Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66
|
|
- Maarit Aaltonen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/66
2 Lineaarialgebra (muut ko) p. 2/66 Redusoitu porrasmuoto Eli aste r(a) = 2 ja vaakariviavaruuden V(A) kanta {(1,1,0,2),(0,0,1,1)}.
3 Lineaarialgebra (muut ko) p. 3/66 Redusoitu porrasmuoto Myös I on redusoitu porrasmuoto Lause A on säännöllinen A I
4 Lineaarialgebra (muut ko) p. 4/66 Käänteismatriisi alkeismuunnoksilla Alkeismuunnoksilla (A I) (I A 1 )
5 Lineaarialgebra (muut ko) p. 5/66 Ratkaisuavaruuden dimensio Yhtälöryhmän (n tuntematonta) Ax = 0 ratkaisuavaruuden dimensio n r(a)
6 Lineaarialgebra (muut ko) p. 6/66 Johdanto: Kannanvaihto Vektori (2,3) = c 1 (1,0)+c 2 (0,1) Luonnollinen kanta E = {(1,0),(0,1)}
7 Lineaarialgebra (muut ko) p. 7/66 Johdanto: Kannanvaihto Vektori (2,3) = 2 (1,0)+3 (0,1) Luonnollinen kanta E = {(1,0),(0,1)}
8 Lineaarialgebra (muut ko) p. 8/66 Johdanto: Kannanvaihto Vektori (2,3) = c 1 ( 1, 1)+c 2 (3,2) Toinen kanta B = {( 1, 1),(3,2)}
9 Lineaarialgebra (muut ko) p. 9/66 Johdanto: Kannanvaihto Vektori (2,3) = ( 5) ( 1, 1)+( 1) (3,2) Toinen kanta B = {( 1, 1),(3,2)}
10 Lineaarialgebra (muut ko) p. 10/66 Johdanto: Kannanvaihto Eli samalla vektorilla x = (2,3) on luonnollisen kannan suhteen (2,3) = 2 (1,0)+3 (0,1) ja kannan B suhteen (2,3) = ( 5) ( 1, 1)+( 1) (3,2) eli X E = ( 2 3 ) ja X B = ( 5 1 )
11 Lineaarialgebra (muut ko) p. 11/66 Koordinaattivektori Kanta B = {b 1,...,b n } avaruudelle R n. Vektorin x R n koordinaattivektori X B = r 1 r 2. r n missä kantaesitys x = r 1 b 1 + +r n b n.
12 Lineaarialgebra (muut ko) p. 12/66 Koordinaattivektori Olkoon x = (1,2,3) R 3 :n luonnollisen kannan suhteen 1 X E = 2 3 Kannan B = {(1,1,1),(1,0,2),( 1,2,1)} suhteen X B = 4/5 4/5 3/5
13 Lineaarialgebra (muut ko) p. 13/66 Kannanvaihdon matriisi Toinen kanta C = {c 1,...,c n }. Kannanvaihdon B C matriisi: c 1 = p 11 b 1 + +p n1 b n. c n = p 1n b 1 + +p nn b n. P B C = p 11 p 1n..... p n1 p nn Muista transponointi!
14 Lineaarialgebra (muut ko) p. 14/66 Kannanvaihdon matriisi X C = P C B X B P B C = (P C B ) 1
15 Lineaarialgebra (muut ko) p. 15/66 Kuvauksista Kuvaus f : A B A B f x y A = määrittelyjoukko B = maalijoukko Yleensä A = R n ja B = R m
