Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81

Koko: px
Aloita esitys sivulta:

Download "Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81"

Transkriptio

1 Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81

2 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 ) Skalaarilla kertominen (a R): au = (au 1,au 2 ) Kommutatiivisuus Assosiatiivisuus u+v = v+u (u+v)+w = u+(v+w)

3 Lineaarialgebra (muut ko) p. 3/81 Pituus ja sisätulo Vektorin u = (u 1,u 2 ) R 2 pituus u = u 2 1 +u2 2 Vektorien u = (u 1,u 2 ) ja v = (v 1,v 2 ) sisätulo Pituudelle ax = a x (u,v) = u v = u 1 v 1 +u 2 v 2. Muistetaan, että u 2 = (u,u).

4 Lineaarialgebra (muut ko) p. 4/81 Sisätulo Sisätulon ominaisuuksia (s.3) (u,u) 0 (u,u) = 0 u = 0 (u,v) = (v,u) (u+v,w) = (u,w)+(v,w). (au,v) = a(u,v), a R.

5 Lineaarialgebra (muut ko) p. 5/81 Sisätulo Sisätulon ominaisuuksia (s.3) (u,u) 0 (u,u) = 0 u = 0 (u,v) = (v,u) (u+v,w) = (u,w)+(v,w). (au,v) = a(u,v), a R. Myös (u,v+w) = (u,v)+(u,w) ja(u v,w) = (u,w) (v,w).

6 Lineaarialgebra (muut ko) p. 6/81 Avaruusvektorit, s. 4 Avaruusvektorien joukko R 3 = {(x,y,z) x,y,z R}. Vektoreille u = (u 1,u 2,u 3 ) ja v = (v 1,v 2,v 3 ) operaatiot Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2,u 3 +v 3 ) Skalaarilla kertominen (a R): au = (au 1,au 2,au 3 )

7 Lineaarialgebra (muut ko) p. 7/81 Avaruusvektorit Avaruusvektoreille u = (u 1,u 2,u 3 ) ja v = (v 1,v 2,v 3 ) aiemmat tulokset (1.3) (1.7) toimivat myös R 3 :ssa, kun määritellään u = u 2 1 +u2 2 +u2 3 ja (u,v) = u 1 v 1 +u 2 v 2 +u 3 v 3.

8 Lineaarialgebra (muut ko) p. 8/81 Suorat Suoran L standardiesitys L : x x 0 a = y y 0 b = z z 0 c missä P = (x 0,y 0,z 0 ) on jokin L:n piste ja s = (a,b,c) (0,0,0) on suoran suuntavektori P

9 Lineaarialgebra (muut ko) p. 9/81 Suorat Suoran L standardiesitys L : x x 0 a = y y 0 b = z z 0 c missä P = (x 0,y 0,z 0 ) on jokin L:n piste ja s = (a,b,c) (0,0,0) on suoran suuntavektori P s

10 Lineaarialgebra (muut ko) p. 10/81 Parametriesitys Suoran L koordinaattimuotoinen parametriesitys x = x 0 +ta y = y 0 +tb z = z 0 +tc (t R)

11 Lineaarialgebra (muut ko) p. 11/81 Parametriesitys Suoran L koordinaattimuotoinen parametriesitys x = x 0 +ta y = y 0 +tb z = z 0 +tc t = 1 (t R) P ts vektoreina r = r 0 +ts, t R.

12 Lineaarialgebra (muut ko) p. 12/81 Parametriesitys Suoran L koordinaattimuotoinen parametriesitys x = x 0 +ta y = y 0 +tb z = z 0 +tc (t R) P t = 2 ts vektoreina r = r 0 +ts, t R.

13 Lineaarialgebra (muut ko) p. 13/81 Erikoistapaukset (standardiesitys) Tapaus c = 0: L : Tapaus b = c = 0: x x 0 a = y y 0 b, z = z 0 L : y = y 0, z = z 0

14 Lineaarialgebra (muut ko) p. 14/81 Tasot Tason piste P = (x 0,y 0,z 0 ) ja normaalivektori n = (a,b,c) (0,0,0). Tason T koordinaattimuotoinen esitys T : ax+by +cz = d missä d = ax 0 +by 0 +cz 0.

