitsija: Marko Leinonen marko.leinonen@oulu.fi MA333 Kurssilla käytetään Noppaa (noppa.oulu.fi) Luentomoniste

Lisätiedot

Lineaarinen yhtälöryhmä

Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.

Lisätiedot

802120P MATRIISILASKENTA (5 op)

802120P MATRIISILASKENTA (5 op) 802120P MARIIILAKENA (5 op) Oulun yliopisto Matemaattiset tieteet 2015 ero Vedenjuoksu 1 Alkusanat ämä luentomoniste pohjautuu osaksi Esa Järvenpään (2011) ja osaksi Hanna Kiilin (2014) kurssin Lineaarialgebra

Lisätiedot

Gaussin ja Jordanin eliminointimenetelmä

Gaussin ja Jordanin eliminointimenetelmä 1 / 25 : Se on menetelmä lineaarisen yhtälöryhmän ratkaisemiseksi. Sitä käytetään myöhemmin myös käänteismatriisin määräämisessä. Ideana on tiettyjä rivioperaatioita käyttäen muokata yhtälöryhmää niin,

Lisätiedot

LU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24

LU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24 LU-hajotelma 1 / 24 LU-hajotelma Seuravassa tarkastellaan kuinka neliömatriisi voidaan esittää kahden kolmiomatriisin tulona. Käytämme alkeismatriiseja tälläisen esityksen löytämiseen. Edellä mainittua

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

Käänteismatriisin. Aiheet. Käänteismatriisin ominaisuuksia. Rivioperaatiot matriisitulona. Matriisin kääntäminen rivioperaatioiden avulla

Käänteismatriisin. Aiheet. Käänteismatriisin ominaisuuksia. Rivioperaatiot matriisitulona. Matriisin kääntäminen rivioperaatioiden avulla Käänteismatriisi, L5 1 Tässä kalvosarjassa käsittelemme neliömatriiseja. Ilman asian jatkuvaa toistamista oletamme seuraavassa, että kaikki käsittelemämme matriisit ovat neliömatriiseja. Määritelmä. Olkoon

Lisätiedot

1.1. Määritelmiä ja nimityksiä

1.1. Määritelmiä ja nimityksiä 1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x

Lisätiedot

9 Matriisit. 9.1 Matriisien laskutoimituksia

9 Matriisit. 9.1 Matriisien laskutoimituksia 9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.

Lisätiedot

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla: 11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta

Lisätiedot

Käänteismatriisin ominaisuuksia

Käänteismatriisin ominaisuuksia Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit

Lisätiedot

Matematiikka B2 - TUDI

Matematiikka B2 - TUDI Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n.

Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n. Matriisipotenssi Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: Määritelmä Oletetaan, että A on n n -matriisi (siis neliömatriisi) ja k

Lisätiedot

Determinantti 1 / 30

Determinantti 1 / 30 1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

Matriisit. Määritelmä 1 Reaaliluvuista a ij, missä i = 1,..., k ja j = 1,..., n, muodostettua kaaviota a 11 a 12 a 1n a 21 a 22 a 2n A =

Matriisit. Määritelmä 1 Reaaliluvuista a ij, missä i = 1,..., k ja j = 1,..., n, muodostettua kaaviota a 11 a 12 a 1n a 21 a 22 a 2n A = 1 / 21 Määritelmä 1 Reaaliluvuista a ij, missä i 1,..., k ja j 1,..., n, muodostettua kaaviota a 11 a 12 a 1n a 21 a 22 a 2n A... a k1 a k2 a kn sanotaan k n matriisiksi. Usein merkitään A [a ij ]. Lukuja

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 4.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Viimeiset harjoitukset on palautettava torstaina 13.6. Laskaripisteensä ja läsnäolonsa voi kukin tarkistaa

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 5. luento.2.27 Lineaarialgebraa - Miksi? Neuroverkon parametreihin liittyvät kaavat annetaan monesti

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Ortogonaalinen ja ortonormaali kanta

Ortogonaalinen ja ortonormaali kanta Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, kertausta Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Kaavio kirjoitetaan kaarisulkujen väliin

Lisätiedot

BM20A0700, Matematiikka KoTiB2

BM20A0700, Matematiikka KoTiB2 BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin

Lisätiedot

Talousmatematiikan perusteet: Luento 9. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo

Talousmatematiikan perusteet: Luento 9. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo Talousmatematiikan perusteet: Luento 9 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

5 Lineaariset yhtälöryhmät

5 Lineaariset yhtälöryhmät 5 Lineaariset yhtälöryhmät Edellisen luvun lopun esimerkissä päädyttiin yhtälöryhmään, jonka ratkaisemisesta riippui, kuuluuko tietty vektori eräiden toisten vektorien virittämään aliavaruuteen Tämäntyyppisiä

Lisätiedot

Kurssin loppuosassa tutustutaan matriiseihin ja niiden käyttöön yhtälöryhmien ratkaisemisessa.