16 Lineaarialgebra (muut ko) p. 16/66 Kuvauksista Kuvaus f : A B A B f x u z y Ei ole kuvaus!
17 Lineaarialgebra (muut ko) p. 17/66 Kuvauksista Kuvaus f : A B A f B Im(f) = {f(a) a A} kuvajoukko
18 Lineaarialgebra (muut ko) p. 18/66 Kuvauksista Kuvaus f : A B A f B B B 0 f 1 (B 0 ) = {a A f(a) B 0 } alkukuva
19 Lineaarialgebra (muut ko) p. 19/66 Kuvauksista Kuvaus f : A B A f B f on surjektio, jos Im(f) = B
20 Lineaarialgebra (muut ko) p. 20/66 Kuvauksista Kuvaus f : A B A B f a y b Kuvauksessa voi olla
21 Lineaarialgebra (muut ko) p. 21/66 Kuvauksista Kuvaus f : A B A B f a y b z f on injektio, jos a b f(a) f(b) a,b A Bijektio, jos surjektio ja injektio
22 Lineaarialgebra (muut ko) p. 22/66 Kuvauksista Kuvaus f : A B ja kuvaus g : A B ovat yhtäsuuret, jos f(a) = g(a) a A Merkitään f = g
23 Lineaarialgebra (muut ko) p. 23/66 Kuvauksista Kuvaus f : A B ja g : B C A B C f g x g(f(x)) f(x) Yhdistetty kuvaus g f : A C, (g f)(x) = g(f(x))
24 Lineaarialgebra (muut ko) p. 24/66 Kuvauksista Kuvaus f : A B ja g : B A A B f x y g Käänteiskuvauksia, jos f g = id B ja g f = id A. f 1 olemassa f on bijektio
25 Lineaarialgebra (muut ko) p. 25/66 Lineaarikuvaus Kuvaus f : R n R m on lineaarinen, jos L1: f(x 1 +x 2 ) = f(x 1 )+f(x 2 ) x 1,x 2 R n L2: f(ax) = af(x) x R n,a R. Muista f(0) = 0.
26 Lineaarialgebra (muut ko) p. 26/66 Lineaarikuvaus Kuvaus f : R n R m on lineaarinen, jos L1: f(x 1 +x 2 ) = f(x 1 )+f(x 2 ) x 1,x 2 R n L2: f(ax) = af(x) x R n,a R. Muista f(0) = 0. Kantavektorien kuvien avulla f(b i ) = y i määräytyy koko f(x) yksikäsitteisesti.
27 Lineaarialgebra (muut ko) p. 27/66 Lineaarikuvaus Kuvaus f : R 2 R 2,f(x,y) = (x y,x+y) on lineaarinen.
28 Lineaarialgebra (muut ko) p. 28/66 Lineaarikuvaus Matriisi A M m n indusoi lineaarikuvauksen f : R n R m,f(x) = Ax.
29 Lineaarialgebra (muut ko) p. 29/66 Lineaarikuvaus Matriisi A M m n indusoi lineaarikuvauksen f : R n R m,f(x) = Ax. Matriisi A = ( ) indusoi lineaarikuvauksen ( 1 1 f(x,y) = 1 1 )( x y ) = ( x y x+y ) eli f : R 2 R 2,f(x,y) = (x y,x+y)
30 Lineaarialgebra (muut ko) p. 30/66 Lineaarikuvaus Matriisi A M m n indusoi lineaarikuvauksen f : R n R m,f(x) = Ax. Lineaarikuvauksen f : R n R m matriisi M B,C (f) B = {b 1,...,b n } kanta R n :ssä C = {c 1,...,c m } kanta R m :ssä
31 Lineaarialgebra (muut ko) p. 31/66 Lineaarikuvauksen matriisi kuvien kantaesitykset f(b 1 ) = a 11 c 1 + +a m1 c m.. f(b n ) = a 1n c 1 + +a mn c m M B,C (f) = a 11. a 1n.... a m1 a mn Muista transponointi!
32 Lineaarialgebra (muut ko) p. 32/66 Lineaarikuvaus y = f(x) Y C = M B,C (f) X B
33 Lineaarialgebra (muut ko) p. 33/66 Lineaarikuvaus y = f(x) Y C = M B,C (f) X B Jos B = E ja C = E, niin y = f(x) y = M E,E (f) x
34 Lineaarialgebra (muut ko) p. 34/66 Lineaarikuvaus y = f(x) Y C = M B,C (f) X B Jos B = E ja C = E, niin y = f(x) y = M(f) x
35 Lineaarialgebra (muut ko) p. 35/66 Lineaarikuvaus y = f(x) Y C = M B,C (f) X B Jos B = E ja C = E, niin y = f(x) y = M E,E (f) x Jos sama lähtö- ja maaliavaruus f : R n R n, niin yleensä sama kanta molemmilla puolilla ja merkitään M B (f) = M B,B (f).
36 Lineaarialgebra (muut ko) p. 36/66 Indusoidulle lineaarikuvaukselle Matriisin A M m n indusoima lineaarikuvaus f : R n R m,f(x) = Ax. Tällöin A = M E,E (f).
37 Lineaarialgebra (muut ko) p. 37/66 Lineaarikuvaus Lause 2.4.8: Jos f : R n R m ja g : R m R k ovat lineaarisia, niin g f on lineaarinen ja sen matriisi saadaan M B,D (g f) = M C,D (g)m B,C (f).