15 Lineaarialgebra (muut ko) p. 15/81 Mitä yhtälöryhmälle saa tehdä? 1) Yhtälön voi kertoa vakiolla 0 2) Yhtälön voi lisätä toiseen vakiolla kerrottuna 3) Yhtälöiden järjestystä voi vaihtaa

16 Lineaarialgebra (muut ko) p. 16/81 n-ulotteinen avaruus, s.9 Vektorien joukko R n = {(x 1,x 2,...,x n ) x 1,x 2,...,x n R}. Vektoreille u = (u 1,u 2,...,u n ) ja v = (v 1,v 2,...,v n ) operaatiot Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2,...,u n +v n ) Skalaarilla kertominen (a R): au = (au 1,au 2,...,au n )

17 Lineaarialgebra (muut ko) p. 17/81 n-ulotteinen avaruus, s.9 Vektoreille u = (u 1,u 2,...,u n ) ja v = (v 1,v 2,...,v n ) aiemmat tulokset (1.3) (1.7) toimivat myös R n :ssa, kun määritellään u = u 2 1 +u u2 n ja (u,v) = u 1 v 1 +u 2 v 2 + +u n v n.

18 Lineaarialgebra (muut ko) p. 18/81 MATRIISIT: Johdanto (k = 20) { 2x+3y = 0 4x+ky = 0 Ratkaisuja 1, kun 2 k 3 4 0, Ratkaisuja, kun 2 k 3 4 = 0 (eli k = 6).

19 Lineaarialgebra (muut ko) p. 18/81 MATRIISIT: Johdanto (k = 7) { 2x+3y = 0 4x+ky = 0 Ratkaisuja 1, kun 2 k 3 4 0, Ratkaisuja, kun 2 k 3 4 = 0 (eli k = 6).

20 Lineaarialgebra (muut ko) p. 18/81 MATRIISIT: Johdanto { 2x+3y = 1 4x+ky = 5 Ratkaisuja 1, kun 2 k 3 4 0,

21 Lineaarialgebra (muut ko) p. 18/81 MATRIISIT: Johdanto { 2x+3y = 1 4x+ky = 5 Ei ratkaisuja, kun 2 k 3 4 = 0, eli k = 6.

22 Lineaarialgebra (muut ko) p. 19/81 MATRIISIT: Johdanto Kertoimista "matriisi" ( k ) ja "determinantti" k = 2 k 3 4

23 Lineaarialgebra (muut ko) p. 20/81 MATRIISIT: Johdanto Kertoimista "matriisi" ( k ) ja "determinantti" k = 2k 3 4 "vakiot"pystyvektorina ( 1 5 )

24 Lineaarialgebra (muut ko) p. 21/81 MATRIISIT: Johdanto Yleistyykö edellinen tarkastelu? Entä kun tuntemattomia ja yhtälöitä eri määrä? Onko yhtälöryhmää, jossa tarkalleen 17 ratkaisua?

25 Lineaarialgebra (muut ko) p. 22/81 Matriiseista Samaa tyyppiä olevat m n-matriisit voidaan laskea yhteen A+B Nollamatriisi O = (0) m n Transponointi A T ( ) T =

26 Lineaarialgebra (muut ko) p. 23/81 Matriisien tulo, s. 13 Matriisien A = (a ij ) m s ja B = (b ij ) s n tulo on AB = (u ij ) m n missä kaikilla i, j. u ij = a i1 b 1j +a i2 b 2j + +a is b sj

27 Lineaarialgebra (muut ko) p. 24/81 Matriisien tulo Matriisitulo ( ) 2 2 ( ) 2 3 =

28 Lineaarialgebra (muut ko) p. 25/81 Matriisien tulo Matriisitulo ( ) 2 2 ( ) 2 3 = ( )

29 Lineaarialgebra (muut ko) p. 26/81 Matriisien tulo Matriisitulo ( ) 2 2 ( ) 2 3 = ( )

30 Lineaarialgebra (muut ko) p. 27/81 Matriisien tulo Yleensä ei KOMMUTOI AB BA

31 Lineaarialgebra (muut ko) p. 28/81 Matriisien tulo Kaikkien m n-matriisien joukko M m n

32 Lineaarialgebra (muut ko) p. 29/81 Laskusääntöjä, s. 18 skalaari r R (AB)C = A(BC) A(B +C) = AB +AC (A+B)C = AC +BC r(ab) = A(rB)

33 Lineaarialgebra (muut ko) p. 30/81 Johdanto yhtälöryhmiin Tutkitaan ratkaisuja 5x + y + t = 1 3x y + 2z t = 2 x + y z = 0

34 Lineaarialgebra (muut ko) p. 31/81 Johdanto yhtälöryhmiin Tutkitaan ratkaisuja 5x 1 + x 2 + x 4 = 1 3x 1 x 2 + 2x 3 x 4 = 2 x 1 + x 2 x 3 = 0

35 Lineaarialgebra (muut ko) p. 32/81 Johdanto yhtälöryhmiin Tutkitaan ratkaisuja 5x 1 + x 2 + x 4 = 1 3x 1 x 2 + 2x 3 x 4 = 2 x 1 + x 2 x 3 = 0 Tästä matriisit , x 1 x 2 x 3 x 4, 1 2 0

