Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218
|
|
- Ella Järvenpää
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Lineaarialgebra ja matriisilaskenta I LM1, Kesä /218
2 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }. Avaruuden R 2 alkioita kutsutaan vektoreiksi. Jos c R ja d R, niin (c, d) on avaruuden R 2 vektori ja sanotaan, että c ja d ovat vektorin (c, d) komponentit. Huom. Jos ū R 2, niin ū = (u 1, u 2 ) joillakin u 1 R ja u 2 R. LM1, Kesä /218
3 Havainnollistuksia: Avaruuden R 2 vektoria v = (v 1, v 2 ) voi ajatella tason pisteenä: (1,3) ( 3, 2) (3,1) ( 1, 2) v = (v 1, v 2 ) LM1, Kesä /218
4 Avaruuden R 2 vektoria v = (v 1, v 2 ) voi ajatella sitä vastaavan tason pisteen paikkavektorina: ( 3, 2) (1,3) (3,1) v = (v 1, v 2 ) ( 1, 2) LM1, Kesä /218
5 Avaruuden R 2 vektoria v = (v 1, v 2 ) voi ajatella lukiosta tuttuna tason vektorina: ( 3, 2) v = (v 1, v 2 ) (1, 3) ( 1, 2) (3,1) LM1, Kesä /218
6 Yhteenlasku ja skalaarikertolasku Määritelmä Oletetaan, että v = (v 1, v 2 ) R 2, w = (w 1, w 2 ) R 2 ja c R. Vektoreiden v ja w summa on vektori v + w = (v 1 + w 1, v 2 + w 2 ). Skalaarikertolasku tarkoittaa vektorin kertomista reaaliluvulla. On sovittu, että c v = (cv 1, cv 2 ). LM1, Kesä /218
7 Yhteenlasku ja skalaarikertolasku Esimerkki 1 Merkitään v = ( 5, 3) ja w = ( 2, 7). Lasketaan (a) v + w = ( 5, 3) + ( 2, 7) = ( 5 2, 3 7) = ( 7, 4) (b) 4 v = 4( 5, 3) = ( 20, 12) (c) 3 w = 3( 2, 7) = (6, 21) (d) 2 v + 6 w = ( 10, 6) + ( 12, 42) = ( 22, 36). LM1, Kesä /218
8 Havainnollistuksia: Vektoreiden yhteenlasku: w v + w w v v LM1, Kesä /218
9 Vektorin vastavektori ja vektoreiden erotus Määritelmä Vektorin v vastavektori on skalaarimonikerta ( 1) v. Sitä merkitään v. Vektoreiden v ja w erotus tarkoittaa summaa Sitä merkitään v w. v + ( w) = v + ( 1) w. LM1, Kesä /218
10 Havainnollistuksia: Vektorin kertominen skalaarilla: ū 3ū ū 2ū LM1, Kesä /218
11 Havainnollistuksia: Vektoreiden vähennyslasku: w v v w v w LM1, Kesä /218
12 Havainnollistuksia: Yhteenlasku vs. vähennyslasku: w v + w w w v w v w v v v LM1, Kesä /218
13 Avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja. Toisin sanottuna R n = { (v 1, v 2,..., v n ) v 1, v 2,..., v n R }. Avaruuden R n alkioita kutsutaan vektoreiksi. Jos u 1, u 2,..., u n R, niin ū = (u 1, u 2,..., u n ) on avaruuden R n vektori ja sanotaan, että u 1, u 2,..., u n ovat vektorin ū komponentit. LM1, Kesä /218
14 Yhteenlasku ja skalaarikertolasku Määritelmä Oletetaan, että v = (v 1,..., v n ) R n, w = (w 1,..., w n ) R n ja c R. Vektoreiden v ja w summa on vektori v + w = (v 1 + w 1, v 2 + w 2,..., v n + w n ). Skalaarikertolasku tarkoittaa vektorin kertomista reaaliluvulla. On sovittu, että c v = (cv 1, cv 2,..., cv n ). LM1, Kesä /218
15 Vektorin vastavektori ja vektoreiden erotus Määritelmä Vektorin v vastavektori on skalaarimonikerta ( 1) v. Sitä merkitään v. Vektoreiden v ja w erotus tarkoittaa summaa Sitä merkitään v w. v + ( w) = v + ( 1) w. LM1, Kesä /218
16 Esimerkki 2 Merkitään v = ( 5, 3, 0, 1, 1) ja w = ( 2, 4, 2, 3, 5). Tällöin v ja w ovat avaruuden R 5 vektoreita. Lasketaan (a) 2 v 3 w = ( 10, 6, 0, 2, 2) ( 6, 12, 6, 9, 15) = ( 4, 18, 6, 7, 17) (b) 5 v w = (25, 15, 0, 5, 5) ( 2, 4, 2, 3, 5) = (27, 11, 2, 8, 0). LM1, Kesä /218
17 Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella todeksi nojautumalla määritelmiin ja aikaisemmin perusteltuihin väitteisiin. LM1, Kesä /218
18 Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Alla esiintyvä vektori 0 = (0, 0,..., 0) on nimeltään nollavektori. Lause 1 Oletetaan, että v, w, ū R n ja a, c R. Tällöin (a) v + w = w + v (vaihdannaisuus) (b) (ū + v) + w = ū + ( v + w) (liitännäisyys) (c) v + 0 = v (d) v + ( v) = 0 (e) c( v + w) = c v + c w (osittelulaki) (f) (a + c) v = a v + c v (osittelulaki) (g) a(c v) = (ac) v (h) 1 v = v LM1, Kesä /218
19 Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Perustellaan malliksi kohta (a). Oletus: v, w R n. Väite: v + w = w + v. Perustelu: Oletuksesta v, w R n seuraa, että v = (v 1,..., v n ) ja w = (w 1,..., w n ) joillakin v 1,..., v n, w 1,..., w n R. Voidaan päätellä v + w (1) = (v 1 + w 1, v 2 + w 2,..., v n + w n ) (2) = (w 1 + v 1, w 2 + v 2,..., w n + v n ) (1) = w + v Kohdissa (1) käytetään yhteenlaskun määritelmää ja kohdassa (2) reaalilukujen yhteenlaskun vaihdannaisuutta. Huomaa, että komponentit ovat tavallisia reaalilukuja! LM1, Kesä /218
20 Yhdensuuntaisuus Määritelmä Oletetaan, että v R n ja w R n. Vektorit v ja w ovat yhdensuuntaiset, jos v = t w jollakin t R {0}. Tällöin merkitään v w. w w 2 w w Jos vektorit v ja w eivät ole yhdensuuntaiset, merkitään v w. LM1, Kesä /218
21 Lineaarikombinaatiot Määritelmä Oletetaan, että w R n ja v 1, v 2,..., v k R n. Vektori w on vektoreiden v 1, v 2,..., v k lineaarikombinaatio, jos on olemassa sellaiset reaaliluvut a 1, a 2,..., a k, että w = a 1 v 1 + a 2 v a k v k. LM1, Kesä /218
22 Lineaarikombinaatiot Esimerkki 3 Merkitään v 1 = (1, 1), v 2 = ( 1, 2) ja w = (5, 1). Vektori w on vektoreiden v 1 ja v 2 lineaarikombinaatio, sillä 3 v 1 2 v 2 = 3(1, 1) 2( 1, 2) = (3, 3) ( 2, 4) = (5, 1) = w. v 1 v 2 3 v 1 2 v 2 w w LM1, Kesä /218
23 Pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w v n w n. Huom. Pistetulo v w on reaaliluku! Esimerkki 4 Merkitään ū = (1, 2, 3) ja w = ( 3, 5, 2). Lasketaan ū w: ū w = 1 ( 3) ( 3) 2 = = 1. LM1, Kesä /218
24 Pistetulon ominaisuuksia Lause 2 Oletetaan, että v, w, ū R n ja c R. Tällöin (a) v w = w v (vaihdannaisuus) (b) v ( w + ū) = v w + v ū (osittelulaki) (c) (c v) w = c( v w) Huom. Muista, että lause tarkoittaa väitettä, joka voidaan perustella todeksi nojautumalla määritelmiin ja aikaisemmin perusteltuihin väitteisiin. LM1, Kesä /218
25 Pistetulon ominaisuuksia; kohdan (b) perustelu Oletus: v, w, ū R n. Väite: v ( w + ū) = v w + v ū. Perustelu: Oletuksesta v, w, ū R n seuraa, että v = (v 1,..., v n ), w = (w 1,..., w n ) ja ū = (u 1,..., u n ), missä kaikki komponentit ovat reaalilukuja. Voidaan päätellä v ( w + ū) (1) = (v 1,..., v n ) (w 1 + u 1, w 2 + u 2,..., w n + u n ) (2) = (v 1 (w 1 + u 1 ), v 2 (w 2 + u 2 ),..., v n (w n + u n )) (3) = (v 1 w 1 + v 1 u 1, v 2 w 2 + v 2 u 2,..., v n w n + v n u n ) (1) = (v 1 w 1, v 2 w 2,..., v n w n ) + (v 1 u 1, v 2 u 2,..., v n u n ) (2) = v w + v ū LM1, Kesä /218
26 Pistetulon ominaisuuksia; kohdan (b) perustelu Selityksiä: (1) vektorien yhteenlaskun määritelmä; (2) pistetulon määritelmä; (3) reaalilukujen laskusäännöt (osittelulaki). LM1, Kesä /218
27 Vektorin pistetulo itsensä kanssa Lause 3 Oletetaan, että v R n. Tällöin (a) v v 0. (b) v v = 0, jos ja vain jos v = 0. Perustelun ideat: (a) v v = v1 2 + v v n = 0. (b) Jos v v = 0, niin v1 2 + v v n 2 = 0. Tästä seuraa, että v 1 = 0 ja v 2 = 0 ja... ja v n = 0 (huomaa, että jokainen yhteenlaskettava vi 2 0). Siten v = (0, 0,..., 0) = 0. Jos v = 0, niin v v = = 0. LM1, Kesä /218
