Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81
|
|
- Juha Heikkilä
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81
2 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 ) Skalaarilla kertominen (a R): au = (au 1,au 2 ) Kommutatiivisuus Assosiatiivisuus u+v = v+u (u+v)+w = u+(v+w)
3 Lineaarialgebra (muut ko) p. 3/81 Pituus ja sisätulo Vektorin u = (u 1,u 2 ) R 2 pituus u = u 2 1 +u2 2 Vektorien u = (u 1,u 2 ) ja v = (v 1,v 2 ) sisätulo Pituudelle ax = a x (u,v) = u v = u 1 v 1 +u 2 v 2. Muistetaan, että u 2 = (u,u).
4 Lineaarialgebra (muut ko) p. 4/81 Sisätulo Sisätulon ominaisuuksia (s.3) (u,u) 0 (u,u) = 0 u = 0 (u,v) = (v,u) (u+v,w) = (u,w)+(v,w). (au,v) = a(u,v), a R.
5 Lineaarialgebra (muut ko) p. 5/81 Sisätulo Sisätulon ominaisuuksia (s.3) (u,u) 0 (u,u) = 0 u = 0 (u,v) = (v,u) (u+v,w) = (u,w)+(v,w). (au,v) = a(u,v), a R. Myös (u,v+w) = (u,v)+(u,w) ja(u v,w) = (u,w) (v,w).
6 Lineaarialgebra (muut ko) p. 6/81 Avaruusvektorit, s. 4 Avaruusvektorien joukko R 3 = {(x,y,z) x,y,z R}. Vektoreille u = (u 1,u 2,u 3 ) ja v = (v 1,v 2,v 3 ) operaatiot Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2,u 3 +v 3 ) Skalaarilla kertominen (a R): au = (au 1,au 2,au 3 )
7 Lineaarialgebra (muut ko) p. 7/81 Avaruusvektorit Avaruusvektoreille u = (u 1,u 2,u 3 ) ja v = (v 1,v 2,v 3 ) aiemmat tulokset (1.3) (1.7) toimivat myös R 3 :ssa, kun määritellään u = u 2 1 +u2 2 +u2 3 ja (u,v) = u 1 v 1 +u 2 v 2 +u 3 v 3.
8 Lineaarialgebra (muut ko) p. 8/81 Suorat Suoran L standardiesitys L : x x 0 a = y y 0 b = z z 0 c missä P = (x 0,y 0,z 0 ) on jokin L:n piste ja s = (a,b,c) (0,0,0) on suoran suuntavektori P
9 Lineaarialgebra (muut ko) p. 9/81 Suorat Suoran L standardiesitys L : x x 0 a = y y 0 b = z z 0 c missä P = (x 0,y 0,z 0 ) on jokin L:n piste ja s = (a,b,c) (0,0,0) on suoran suuntavektori P s
10 Lineaarialgebra (muut ko) p. 10/81 Parametriesitys Suoran L koordinaattimuotoinen parametriesitys x = x 0 +ta y = y 0 +tb z = z 0 +tc (t R)
11 Lineaarialgebra (muut ko) p. 11/81 Parametriesitys Suoran L koordinaattimuotoinen parametriesitys x = x 0 +ta y = y 0 +tb z = z 0 +tc t = 1 (t R) P ts vektoreina r = r 0 +ts, t R.
12 Lineaarialgebra (muut ko) p. 12/81 Parametriesitys Suoran L koordinaattimuotoinen parametriesitys x = x 0 +ta y = y 0 +tb z = z 0 +tc (t R) P t = 2 ts vektoreina r = r 0 +ts, t R.
13 Lineaarialgebra (muut ko) p. 13/81 Erikoistapaukset (standardiesitys) Tapaus c = 0: L : Tapaus b = c = 0: x x 0 a = y y 0 b, z = z 0 L : y = y 0, z = z 0
14 Lineaarialgebra (muut ko) p. 14/81 Tasot Tason piste P = (x 0,y 0,z 0 ) ja normaalivektori n = (a,b,c) (0,0,0). Tason T koordinaattimuotoinen esitys T : ax+by +cz = d missä d = ax 0 +by 0 +cz 0.