36 Lineaarialgebra (muut ko) p. 33/81 Johdanto yhtälöryhmiin, s.16 Tutkitaan ratkaisuja 5x 1 + x 2 + x 4 = 1 3x 1 x 2 + 2x 3 x 4 = 2 x 1 + x 2 x 3 = 0 Tästä matriisit , 1 } 1 1 {{ 0 } kerroinmatriisi x 1 x 2 x 3 x 4, }{{} tuntemattomat }{{} vakiot

37 Lineaarialgebra (muut ko) p. 34/81 Esimerkiksi { 2x + 3y = 1 4x + 5y = 3

38 Lineaarialgebra (muut ko) p. 35/81 Esimerkiksi { 2x 1 + 3x 2 = 1 4x 1 + 5x 2 = 3

39 Lineaarialgebra (muut ko) p. 36/81 Esimerkiksi { 2x 1 + 3x 2 = 1 4x 1 + 5x 2 = 3 A = ( ) x = ( x 1 x 2 ) c = ( 1 3 ) Matriisikielellä Ax = c

40 Lineaarialgebra (muut ko) p. 37/ Lineaariset yhtälöryhmät Monisteessa (2.3) a 11 x 1 + a 12 x a 1n x n = c 1 a 21 x 1 + a 22 x a 2n x n = c 2... a m1 x 1 + a m2 x a mn x n = c m

41 Lineaarialgebra (muut ko) p. 38/81 Matriisien avulla Ax = c, missä A = a 11 a a 1n a 12 a a 2n , a m1 a m2... a mn ja x = x 1 x 2. c = c 1 c 2. x n c m

42 Lineaarialgebra (muut ko) p. 39/81 Homogeenisuus Yhtälöryhmä on homogeeninen, jos Monisteessa (2.5) a 11 x 1 + a 12 x a 1n x n = 0 a 21 x 1 + a 22 x a 2n x n = 0... a m1 x 1 + a m2 x a mn x n = 0 eli matriisimuodossa Ax = 0. Muutoin epähomogeeninen

43 Lineaarialgebra (muut ko) p. 40/81 Esimerkiksi Epähomogeeninen { 2x 1 + 3x 2 = 1 4x 1 + 5x 2 = 3 Homogeeninen { 2x 1 + 3x 2 = 0 4x 1 + 5x 2 = 0

44 Lineaarialgebra (muut ko) p. 41/81 Yhtälöryhmistä Olkoon x 0 yksittäisratkaisu epähomogeeniselle yhtälöryhmälle Ax = c. Silloin sen kaikki ratkaisut ovat muotoa x = x 0 +y missä y on homogeenisen yhtälöryhmän Ax = 0 kaikki ratkaisut.

45 Lineaarialgebra (muut ko) p. 42/81 Tulon transponointi (AB) T = B T A T Matriisi on symmetrinen, jos järjestys! A T = A Identiteettimatriisi I = I n = Neliömatriisille A: AI = IA = A

46 Lineaarialgebra (muut ko) p. 43/81 Matriisin potenssi Kun kokonaisluku k 1 A k = A A A }{{} k Lisäksi A 0 = I

47 Lineaarialgebra (muut ko) p. 44/81 Matriisiyhtälöistä (s. 20) Matriisiyhtälöitä voidaan käsitellä kuten reaalilukuyhtälöitä, kunhan ei käytetä jakolaskua eikä kommutatiivisuutta Ei siis voi yleensä supistaa AB = AC B = C

48 Lineaarialgebra (muut ko) p. 45/81 Käänteismatriisi Määritelmä neliömatriisin A käänteismatriisille eli EI MERKITÄ 1 A vaana 1 Ei aina olemassa, esim A = AB = BA = I AA 1 = A 1 A = I ( ).

49 Lineaarialgebra (muut ko) p. 46/81 Säännöllisyys A on säännöllinen, jos A 1 on olemassa.

50 Lineaarialgebra (muut ko) p. 47/81 Säännöllisyys A on säännöllinen, jos A 1 on olemassa. Jos matriisin A = ( a b c d ) kertoimille ad bc 0, niin A 1 = 1 ad bc ( d b c a )

51 Lineaarialgebra (muut ko) p. 48/81 Laskusääntöjä Olkoot A ja B säännöllisiä matriiseja: (AB) 1 = B 1 A 1 (A T ) 1 = (A 1 ) T

52 Lineaarialgebra (muut ko) p. 49/81 Laskusääntöjä Olkoot A ja B matriiseja, missä pystyrivien avulla B = (b 1 b k ). Silloin kertolasku AB = (Ab 1 Ab k )

53 Lineaarialgebra (muut ko) p. 50/ Matriisien kertominen lohkomuodossa Lohkominen ( A B C D )( 1 0 a b 0 1 c d A B C D ) = ( ( I A O I ) AA +BC AB +BD CA +DC CB +DD ) Esimerkiksi ( I A O I )( A O I B ) = ( O AB I B )