28 Määritelmä Vektorin v R n normi on Huom. Vektorin normi (eli pituus) v = v v. Jos v = (v 1, v 2,..., v n ), niin v = v v v 2 n. Normin määritelmästä seuraa, että v 2 = v v. v v v LM1, Kesä /218
29 Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) = 13. w = v = LM1, Kesä /218
30 Normin ominaisuuksia I Lause 4 Oletetaan, että v R n. Tällöin v = 0, jos ja vain jos v = 0. Perustelun idea lausetta 3 hyödyntäen: v = 0 v 2 = 0 v v = 0 v = 0. LM1, Kesä /218
31 Normin ominaisuuksia I Lause 5 Oletetaan, että v R n ja c R. Tällöin c v = c v. Perustelun idea lausetta 2 hyödyntäen: c v 2 = (c v) (c v) = c 2 ( v v) = c 2 v 2, joten c v = ±c v. Normit epänegatiivisia, joten c v = c v. LM1, Kesä /218
32 Yksikkövektorit Määritelmä Vektori ū R n on yksikkövektori, jos sen normi (eli pituus) on 1; ts. ū = 1. Huom. Tuttuja yksikkövektoreita avaruuden R 2 vektorit ī = (1, 0) ja j = (0, 1); avaruuden R 3 vektorit ī = (1, 0, 0), j = (0, 1, 0) ja k = (0, 0, 1). j ī LM1, Kesä /218
33 Yksikkövektorit Lause 6 Vektorin v R n { 0} suuntainen yksikkövektori on 1 v v. v v = v 1 5 v = 1 Voit perustella tämän hyödyntäen lausetta 5. LM1, Kesä /218
34 Vektoreiden välinen etäisyys Määritelmä Oletetaan, että v, w R n. Vektorien v ja w välinen etäisyys on d( v, w) = v w. Kaksi näkökulmaa: v v w v 2 w 2 v w v w v 1 w 1 w LM1, Kesä /218
35 Lause 7 (Schwarzin epäyhtälö) Normin ominaisuuksia II Oletetaan, että v R n ja w R n. Tällöin v w v w. Lause 8 (Kolmioepäyhtälö) Oletetaan, että v R n ja w R n. Tällöin v + w v + w. v + w w v LM1, Kesä /218
36 Vektorien välinen kulma Schwarzin epäyhtälöstä saadaan Lemma 9 Oletetaan, että v R n \ { 0} ja w R n \ { 0}. Tällöin 1 v w v w 1. LM1, Kesä /218
37 Määritelmä Vektorien välinen kulma Vektorien v R n \ { 0} ja w R n \ { 0} välinen kulma on se kulma α, jolle pätee 0 α 180 ja cos α = v w v w. Vektorit v R n ja w R n ovat ortogonaaliset eli kohtisuorassa toisiaan vastaan, jos v w = 0. Tällöin merkitään v w. w v LM1, Kesä /218
38 Havainnollistuksia: Kosinilauseen mukaan alla olevassa kolmiossa w v 2 = v 2 + w 2 2 v w cos α. w w v v Toisaalta normin määritelmän nojalla w v 2 = ( w v) ( w v) =... = v 2 + w 2 2( v w). Siten cos α = v w v w. LM1, Kesä /218
39 Lause 10 (Pythagoraan lause) Oletetaan, että v R n ja w R n. Vektorit v ja w ovat ortogonaaliset (eli kohtisuorassa toisiaan vastaan), jos ja vain jos v + w 2 = v 2 + w 2. v + w w v LM1, Kesä /218
40 Määritelmä Projektio Oletetaan, että n = 2 tai n = 3. Oletetaan, että v, w R n ja w 0. Vektorin v projektio vektorin w määräämälle suoralle on proj w ( v) = v w w w w. v proj w ( v) w LM1, Kesä /218
41 Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1, Kesä /218
42 Olkoon S avaruuden R n suora (n = 2). Tämä tarkoittaa, että missä p, v R n ja v 0. S = { p + t v t R}, Oletetaan, että a, b R. Jos (a, b) S, niin sanotaan, että piste (a, b) on suoralla S tai että suora S kulkee pisteen (a, b) kautta. t v (a, b) p Vastaavasti avaruudessa R 3. LM1, Kesä /218
43 Huom. Sama suora voidaan kirjoittaa joukkona { p + t v t R} usealla eri tavalla: vektoriksi p voidaan valita suoran minkä tahansa pisteen paikkavektori; vektoriksi v voidaan valita mikä tahansa suoran suuntainen vektori. v v p p LM1, Kesä /218
44 Esimerkki 5 (a) Määritä pisteiden A = (2, 3, 5) ja B = (4, 1, 7) kautta kulkeva suora S. (b) Määritä pisteen C = (4, 1, 9) etäisyys suorasta S. C B A LM1, Kesä /218
45 (a) Suoran jonkin pisteen paikkavektori; esim. OA = (2, 3, 5). Jokin suoran suuntainen vektori; esim. Näin AB = OB OA = (2, 4, 2). S = { OA + t AB t R } = { (2, 3, 5) + t(2, 4, 2) t R }. LM1, Kesä /218
46 Pisteen etäisyys suorasta Oletetaan, että n = 2 tai n = 3. Pisteen Q etäisyys suorasta S = { p + t v t R}, missä p, v R n ja v 0, saadaan projektion avulla: Q ā proj v (ā) v ā P proj v (ā) LM1, Kesä /218
47 (b) Vektori jostakin suoran pisteestä tutkittavaan pisteeseen; esim. AC = OC OA = (2, 2, 4). Jokin suoran suuntainen vektori; esim. AB = (2, 4, 2). Vektorin AC projektio suoralle S: Erotus proj AB ( AC) = AC AB AB AB AB = 20 AB = 5 AB AC proj AB ( AC) = AC 5 AB = (2, 2, 4) 5 (2, 4, 2) 6 Erotuksen normi = 1 6 (12 10, 12 20, 24 10) = 1 (1, 4, 7). 3 AC proj AB ( AC) = 1 3 (1, 4, 7) = = LM1, Kesä /218
48 Taso Määritelmä Avaruuden R 3 taso on joukko { p + s w + t v s, t R}, missä p, w, v R 3, w 0 v ja w v. Tässä p on tason jonkin pisteen paikkavektori ja v sekä w ovat kaksi tason suuntaista vektoria. w v p O LM1, Kesä /218
49 Olkoon T avaruuden R 3 taso. Tämä tarkoittaa, että T = { p + s w + t v s, t R}, missä p, w, v R 3, w 0 v ja w v. Oletetaan, että a, b, c R. Jos (a, b, c) T, niin sanotaan, että piste (a, b, c) on tasossa T tai että taso T kulkee pisteen (a, b, c) kautta. t v s w (a, b, c) p O LM1, Kesä /218
50 Huom. Sama taso voidaan kirjoittaa joukkona { p + s w + t v s, t R} usealla eri tavalla: vektoriksi p voidaan valita tason minkä tahansa pisteen paikkavektori; vektoreiksi w ja v voidaan valita mitkä tahansa tason suuntaisen vektorit, kunhan w v. w v w v p O p O LM1, Kesä /218
51 Esimerkki 6 Määritä pisteiden A = (0, 1, 0), B = ( 1, 3, 2) ja C = ( 2, 0, 1) kautta kulkeva taso T. C A B LM1, Kesä /218
52 Tason jonkin pisteen paikkavektori; esim. OA = (0, 1, 0). Jotkin tason suuntaiset vektorit; esim. AB = OB OA = ( 1, 2, 2) ja AC = OC OA = ( 2, 1, 1). Huomaa, että nämä eivät ole yhdensuuntaiset; ts. AB t AC kaikilla t R {0}. Näin T = { OA + s AB + t AC s, t R } = { (0, 1, 0) + s( 1, 2, 2) + t( 2, 1, 1) s, t R }. LM1, Kesä /218
53 Määritelmä Ristitulo Oletetaan, että v, w R 3. Vektorien v = (v 1, v 2, v 3 ) ja w = (w 1, w 2, w 3 ) ristitulo on vektori v w = (v 2 w 3 v 3 w 2, v 3 w 1 v 1 w 3, v 1 w 2 v 2 w 1 ). Muistisääntö ristitulon laskemiseen: yhtenäisellä viivalla yhdistettyjen komponenttien tulosta vähennetään katkoviivalla yhdistettyjen komponenttien tulo. v 1 v 2 v 3 v 1 v 2 w 1 w 2 w 3 w 1 w 2 LM1, Kesä /218
54 Ristitulo Esimerkki 7 Merkitään ā = (2, 1, 2) ja b = (3, 1, 3). Lasketaan ā b. ā b = ( 3 ( 2), 6 ( 6), 2 3) = ( 1, 12, 5) LM1, Kesä /218
55 Ristitulon ominaisuuksia Lause 11 Oletetaan, että ū, v, w R 3 ja c R. Tällöin (a) v w = ( w v) (antikommutointi) (b) ū ( v + w) = ū v + ū w (osittelulaki) (c) ( v + w) ū = v ū + w ū (osittelulaki) (d) c( v w) = (c v) w = v (c w) (e) v v = 0 (f) 0 v = 0 ja v 0 = 0 (g) ū ( v w) = (ū v) w Paina mieleesi erikoiset ominaisuudet (a), (e) ja (g)! v w w v LM1, Kesä /218