38 Lineaarialgebra (muut ko) p. 38/66 Lineaarikuvaus Lause 2.4.8: Jos f : R n R m ja g : R m R k ovat lineaarisia, niin g f on lineaarinen ja sen matriisi saadaan M B,D (g f) = M C,D (g)m B,C (f). Matriisien kertolasku
39 Lineaarialgebra (muut ko) p. 39/66 Lineaarikuvaus ja kannanvaihto Lineaarikuvauksen matriisin muuttuminen kannanvaihdossa B B ja C C : R n m R f M
40 Lineaarialgebra (muut ko) p. 40/66 Lineaarikuvaus ja kannanvaihto Lineaarikuvauksen matriisin muuttuminen kannanvaihdossa B B ja C C : R n m R f M M B,C (f) = P C CM B,C (f)p B B
41 Lineaarialgebra (muut ko) p. 41/66 Lineaarikuvaus ja kannanvaihto Sama lähtö- ja maaliavaruus eli n = m Lineaarikuvauksen matriisin muuttuminen kannanvaihdossa B B molemmissa R n m R f M M B (f) = P 1 M B (f)p missä P = P B B
42 Lineaarialgebra (muut ko) p. 42/66 Miksi kannanvaihto? Lineaarikuvauksen matriisi M E (f) =
43 Lineaarialgebra (muut ko) p. 43/66 Miksi kannanvaihto? Vaihtamalla E B matriisiksi M B (f) =
44 Lineaarialgebra (muut ko) p. 44/66 Miksi kannanvaihto? Vaihtamalla E B matriisiksi M B (f) = Onnistuuko? Mistä kanta B? Mitkä luvut diagonaalilla?
45 Lineaarialgebra (muut ko) p. 45/66 Miksi kannanvaihto? Vaihtamalla E B matriisiksi M B (f) = Onnistuuko? Mistä kanta B? Mitkä luvut diagonaalilla? Näihin vastaaminen on loppukurssin tavoite!
46 Lineaarialgebra (muut ko) p. 46/66 Ydin ja kuva Lineaarikuvauksen ydin ja kuva-avaruus f 0 0 Ker(f) Im(f) Ker(f) = {x R n f(x) = 0} Im(f) = {f(x) x R n }
47 Lineaarialgebra (muut ko) p. 47/66 Dimensioyhtälö Lineaarikuvauksen f : R n R m dimensioyhtälö n = dim Ker(f)+dim Im(f)
48 Lineaarialgebra (muut ko) p. 48/66 Matriisin avulla Jos niin A = M E,E (f) Im(f) = V(A T ). Alkeismuunnoksilla V(A T ):lle eli Im(f):lle kanta porrasmatriisin portaista.
49 Lineaarialgebra (muut ko) p. 49/66 Helppoa Lineaarikuvaus f : R n R m on injektio Ker(f) = {0}.
50 Lineaarialgebra (muut ko) p. 50/66 Helppoa Lineaarikuvaus f : R n R n on injektio surjektio bijektio
51 Lineaarialgebra (muut ko) p. 51/66 Aliavaruuksien summa Aliavaruuksien summa U 1 +U 2 U+ U 1 2 U 1 U 2 0 U 1 +U 2 = {u 1 +u 2 u 1 U 1,u 2 U 2 }.
52 Lineaarialgebra (muut ko) p. 52/66 Kertausta Suora summa U 1 U 2 jos yksikäsitteinen esitys x = u }{{} 1 + u }{{} 2 U 1 U 2,
53 Lineaarialgebra (muut ko) p. 53/66 Aliavaruuksien summa Suora summa U 1 U 2 Ehto 1: jos U 1 U 2 = {0}.
54 Lineaarialgebra (muut ko) p. 54/66 Aliavaruuksien summa Suora summa U 1 U 2 Ehto 1: jos U 1 U 2 = {0}. Ehto 2: jos u 1 +u 2 = 0, missä u 1 U 1 ja u 2 U 2, niin u 1 = u 2 = 0.
55 Lineaarialgebra (muut ko) p. 55/66 Aliavaruuksien summa Kahden aliavaruuden leikkaus on myös aliavaruus. U 1 U 2
56 Lineaarialgebra (muut ko) p. 56/66 Kannat aliavaruuksien summassa Summan kannat u k u 2 u y 1 1 y 2 y m U+ U 1 2
57 Lineaarialgebra (muut ko) p. 57/66 Kannat aliavaruuksien summassa Suoran summan kannat u k u u 2 1 y y 1 2 U+ U y 1 2 m dim(u 1 U 2 ) = dimu 1 +dimu 2.