15 Lineaarialgebra (muut ko) p. 15/81 Mitä yhtälöryhmälle saa tehdä? 1) Yhtälön voi kertoa vakiolla 0 2) Yhtälön voi lisätä toiseen vakiolla kerrottuna 3) Yhtälöiden järjestystä voi vaihtaa
16 Lineaarialgebra (muut ko) p. 16/81 n-ulotteinen avaruus, s.9 Vektorien joukko R n = {(x 1,x 2,...,x n ) x 1,x 2,...,x n R}. Vektoreille u = (u 1,u 2,...,u n ) ja v = (v 1,v 2,...,v n ) operaatiot Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2,...,u n +v n ) Skalaarilla kertominen (a R): au = (au 1,au 2,...,au n )
17 Lineaarialgebra (muut ko) p. 17/81 n-ulotteinen avaruus, s.9 Vektoreille u = (u 1,u 2,...,u n ) ja v = (v 1,v 2,...,v n ) aiemmat tulokset (1.3) (1.7) toimivat myös R n :ssa, kun määritellään u = u 2 1 +u u2 n ja (u,v) = u 1 v 1 +u 2 v 2 + +u n v n.
18 Lineaarialgebra (muut ko) p. 18/81 MATRIISIT: Johdanto (k = 20) { 2x+3y = 0 4x+ky = 0 Ratkaisuja 1, kun 2 k 3 4 0, Ratkaisuja, kun 2 k 3 4 = 0 (eli k = 6).
19 Lineaarialgebra (muut ko) p. 18/81 MATRIISIT: Johdanto (k = 7) { 2x+3y = 0 4x+ky = 0 Ratkaisuja 1, kun 2 k 3 4 0, Ratkaisuja, kun 2 k 3 4 = 0 (eli k = 6).
20 Lineaarialgebra (muut ko) p. 18/81 MATRIISIT: Johdanto { 2x+3y = 1 4x+ky = 5 Ratkaisuja 1, kun 2 k 3 4 0,
21 Lineaarialgebra (muut ko) p. 18/81 MATRIISIT: Johdanto { 2x+3y = 1 4x+ky = 5 Ei ratkaisuja, kun 2 k 3 4 = 0, eli k = 6.
22 Lineaarialgebra (muut ko) p. 19/81 MATRIISIT: Johdanto Kertoimista "matriisi" ( k ) ja "determinantti" k = 2 k 3 4
23 Lineaarialgebra (muut ko) p. 20/81 MATRIISIT: Johdanto Kertoimista "matriisi" ( k ) ja "determinantti" k = 2k 3 4 "vakiot"pystyvektorina ( 1 5 )
24 Lineaarialgebra (muut ko) p. 21/81 MATRIISIT: Johdanto Yleistyykö edellinen tarkastelu? Entä kun tuntemattomia ja yhtälöitä eri määrä? Onko yhtälöryhmää, jossa tarkalleen 17 ratkaisua?
25 Lineaarialgebra (muut ko) p. 22/81 Matriiseista Samaa tyyppiä olevat m n-matriisit voidaan laskea yhteen A+B Nollamatriisi O = (0) m n Transponointi A T ( ) T =
26 Lineaarialgebra (muut ko) p. 23/81 Matriisien tulo, s. 13 Matriisien A = (a ij ) m s ja B = (b ij ) s n tulo on AB = (u ij ) m n missä kaikilla i, j. u ij = a i1 b 1j +a i2 b 2j + +a is b sj
27 Lineaarialgebra (muut ko) p. 24/81 Matriisien tulo Matriisitulo ( ) 2 2 ( ) 2 3 =
28 Lineaarialgebra (muut ko) p. 25/81 Matriisien tulo Matriisitulo ( ) 2 2 ( ) 2 3 = ( )
29 Lineaarialgebra (muut ko) p. 26/81 Matriisien tulo Matriisitulo ( ) 2 2 ( ) 2 3 = ( )
30 Lineaarialgebra (muut ko) p. 27/81 Matriisien tulo Yleensä ei KOMMUTOI AB BA
31 Lineaarialgebra (muut ko) p. 28/81 Matriisien tulo Kaikkien m n-matriisien joukko M m n
32 Lineaarialgebra (muut ko) p. 29/81 Laskusääntöjä, s. 18 skalaari r R (AB)C = A(BC) A(B +C) = AB +AC (A+B)C = AC +BC r(ab) = A(rB)