Kurssin loppuosassa tutustutaan matriiseihin ja niiden käyttöön yhtälöryhmien ratkaisemisessa. 7 Matriisilaskenta Kurssin loppuosassa tutustutaan matriiseihin ja niiden käyttöön yhtälöryhmien ratkaisemisessa. 7.1 Lineaariset yhtälöryhmät Yhtälöryhmät liittyvät tilanteisiin, joissa on monta tuntematonta

Lisätiedot

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset 32 Idea: Lineaarikuvausten laskutoimitusten avulla määritellään vastaavat matriisien laskutoimitukset Vakiolla kertominen ja summa Olkoon t R ja A, B R n m Silloin ta, A + B R n m ja määritellään ta ta

Lisätiedot

Lineaarialgebra I. Oulun yliopisto Matemaattisten tieteiden laitos Esa Järvenpää Kirjoittanut Tuula Ripatti

Lineaarialgebra I. Oulun yliopisto Matemaattisten tieteiden laitos Esa Järvenpää Kirjoittanut Tuula Ripatti Lineaarialgebra I Oulun yliopisto Matemaattisten tieteiden laitos 2011 Esa Järvenpää Kirjoittanut Tuula Ripatti 2 1 Lineaarinen yhtälöryhmä 11 Esimerkki (a) Ratkaise yhtälö 5x = 7 Kerrotaan yhtälö puolittain

Lisätiedot

Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi).

Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi). Liukuluvut Tietokonelaskuissa käytetään liukulukuja: mikä esittää lukua ± α α α M β k ± ( M α i β i )β k, i= β on järjestelmän kantaluku, α α M liukuluvun mantissa, α,, α M lukuja,,,, β, siten että α Esimerkki

Lisätiedot

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät 1 1 LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT Muotoa 11 Lineaariset yhtälöryhmät (1) a 1 x 1 + a x + + a n x n b oleva yhtälö on tuntemattomien x 1,, x n lineaarinen yhtälö, jonka kertoimet ovat luvut a 1,,

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä

Lisätiedot

Kaksirivisen matriisin determinantille käytämme myös merkintää. a 11 a 12 a 21 a 22. = a 11a 22 a 12 a 21. (5.1) kaksirivine

Kaksirivisen matriisin determinantille käytämme myös merkintää. a 11 a 12 a 21 a 22. = a 11a 22 a 12 a 21. (5.1) kaksirivine Vaasan yliopiston julkaisuja 97 5 DETERMINANTIT Ch:Determ Sec:DetDef 5.1 Determinantti Tämä kappale jakautuu kolmeen alakappaleeseen. Ensimmäisessä alakappaleessa määrittelemme kaksi- ja kolmiriviset determinantit.

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

Determinantti. Määritelmä

Determinantti. Määritelmä Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j) (a) Jos n = 1, niin det(a) = a 11 (b) Muussa tapauksessa n det(a)

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Determinantit. Kaksirivinen determinantti. Aiheet. Kaksirivinen determinantti. Kaksirivinen determinantti. Kolmirivinen determinantti

Determinantit. Kaksirivinen determinantti. Aiheet. Kaksirivinen determinantti. Kaksirivinen determinantti. Kolmirivinen determinantti Determinantit 1 2 2-matriisin ( A = on det(a) = a 11 a 12 a 21 a 22 a 11 a 12 a 21 a 22 ) = a 11a 22 a 12 a 21. 1 2 2-matriisin on det(a) = Esim. Jos A = ( a 11 a 12 a 21 a 22 A = a 11 a 12 a 21 a 22 )

Lisätiedot

Determinantti. Määritelmä

Determinantti. Määritelmä Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi. Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j). (a) Jos n = 1, niin det(a) = a 11. (b) Muussa tapauksessa n det(a)

Lisätiedot

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Merkintöjä 1 Matriisi on suorakulmainen lukukaavio.

Lisätiedot

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA =

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA = 3 3 Olkoot 9 8 B 7 6 ja A 5 4 [ 3 4 Nyt A + B, AB ja BB eivät ole mielekkäitä (vastaavilla lineaarikuvauksilla menisivät dimensiot solmuun tällaisista yhdistelmistä) Kuitenkin voidaan laskea BA ja 9( )

Lisätiedot

Lineaarialgebra a, kevät 2018

Lineaarialgebra a, kevät 2018 Lineaarialgebra a, kevät 2018 Harjoitusta 4 Maplella restart; with(linalg): Warning, the protected names norm and trace have been redefined and unprotected Osassa seuraavista on temppuiltu Maplella, eikä

Lisätiedot

Esimerkki 19. Esimerkissä 16 miniminormiratkaisu on (ˆx 1, ˆx 2 ) = (1, 0).