58 Lineaarialgebra (muut ko) p. 58/66 Kannat aliavaruuksien summassa Summan kannat u k u 2 u y 1 1 y 2 y m U+ U 1 2 dim(u 1 +U 2 ) = dimu 1 +dimu 2 dim(u 1 U 2 ).
59 Lineaarialgebra (muut ko) p. 59/66 Usean aliavaruuden summa Usean aliavaruuden summa U 1 + +U m on suora summa eli U 1 U m jos ja vain jos Tällöin u }{{} u m = 0 u }{{} 1 = = u m = 0 U 1 U m dim(u 1 U m ) = dimu 1 + +dimu m.
60 Lineaarialgebra (muut ko) p. 60/66 Usean aliavaruuden summa Usean aliavaruuden summa U 1 + +U m on suora summa eli U 1 U m jos ja vain jos Tällöin u }{{} u m = 0 u }{{} 1 = = u m = 0 U 1 U m dim(u 1 U m ) = dimu 1 + +dimu m. Ehto U i U j = {0} ei enää toimi, kts. monisteen huomautus sivulla 26.
61 Lineaarialgebra (muut ko) p. 61/66 Usean aliavaruuden summa Usean aliavaruuden summa U 1 + +U m on suora summa eli U 1 U m jos ja vain jos Tällöin u }{{} u m = 0 u }{{} 1 = = u m = 0 U 1 U m dim(u 1 U m ) = dimu 1 + +dimu m. Ehto: kaikille i = 1,...,m täytyy olla U i (U 1 + +U i 1 +U i+1 + +U m ) = {0}
62 Lineaarialgebra (muut ko) p. 62/66 Miksi kannanvaihto? Lineaarikuvauksen matriisi M E (f) =
63 Lineaarialgebra (muut ko) p. 63/66 Miksi kannanvaihto? Vaihtamalla E B matriisiksi M B (f) =
64 Lineaarialgebra (muut ko) p. 64/66 Miksi kannanvaihto? Vaihtamalla E B matriisiksi M B (f) = Onnistuuko? Mistä kanta B? Mitkä luvut diagonaalilla?
65 Lineaarialgebra (muut ko) p. 65/66 Johdanto Meillä oli esimerkki M E (f) = ( 20/7 3/7 2/7 15/7 ) saatiin sopivalla kannanvaihdolla M B (f) = ( )
66 Lineaarialgebra (muut ko) p. 66/66 Johdanto Yleisestikin pyritään M B (f) = λ λ λ n Onnistuuko aina? Miten löydetään kanta?
Alkeismuunnokset matriisille, sivu 57
Lineaarialgebra (muut ko) p. 1/88 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna
LisätiedotDemorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104
Lineaarialgebra (muut ko) p. 1/104 Ensi viikolla luennot salissa X Torstaina 7.12. viimeiset demot (12.12. ja 13.12. viimeiset luennot). Torstaina 14.12 on välikoe 2, muista ilmoittautua! Demorastitiedot
LisätiedotEnsi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/159
Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/159 Lineaarialgebra (muut ko) p. 2/159 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 ) Skalaarilla
LisätiedotTällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162
Tällä viikolla viimeiset luennot ja demot Lineaarialgebra (muut ko) p. 1/162 Lineaarialgebra (muut ko) p. 2/162 Kertausta Vektorin u = (u 1,u 2 ) R 2 pituus u = u 2 1 +u2 2 Vektorien u ja v = (v 1,v 2
LisätiedotMuistutus: Matikkapaja ke Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta yms.
Lineaarialgebra (muut ko) p. 1/139 Ensi viikon luennot salissa X Muistutus: Matikkapaja ke 14-16 Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
LisätiedotMääritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.