56 Ristitulon ominaisuuksia Lause 12 Oletetaan, että ū, v, w R 3. Tällöin (h) (ū v) w = (ū w) v ( v w)ū (i) ū ( v w) = (ū w) v (ū v) w (j) v w 2 = v 2 w 2 ( v w) 2 (Lagrangen identiteetti) Lagrangen identiteetti voidaan perustella kohtien (g) ja (h) avulla. Muut kohdat lauseissa 11 ja 12 voidaan perustella ristitulon määritelmään nojautuen. LM1, Kesä /218
57 Ristitulon ominaisuuksia Lause 13 Oletetaan, että v, w R 3. Tällöin (a) ( v w) v ja ( v w) w; v w (b) jos v 0 ja w 0, niin v w = v w sin α, missä α on vektorien v ja w välinen kulma. w v w sin Ristitulovektorin v w pituus on yhtä suuri kuin vektorien v ja w määräämän suunnikkaan ala! LM1, Kesä /218
58 Suuntaissärmiön tilavuus Suuntaissärmiön tilavuus on pohjan pinta-alan v w ja korkeuden h tulo. cos β = cos(180 β), joten h = ū cos β. Siis tilavuus on v w ū cos β = v w ū cos β = ( v w) ū h ū v v w w Tilavuus on ns. skalaarikolmitulon itseisarvo! LM1, Kesä /218
59 Pisteen etäisyys tasosta Pisteen Q etäisyys tasosta T saadaan ristitulon ja projektion avulla: v w P proj v w (ā) w ā v Q LM1, Kesä /218
60 Tason normaalimuotoinen yhtälö Piste Q = (x, y, z) on tasossa T, jos ja vain jos n ( q p) = 0, missä n on jokin tasoa T vastaan kohtisuora vektori (ns. tason T normaali). n q p Q P p q Huom. jos T = { p + s w + t v s, t R}, voidaan valita n = v w. O LM1, Kesä /218
61 Tason normaalimuotoinen yhtälö Esimerkki 8 Merkitään A = (0, 1, 0), B = ( 1, 3, 2) ja C = ( 2, 0, 1). Taso T kulkee pisteiden A, B ja C kautta. Määritä (a) tason T normaalimuotoinen yhtälö; (b) pisteen D = (1, 2, 3) etäisyys tasosta T. D C A B LM1, Kesä /218
62 (a) Jokin tason normaali; esim. tason suuntaisten vektoreiden AB = ( 1, 2, 2) ja AC = ( 2, 1, 1) ristitulo AB AC = (4, 3, 5). Vektori jostakin tason pisteestä pisteeseen Q = (x, y, z); esim. AQ = OQ OA = (x, y 1, z). Tason normaalimuotoinen yhtälö on näin ( AB AC) AQ = 0 eli (4, 3, 5) (x, y 1, z) = 0 4x 3(y 1) + 5z = 0 4x 3y + 5z + 3 = 0. LM1, Kesä /218
63 (b) Jokin tason normaali; esim. tason suuntaisten vektoreiden AB = ( 1, 2, 2) ja AC = ( 2, 1, 1) ristitulo AB AC = (4, 3, 5). Vektori jostakin tason pisteestä pisteeseen D = (1, 2, 3); esim. AD = OD OA = (1, 1, 3). Vektorin AD projektio normaalin n = AB AC määräämälle suoralle proj n ( AD n 16 8 AD) = n = (4, 3, 5) = (4, 3, 5). n n Projektion normi eli pituus proj n ( AD) = 8 25 (4, 3, 5) = = = LM1, Kesä /218
64 Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden joukkoa; ts. span( v 1, v 2,... v k ) = { a 1 v 1 + a 2 v a k v k a 1,..., a k R }. LM1, Kesä /218
65 Yhden vektorin virittämä aliavaruus Oletetaan, että n = 2 tai n = 3 ja v R n. Jos v = 0, niin vektorin v virittämä aliavaruus on span( 0) = { t 0 t R } = { 0} eli joukko, johon kuuluu ainoastaan nollavektori (origo). span( 0) LM1, Kesä /218
66 Yhden vektorin virittämä aliavaruus Jos v 0, niin vektorin v virittämä aliavaruus on span( v) = { t v t R } = { 0 + t v t R } eli origon kautta kulkeva suora. span( v) LM1, Kesä /218
67 Kahden vektorin virittämä aliavaruus Oletetaan, että v, w R 3. Jos w 0 v ja w v, niin vektoreiden v ja w virittämä aliavaruus on span( v, w) = { s v + t w s, t R } = { 0 + s v + t w s, t R } eli origon kautta kulkeva taso. Huom. jos oletukset w 0 v ja w v eivät ole voimassa, niin span( v, w) on suora tai origon yksiö. LM1, Kesä /218
68 Vektoreiden virittämän aliavaruuden ominaisuuksia Lause 14 Oletetaan, että v 1, v 2,..., v k R n. Tällöin (a) jos ū, w span( v 1,..., v k ), niin ū + w span( v 1,..., v k ). (b) jos w span( v 1,..., v k ) ja a R, niin a w span( v 1,..., v k ). (c) 0 span( v 1,..., v k ). LM1, Kesä /218
69 Lauseen 14 perustelu: (a) Oletetaan, että ū, w span( v 1,..., v k ). Tällöin ū = a 1 v a k v k ja w = c 1 v c k v k joillakin reaaliluvuilla a 1,..., a k ja c 1,..., c k. Näin ū + w = (a 1 v a k v k ) + (c 1 v c k v k ) = (a 1 + c 1 ) v (a k + c k ) v k, missä kertoimet a 1 + c 1,..., a k + c k R. Siis ū + w on vektoreiden v 1,..., v k lineaarikombinaatio; ts. ū + w span( v 1,..., v k ). (c) Nollavektori voidaan kirjoittaa muodossa Siis 0 span( v 1,..., v k ). 0 = 0 v v v k. LM1, Kesä /218
70 Vektoreiden virittämä aliavaruus Esimerkki 9 Selvitä, kuuluuko vektori w = (6, 3, 2, 1) vektoreiden v 1 = (0, 1, 2, 1), v 2 = (2, 0, 1, 1) ja v 3 = (4, 2, 2, 0) virittämään aliavaruuteen span( v 1, v 2, v 3 ). Toisin sanottuna selvitä, onko vektori w vektoreiden v 1, v 2 ja v 3 lineaarikombinaatio. Ts. selvitä, onko yhtälöllä x 1 v 1 + x 2 v 2 + x 3 v 3 = w eli yhtälöllä x 1 (0, 1, 2, 1) + x 2 (2, 0, 1, 1) + x 3 (4, 2, 2, 0) = ( 2, 3, 2, 1) ratkaisuja reaalilukujen joukossa. LM1, Kesä /218
71 Päädytään lineaariseen yhtälöryhmään 2x 2 + 4x 3 = 6 x 1 + 2x 3 = 3 2x 1 + x 2 + 2x 3 = 2 x 1 x 2 = 1, joka voidaan ratkaista Gaussin-Jordanin eliminointimenetelmällä. LM1, Kesä /218
72 Lineaarisen yhtälöryhmän ratkaiseminen Esimerkki 10 Muodostetaan lineaarisen yhtälöryhmän 2x 2 + 4x 3 = 6 x 1 + 2x 3 = 3 2x 1 + x 2 + 2x 3 = 2 x 1 x 2 = 1, täydennetty matriisi kokoamalla kaikki kertoimet ja vakiot taulukkoon: LM1, Kesä /218
73 Muunnetaan tämä matriisi alkeisrivitoimituksia käyttäen redusoiduksi porrasmatriisiksi. Teet alkeisrivitoimituksen, jos I. vaihdat matriisin kaksi riviä keskenään; II. kerrot rivin jollakin nollasta poikkeavalla reaaliluvulla; III. lisäät johonkin riviin jokin toisen rivin reaaliluvulla kerrottuna; / / / LM1, Kesä /218
74 Redusoidusta porrasmatriisista ratkaisut on helppo lukea: matriisia / / / vastaa yhtälöryhmä x 1 = 1/2 x 2 = 1/2 x 3 = 5/4 0 = 0, jossa alin yhtälö on aina tosi. LM1, Kesä /218
75 Miten tunnistan redusoidun porrasmatriisin? Ensinnäkin se on porrasmatriisi eli nollarivit ovat alimpina, jos niitä on; jokaisella rivillä ensimmäinen nollasta poikkeava alkio (eli johtava alkio) on ylemmän rivin johtavan alkion oikealla puolella. Esimerkki porrasmatriisista: LM1, Kesä /218
76 Miten tunnistan redusoidun porrasmatriisin? Se on porrasmatriisi. Jokaisen rivin johtava alkio on 1. Jokainen johtava alkio on sarakkeensa ainoa nollasta poikkeava alkio. Esimerkki redusoidusta porrasmatriisista: 0 1 3/ / / LM1, Kesä /218
77 Gaussin-Jordanin eliminointimenetelmän perusta Voidaan osoittaa, että jos lineaarisen yhtälöryhmän täydennettyä matriisia muokataan alkeisrivitoimituksilla, niin näin saatua uutta matriisia vastaavalla yhtälöryhmällä on täsmälleen samat ratkaisut kuin alkuperäisellä yhtälöryhmällä. a 11 a a 1n b 1 a 21 a a 2n b 2.. a m1 a m2... a mn b m alkeisrivi- toimituksia c 11 c c 1n d 1 c 21 c c 2n d 2.. c m1 c m2... c mn d m a 11 x a 1n x n = b 1 a 21 x a 2n x n = b 2. =.. a m1 x a mnx n = b m samat ratkaisut c 11 x c 1n x n = d 1 c 21 x c 2n x n = d 2. =.. c m1 x c mnx n = d m LM1, Kesä /218