33 Lineaarialgebra (muut ko) p. 30/81 Johdanto yhtälöryhmiin Tutkitaan ratkaisuja 5x + y + t = 1 3x y + 2z t = 2 x + y z = 0
34 Lineaarialgebra (muut ko) p. 31/81 Johdanto yhtälöryhmiin Tutkitaan ratkaisuja 5x 1 + x 2 + x 4 = 1 3x 1 x 2 + 2x 3 x 4 = 2 x 1 + x 2 x 3 = 0
35 Lineaarialgebra (muut ko) p. 32/81 Johdanto yhtälöryhmiin Tutkitaan ratkaisuja 5x 1 + x 2 + x 4 = 1 3x 1 x 2 + 2x 3 x 4 = 2 x 1 + x 2 x 3 = 0 Tästä matriisit , x 1 x 2 x 3 x 4, 1 2 0
36 Lineaarialgebra (muut ko) p. 33/81 Johdanto yhtälöryhmiin, s.16 Tutkitaan ratkaisuja 5x 1 + x 2 + x 4 = 1 3x 1 x 2 + 2x 3 x 4 = 2 x 1 + x 2 x 3 = 0 Tästä matriisit , 1 } 1 1 {{ 0 } kerroinmatriisi x 1 x 2 x 3 x 4, }{{} tuntemattomat }{{} vakiot
37 Lineaarialgebra (muut ko) p. 34/81 Esimerkiksi { 2x + 3y = 1 4x + 5y = 3
38 Lineaarialgebra (muut ko) p. 35/81 Esimerkiksi { 2x 1 + 3x 2 = 1 4x 1 + 5x 2 = 3
39 Lineaarialgebra (muut ko) p. 36/81 Esimerkiksi { 2x 1 + 3x 2 = 1 4x 1 + 5x 2 = 3 A = ( ) x = ( x 1 x 2 ) c = ( 1 3 ) Matriisikielellä Ax = c
40 Lineaarialgebra (muut ko) p. 37/ Lineaariset yhtälöryhmät Monisteessa (2.3) a 11 x 1 + a 12 x a 1n x n = c 1 a 21 x 1 + a 22 x a 2n x n = c 2... a m1 x 1 + a m2 x a mn x n = c m
41 Lineaarialgebra (muut ko) p. 38/81 Matriisien avulla Ax = c, missä A = a 11 a a 1n a 12 a a 2n , a m1 a m2... a mn ja x = x 1 x 2. c = c 1 c 2. x n c m
42 Lineaarialgebra (muut ko) p. 39/81 Homogeenisuus Yhtälöryhmä on homogeeninen, jos Monisteessa (2.5) a 11 x 1 + a 12 x a 1n x n = 0 a 21 x 1 + a 22 x a 2n x n = 0... a m1 x 1 + a m2 x a mn x n = 0 eli matriisimuodossa Ax = 0. Muutoin epähomogeeninen
43 Lineaarialgebra (muut ko) p. 40/81 Esimerkiksi Epähomogeeninen { 2x 1 + 3x 2 = 1 4x 1 + 5x 2 = 3 Homogeeninen { 2x 1 + 3x 2 = 0 4x 1 + 5x 2 = 0
44 Lineaarialgebra (muut ko) p. 41/81 Yhtälöryhmistä Olkoon x 0 yksittäisratkaisu epähomogeeniselle yhtälöryhmälle Ax = c. Silloin sen kaikki ratkaisut ovat muotoa x = x 0 +y missä y on homogeenisen yhtälöryhmän Ax = 0 kaikki ratkaisut.
45 Lineaarialgebra (muut ko) p. 42/81 Tulon transponointi (AB) T = B T A T Matriisi on symmetrinen, jos järjestys! A T = A Identiteettimatriisi I = I n = Neliömatriisille A: AI = IA = A
46 Lineaarialgebra (muut ko) p. 43/81 Matriisin potenssi Kun kokonaisluku k 1 A k = A A A }{{} k Lisäksi A 0 = I
47 Lineaarialgebra (muut ko) p. 44/81 Matriisiyhtälöistä (s. 20) Matriisiyhtälöitä voidaan käsitellä kuten reaalilukuyhtälöitä, kunhan ei käytetä jakolaskua eikä kommutatiivisuutta Ei siis voi yleensä supistaa AB = AC B = C
48 Lineaarialgebra (muut ko) p. 45/81 Käänteismatriisi Määritelmä neliömatriisin A käänteismatriisille eli EI MERKITÄ 1 A vaana 1 Ei aina olemassa, esim A = AB = BA = I AA 1 = A 1 A = I ( ).