1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:
LisätiedotLineaarialgebra. Osa 2. Turun yliopisto. Markku Koppinen
Lineaarialgebra Osa 2 Turun yliopisto Markku Koppinen Sisältö 1 Koordinaattivektorit ja kannan vaihdot 1 11 Koordinaattivektorit 1 12 Kannan vaihdot 2 2 Lineaarikuvaukset 6 21 Kuvauksista 6 22 Lineaarikuvaukset
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO Syksy 2017 LINEAARIALGEBRA 1 / 59 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2019 LINEAARIALGEBRA 1 / 60 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
Lisätiedot2.5. Matriisin avaruudet ja tunnusluvut
2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja
LisätiedotSeuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117
Seuraava luento ti 31.10 on salissa XXII Lineaarialgebra (muut ko) p. 1/117 Lineaarialgebra (muut ko) p. 2/117 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v
LisätiedotMatikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210 Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Lineaarikuvaukset Lineaarikuvaus Olkoot U ja V
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus
Lisätiedot802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III
802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Contents 1 Lineaarikuvaus 2 1.1 Määritelmä............................ 2 1.2 Matriisiesitys/Matrix
LisätiedotLineaarialgebra (muut ko)
Lineaarialgebra (muut ko) p. 1/103 Lineaarialgebra (muut ko) Tero Laihonen Lineaarialgebra (muut ko) p. 2/103 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v
LisätiedotOsoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
LisätiedotLineaarialgebra b, kevät 2019
Lineaarialgebra b, kevät 2019 Harjoitusta 4 Maplella with(linearalgebra); (1) Tehtävä 1. Lineaarisia funktioita? a) Asetelma on kelvollinen: lähtö- ja maalijoukko on R-kertoiminen lineaariavaruus ja L
Lisätiedot4. LINEAARIKUVAUKSET
86 4 LINEAARIKUVAUKSET 41 Määritelmä ja esimerkkejä Olkoot V ja V vektoriavaruuksia Tarkastellaan kuvausta L : V V Tällöin jokaiseen vektoriin v V liittyy tietty, L:n ja v:n yksikäsitteisesti määräämä
LisätiedotBijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.
Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin
LisätiedotPäättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1
Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotLineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
LisätiedotKuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
LisätiedotKantavektorien kuvavektorit määräävät lineaarikuvauksen
Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1
Lisätiedot(1.1) Ae j = a k,j e k.
Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /310
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/310 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotMatriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus
LisätiedotMatikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotLineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi
Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja
Lisätiedotominaisvektorit. Nyt 2 3 6
Esimerkki 2 6 8 Olkoon A = 40 0 6 5. Etsitäänmatriisinominaisarvotja 0 0 2 ominaisvektorit. Nyt 2 0 2 6 8 2 6 8 I A = 40 05 40 0 6 5 = 4 0 6 5 0 0 0 0 2 0 0 2 15 / 172 Täten c A ( )=det( I A) =( ) ( 2)
LisätiedotKanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
Lisätiedotx = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
LisätiedotMatriisien tulo. Matriisit ja lineaarinen yhtälöryhmä
Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty
LisätiedotAvaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
Lisätiedotx = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotLineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila
Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
Lisätiedot3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h
HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)
Lisätiedot3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotLineaarialgebra, kertausta aiheita
Lineaarialgebra, kertausta aiheita Matriisitulo käänteismatriisi determinantin kehittäminen determinantin ominaisuudet adjungaatti ja Cramerin kaavat yhtälöryhmän eri esitystavat Gauss-Jordan -algoritmi
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä
LisätiedotMatriisialgebra harjoitukset, syksy 2016
MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 7 Onko kuvaus F : R R, F(x 1,x = (x 1 +x,5x 1, x 1 +6x lineaarinen kuvaus? Jos on, niin määrää sen matriisi luonnollisen kannan suhteen Jos ei ole, niin
LisätiedotLineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
LisätiedotTietokonegraikan geometriaa
Tietokonegraikan geometriaa Eero Hyry kevät 2015 i Sisältö 0 Lineaarialgebran kertausta 1 1 Ainit avaruudet 5 Ainit avaruudet vs. vektoriavaruudet.................... 7 2 Ainit aliavaruudet 12 Konveksi
LisätiedotMatemaattinen Analyysi / kertaus
Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen
Lisätiedot1 Kannat ja kannanvaihto
1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
Lisätiedot2.8. Kannanvaihto R n :ssä
28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit
LisätiedotLineaarialgebra II P
Lineaarialgebra II 89P Sisältö Vektoriavaruus Sisätuloavaruus 8 3 Lineaarikuvaus 5 4 Ominaisarvo 5 Luku Vektoriavaruus Määritelmä.. Epätyhjä joukko V on vektoriavaruus, jos seuraavat ehdot ovat voimassa:.