78 Gaussin-Jordanin eliminointimenetelmä Kirjoita yhtälöryhmän täydennetty matriisi. Muuta se alkeisrivitoimituksilla porrasmatriisiksi. Ohjeita: porrasmatriisia muodostetaan vasemmalta oikealle ja ylhäältä alaspäin; johtavat alkiot kannattaa useimmiten muuttaa ykkösiksi; johtavien alkioiden avulla muutetaan niiden alapuolella olevat alkiot nolliksi. Muuta porrasmatriisi redusoiduksi porrasmatriisiksi. Ohjeita: redusoitua porrasmatriisia muodostetaan oikealta vasemmalle ja alhaalta ylöspäin; johtavien alkioiden avulla muutetaan niiden yläpuolella olevat alkiot nolliksi. Lue ratkaisut redusoidusta porrasmatriisista. Tee alkeisrivitoimitukset yksi kerrallaan! LM1, Kesä /218
79 Esimerkki 11 Ratkaise lineaarinen yhtälöryhmä 3x + 5y = 22 3x + 4y = 4 4x 8y = r 1 + r r 3 4r r 2 3r r 2 / LM1, Kesä /218
80 r 3 4r r 1 + 3r Vastaava yhtälöryhmä on x = 4 y = 2 0 = 0. Alin yhtälö on aina tosi, joten yhtälöryhmän ratkaisu on x = 4 ja y = 2. LM1, Kesä /218
81 Esimerkki 12 Ratkaise lineaarinen yhtälöryhmä { x + 2y + z = 8 3x 6y 3z = 21. [ ] r 2 + 3r 1 [ ] Vastaava yhtälöryhmä on { x + 2y + z = 8 0 = 3. Alin yhtälö on aina epätosi, joten yhtälöryhmällä ei ole ratkaisua. LM1, Kesä /218
82 Esimerkki 13 Ratkaise lineaarinen yhtälöryhmä 3x 1 + 3x 2 15x 3 = 9 x 1 2x 3 = 1 2x 1 x 2 x 3 = r 1 / r 3 2r r 2 r r LM1, Kesä /218
83 r 3 + 3r r 1 r Alinta riviä vastaava yhtälö 0 = 0 on aina tosi. Tuntematonta x 3 vastaavassa sarakkeessa ei ole johtavaa alkiota, joten se on ns. vapaa muuttuja. Merkitään x 3 = t, missä t R. Ratkaistaan muut tuntemattomat: x 1 2t = 1 { x1 = 1 + 2t x 2 t = 2 t R. x 2 = 2 + t, 0 = 0 LM1, Kesä /218
84 Esimerkki 14 Lineaarisen yhtälöryhmän täydennetty matriisi muutettiin alkeisrivitoimituksilla redusoiduksi porrasmatriisiksi: Mikä on yhtälöryhmän ratkaisu? Havaitaan, että johtavat alkiot (rivien ensimmäiset nollasta poikkeavat alkiot) ovat sarakkeissa 1, 3 ja 6. Muita sarakkeita vastaavat tuntemattomat x 2, x 4 ja x 5 ovat vapaita muuttujia. Merkitään x 2 = r, x 4 = s ja x 5 = t, missä r, s, t R. LM1, Kesä /218
85 Yhtälöryhmä on tällöin x 1 + 3r + 4s = 0 x 3 + 2s = 0 x 6 = 3 x 1 = 3r 4s x 3 = 2s x 6 = 3. Ratkaisu on siis x 1 = 3r 4s x 2 = r x 3 = 2s x 4 = s x 5 = t x 6 = 3, r, s, t R. LM1, Kesä /218
86 Esimerkki 15 Tarkastellaan yhtälöryhmää x + y + kz = 1 x + ky + z = 1 kx + y + z = 2. Määritä ne reaaliluvut k, joilla tällä yhtälöryhmällä (a) ei ole ratkaisua; (b) on tasan yksi ratkaisu; (c) on äärettömän paljon ratkaisuja. LM1, Kesä /218
87 1 1 k k 1 1 k 1 1 r 2 r 1 0 k 1 1 k 0 k k r 3 kr k 1 0 k 1 1 k k 1 k 2 2 k r 3 + r k 1 0 k 1 1 k 0 r 2 /(k 1) k k 2 2 k Oletus: k k k k 2 2 k LM1, Kesä /218
88 Oletus: k 1 0 eli k 1. Alimman rivin johtavassa alkiossa esiintyy k, joten tarkastellaan eri tapaukset. Jos kerroin 2 k k 2 = 0 eli k = 2 (tai k = 1) on periaatteessa kaksi mahdollisuutta: Jos myös vakio 2 k = 0 eli k = 2, niin yhtälöllä on äärettömän monta ratkaisua. Alinta riviä nimittäin vastaa yhtälö 0 = 0 ja x 3 on vapaa muuttuja. Jos vakio 2 k 0 eli k 2, ei nyt voida päätellä mitään, koska on mahdotonta, että yhtä aikaa k = 2 ja k 2. Jos kerroin 2 k k 2 0 eli k 2 ja k 1, niin saadaan ratkaistua x 3 = ( 2 k)/(2 k k 2 ) ja ylemmistä yhtälöistä saadaan muut tuntemattomat. Yhtälöryhmällä on tasan yksi ratkaisu. LM1, Kesä /218
89 Tapaus k 1 = 0 eli k = 1. Yhtälöryhmä on tällöin x + y + z = 1 x + y + z = 1 x + y + z = 2. Ylin ja alin yhtälö ovat keskenään ristiriitaiset, joten yhtälöryhmällä ei ole ratkaisua. Yhteenveto: (a) ei ratkaisua, jos ja vain jos k = 1; (b) tasan yksi ratkaisu, jos ja vain jos k 2 ja k 1; (c) äärettömän monta ratkaisua, jos ja vain jos k = 2. LM1, Kesä /218
90 Vektorien virittämä aliavaruus Esimerkki 16 Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w kuuluu vektoreiden v 1 = (3, 2, 1), v 2 = (2, 2, 6) ja v 3 = (3, 4, 5) virittämään aliavaruuteen span( v 1, v 2, v 3 )? Toisin sanottuna: Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w on vektoreiden v 1, v 2 ja v 3 lineaarikombinaatio? LM1, Kesä /218
91 Tarkastellaan yhtälöä x 1 v 1 + x 2 v 2 + x 3 v 3 = w eli yhtälöä x 1 (3, 2, 1) + x 2 (2, 2, 6) + x 3 (3, 4, 5) = (w 1, w 2, w 3 ). Muokataan vastaavan yhtälöryhmän täydennetty matriisi porrasmatriisiksi: w 1 ( 1) r w w w 2 r 2 2r w w w w 2 + 2w w 1 r 3 3r w w 2 + 2w w 1 + 3w 3 r 3 2r 2 r 1 LM1, Kesä /218
92 1 6 5 w w 2 + 2w 3 r 2 / w 1 + 3w 3 2(w 2 + 2w 3 ) w /5 (w 2 + 2w 3 )/ w 1 2w 2 w 3 Havaitaan, että yhtälöryhmällä on ratkaisuja, jos ja vain jos w 1 2w 2 w 3 = 0. Siten span( v 1, v 2, v 3 ) = { w R 3 w 1 2w 2 w 3 = 0 } = { (x, y, z) R 3 x 2y z = 0 } eli origon kautta kulkeva taso, jonka yksi normaali on (1, 2, 1). LM1, Kesä /218
93 Vektorien virittämä aliavaruus Esimerkki 17 Merkitään ī = (1, 0) ja j = (0, 1). Osoita, että span(ī, j) = R 2. Toisin sanottuna: osoita, että jokainen avaruuden R 2 vektori voidaan esittää vektoreiden ī ja j lineaarikombinaationa. j ī LM1, Kesä /218
94 Oletetaan, että w R 2. Tällöin w = (w 1, w 2 ) joillakin reaaliluvuilla w 1 ja w 2. Huomataan, että w 1 ī + w 2 j = w 1 (1, 0) + w 2 (0, 1) = (w 1, 0) + (0, w 2 ) = (w 1, w 2 ) = w. Siis w voidaan kirjoittaa vektoreiden ī ja j lineaarikombinaationa eli w span(ī, j). Näin on osoitettu, että R 2 span(ī, j). Toinen suunta span(ī, j) R 2 on selvä, koska jokainen vektoreiden ī, j R 2 lineaarikombinaatio kuuluu avaruuteen R 2. LM1, Kesä /218
95 Vektoreiden virittämä aliavaruus Esimerkki 18 Onko totta, että span( v 1, v 2, v 3, v 4 ) = R 3, jos (a) v 1 = (1, 1, 0), v 2 = (1, 0, 1), v 3 = (0, 1, 1) ja v 4 = ( 2, 1, 1)? (b) v 1 = (1, 1, 0), v 2 = ( 1, 0, 1), v 3 = (0, 1, 1) ja v 4 = (2, 1, 1)? Kielteisessä tapauksessa määritä span( v 1, v 2, v 3, v 4 ). Myönteisessä tapauksessa tutki, kuinka monella tavalla vektori w = (w 1, w 2, w 3 ) voidaan esittää vektoreiden v 1, v 2, v 3 ja v 4 lineaarikombinaationa. LM1, Kesä /218
96 (a) Tarkastellaan yhtälöä x 1 v 1 + x 2 v 2 + x 3 v 3 + x 4 v 4 = w. Muokataan vastaavan yhtälöryhmän täydennetty matriisi joksikin porrasmatriisiksi: w w w w w 1 w (w 3 + w 2 w 1 )/2 Havaitaan, että yhtälöryhmällä on aina ratkaisu; itseasiassa niitä on äärettömän monta, koska x 4 on vapaa muuttuja. Siis span( v 1, v 2, v 3, v 4 ) = R 3 ja jokainen avaruuden R 3 vektori voidaan esittää äärettömän monella tavalla vektoreiden v 1, v 2, v 3 ja v 4 lineaarikombinaationa. LM1, Kesä /218
97 (b) Tarkastellaan yhtälöä x 1 v 1 + x 2 v 2 + x 3 v 3 + x 4 v 4 = w. Muokataan vastaavan yhtälöryhmän täydennetty matriisi joksikin porrasmatriisiksi: w w w w w 1 w w 1 + w 2 + w 3. Havaitaan, että yhtälöryhmällä on ratkaisu, jos ja vain jos w 1 + w 2 + w 3 = 0. Siten span( v 1, v 2, v 3, v 4 ) = { w R 3 w 1 + w 2 + w 3 = 0 } = { (x, y, z) R 3 x + y + z = 0 } eli origon kautta kulkeva taso, jonka yksi normaali on (1, 1, 1). LM1, Kesä /218