49 Lineaarialgebra (muut ko) p. 46/81 Säännöllisyys A on säännöllinen, jos A 1 on olemassa.
50 Lineaarialgebra (muut ko) p. 47/81 Säännöllisyys A on säännöllinen, jos A 1 on olemassa. Jos matriisin A = ( a b c d ) kertoimille ad bc 0, niin A 1 = 1 ad bc ( d b c a )
51 Lineaarialgebra (muut ko) p. 48/81 Laskusääntöjä Olkoot A ja B säännöllisiä matriiseja: (AB) 1 = B 1 A 1 (A T ) 1 = (A 1 ) T
52 Lineaarialgebra (muut ko) p. 49/81 Laskusääntöjä Olkoot A ja B matriiseja, missä pystyrivien avulla B = (b 1 b k ). Silloin kertolasku AB = (Ab 1 Ab k )
53 Lineaarialgebra (muut ko) p. 50/ Matriisien kertominen lohkomuodossa Lohkominen ( A B C D )( 1 0 a b 0 1 c d A B C D ) = ( ( I A O I ) AA +BC AB +BD CA +DC CB +DD ) Esimerkiksi ( I A O I )( A O I B ) = ( O AB I B )
54 Lineaarialgebra (muut ko) p. 51/81 Determinantti Neliömatriisille A: det(a) = a 11 a a 1n a 21 a a 2n a n1 a n2... a nn = kaikki permutaatiot(j 1,j 2,...,j n ) sign(j 1,j 2,...,j n )a 1j1 a 2j2...a njn
55 Lineaarialgebra (muut ko) p. 52/81 2-rivinen determinantti a b c d = ad cb
56 Lineaarialgebra (muut ko) p. 53/81 Perusominaisuuksia, s. 26 1) 2) a ca 1k... a 1n a ca 2k... a 2n a n1... ca nk... a nn det(a T ) = det(a) = c a a 1k... a 1n a a 2k... a 2n a n1... a nk... a nn vastaavasti vaakariville
57 Lineaarialgebra (muut ko) p. 54/81 Perusominaisuuksia, s. 27 3) a a 1k +b 1k... a 1n a a 2k +b 2k... a 2n a n1... a nk +b nk... a nn = a a 1k... a 1n a a 2k... a 2n a n1... a nk... a nn + a b 1k... a 1n a b 2k... a 2n a n1... b nk... a nn vastaavasti vaakariville
58 Lineaarialgebra (muut ko) p. 55/81 Perusominaisuuksia, s. 27 4) Jos pysty- tai vaakarivi on nollarivi, niin det(a) = 0. 5) Jos kaksi samaa pystyriviä (tai kaksi samaa vaakariviä), niin det(a) = 0. 6) Jos kaksi vaakariviä (tai kaksi pystyriviä) vaihdetaan keskenään, niin determinantti muuttuu vastaluvukseen. a 11 a a 1n a 21 a a 2n a n1 a n2... a nn = a 21 a a 2n a 11 a a 1n a n1 a n2... a nn
59 Lineaarialgebra (muut ko) p. 56/81 Perusominaisuuksia, s. 27 7) c + a a 1h... a 1k... a 1n a a 2h... a 2k... a 2n a n1... a nh... a nk... a nn = a a 1h... a 1k +ca 1h... a 1n a a 2h... a 2k +ca 2h... a 2n a n1... a nh... a nk +ca nh... a nn vastaavasti vaakariville
60 Lineaarialgebra (muut ko) p. 57/81 Tulon determinantti det(ab) = det(a) det(b) Jos A on säännöllinen, niin det(a 1 ) = 1 det(a)
61 Lineaarialgebra (muut ko) p. 58/81 Alkion komplementti Matriisin alkion a ij komplementti C ij = ( 1) i+j det(a ij ) missä A ij saatu poistamalla matriisista A vaakarivi i ja pystyrivi j. Deteminantin rivikehitelmät (vaakariville) det(a) = a i1 C i1 + +a in C in
62 Lineaarialgebra (muut ko) p. 59/81 Alkion komplementti Matriisin alkion a ij komplementti C ij = ( 1) i+j det(a ij ) missä A ij saatu poistamalla matriisista A vaakarivi i ja pystyrivi j. Deteminantin rivikehitelmät (vaakariville) ( = ) ( ) ( )
63 Lineaarialgebra (muut ko) p. 60/81 Alkion komplementti Matriisin alkion a ij komplementti C ij = ( 1) i+j det(a ij ) missä A ij saatu poistamalla matriisista A vaakarivi i ja pystyrivi j. Deteminantin rivikehitelmät (vaakariville) det(a) = a i1 C i1 + +a in C in = n a ik C ik k=1 ja pystyriville det(a) = n a kj C kj k=1
64 Lineaarialgebra (muut ko) p. 61/81 Käänteismatriisin kaava Matriisin A liittomatriisi adj(a) = (C ij ) T Jos A on säännöllinen, niin A 1 = 1 det(a) (C ij) T A on säännöllinen det(a) 0
65 Lineaarialgebra (muut ko) p. 62/81 Cramerin sääntö Jos yhtälöryhmän Ax = c kerroinmatriisi A on säännöllinen, niin sillä on yksikäsitteinen ratkaisu x j = det(a j) det(a) missä x = x 1 x 2. x n ja A j saadaan korvaamalla j:s pystyrivi c:llä
66 Lineaarialgebra (muut ko) p. 63/81 Ristitulo, s. 34 Tarkastelussa vain R 3 Olkoon u = (u 1,u 2,u 3 ) R 3 v = (v 1,v 2,v 3 ) R 3 u v = (C 11,C 12,C 13 ).