54 Lineaarialgebra (muut ko) p. 51/81 Determinantti Neliömatriisille A: det(a) = a 11 a a 1n a 21 a a 2n a n1 a n2... a nn = kaikki permutaatiot(j 1,j 2,...,j n ) sign(j 1,j 2,...,j n )a 1j1 a 2j2...a njn

55 Lineaarialgebra (muut ko) p. 52/81 2-rivinen determinantti a b c d = ad cb

56 Lineaarialgebra (muut ko) p. 53/81 Perusominaisuuksia, s. 26 1) 2) a ca 1k... a 1n a ca 2k... a 2n a n1... ca nk... a nn det(a T ) = det(a) = c a a 1k... a 1n a a 2k... a 2n a n1... a nk... a nn vastaavasti vaakariville

57 Lineaarialgebra (muut ko) p. 54/81 Perusominaisuuksia, s. 27 3) a a 1k +b 1k... a 1n a a 2k +b 2k... a 2n a n1... a nk +b nk... a nn = a a 1k... a 1n a a 2k... a 2n a n1... a nk... a nn + a b 1k... a 1n a b 2k... a 2n a n1... b nk... a nn vastaavasti vaakariville

58 Lineaarialgebra (muut ko) p. 55/81 Perusominaisuuksia, s. 27 4) Jos pysty- tai vaakarivi on nollarivi, niin det(a) = 0. 5) Jos kaksi samaa pystyriviä (tai kaksi samaa vaakariviä), niin det(a) = 0. 6) Jos kaksi vaakariviä (tai kaksi pystyriviä) vaihdetaan keskenään, niin determinantti muuttuu vastaluvukseen. a 11 a a 1n a 21 a a 2n a n1 a n2... a nn = a 21 a a 2n a 11 a a 1n a n1 a n2... a nn

59 Lineaarialgebra (muut ko) p. 56/81 Perusominaisuuksia, s. 27 7) c + a a 1h... a 1k... a 1n a a 2h... a 2k... a 2n a n1... a nh... a nk... a nn = a a 1h... a 1k +ca 1h... a 1n a a 2h... a 2k +ca 2h... a 2n a n1... a nh... a nk +ca nh... a nn vastaavasti vaakariville

60 Lineaarialgebra (muut ko) p. 57/81 Tulon determinantti det(ab) = det(a) det(b) Jos A on säännöllinen, niin det(a 1 ) = 1 det(a)

61 Lineaarialgebra (muut ko) p. 58/81 Alkion komplementti Matriisin alkion a ij komplementti C ij = ( 1) i+j det(a ij ) missä A ij saatu poistamalla matriisista A vaakarivi i ja pystyrivi j. Deteminantin rivikehitelmät (vaakariville) det(a) = a i1 C i1 + +a in C in

62 Lineaarialgebra (muut ko) p. 59/81 Alkion komplementti Matriisin alkion a ij komplementti C ij = ( 1) i+j det(a ij ) missä A ij saatu poistamalla matriisista A vaakarivi i ja pystyrivi j. Deteminantin rivikehitelmät (vaakariville) ( = ) ( ) ( )

63 Lineaarialgebra (muut ko) p. 60/81 Alkion komplementti Matriisin alkion a ij komplementti C ij = ( 1) i+j det(a ij ) missä A ij saatu poistamalla matriisista A vaakarivi i ja pystyrivi j. Deteminantin rivikehitelmät (vaakariville) det(a) = a i1 C i1 + +a in C in = n a ik C ik k=1 ja pystyriville det(a) = n a kj C kj k=1

64 Lineaarialgebra (muut ko) p. 61/81 Käänteismatriisin kaava Matriisin A liittomatriisi adj(a) = (C ij ) T Jos A on säännöllinen, niin A 1 = 1 det(a) (C ij) T A on säännöllinen det(a) 0

65 Lineaarialgebra (muut ko) p. 62/81 Cramerin sääntö Jos yhtälöryhmän Ax = c kerroinmatriisi A on säännöllinen, niin sillä on yksikäsitteinen ratkaisu x j = det(a j) det(a) missä x = x 1 x 2. x n ja A j saadaan korvaamalla j:s pystyrivi c:llä

66 Lineaarialgebra (muut ko) p. 63/81 Ristitulo, s. 34 Tarkastelussa vain R 3 Olkoon u = (u 1,u 2,u 3 ) R 3 v = (v 1,v 2,v 3 ) R 3 u v = (C 11,C 12,C 13 ).