98 Jos w 1 + w 2 + w 3 = 0, niin vektori w voidaan esittää vektoreiden v 1, v 2, v 3 ja v 4 lineaarikombinaationa äärettömän monella tavalla, sillä x 3 ja x 4 ovat vapaita muuttujia. Erityisesti voidaan valita x 3 = 0 ja x 4 = 0 ja saadaan esitys w = w 2 v 1 + ( w 1 w 2 ) v 2. Näin ollen span( v 1, v 2, v 3, v 4 ) = span( v 1, v 2 ). LM1, Kesä /218
99 Havaintoja Edellisen esimerkin perusteella: Joskus osajono virittää saman aliavaruuden kuin alkuperäinen virittäjäjono ( v 1,..., v k ). Joskus aliavaruuden span( v 1,..., v k ) vektorit voidaan esittää usealla eri tavalla virittäjävektorien lineaarikombinaatioina. Miten löytää virittäjäjono, jossa ei ole turhia vektoreita? Miten löytää sellainen virittäjäjono, että kaikki aliavaruuden vektorit voidaan esittää tasan yhdellä tavalla virittäjävektorien lineaarikombinaatioina? LM1, Kesä /218
100 Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Jos jono ( v 1, v 2,..., v k ) on vapaa, sanotaa, että vektorit v 1, v 2,..., v k ovat lineaarisesti riippumattomia. Jos jono ei ole vapaa, sanotaan, että se on sidottu. LM1, Kesä /218
101 Esimerkki 19 Merkitään v 1 = (1, 2) ja v 2 = ( 3, 1). Onko jono ( v 1, v 2 ) vapaa vai sidottu? v 1 v 2 LM1, Kesä /218
102 Oletetaan, että c 1 v 1 + c 2 v 2 = 0 joillakin reaaliluvuilla c 1 ja c 2. Tällöin c 1 (1, 2) + c 2 ( 3, 1) = (0, 0) eli komponentteittain: { c1 3c 2 = 0 2c 1 c 2 = 0. Ratkaistaan tästä c 1 ja c 2 : [ ] [ ] r 2 2r r 2 /5 [ ] [ ] r1 + 3r Ainoa ratkaisu on c 1 = 0 ja c 2 = 0. Jono ( v 1, v 2 ) on vapaa. LM1, Kesä /218
103 Esimerkki 20 Merkitään v 1 = (1, 2), v 2 = ( 3, 1) ja v 3 = ( 1, 1). Onko jono ( v 1, v 2, v 3 ) vapaa vai sidottu? v 3 v 1 v 2 LM1, Kesä /218
104 Oletetaan, että c 1 v 1 + c 2 v 2 + c 3 v 3 = 0 joillakin c 1, c 2, c 3 R. Tällöin c 1 (1, 2) + c 2 ( 3, 1) + c 3 ( 1, 1) = (0, 0) eli komponentteittain: { c1 3c 2 c 3 = 0 2c 1 c 2 + c 3 = 0. Ratkaistaan tästä c 1 ja c 2 : [ ] [ ] r 2 2r r 2 /5 [ ] [ ] r1 + 3r / / /5 0 Voidaan valita esimerkiksi c 3 = 5, jolloin c 2 = 3 ja c 1 = 4. Näin 4 v 1 3 v v 3 = 0. Jono ( v 1, v 2, v 3 ) on sidottu. LM1, Kesä /218
105 5 v 3 4 v 1 3 v 2 4 v 1 3 v v 3 = 0 LM1, Kesä /218
106 Esimerkki 21 Merkitään w 1 = (2, 1) ja w 2 = ( 4, 2). Onko jono ( w 1, w 2 ) vapaa vai sidottu? w 1 w 2 Esimerkiksi 2 w 1 + w 2 = 0, joten jono ( w 1, w 2 ) on sidottu. LM1, Kesä /218
107 Vähintään kahdesta vektorista muodostuva vektorijono on sidottu, jos ja vain jos jokin sen vektoreista voidaan ilmaista toisten lineaarikombinaationa: Lause 15 Oletetaan, että v 1,..., v k R n, missä k 2 ja n {1, 2,...}. (a) Jono ( v 1 ) on sidottu, jos ja vain jos v = 0. (b) Jono ( v 1,..., v k ) on sidottu, jos ja vain jos v i span( v 1,..., v i 1, v i+1,..., v k ) jollakin i {1,..., k}. LM1, Kesä /218
108 Perustelu: (a) Tarkastellaan eri mahdollisuudet: Jos v 1 = 0, niin esim. 8 v 1 = 8 0 = 0. Siis jono ( v 1 ) on sidottu. Jos v 1 0, niin t v 1 = 0 t = 0. Siis jono ( v 1 ) on vapaa. Havaitaan, että jono ( v 1 ) on sidottu, jos ja vain jos v 1 = 0. (b) : Oletetaan, että jono ( v 1,..., v k ) on sidottu. Tällöin c 1 v c k v k = 0, missä ainakin yksi kertoimista c i 0. Oletetaan, että esim. c 2 0. Tällöin c 2 v 2 = c 1 v 1 c 3 v 3 c k v k ja v 2 = c 1 v 1 + c 3 c 2 c 2 v c k c 2 v k. Tässä jokainen c i /c 2 R, joten v 2 span( v 1, v 3,..., v k ). LM1, Kesä /218
109 : Oletetaan, että esimerkiksi v 3 span( v 1, v 2, v 4,..., v k ). Tällöin v 3 = a 1 v 1 + a 2 v 2 + a 4 v a k v k joillakin reaaliluvuilla a 1, a 2, a 4,..., a k. Siten 0 = a 1 v 1 + a 2 v 2 v 3 + a 4 v a k v k. Tässä ainakin vektorin v 3 kerroin 1 0, joten jono ( v 1,..., v k ) on sidottu. LM1, Kesä /218
110 Esimerkki 22 Merkitään v 1 = (1, 1, 0), v 2 = (1, 1, 0), v 3 = (0, 0, 2) ja v 4 = (3, 1, 0). Tällöin esimerkiksi 2 v 1 + v v 3 v 4 = 0, joten jono ( v 1, v 2, v 3, v 4 ) on sidottu. Lisäksi esimerkiksi v 2 = 2 v v 3 + v 4 mutta v 3 a v 1 + b v 2 + c v 4 kaikilla a, b, c R. LM1, Kesä /218
111 Lause 16 Vapaan jonon osajono on vapaa. Huom. Osajono tarkoittaa jonoa, joka saadaan jättämällä alkuperäisestä jonosta pois yksi tai useampia vektoreita. Myös alkuperäinen jono sellaisenaan on yksi osajono. Lauseista 16 ja 15 seuraa, että vapaassa jonossa ( v 1, v 2,..., v k ) ei ole nollavektoria; jokainen vektori esiintyy vain kerran; v i v j kaikilla i j. LM1, Kesä /218
112 Lauseen 16 perustelun idea: Oletetaan, että v 1,..., v 5 R n ja jono ( v 1,..., v 5 ) on vapaa. Osoitetaan, että sen osajono ( v 2, v 4, v 5 ) on vapaa. Tarkastellaan yhtälöä x v 2 + y v 4 + z v 5 = 0: x v 2 + y v 4 + z v 5 = 0 0 v 1 + x v v 3 + y v 4 + z v 5 = 0 Oletuksen mukaan jono ( v 1, v 2, v 3, v 4, v 5 ) on vapaa, joten oikeanpuoleinen yhtälö toteutuu vain, jos kaikki kertoimet ovat nollia. Tästä seuraa, että vasemmanpuoleisen yhtälön ainoa ratkaisu on x = 0, y = 0 ja z = 0. Siis jono ( v 2, v 4, v 5 ) on vapaa. LM1, Kesä /218
113 Jos virittäjäjono on vapaa, niin kaikki aliavaruuden vektorit voidaan esittää tasan yhdellä tavalla virittäjävektorien lineaarikombinaatioina: Lause 17 Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,...}. Jono ( v 1, v 2,..., v k ) on vapaa, jos ja vain jos jokainen aliavaruuden span( v 1, v 2,..., v k ) alkio voidaan kirjoittaa täsmälleen yhdellä tavalla vektorien v 1, v 2,..., v k lineaarikombinaationa. LM1, Kesä /218
114 Perustelu: : Oletetaan, että jono ( v 1, v 2,..., v k ) on vapaa. Oletetaan, että w span( v 1, v 2,..., v k ). Tämä tarkoittaa, että w voidaan kirjoittaa ainakin yhdellä tavalla vektoreiden v 1,..., v k lineaarikombinaationa. Oletetaan nyt, että w = a 1 v a k v k ja w = b 1 v b k v k joillakin a 1,..., a k, b 1,..., b k R. Tällöin a 1 v a k v k = b 1 v b k v k, joten a 1 v a k v k (b 1 v b k v k ) = 0 ja edelleen (a 1 b 1 ) v (a k b k ) v k = 0. Jono ( v 1,..., v k ) on oletuksen mukaan vapaa, joten viimeisestä yhtälöstä seuraa, että a 1 b 1 = 0, a 2 b 2 = 0,..., a k b k = 0. Siten a 1 = b 1,..., a k = b k. Näin ollen vektoria w ei voida kirjoittaa lineaarikombinaationa usealla eri tavalla. LM1, Kesä /218
115 : Oletetaan, että jokainen aliavaruuden span( v 1,..., v k ) alkio voidaan kirjoittaa täsmälleen yhdellä tavalla vektorien v 1,..., v k lineaarikombinaationa. Osoitetaan, että jono ( v 1,..., v k ) on vapaa. Sitä varten oletetaan, että luvut c 1,..., c k R ovat sellaisia, että c 1 v 1 + c 2 v c k v k = 0. Koska vektori 0 on aliavaruuden span( v 1,..., v k ) alkio, se voidaan kirjoittaa vektorien lineaarikombinaationa täsmälleen yhdellä tavalla. Tiedetään, että 0 v v v k = 0, joten täytyy päteä c 1 = 0, c 2 = 0,..., c k = 0. Siten jono ( v 1, v 2,..., v k ) on vapaa. LM1, Kesä /218