Esimerkki 19. Esimerkissä 16 miniminormiratkaisu on (ˆx 1, ˆx 2 ) = (1, 0). Esimerkki 9 Esimerkissä 6 miniminormiratkaisu on (ˆx, ˆx (, 0 Seuraavaksi näytetään, että miniminormiratkaisuun siirtyminen poistaa likimääräisongelman epäyksikäsitteisyyden (mutta lisääntyvän ratkaisun

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisit..............................

Lisätiedot

4.6 Matriisin kääntäminen rivioperaatioilla

4.6 Matriisin kääntäminen rivioperaatioilla Vaasan liopiston julkaisuja 9 kuva.plot(,n, k-o,,n, k-s,,n3, k-d ); kuva.set_label( kausi ); kuva.set_label( lkm ); kuva.ais([,,,8]); kuva = fig.add_subplot(); kuva.plot(,tulo, k-o ); kuva.set_label( kausi

Lisätiedot

ominaisvektorit. Nyt 2 3 6

ominaisvektorit. Nyt 2 3 6 Esimerkki 2 6 8 Olkoon A = 40 0 6 5. Etsitäänmatriisinominaisarvotja 0 0 2 ominaisvektorit. Nyt 2 0 2 6 8 2 6 8 I A = 40 05 40 0 6 5 = 4 0 6 5 0 0 0 0 2 0 0 2 15 / 172 Täten c A ( )=det( I A) =( ) ( 2)

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti

Talousmatematiikan perusteet: Luento 10. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti Talousmatematiikan perusteet: Luento 1 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

Aiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa.

Aiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa. Yhtälöryhmän ratkaisujen lukumäärä, L8 Esimerkki kvadraattinen Haluamme ratkaista n 4x + y z = x + y + z = 5 x + y + z = 4 4 x 4 + y x y z = + z 5 4 = 5 4 Esimerkki kvadraattinen Yhtälöryhmä on kvadraattinen,

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ( 0, 4, ( ( 1 4 2, a 11 a 12 a 21 a 22 Kaavio kirjoitetaan kaarisulkujen väliin (amer. kirjoissa

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Lineaariset kongruenssiyhtälöryhmät

Lineaariset kongruenssiyhtälöryhmät Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Talousmatematiikan perusteet

Talousmatematiikan perusteet kevät 219 / orms.13 Talousmatematiikan perusteet 9. harjoitus, viikko 12 (18.3. 22.3.219) L Ma 1 12 A22 R5 Ti 14 16 F453 R1 Ma 12 14 F453 L To 8 1 A22 R2 Ma 16 18 F453 R6 Pe 12 14 F14 R3 Ti 8 1 F425 R7

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

2.1.4 har:linyryhmat03. Octavella. Katso ensin esimerkit???? esim:yroctave01 Octaven antamat vastausehdotukset.

2.1.4 har:linyryhmat03. Octavella. Katso ensin esimerkit???? esim:yroctave01 Octaven antamat vastausehdotukset. Vaasan yliopiston julkaisuja, opetusmonisteita 49 har:linyryhmat03 Tehtävä 2.3 Ratkaise lineaariset yhtälörymät x + y z 5 x + 2y + 4z 16 a x + 2y + 2z 0 2x + z 14 b x + y z 5 x + 2y + 4z 16 x + 2y + 2z

Lisätiedot

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................

Lisätiedot

2.8. Kannanvaihto R n :ssä

2.8. Kannanvaihto R n :ssä 28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus. 1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:

Lisätiedot

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Lotta Oinonen ja Johanna Rämö 6. joulukuuta 2012 Helsingin yliopisto Matematiikan ja tilastotieteen laitos 2012 Sisältö 1 Avaruus R n 4 1 Avaruuksien R 2 ja R 3 vektorit.....................

Lisätiedot

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

MATRIISIN HESSENBERGIN MUOTO. Niko Holopainen

MATRIISIN HESSENBERGIN MUOTO. Niko Holopainen MATRIISIN HESSENBERGIN MUOTO Niko Holopainen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Syksy 2013 Tiivistelmä: Niko Holopainen, Matriisin Hessenbergin muoto Matematiikan

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1.

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 2 Ratkaisut palautettava viimeistään maanantaina 25.5.2015 klo 16.15. Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja

Lisätiedot

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä) Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä

Lisätiedot

Ratkaisuehdotukset LH 3 / alkuvko 45

Ratkaisuehdotukset LH 3 / alkuvko 45 Ratkaisuehdotukset LH 3 / alkuvko 45 Tehtävä : Olkoot A, B, X R n n, a, b R n ja jokin vektorinormi. Kätetään vektorinormia vastaavasta operaattorinormista samaa merkintää. Nätä, että. a + b a b, 2. A

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 17.5.2017 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Martina Aaltonen, martina.aaltonen@helsinki.fi, 1/18 Siirry istumaan jonkun viereen. Kaikilla on

Lisätiedot

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81 Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................

Lisätiedot

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin

Lisätiedot

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)

Lisätiedot