67 Lineaarialgebra (muut ko) p. 64/81 Ristitulo, s. 34 Tarkastelussa vain R 3 Olkoon u = (u 1,u 2,u 3 ) R 3 u v = v = (v 1,v 2,v 3 ) R 3 u 2 u 3 u 1 u 3 u 1 u 2,, v 2 v 3 v 1 v 3 v 1 v 2. }{{}}{{}}{{} C 11 C 12 C 13

68 Lineaarialgebra (muut ko) p. 65/81 Ristitulo Eli (u,u v) = u 1 C 11 +u 2 C 12 +u 3 C 13 ( ) u 2 u 3 = u 1 v 2 v 3 +u u 1 u 3 2 v 1 v 3 +u 3 u 1 u 2 v 1 v 2 ja samoin (v,u v) = v 1 C 11 +v 2 C 12 +v 3 C 13 ( ) u 2 u 3 = v 1 v 2 v 3 +v u 1 u 3 u 1 u 2 2 +v 3 v 1 v 3 v 1 v 2 Johtavat determinantteihin (kehittämällä 1. vaakarivi) u 1 u 2 u 3 v 1 v 2 v 3 u 1 u 2 u 3 u 1 u 2 u 3 v 1 v 2 v 3 v 1 v 2 v 3

69 Lineaarialgebra (muut ko) p. 66/81 Ristitulo Eli (u,u v) = u 1 C 11 +u 2 C 12 +u 3 C 13 ( ) u 2 u 3 = u 1 v 2 v 3 +u u 1 u 3 2 v 1 v 3 +u 3 u 1 u 2 v 1 v 2 ja samoin (v,u v) = v 1 C 11 +v 2 C 12 +v 3 C 13 ( ) u 2 u 3 = v 1 v 2 v 3 +v u 1 u 3 u 1 u 2 2 +v 3 v 1 v 3 v 1 v 2 Johtavat determinantteihin (kehittämällä 1. vaakarivi) u 1 u 2 u 3 v 1 v 2 v 3 u 1 u 2 u 3 = 0 = u 1 u 2 u 3 v 1 v 2 v 3 v 1 v 2 v 3

70 Lineaarialgebra (muut ko) p. 67/81 Ristitulo Siis u (C 11,C 12,C 13 ) = 0 v (C 11,C 12,C 13 ) = 0

71 Lineaarialgebra (muut ko) p. 68/81 Muistisääntö Ristitulo (vain R 3 :ssa) Vektoreille u = (u 1,u 2,u 3 ) ja v = (v 1,v 2,v 3 ) u v = i j k u 1 u 2 u 3 v 1 v 2 v 3 Jos u ja v eivät nollavektoreita ja α on niiden välinen kulma, niin u v = u v sinα. Vertaa (1.4): (u,v) = u v cosα. u u v ja v u v

72 Lineaarialgebra (muut ko) p. 69/81 Muistisääntö Ristitulo (vain R 3 :ssa) Vektoreille u = (u 1,u 2,u 3 ) ja v = (v 1,v 2,v 3 ) u v = Ei kommutatiivinen i j k u 1 u 2 u 3 v 1 v 2 v 3 u v = v u Ei myöskään assosiatiivinen eli yleensä u (v w) (u v) w.

73 Lineaarialgebra (muut ko) p. 70/81 Skalaarikolmitulo Skalaarikolmitulo vektoreille u = (u 1,u 2,u 3 ), v = (v 1,v 2,v 3 ) ja w = (w 1,w 2,w 3 ): u (v w) = u 1 u 2 u 3 v 1 v 2 v 3 w 1 w 2 w 3 Vektorien määräämän suuntaissärmiön (kts. kuva alla) tilavuus saadaan itseisarvosta u (v w) u w v

74 Lineaarialgebra (muut ko) p. 71/81 Aliavaruus Aliavaruudelle U R n kolme ehtoa: 1) U 2) u,v U u+v U 3) a R, u U au U.

75 Lineaarialgebra (muut ko) p. 72/81 Aliavaruus Aliavaruudelle U R n kolme ehtoa: 1) U 2) u,v U u+v U 3) a R, u U au U.

76 Lineaarialgebra (muut ko) p. 73/81 Aliavaruus Aliavaruudelle U R n kolme ehtoa: 1) U 2) u,v U u+v U 3) a R, u U au U. 0 kuuluu aina aliavaruuteen! U = {x R n Ax = 0} on R n :n aliavaruus Triviaalit aliavaruudet: {0} ja R n.