67 Lineaarialgebra (muut ko) p. 64/81 Ristitulo, s. 34 Tarkastelussa vain R 3 Olkoon u = (u 1,u 2,u 3 ) R 3 u v = v = (v 1,v 2,v 3 ) R 3 u 2 u 3 u 1 u 3 u 1 u 2,, v 2 v 3 v 1 v 3 v 1 v 2. }{{}}{{}}{{} C 11 C 12 C 13
68 Lineaarialgebra (muut ko) p. 65/81 Ristitulo Eli (u,u v) = u 1 C 11 +u 2 C 12 +u 3 C 13 ( ) u 2 u 3 = u 1 v 2 v 3 +u u 1 u 3 2 v 1 v 3 +u 3 u 1 u 2 v 1 v 2 ja samoin (v,u v) = v 1 C 11 +v 2 C 12 +v 3 C 13 ( ) u 2 u 3 = v 1 v 2 v 3 +v u 1 u 3 u 1 u 2 2 +v 3 v 1 v 3 v 1 v 2 Johtavat determinantteihin (kehittämällä 1. vaakarivi) u 1 u 2 u 3 v 1 v 2 v 3 u 1 u 2 u 3 u 1 u 2 u 3 v 1 v 2 v 3 v 1 v 2 v 3
69 Lineaarialgebra (muut ko) p. 66/81 Ristitulo Eli (u,u v) = u 1 C 11 +u 2 C 12 +u 3 C 13 ( ) u 2 u 3 = u 1 v 2 v 3 +u u 1 u 3 2 v 1 v 3 +u 3 u 1 u 2 v 1 v 2 ja samoin (v,u v) = v 1 C 11 +v 2 C 12 +v 3 C 13 ( ) u 2 u 3 = v 1 v 2 v 3 +v u 1 u 3 u 1 u 2 2 +v 3 v 1 v 3 v 1 v 2 Johtavat determinantteihin (kehittämällä 1. vaakarivi) u 1 u 2 u 3 v 1 v 2 v 3 u 1 u 2 u 3 = 0 = u 1 u 2 u 3 v 1 v 2 v 3 v 1 v 2 v 3
70 Lineaarialgebra (muut ko) p. 67/81 Ristitulo Siis u (C 11,C 12,C 13 ) = 0 v (C 11,C 12,C 13 ) = 0
71 Lineaarialgebra (muut ko) p. 68/81 Muistisääntö Ristitulo (vain R 3 :ssa) Vektoreille u = (u 1,u 2,u 3 ) ja v = (v 1,v 2,v 3 ) u v = i j k u 1 u 2 u 3 v 1 v 2 v 3 Jos u ja v eivät nollavektoreita ja α on niiden välinen kulma, niin u v = u v sinα. Vertaa (1.4): (u,v) = u v cosα. u u v ja v u v
72 Lineaarialgebra (muut ko) p. 69/81 Muistisääntö Ristitulo (vain R 3 :ssa) Vektoreille u = (u 1,u 2,u 3 ) ja v = (v 1,v 2,v 3 ) u v = Ei kommutatiivinen i j k u 1 u 2 u 3 v 1 v 2 v 3 u v = v u Ei myöskään assosiatiivinen eli yleensä u (v w) (u v) w.
73 Lineaarialgebra (muut ko) p. 70/81 Skalaarikolmitulo Skalaarikolmitulo vektoreille u = (u 1,u 2,u 3 ), v = (v 1,v 2,v 3 ) ja w = (w 1,w 2,w 3 ): u (v w) = u 1 u 2 u 3 v 1 v 2 v 3 w 1 w 2 w 3 Vektorien määräämän suuntaissärmiön (kts. kuva alla) tilavuus saadaan itseisarvosta u (v w) u w v
74 Lineaarialgebra (muut ko) p. 71/81 Aliavaruus Aliavaruudelle U R n kolme ehtoa: 1) U 2) u,v U u+v U 3) a R, u U au U.
75 Lineaarialgebra (muut ko) p. 72/81 Aliavaruus Aliavaruudelle U R n kolme ehtoa: 1) U 2) u,v U u+v U 3) a R, u U au U.
76 Lineaarialgebra (muut ko) p. 73/81 Aliavaruus Aliavaruudelle U R n kolme ehtoa: 1) U 2) u,v U u+v U 3) a R, u U au U. 0 kuuluu aina aliavaruuteen! U = {x R n Ax = 0} on R n :n aliavaruus Triviaalit aliavaruudet: {0} ja R n.