116 Homogeeniset yhtälöryhmät Määritelmä Lineaarinen yhtälöryhmä, jonka kaikki vakiot ovat 0, on nimeltään homogeeninen yhtälöryhmä. a 11 x 1 + a 12 x a 1n x n = 0 a 21 x 1 + a 22 x a 2n x n = 0. =. a m1 x 1 + a m2 x a mn x n = 0 Huom. Homogeenisella yhtälöryhmällä on aina ainakin yksi ratkaisu: x 1 = 0, x 2 = 0,..., x n = 0. LM1, Kesä /218
117 Lause 18 Jos homogeenisessa yhtälöryhmässä tuntemattomien määrä n on suurempi kuin yhtälöiden määrä m, niin homogeenisella yhtälöryhmällä on äärettömän monta ratkaisua. Esim. n = 5 ja m = 3: a 11 x 1 + a 12 x 2 + a 13 x 3 + a 14 x 4 + a 15 x 5 = 0 a 21 x 1 + a 22 x 2 + a 23 x 3 + a 34 x 4 + a 25 x 5 = 0 a 31 x 1 + a 32 x 2 + a 33 x 3 + a 34 x 4 + a 35 x 5 = 0 Homogeenisella yhtälöryhmällä on ainakin yksi ratkaisu. Johtavia alkioita enintään yksi joka rivillä; siis enintään m kpl. Vapaita muuttujia on ainakin yksi, koska tuntemattomien määrä n > m; ts. yhtälöryhmän matriisissa on ainakin yksi sarake, jossa ei ole johtavaa alkiota! LM1, Kesä /218
118 Lause 19 Oletetaan, että v 1, v 2,..., v m R n, missä n {1, 2,...}. Jos m > n, niin jono ( v 1, v 2,..., v m ) on sidottu. Huom. Merkitsemällä v k = (v 1k, v 2k,..., v nk ) kaikilla k {1,..., m} saadaan yhtälöä x 1 v 1 + x 2 v x m v m = 0 vastaavaksi matriisiksi v 11 x 1 + v 12 x v 1n x m = 0 v 21 x 1 + v 22 x v 2n x m = 0. =. v n1 x 1 + v n2 x v nm x m = 0. LM1, Kesä /218
119 Huom. Jos homogeenisessa yhtälöryhmässä tuntemattomien määrä n on pienempi tai yhtä suuri kuin yhtälöiden määrä m, ei lausetta 18 voi käyttää. Ratkaisuja voi olla yksi (x 1 = 0,..., x n = 0) tai äärettömän monta. Esim. n = 2 ja m = 4: a 11 x 1 + a 12 x 2 = 0 a 21 x 1 + a 22 x 2 = 0 a 31 x 1 + a 32 x 2 = 0 a 41 x 1 + a 42 x 2 = 0 LM1, Kesä /218
120 Esimerkki 23 Oletetaan, että v 1, v 2, v 3 R n, missä n {1, 2,... }. Oletetaan lisäksi, että jono ( v 1, v 2, v 3 ) on vapaa. Onko jono tällöin vapaa? ( v 1 + v 2 + v 3, 2 v 1 v 2 + v 3, v 3 4 v 1 5 v 2 ) Oletetaan, että c 1, c 2 ja c 3 ovat sellaisia reaalilukuja, että c 1 ( v 1 + v 2 + v 3 ) + c 2 (2 v 1 v 2 + v 3 ) + c 3 ( v 3 4 v 1 5 v 2 ) = 0. Muokataa yhtälöä kertomalla sulut auki: c 1 v 1 + c 1 v 2 + c 1 v 3 + 2c 2 v 1 c 2 v 2 + c 2 v 3 + c 3 v 3 4c 3 v 1 5c 3 v 2 = 0. LM1, Kesä /218
121 Otetaan yhteisiksi tekijöiksi vektorit v 1, v 2 ja v 3 : (c 1 + 2c 2 4c 3 ) v 1 + (c 1 c 2 5c 3 ) v 2 + (c 1 + c 2 + c 3 ) v 3 = 0. Jono ( v 1, v 2, v 3 ) on oletuksen mukaan vapaa, joten saatu yhtälö toteutuu, jos ja vain jos sen kaikki kertoimet ovat nollia. Saadaan homogeeninen yhtälöryhmä c 1 + 2c 2 4c 3 = 0 c 1 c 2 5c 3 = 0 c 1 + c 2 + c 3 = Ainoa ratkaisu on c 1 = 0, c 2 = 0 ja c 3 = 0, joten alkuperäinen jono on vapaa. LM1, Kesä /218
122 Kanta Oletetaan, että v 1,..., v j R n, missä n {1, 2,...}. Merkitään W = span( v 1,..., v j ); ts. W on vektoreiden v 1,..., v j virittämä aliavaruus. Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden W kanta, jos (a) W = span( w 1, w 2,..., w k ) (b) ( w 1, w 2,..., w k ) on vapaa. LM1, Kesä /218
123 Kanta Esimerkki 24 Merkitään ē 1 = (1, 0) ja ē 2 = (0, 1). Osoitetaan, että jono (ē 1, ē 2 ) on avaruuden R 2 kanta. ē 2 ē 1 Huom. Lukion merkinnöillä kysymyksessä on jono (ī, j). Vastaavasti voidaan osoittaa, että jono (ē 1,..., ē n ) on avaruuden R n kanta. Vektorin ē i komponentit ovat nollia lukuunottamatta i:nnettä komponenttia, joka on 1. LM1, Kesä /218
124 Esimerkin 24 ratkaisu Käytetään kannan määritelmää: (a) Oletetaan, että w R 2. Tällöin w = (w 1, w 2 ) joillakin reaaliluvuilla w 1 ja w 2. Havaitaan, että w = w 1 (1, 0) + w 2 (0, 1) = w 1 ī + w 2 j. Näin mikä tahansa avaruuden R 2 vektori voidaan esittää vektoreiden ī ja j lineaarikombinaationa. Siten span(ī, j) = R 2. (b) Oletetaan, että c 1 ī + c 2 j = 0 joillakin c 1, c 2 R. Tällöin c 1 (1, 0) + c 2 (0, 1) = (0, 0) eli (c 1, c 2 ) = (0, 0), mistä seuraa, että c 1 = 0 ja c 2 = 0. Siis jono (ī, j) on vapaa. LM1, Kesä /218
125 Lause 20 Kanta ja koordinaatit Jono ( w 1,..., w k ) on aliavaruuden W kanta, jos ja vain jos jokainen aliavaruuden W vektori voidaan kirjoittaa täsmälleen yhdellä tavalla vektoreiden w 1,..., w k lineaarikombinaationa. Lause 20 mahdollistaa seuraavan määritelmän: Määritelmä Oletetaan, että B = ( w 1,..., w k ) on aliavaruuden W kanta. Oletetaan, että ū W. Vektorin ū koordinaateiksi kannan B suhteen kutsutaan reaalilukuja a 1,..., a k, joilla ū = a 1 w a k w k. LM1, Kesä /218
126 Lauseen 20 perustelu: : Oletetaan, että jono ( w 1,..., w k ) on aliavaruuden W kanta. Tällöin kannan määritelmän nojalla W = span( w 1,..., w k ) ja jono ( w 1,..., w k ) on vapaa. Lauseesta 17 seuraa, että jokainen aliavaruuden W = span( w 1,..., w k ) vektori voidaan kirjoittaa tasan yhdellä tavalla vektoreiden w 1,..., w k lineaarikombinaationa. : Oletetaan, että jokainen aliavaruuden W vektori voidaan kirjoittaa täsmälleen yhdellä tavalla vektoreiden w 1,..., w k lineaarikombinaationa. Tästä seuraa ensinnäkin, että W = span( w 1,..., w k ). Tämän jälkeen voidaan käyttää lausetta 17, jonka mukaan jono ( w 1,..., w k ) on tällöin vapaa. Näin kannan määritelmän molemmat ehdot täyttyvät. Siis ( w 1,..., w k ) on aliavaruuden W kanta. LM1, Kesä /218
127 Kanta ja koordinaatit Esimerkki 25 Merkitään w 1 = (2, 1), w 2 = (1, 3) ja ū = (8, 3). (a) Osoita lauseen 20 avulla, että ( w 1, w 2 ) on avaruuden R 2 kanta. (b) Määritä vektorin ū koordinaatit avaruuden R 2 ns. luonnollisen kannan E 2 = (ē 1, ē 2 ) suhteen. (c) Määritä vektorin ū koordinaatit kannan B = ( w 1, w 2 ) suhteen. LM1, Kesä /218
128 (a) Oletetaan, että v R 2. Ratkaistaan yhtälö x 1 w 1 + x 2 w 2 = v eli yhtälö x 1 (2, 1) + x 2 (1, 3) = (v 1, v 2 ). Komponenteittain: { 2x1 + x 2 = v 1 x 1 + 3x 2 = v 2. [ ] 2 1 v v 2 [ ] 1 0 (3v1 v 2 )/ (v 1 + 2v 2 )/7 Tasan yksi ratkaisu riippumatta vektorista v R 2. Siis jono ( w 1, w 2 ) on avaruuden R 2 kanta lauseen 20 nojalla. LM1, Kesä /218
129 Kanta ja koordinaatit (b) Vektorin ū = (8, 3) koordinaatit avaruuden R 2 luonnollisen kannan E 2 = (ē 1, ē 2 ) suhteen ovat 8 ja 3, sillä ū = 8(1, 0) + 3(0, 1) = 8ē 1 + 3ē 2. 3ē 2 ē 2 ū = 8ē 1 + 3ē 2 ē 1 8ē 1 LM1, Kesä /218
130 (c) Vektorin ū = (8, 3) koordinaatit avaruuden R 2 kannan B = ( w 1, w 2 ) suhteen saadaan a-kohdan avulla. Sen mukaan x 1 w 1 +x 2 w 2 = ū, jos ja vain jos { x1 = (3u 1 u 2 )/7 = (24 3)/7 = 3 x 2 = (u 1 + 2u 2 )/7 = (8 + 6)/7 = 2. Siis ū = 3 w w 2 eli kysytyt koordinaatit ovat 3 ja 2. LM1, Kesä /218
131 Kanta ja koordinaatit 2 w 2 w 2 ū = 3 w w 2 w 1 3 w 1 LM1, Kesä /218
132 Kanta ja dimensio Lause 21 Aliavaruuden W jokaisessa kannassa on yhtä monta vektoria. Lause 21 mahdollistaa seuraavan määritelmän: Määritelmä Aliavaruuden W kannan vektorien lukumäärä on aliavaruuden W dimensio. Sitä merkitään dim(w ). Jos aliavaruuden dimensio on n, sanotaan, että aliavaruus on n-ulotteinen. LM1, Kesä /218