77 Lineaarialgebra (muut ko) p. 74/81 Ratkaisuavaruus (Lause 4.1.8) Lineaarisen homogeenisen yhtälöryhmän a 11 x 1 + a 12 x a 1n x n = 0 a 21 x 1 + a 22 x a 2n x n = 0... a n1 x 1 + a n2 x a nn x n = 0 ratkaisut x = x 1. x n muodostavat aliavaruuden (ns. ratkaisuavaruuden)

78 Lineaarialgebra (muut ko) p. 75/81 Ratkaisuavaruus (Lause 4.1.8) Lineaarisen homogeenisen yhtälöryhmän Ax = 0 ratkaisut x = x 1. x n muodostavat aliavaruuden (ns. ratkaisuavaruuden)

79 Lineaarialgebra (muut ko) p. 76/81 AliavaruudetR 3 :ssa {0} origon kautta kulkevat suorat origon kautta kulkevat tasot R 3

80 Lineaarialgebra (muut ko) p. 77/81 Viritetty aliavaruus vektorien x 1,x 2,...,x k R n lineaarikombinaatio vektorien virittämä aliavaruus c 1 x 1 +c 2 x c k x k L(x 1,x 2,...,x k ) = {c 1 x 1 +c 2 x c k x k c 1,c 2,...,c k R}

81 Lineaarialgebra (muut ko) p. 78/81 Viritetty aliavaruus vektorien x 1,x 2,...,x k R n lineaarikombinaatio vektorien virittämä aliavaruus c 1 x 1 +c 2 x c k x k L(x 1,x 2,...,x k ) = {c 1 x 1 +c 2 x c k x k c 1,c 2,...,c k R} Esimerkiksi a(1,1)+b(1,0) ja L((1,1),(1,0)) sisältää mm. vektorit (0,0),(1,1),(1,0),(2,1),(0,1),( 2,0),...

82 Lineaarialgebra (muut ko) p. 79/81 Matriisien avulla Pystyrivien lineaarikombinaatio A = (a 1 a 2... a n ) Ac = c 1 a 1 + +c n a n

83 Lineaarialgebra (muut ko) p. 80/81 Matriisien avulla matriisin pystyriveille A = (a 1 a 2... a n ) m n Lause 4.2.8: neliömatriisille L(a 1,a 2,...,a n ) = {Ac c R n } L(a 1,a 2,...,a n ) = R n A on säännöllinen

84 Lineaarialgebra (muut ko) p. 81/81 Matriisien avulla matriisin pystyriveille A = (a 1 a 2... a n ) m n Lause 4.2.8: neliömatriisille L(a 1,a 2,...,a n ) = {Ac c R n } L(a 1,a 2,...,a n ) = R n A on säännöllinen Esimerkiksi L((1,1),(1,0)) = R 2, sillä

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210 Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210 Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2

Lisätiedot

Lineaarialgebra (muut ko)

Lineaarialgebra (muut ko) Lineaarialgebra (muut ko) p. 1/103 Lineaarialgebra (muut ko) Tero Laihonen Lineaarialgebra (muut ko) p. 2/103 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v

Lisätiedot

Seuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117

Seuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117 Seuraava luento ti 31.10 on salissa XXII Lineaarialgebra (muut ko) p. 1/117 Lineaarialgebra (muut ko) p. 2/117 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v

Lisätiedot

Muistutus: Matikkapaja ke Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta yms.

Muistutus: Matikkapaja ke Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta yms. Lineaarialgebra (muut ko) p. 1/139 Ensi viikon luennot salissa X Muistutus: Matikkapaja ke 14-16 Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta

Lisätiedot

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/159

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/159 Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/159 Lineaarialgebra (muut ko) p. 2/159 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 ) Skalaarilla

Lisätiedot

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162 Tällä viikolla viimeiset luennot ja demot Lineaarialgebra (muut ko) p. 1/162 Lineaarialgebra (muut ko) p. 2/162 Kertausta Vektorin u = (u 1,u 2 ) R 2 pituus u = u 2 1 +u2 2 Vektorien u ja v = (v 1,v 2

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Johdatus lineaarialgebraan. Juha Honkala 2017

Johdatus lineaarialgebraan. Juha Honkala 2017 Johdatus lineaarialgebraan Juha Honkala 2017 Sisällysluettelo 1 Lineaariset yhtälöryhmät ja matriisit 11 Lineaariset yhtälöryhmät 12 Matriisit 13 Matriisien alkeismuunnokset ja porrasmatriisit 14 Yhtälöryhmien

Lisätiedot

Matematiikka B2 - TUDI

Matematiikka B2 - TUDI Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

1.1. Määritelmiä ja nimityksiä

1.1. Määritelmiä ja nimityksiä 1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisit..............................

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset 32 Idea: Lineaarikuvausten laskutoimitusten avulla määritellään vastaavat matriisien laskutoimitukset Vakiolla kertominen ja summa Olkoon t R ja A, B R n m Silloin ta, A + B R n m ja määritellään ta ta

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................