77 Lineaarialgebra (muut ko) p. 74/81 Ratkaisuavaruus (Lause 4.1.8) Lineaarisen homogeenisen yhtälöryhmän a 11 x 1 + a 12 x a 1n x n = 0 a 21 x 1 + a 22 x a 2n x n = 0... a n1 x 1 + a n2 x a nn x n = 0 ratkaisut x = x 1. x n muodostavat aliavaruuden (ns. ratkaisuavaruuden)
78 Lineaarialgebra (muut ko) p. 75/81 Ratkaisuavaruus (Lause 4.1.8) Lineaarisen homogeenisen yhtälöryhmän Ax = 0 ratkaisut x = x 1. x n muodostavat aliavaruuden (ns. ratkaisuavaruuden)
79 Lineaarialgebra (muut ko) p. 76/81 AliavaruudetR 3 :ssa {0} origon kautta kulkevat suorat origon kautta kulkevat tasot R 3
80 Lineaarialgebra (muut ko) p. 77/81 Viritetty aliavaruus vektorien x 1,x 2,...,x k R n lineaarikombinaatio vektorien virittämä aliavaruus c 1 x 1 +c 2 x c k x k L(x 1,x 2,...,x k ) = {c 1 x 1 +c 2 x c k x k c 1,c 2,...,c k R}
81 Lineaarialgebra (muut ko) p. 78/81 Viritetty aliavaruus vektorien x 1,x 2,...,x k R n lineaarikombinaatio vektorien virittämä aliavaruus c 1 x 1 +c 2 x c k x k L(x 1,x 2,...,x k ) = {c 1 x 1 +c 2 x c k x k c 1,c 2,...,c k R} Esimerkiksi a(1,1)+b(1,0) ja L((1,1),(1,0)) sisältää mm. vektorit (0,0),(1,1),(1,0),(2,1),(0,1),( 2,0),...
82 Lineaarialgebra (muut ko) p. 79/81 Matriisien avulla Pystyrivien lineaarikombinaatio A = (a 1 a 2... a n ) Ac = c 1 a 1 + +c n a n
83 Lineaarialgebra (muut ko) p. 80/81 Matriisien avulla matriisin pystyriveille A = (a 1 a 2... a n ) m n Lause 4.2.8: neliömatriisille L(a 1,a 2,...,a n ) = {Ac c R n } L(a 1,a 2,...,a n ) = R n A on säännöllinen
84 Lineaarialgebra (muut ko) p. 81/81 Matriisien avulla matriisin pystyriveille A = (a 1 a 2... a n ) m n Lause 4.2.8: neliömatriisille L(a 1,a 2,...,a n ) = {Ac c R n } L(a 1,a 2,...,a n ) = R n A on säännöllinen Esimerkiksi L((1,1),(1,0)) = R 2, sillä
Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210 Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2
LisätiedotLineaarialgebra (muut ko)
Lineaarialgebra (muut ko) p. 1/103 Lineaarialgebra (muut ko) Tero Laihonen Lineaarialgebra (muut ko) p. 2/103 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v
LisätiedotSeuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117
Seuraava luento ti 31.10 on salissa XXII Lineaarialgebra (muut ko) p. 1/117 Lineaarialgebra (muut ko) p. 2/117 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v
LisätiedotMuistutus: Matikkapaja ke Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta yms.
Lineaarialgebra (muut ko) p. 1/139 Ensi viikon luennot salissa X Muistutus: Matikkapaja ke 14-16 Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta
LisätiedotEnsi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/159
Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/159 Lineaarialgebra (muut ko) p. 2/159 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 ) Skalaarilla
LisätiedotTällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162
Tällä viikolla viimeiset luennot ja demot Lineaarialgebra (muut ko) p. 1/162 Lineaarialgebra (muut ko) p. 2/162 Kertausta Vektorin u = (u 1,u 2 ) R 2 pituus u = u 2 1 +u2 2 Vektorien u ja v = (v 1,v 2
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
LisätiedotJohdatus lineaarialgebraan. Juha Honkala 2017
Johdatus lineaarialgebraan Juha Honkala 2017 Sisällysluettelo 1 Lineaariset yhtälöryhmät ja matriisit 11 Lineaariset yhtälöryhmät 12 Matriisit 13 Matriisien alkeismuunnokset ja porrasmatriisit 14 Yhtälöryhmien
LisätiedotMatematiikka B2 - TUDI
Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
Lisätiedot1.1. Määritelmiä ja nimityksiä
1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x
LisätiedotMatematiikka B2 - Avoin yliopisto
6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
LisätiedotInformaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen
Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisit..............................
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lisätiedot3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset
32 Idea: Lineaarikuvausten laskutoimitusten avulla määritellään vastaavat matriisien laskutoimitukset Vakiolla kertominen ja summa Olkoon t R ja A, B R n m Silloin ta, A + B R n m ja määritellään ta ta
LisätiedotMatriisien tulo. Matriisit ja lineaarinen yhtälöryhmä
Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty
LisätiedotInformaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen
Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................
LisätiedotInformaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen
Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden
LisätiedotMatriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.
Matriisilaskenta Harjoitusten ratkaisut (Kevät 9). Olkoot ja A = B = 5. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Tapa Käänteismatriisin määritelmän nojalla riittää osoittaa, että AB
LisätiedotTalousmatematiikan perusteet: Luento 10. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti
Talousmatematiikan perusteet: Luento 1 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotVille Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007
Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear
LisätiedotAlkeismuunnokset matriisille, sivu 57
Lineaarialgebra (muut ko) p. 1/88 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna
Lisätiedot3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
LisätiedotLineaarialgebra ja matriisilaskenta I. LM1, Kesä /218
Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.
LisätiedotTalousmatematiikan perusteet: Luento 9. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo
Talousmatematiikan perusteet: Luento 9 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,
LisätiedotDeterminantti. Määritelmä
Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi. Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j). (a) Jos n = 1, niin det(a) = a 11. (b) Muussa tapauksessa n det(a)
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
LisätiedotBM20A0700, Matematiikka KoTiB2
BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin
LisätiedotInformaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen
Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................
LisätiedotKäänteismatriisi 1 / 14
1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella
Lisätiedot9 Matriisit. 9.1 Matriisien laskutoimituksia
9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 4.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Viimeiset harjoitukset on palautettava torstaina 13.6. Laskaripisteensä ja läsnäolonsa voi kukin tarkistaa
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotDeterminantti 1 / 30
1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen
LisätiedotKäänteismatriisin ominaisuuksia
Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit
Lisätiedot3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA =
3 3 Olkoot 9 8 B 7 6 ja A 5 4 [ 3 4 Nyt A + B, AB ja BB eivät ole mielekkäitä (vastaavilla lineaarikuvauksilla menisivät dimensiot solmuun tällaisista yhdistelmistä) Kuitenkin voidaan laskea BA ja 9( )
Lisätiedot1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät
1 1 LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT Muotoa 11 Lineaariset yhtälöryhmät (1) a 1 x 1 + a x + + a n x n b oleva yhtälö on tuntemattomien x 1,, x n lineaarinen yhtälö, jonka kertoimet ovat luvut a 1,,
LisätiedotYhteenlaskun ja skalaarilla kertomisen ominaisuuksia
Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä
Lisätiedot3.1 Lineaarikuvaukset. MS-A0007 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
3 MS-A7 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 925 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita ratkotaan
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
Lisätiedot3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h
HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)
LisätiedotOrtogonaalinen ja ortonormaali kanta
Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä
LisätiedotJohdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 5. luento.2.27 Lineaarialgebraa - Miksi? Neuroverkon parametreihin liittyvät kaavat annetaan monesti
Lisätiedot1 Matriisit ja lineaariset yhtälöryhmät
1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotMatriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n.
Matriisipotenssi Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: Määritelmä Oletetaan, että A on n n -matriisi (siis neliömatriisi) ja k
LisätiedotDemorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104
Lineaarialgebra (muut ko) p. 1/104 Ensi viikolla luennot salissa X Torstaina 7.12. viimeiset demot (12.12. ja 13.12. viimeiset luennot). Torstaina 14.12 on välikoe 2, muista ilmoittautua! Demorastitiedot
Lisätiedotx 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili
6 4 2 x 2 x 3 15 10 5 0 5 15 5 3 2 1 1 2 3 2 0 x 2 = 1 2x 1 0 4 x 2 = 3 x 1 x 5 2 5 x 1 10 x 1 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili Sisältö
LisätiedotLineaarialgebra. Osa 1. Turun yliopisto. Markku Koppinen
Lineaarialgebra Osa 1 Turun yliopisto Markku Koppinen Alkusanat 9 elokuuta 2006 Lineaarialgebra on niitä perusteorioita, joita tarvitaan lähes kaikilla matematiikan aloilla ja monissa muissakin tieteissä
LisätiedotTalousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi
Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotA = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:
11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta
LisätiedotLineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg
Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa
LisätiedotEnsi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66
Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/66 Lineaarialgebra (muut ko) p. 2/66 Redusoitu porrasmuoto 1 1 2 4 1 1 4 6 2 2 5 9 1 1 0 2 0 0 1 1 0 0 0 0 Eli aste r(a) = 2 ja vaakariviavaruuden
LisätiedotNeliömatriisin adjungaatti, L24
Neliömatriisin adjungaatti, L24 1 2 1 3 Matriisi = A = 7 4 6 5 2 0 ( ) 7 6 Alimatriisi = A 12 = 5 0 Minori = det(a 12 ) = 7 6 5 0 = 30 Kofaktori = ( 1) 1+2 det(a 12 ) = 30 2 Määritelmä n n neliö-matriisin
Lisätiedot802118P Lineaarialgebra I (4 op)
802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu
Lisätiedot6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio
6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.
LisätiedotRistitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti
14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on
LisätiedotEnnakkotehtävän ratkaisu
Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb
LisätiedotVektoreiden virittämä aliavaruus
Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden
Lisätiedot5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
Lisätiedot2.5. Matriisin avaruudet ja tunnusluvut
2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja
LisätiedotSuorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö.
Suorat ja tasot, L6 Suora xyz-koordinaatistossa Taso xyz-koordinaatistossa stä stä 1 Näillä kalvoilla käsittelemme kolmen laisia olioita. Suora xyz-avaruudessa. Taso xyz-avaruudessa. Emme nyt ryhdy pohtimaan,
LisätiedotAvaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotLineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.
Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Lotta Oinonen ja Johanna Rämö 6. joulukuuta 2012 Helsingin yliopisto Matematiikan ja tilastotieteen laitos 2012 Sisältö 1 Avaruus R n 4 1 Avaruuksien R 2 ja R 3 vektorit.....................
LisätiedotTalousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi
Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotLineaariset yhtälöryhmät ja matriisit
Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää
LisätiedotHavainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.
Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause
Lisätiedot5 OMINAISARVOT JA OMINAISVEKTORIT
5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön
Lisätiedot802120P Matriisilaskenta (5 op)
802120P Matriisilaskenta (5 op) Marko Leinonen Matemaattiset tieteet Syksy 2016 1 / 220 Luennoitsija: Marko Leinonen marko.leinonen@oulu.fi MA333 Kurssilla käytetään Noppaa (noppa.oulu.fi) Luentomoniste
LisätiedotOminaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.
Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (
Lisätiedot3 Skalaari ja vektori
3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,
LisätiedotLineaarialgebra I. Oulun yliopisto Matemaattisten tieteiden laitos Esa Järvenpää Kirjoittanut Tuula Ripatti
Lineaarialgebra I Oulun yliopisto Matemaattisten tieteiden laitos 2011 Esa Järvenpää Kirjoittanut Tuula Ripatti 2 1 Lineaarinen yhtälöryhmä 11 Esimerkki (a) Ratkaise yhtälö 5x = 7 Kerrotaan yhtälö puolittain
LisätiedotLineaariset kongruenssiyhtälöryhmät
Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /310
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/310 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
LisätiedotKannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
LisätiedotVektorialgebra 1/5 Sisältö ESITIEDOT: vektori
Vektorialgebra 1/5 Sisältö Skalaaritulo Vektoreiden yhteenlaskun ja skalaarilla kertomisen lisäksi vektoreiden välille voidaan määritellä myös kertolasku. Itse asiassa näitä on kaksi erilaista. Seurauksena
Lisätiedot110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3
4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5
LisätiedotDeterminantti. Määritelmä
Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j) (a) Jos n = 1, niin det(a) = a 11 (b) Muussa tapauksessa n det(a)
Lisätiedot9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista
29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n
LisätiedotMAA15 Vektorilaskennan jatkokurssi, tehtävämoniste
MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste Tason ja avaruuden vektorit 1. Olkoon A(, -, 4) ja B(5, -1, -3). a) Muodosta pisteen A paikkavektori. b) Muodosta vektori AB. c) Laske vektorin AB pituus.
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotKäänteismatriisin. Aiheet. Käänteismatriisin ominaisuuksia. Rivioperaatiot matriisitulona. Matriisin kääntäminen rivioperaatioiden avulla
Käänteismatriisi, L5 1 Tässä kalvosarjassa käsittelemme neliömatriiseja. Ilman asian jatkuvaa toistamista oletamme seuraavassa, että kaikki käsittelemämme matriisit ovat neliömatriiseja. Määritelmä. Olkoon
LisätiedotNeliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja
7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien
LisätiedotSuorista ja tasoista LaMa 1 syksyllä 2009
Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden
LisätiedotVektorien virittämä aliavaruus
Vektorien virittämä aliavaruus Esimerkki 13 Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w kuuluu vektoreiden v 1 = (3, 2, 1), v 2 = (2, 2, 6) ja v 3 = (3, 4, 5) virittämään
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
Lisätiedot2.1.4 har:linyryhmat03. Octavella. Katso ensin esimerkit???? esim:yroctave01 Octaven antamat vastausehdotukset.
Vaasan yliopiston julkaisuja, opetusmonisteita 49 har:linyryhmat03 Tehtävä 2.3 Ratkaise lineaariset yhtälörymät x + y z 5 x + 2y + 4z 16 a x + 2y + 2z 0 2x + z 14 b x + y z 5 x + 2y + 4z 16 x + 2y + 2z
Lisätiedot