133 Kanta ja dimensio Esimerkki 26 Esimerkin 24 mukaan vektorit ē 1 = (1, 0) ja ē 2 = (0, 1) muodostavat avaruuden R 2 kannan. Siten dim(r 2 ) = 2. ē 2 ē 1 Esimerkki 27 Merkitään v 1 = (3, 1, 5), v 2 = (2, 1, 3) ja v 3 = (0, 5, 1). Olkoon W = span( v 1, v 2, v 3 ). Määritä aliavaruuden W dimensio. LM1, Kesä /218
134 Esimerkin 27 ratkaisu Oletetaan, että ū R 3. Ratkaistaan yhtälö x 1 v 1 + x 2 v 2 + x 3 v 3 = ū eli yhtälö x 1 (3, 1, 5) + x 2 (2, 1, 3) + x 3 (0, 5, 1) = (u 1, u 2, u 3 ). Komponentteittain 3x 1 + 2x 2 = u 1 x 1 + x 2 5x 3 = u 2 5x 1 + 3x 2 + x 3 = u u u u (u 1 + 3u 2 )/ u (5u 3 + u 2 8u 1 )/5 LM1, Kesä /218
135 Havaitaan, että yhtälöryhmällä on ratkaisu, jos ja vain jos 5u 3 + u 2 8u 1 = 0. Siten W = span( v 1, v 2, v 3 ) = { (x, y, z) 8x + y + 5z = 0 } on origon kautta kulkeva taso, jonka yksi normaali on ( 8, 1, 5). Jos 5u 3 + u 2 8u 1 = 0, niin x 3 on vapaa muuttuja ja voidaan valita x 3 = 0. Siten jokainen tason vektori voidaan ilmaista vektoreiden v 1 ja v 2 lineaarikombinaationa; ts. W = span( v 1, v 2, v 3 ) = span( v 1, v 2 ). Lisäksi v 1 v 2, joten lauseen 15 nojalla jono ( v 1, v 2 ) on vapaa. Näin jono ( v 1, v 2 ) on avaruuden W kanta ja siten dim(w ) = 2. LM1, Kesä /218
136 Lauseen 21 perustelu: Oletetaan, että B = ( v 1,..., v j ) ja C = ( w 1,..., w k ) ovat aliavaruuden W kantoja. Pyritään osoittamaan, että j = k. Tehdään se osoittamalla, että muut vaihtoehdot j < k ja k < j johtavat ristiriitaan. Oletetaan, että j < k. Tarkastellaan yhtälöä x 1 w x k w k = 0. (1) Koska B on W :n kanta, voidaan kaikki kannan C vektorit kirjoittaa kannan B vektorien lineaarikombinaatioina: w 1 = a 11 v 1 + a 12 v a 1j v j w 2 = a 21 v 1 + a 22 v a 2j v j. w k = a k1 v 1 + a k2 v a kj v j LM1, Kesä /218
137 Sijoittamalla nämä yhtälöön 1 saadaan yhtäpitävä yhtälö: x 1 (a 11 v 1 + a 12 v a 1j v j ) + x 2 (a 21 v 1 + a 22 v a 2j v j ) + + x k (a k1 v 1 + a k2 v a kj v j ) = 0 ja edelleen ryhmittelemällä: (x 1 a 11 + x 2 a x k a k1 ) v 1 + (x 1 a 12 + x 2 a x k a k2 ) v (x 1 a 1j + x 2 a 2j + + x k a kj ) v j = 0 LM1, Kesä /218
138 Jono B = ( v 1,..., v j ) on kanta, joten se on vapaa. Siten edellinen yhtälö toteutuu, jos ja vain jos kaikki kertoimet ovat nollia: x 1 a 11 + x 2 a x k a k1 = 0 x 1 a 12 + x 2 a x k a k2 = 0. =. x 1 a 1j + x 2 a 2j + + x k a kj = 0 Kyseessä on homogeeninen yhtälöryhmä, jossa tuntemattomien määrä k on suurempi kuin yhtälöiden määrä j. Lauseen 18 mukaan yhtälöryhmällä on muitakin ratkaisuja kuin x 1 = 0,..., x k = 0. Siis jono C = ( w 1,..., w k ) on sidottu. Ristiriita! Tapaus j > k käsitellään vastaavasti. LM1, Kesä /218
139 Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä i j. Kantaa ( w 1,..., w k ) kutsutaan ortonormaaliksi, jos se on ortogonaalinen ja lisäksi sen kaikkien vektorien normi on yksi eli w i = 1 kaikilla i {1, 2,..., k}. LM1, Kesä /218
140 Ortogonaalinen ja ortonormaali kanta Huom. Oletetaan, että n {1, 2,...}. Avaruuden R n luonnollinen kanta E n = (ē 1,..., ē n ) on ortonormaali, sillä ē i ē j = 0, jos i j ja ē i = 1 kaikilla i. ē 2 ē 3 ē 1 LM1, Kesä /218
141 Ortogonaalinen ja ortonormaali kanta Projektiota voidaan käyttää kannan ortogonalisoimiseen (tästä lisää jatkokurssilla): Esimerkki 28 Merkitään v 1 = ( 1, 2) ja v 2 = (3, 1). Tällöin jono ( v 1, v 2 ) on avaruuden R 2 kanta. v 1 (Voit osoittaa sen käyttämällä lausetta 20 tai kannan määritelmää.) v 2 LM1, Kesä /218
142 Muodostetaan uusi jono ( w 1, w 2 ) seuraavasti: Valitaan w 1 = v 1. Valitaan w 2 = v 2 proj w1 ( v 2 ). w 1 = v 1 proj w1 ( v 2 ) v 2 w 2 = v 2 proj w1 ( v 2 ) LM1, Kesä /218
143 Näin saatu jono ( w 1, w 2 ) on avaruuden R 2 ortogonaalinen kanta. w 1 w 2 Tässä siis w 1 = ( 1, 2) ja w 2 = v 2 v 2 w 1 w 1 w 1 w 1 = (3, 1) + ( 1, 2) = (2, 1). LM1, Kesä /218
144 Vielä voidaan muodostaa uusi jono (ū 1, ū 2 ) seuraavasti: Valitaan ū 1 = 1 w 1 w 1. Valitaan ū 2 = 1 w 2 w 2. ū 1 ū 2 Jono (ū 1, ū 2 ) on avaruuden R 2 ortonormaali kanta. Tässä ū 1 = 1 5 ( 1, 2) ja ū 2 = 1 5 (2, 1). LM1, Kesä /218
145 Ortonormaali kanta Vektorin koordinaatit ortonormaalin kannan suhteen on helppo määrittää: Lause 22 Oletetaan, että B = (ū 1,..., ū k ) on aliavaruuden W ortonormaali kanta. Oletetaan, että w W. Tällöin vektorin w koordinaatit kannan B suhteen ovat w ū 1, w ū 2,..., w ū k eli w = ( w ū 1 )ū 1 + ( w ū 2 )ū ( w ū k )ū k. LM1, Kesä /218
146 Lauseen 22 perustelu: Oletetaan, että B = (ū 1,..., ū k ) on aliavaruuden W ortonormaali kanta. Tutkitaan vektorin w W koordinaatteja kannan B suhteen. Merkitään koordinaatteja a 1,..., a k ; ts. Huomataan, että w = a 1 ū 1 + a 2 ū a k ū k. w ū 1 = (a 1 ū 1 + a 2 ū a k ū k ) ū 1 = a 1 (ū 1 ū 1 ) + a 2 (ū 2 ū 1 ) + + a k (ū k ū 1 ) = a a a k 0 = a 1. Vastaavalla tavalla nähdään, että w ū i = a i kaikilla i {1, 2,..., k}. Vektorin w koordinaatit saadaan siis laskemalla kantavektorien pistetulo vektorin w kanssa. LM1, Kesä /218
147 Esimerkki 29 Vektorin w = (2, 9, 7) koordinaantit ortonormaalin kannan E 3 = (ē 1, ē 2, ē 3 ) suhteen ovat lauseen 22 nojalla w ē 1 = (2, 9, 7) (1, 0, 0) = 2, w ē 2 = (2, 9, 7) (0, 1, 0) = 9, w ē 3 = (2, 9, 7) (0, 0, 1) = 7. Siis w = 2ē 1 + 9ē 2 7ē 3. LM1, Kesä /218
148 Esimerkki 30 Ortonormaali kanta Tarkastellaan esimerkissä 28 muodostettua avaruuden R 2 ortonormaalia kantaa (ū 1, ū 2 ), jossa ū 1 = 1 5 ( 1, 2) ja ū 2 = 1 5 (2, 1). Vektorin v = (3, 4) koordinaatit tämän kannan suhteen ovat lauseen 22 nojalla v ū 1 = 1 ) ((3, 4) ( 1, 2) = 5 = 5, 5 5 v ū 2 = 1 ) ((3, 4) (2, 1) = 10 = LM1, Kesä /218
149 v = 5ū ū 2 5 ū1 ū 1 ū ū2 LM1, Kesä /218
150 Matriisit Määritelmä Reaalialkioinen m n -matriisi on reaalilukutaulukko, jossa on m riviä ja n saraketta. Esimerkiksi a 11 a a 1n a 21 a a 2n A =... a m1 a m2... a mn on m n -matriisi. Sanotaan, että matriisin A tyyppi on m n. Matriisissa olevia lukuja kutsutaan matriisin alkioiksi, ja rivillä i sarakkeessa j olevaa alkiota merkitään A(i, j) tai a ij. Kaikkien reaalialkioisten m n -matriisien joukkoa merkitään R m n. LM1, Kesä /218
151 Esimerkki 31 Merkitään B = Tällöin B on reaalikertoiminen 4 3 -matriisi eli B R 4 3. Nähdään, että B(1, 3) = 5 ja B(2, 2) = 11. LM1, Kesä /218
152 Määritelmä Matriisien yhteenlasku Oletetaan, että A, B R m n. Matriisien A ja B summa saadaan laskemalla yhteen samoissa kohdissa olevat alkiot. Tuloksena on m n -matriisi A + B, jolle pätee (A + B)(i, j) = A(i, j) + B(i, j). kaikilla i {1,..., m} ja j {1,..., n}. Esimerkiksi ( 1) = = Vain matriiseja, joilla on sama tyyppi, voidaan laskea yhteen. LM1, Kesä /218
Vektoreiden virittämä aliavaruus
Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotHavainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.
Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause
LisätiedotVektorien virittämä aliavaruus