Lisätiedot

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Matriisilaskenta Harjoitusten ratkaisut (Kevät 9). Olkoot ja A = B = 5. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Tapa Käänteismatriisin määritelmän nojalla riittää osoittaa, että AB

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti

Talousmatematiikan perusteet: Luento 10. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti Talousmatematiikan perusteet: Luento 1 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

Alkeismuunnokset matriisille, sivu 57

Alkeismuunnokset matriisille, sivu 57 Lineaarialgebra (muut ko) p. 1/88 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna

Lisätiedot

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset 31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita

Lisätiedot

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218 Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.

Lisätiedot

Talousmatematiikan perusteet: Luento 9. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo

Talousmatematiikan perusteet: Luento 9. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo Talousmatematiikan perusteet: Luento 9 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

Determinantti. Määritelmä

Determinantti. Määritelmä Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi. Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j). (a) Jos n = 1, niin det(a) = a 11. (b) Muussa tapauksessa n det(a)

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

BM20A0700, Matematiikka KoTiB2

BM20A0700, Matematiikka KoTiB2 BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin

Lisätiedot

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................

Lisätiedot

Käänteismatriisi 1 / 14

Käänteismatriisi 1 / 14 1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella

Lisätiedot

9 Matriisit. 9.1 Matriisien laskutoimituksia

9 Matriisit. 9.1 Matriisien laskutoimituksia 9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 4.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Viimeiset harjoitukset on palautettava torstaina 13.6. Laskaripisteensä ja läsnäolonsa voi kukin tarkistaa

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Determinantti 1 / 30

Determinantti 1 / 30 1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen

Lisätiedot

Käänteismatriisin ominaisuuksia

Käänteismatriisin ominaisuuksia Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit

Lisätiedot

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA =

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA = 3 3 Olkoot 9 8 B 7 6 ja A 5 4 [ 3 4 Nyt A + B, AB ja BB eivät ole mielekkäitä (vastaavilla lineaarikuvauksilla menisivät dimensiot solmuun tällaisista yhdistelmistä) Kuitenkin voidaan laskea BA ja 9( )

Lisätiedot

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät 1 1 LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT Muotoa 11 Lineaariset yhtälöryhmät (1) a 1 x 1 + a x + + a n x n b oleva yhtälö on tuntemattomien x 1,, x n lineaarinen yhtälö, jonka kertoimet ovat luvut a 1,,

Lisätiedot

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä

Lisätiedot

3.1 Lineaarikuvaukset. MS-A0007 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

3.1 Lineaarikuvaukset. MS-A0007 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset 3 MS-A7 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 925 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita ratkotaan

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)

Lisätiedot

Ortogonaalinen ja ortonormaali kanta

Ortogonaalinen ja ortonormaali kanta Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 5. luento.2.27 Lineaarialgebraa - Miksi? Neuroverkon parametreihin liittyvät kaavat annetaan monesti

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n.

Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n. Matriisipotenssi Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: Määritelmä Oletetaan, että A on n n -matriisi (siis neliömatriisi) ja k

Lisätiedot

Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104

Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104 Lineaarialgebra (muut ko) p. 1/104 Ensi viikolla luennot salissa X Torstaina 7.12. viimeiset demot (12.12. ja 13.12. viimeiset luennot). Torstaina 14.12 on välikoe 2, muista ilmoittautua! Demorastitiedot

Lisätiedot

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili 6 4 2 x 2 x 3 15 10 5 0 5 15 5 3 2 1 1 2 3 2 0 x 2 = 1 2x 1 0 4 x 2 = 3 x 1 x 5 2 5 x 1 10 x 1 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili Sisältö

Lisätiedot

Lineaarialgebra. Osa 1. Turun yliopisto. Markku Koppinen

Lineaarialgebra. Osa 1. Turun yliopisto. Markku Koppinen Lineaarialgebra Osa 1 Turun yliopisto Markku Koppinen Alkusanat 9 elokuuta 2006 Lineaarialgebra on niitä perusteorioita, joita tarvitaan lähes kaikilla matematiikan aloilla ja monissa muissakin tieteissä

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla: 11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta

Lisätiedot

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa

Lisätiedot

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66 Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/66 Lineaarialgebra (muut ko) p. 2/66 Redusoitu porrasmuoto 1 1 2 4 1 1 4 6 2 2 5 9 1 1 0 2 0 0 1 1 0 0 0 0 Eli aste r(a) = 2 ja vaakariviavaruuden

Lisätiedot

Neliömatriisin adjungaatti, L24

Neliömatriisin adjungaatti, L24 Neliömatriisin adjungaatti, L24 1 2 1 3 Matriisi = A = 7 4 6 5 2 0 ( ) 7 6 Alimatriisi = A 12 = 5 0 Minori = det(a 12 ) = 7 6 5 0 = 30 Kofaktori = ( 1) 1+2 det(a 12 ) = 30 2 Määritelmä n n neliö-matriisin

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio 6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

Ennakkotehtävän ratkaisu

Ennakkotehtävän ratkaisu Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

Suorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö.

Suorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö. Suorat ja tasot, L6 Suora xyz-koordinaatistossa Taso xyz-koordinaatistossa stä stä 1 Näillä kalvoilla käsittelemme kolmen laisia olioita. Suora xyz-avaruudessa. Taso xyz-avaruudessa. Emme nyt ryhdy pohtimaan,

Lisätiedot

Avaruuden R n aliavaruus

Avaruuden R n aliavaruus Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo. Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Lotta Oinonen ja Johanna Rämö 6. joulukuuta 2012 Helsingin yliopisto Matematiikan ja tilastotieteen laitos 2012 Sisältö 1 Avaruus R n 4 1 Avaruuksien R 2 ja R 3 vektorit.....................

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Lineaariset yhtälöryhmät ja matriisit

Lineaariset yhtälöryhmät ja matriisit Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää

Lisätiedot

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v. Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

802120P Matriisilaskenta (5 op)

802120P Matriisilaskenta (5 op) 802120P Matriisilaskenta (5 op) Marko Leinonen Matemaattiset tieteet Syksy 2016 1 / 220 Luennoitsija: Marko Leinonen marko.leinonen@oulu.fi MA333 Kurssilla käytetään Noppaa (noppa.oulu.fi) Luentomoniste

Lisätiedot

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3. Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (

Lisätiedot

3 Skalaari ja vektori

3 Skalaari ja vektori 3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,

Lisätiedot

Lineaarialgebra I. Oulun yliopisto Matemaattisten tieteiden laitos Esa Järvenpää Kirjoittanut Tuula Ripatti

Lineaarialgebra I. Oulun yliopisto Matemaattisten tieteiden laitos Esa Järvenpää Kirjoittanut Tuula Ripatti Lineaarialgebra I Oulun yliopisto Matemaattisten tieteiden laitos 2011 Esa Järvenpää Kirjoittanut Tuula Ripatti 2 1 Lineaarinen yhtälöryhmä 11 Esimerkki (a) Ratkaise yhtälö 5x = 7 Kerrotaan yhtälö puolittain

Lisätiedot

Lineaariset kongruenssiyhtälöryhmät

Lineaariset kongruenssiyhtälöryhmät Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/310 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori Vektorialgebra 1/5 Sisältö Skalaaritulo Vektoreiden yhteenlaskun ja skalaarilla kertomisen lisäksi vektoreiden välille voidaan määritellä myös kertolasku. Itse asiassa näitä on kaksi erilaista. Seurauksena

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Determinantti. Määritelmä

Determinantti. Määritelmä Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j) (a) Jos n = 1, niin det(a) = a 11 (b) Muussa tapauksessa n det(a)

Lisätiedot

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista 29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n

Lisätiedot

MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste

MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste Tason ja avaruuden vektorit 1. Olkoon A(, -, 4) ja B(5, -1, -3). a) Muodosta pisteen A paikkavektori. b) Muodosta vektori AB. c) Laske vektorin AB pituus.

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Käänteismatriisin. Aiheet. Käänteismatriisin ominaisuuksia. Rivioperaatiot matriisitulona. Matriisin kääntäminen rivioperaatioiden avulla

Käänteismatriisin. Aiheet. Käänteismatriisin ominaisuuksia. Rivioperaatiot matriisitulona. Matriisin kääntäminen rivioperaatioiden avulla Käänteismatriisi, L5 1 Tässä kalvosarjassa käsittelemme neliömatriiseja. Ilman asian jatkuvaa toistamista oletamme seuraavassa, että kaikki käsittelemämme matriisit ovat neliömatriiseja. Määritelmä. Olkoon

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

Suorista ja tasoista LaMa 1 syksyllä 2009

Suorista ja tasoista LaMa 1 syksyllä 2009 Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden

Lisätiedot

Vektorien virittämä aliavaruus

Vektorien virittämä aliavaruus Vektorien virittämä aliavaruus Esimerkki 13 Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w kuuluu vektoreiden v 1 = (3, 2, 1), v 2 = (2, 2, 6) ja v 3 = (3, 4, 5) virittämään

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

2.1.4 har:linyryhmat03. Octavella. Katso ensin esimerkit???? esim:yroctave01 Octaven antamat vastausehdotukset.

2.1.4 har:linyryhmat03. Octavella. Katso ensin esimerkit???? esim:yroctave01 Octaven antamat vastausehdotukset. Vaasan yliopiston julkaisuja, opetusmonisteita 49 har:linyryhmat03 Tehtävä 2.3 Ratkaise lineaariset yhtälörymät x + y z 5 x + 2y + 4z 16 a x + 2y + 2z 0 2x + z 14 b x + y z 5 x + 2y + 4z 16 x + 2y + 2z

Lisätiedot