LisätiedotMatriisialgebra harjoitukset, syksy x 1 + x 2 = a 0
MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 22 Virittääkö vektorijoukko S vektoriavaruuden V, kun a V = R 3 ja S = {(1,0, 1,(2,0,4,( 5,0,2,(0,0,1} b V = P 2 (R ja S = {t1,t 2 1,t 2 t} ( ( 1 0 c
LisätiedotInsinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 06 laskuharjoituksien esimerkkiratkaisut Alla olevat esimerkkiratkaisut ovat melko ksitiskohtaisia Tenttivastauksissa ei leensä tarvitse muistaa lauseiden, määritelmien, esimerkkien
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 23.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Käytännön asioita Ensimmäiset tehtävät olivat sujuneet hyvin. Kansilehdet on oltava mukana tehtäviä palautettaessa,
LisätiedotLineaarikuvauksista ja niiden geometrisesta tulkinnasta
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Katri Syvänen Lineaarikuvauksista ja niiden geometrisesta tulkinnasta Matematiikan ja tilastotieteen laitos Matematiikka Tammikuu 2009 Tampereen yliopisto Matematiikan
LisätiedotKannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
LisätiedotKäänteismatriisi 1 / 14
1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 3: Funktiot 4.3 Funktiot Olkoot A ja B joukkoja. Funktio joukosta A joukkoon B on sääntö, joka liittää yksikäsitteisesti määrätyn
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
LisätiedotMääritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )
Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä
Lisätiedot{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja
5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.
Lisätiedot3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset
32 Idea: Lineaarikuvausten laskutoimitusten avulla määritellään vastaavat matriisien laskutoimitukset Vakiolla kertominen ja summa Olkoon t R ja A, B R n m Silloin ta, A + B R n m ja määritellään ta ta
Lisätiedot110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3
4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5
LisätiedotLineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg
Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa
LisätiedotKäänteismatriisin ominaisuuksia
Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit
LisätiedotJAKSO 2 KANTA JA KOORDINAATIT
JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause
LisätiedotYhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
Lisätiedot6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio
6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.
LisätiedotLiittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.
Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla
LisätiedotLineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.
Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat
LisätiedotTehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2016 Harjoitus 3 Ratkaisut palautettava viimeistään maanantaina 29.8.2016 klo 13.15. Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä
Lisätiedot9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista
29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n
Lisätiedot6. OMINAISARVOT JA DIAGONALISOINTI
0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos
LisätiedotMatematiikka B2 - Avoin yliopisto
6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
LisätiedotJohdatus lineaarialgebraan. Juha Honkala 2017
Johdatus lineaarialgebraan Juha Honkala 2017 Sisällysluettelo 1 Lineaariset yhtälöryhmät ja matriisit 11 Lineaariset yhtälöryhmät 12 Matriisit 13 Matriisien alkeismuunnokset ja porrasmatriisit 14 Yhtälöryhmien
LisätiedotLINEAARIALGEBRA A 2016 TOMI ALASTE EDITED BY T.M. FROM THE NOTES OF
LINEAARIALGEBRA 83A 6 EDITED BY T.M. FROM THE NOTES OF TOMI ALASTE SISÄLTÖ Sisältö Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus 3 Lineaarikuvaus 4 Ominaisarvo 34 5 Esimerkkejä 44 . Lineaariavaruus
Lisätiedotpdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus Lineaarikuvaus Ominaisarvo 0-68
SISÄLTÖ Sisältö pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus 0-1 2 Sisätuloavaruus 0-20 3 Lineaarikuvaus 0-41 4 Ominaisarvo 0-68 5 Esimerkkejä 0-88 1. Lineaariavaruus eli V 1 Lineaariavaruus
LisätiedotHY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden
Lisätiedotjonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä
4. Ryhmät Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoimitukselta oletamme muutamia yksinkertaisia ominaisuuksia: Määritelmä 4.1. Laskutoimituksella varustettu joukko
Lisätiedotkaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja
Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotEsko Turunen Luku 3. Ryhmät
3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,
LisätiedotLineaarikuvaukset. 12. joulukuuta F (A r ) = F (A r ) r .(3) F (s) = s. (4) Skalaareille kannattaa määritellä lisäksi seuraavat tulot:
Lineaarikuvaukset 12. joulukuuta 2005 1 Yleistys multivektoreille Olkoon F lineaarikuvaus vektoriavaruudessa. Yleistetään F luonnollisella tavalla terille F (a 1 a n ) = F (a 1 ) F (a n ), (1) sekä terien
LisätiedotTehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin
LisätiedotMatriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?
Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi
LisätiedotKoodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3. Lineaariset koodit Topi Törmä Matemaattisten tieteiden laitos 2 / 22 3.1 Lineaarisen koodin määrittely Olkoon F äärellinen kunta.
LisätiedotVille Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007
Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear
Lisätiedot