Vektorien virittämä aliavaruus Esimerkki 13 Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w kuuluu vektoreiden v 1 = (3, 2, 1), v 2 = (2, 2, 6) ja v 3 = (3, 4, 5) virittämään
LisätiedotVapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotYhteenlaskun ja skalaarilla kertomisen ominaisuuksia
Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella
LisätiedotKannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
LisätiedotRistitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti
14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on
LisätiedotSuora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},
Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotOminaisvektoreiden lineaarinen riippumattomuus
Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin
LisätiedotVektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Lotta Oinonen ja Johanna Rämö 6. joulukuuta 2012 Helsingin yliopisto Matematiikan ja tilastotieteen laitos 2012 Sisältö 1 Avaruus R n 4 1 Avaruuksien R 2 ja R 3 vektorit.....................
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:
Lisätiedot7 Vapaus. 7.1 Vapauden määritelmä
7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan
LisätiedotLineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)
Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä
LisätiedotOrtogonaalinen ja ortonormaali kanta
Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä
LisätiedotEsimerkki 8. Ratkaise lineaarinen yhtälöryhmä. 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3. 0 13 26 4 8 32 r 3 4r 1. LM1, Kesä 2014 47/68
Esimerkki 8 Ratkaise lineaarinen yhtälöryhmä 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3 3 4 4 4 8 32 1 3 10 0 13 26 4 8 32 r 3 4r 1 1 3 10 3 4 4 r 2 3r 1 4 8 32 1 3 10 0 13 26 r 2 /13 0 4 8
LisätiedotOrtogonaalisen kannan etsiminen
Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 23.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Käytännön asioita Ensimmäiset tehtävät olivat sujuneet hyvin. Kansilehdet on oltava mukana tehtäviä palautettaessa,
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 27. marraskuuta 2015 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Vektoriavaruuksien R 2 ja R 3 vektorit........................
LisätiedotLineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 9 heinäkuuta 2013 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Avaruuksien R 2 ja R 3 vektorit 4 11 Kaksiulotteisen
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
Lisätiedot5 Lineaariset yhtälöryhmät
5 Lineaariset yhtälöryhmät Edellisen luvun lopun esimerkissä päädyttiin yhtälöryhmään, jonka ratkaisemisesta riippui, kuuluuko tietty vektori eräiden toisten vektorien virittämään aliavaruuteen Tämäntyyppisiä
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 11. syyskuuta 2016 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Vektoriavaruuksien R 2 ja R 3 vektorit........................
LisätiedotLineaariset yhtälöryhmät ja matriisit
Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää
LisätiedotBijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.
Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin
LisätiedotLineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.
Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat
Lisätiedot802320A LINEAARIALGEBRA OSA II
802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus
LisätiedotJAKSO 2 KANTA JA KOORDINAATIT
JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause
Lisätiedot1 Sisätulo- ja normiavaruudet
1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v
Lisätiedot6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio
6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.
LisätiedotMatikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210 Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2
LisätiedotMatikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )
LisätiedotHY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden
LisätiedotOminaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /310
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/310 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
LisätiedotAvaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotLineaarinen yhtälöryhmä
Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.
Lisätiedot10 Matriisit ja yhtälöryhmät
10 Matriisit ja yhtälöryhmät Tässä luvussa esitellään uusi tapa kirjoittaa lineaarinen yhtälöryhmä matriisien avulla käyttäen hyväksi matriisikertolaskua sekä sarakevektoreita Pilkotaan sitä varten yhtälöryhmän
LisätiedotTehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
LisätiedotVastaavasti, jos vektori kerrotaan positiivisella reaaliluvulla λ, niin
1 / 14 Lukiossa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Tarkastellaan aluksi tason vektoreita (R 2 ). Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
LisätiedotLineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila
Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
LisätiedotOminaisarvo ja ominaisvektori
Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
LisätiedotTehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin
LisätiedotKuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 25. lokakuuta 2015 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus... 111 16 Aliavaruus... 117 16.1 Vektoreiden
LisätiedotVille Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007
Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................
LisätiedotGaussin ja Jordanin eliminointimenetelmä
1 / 25 : Se on menetelmä lineaarisen yhtälöryhmän ratkaisemiseksi. Sitä käytetään myöhemmin myös käänteismatriisin määräämisessä. Ideana on tiettyjä rivioperaatioita käyttäen muokata yhtälöryhmää niin,
LisätiedotKantavektorien kuvavektorit määräävät lineaarikuvauksen
Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
LisätiedotVektorit, suorat ja tasot
, suorat ja tasot 1 / 22 Koulussa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä (x 1, x 2 ). Jos vektorin
LisätiedotA = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:
11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta
LisätiedotTekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).
Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä
LisätiedotDeterminantti 1 / 30
1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen
Lisätiedot9 Matriisit. 9.1 Matriisien laskutoimituksia
9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä
LisätiedotLineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi
Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja
Lisätiedot1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus.
Matematiikan kurssikoe, Maa4 Vektorit RATKAISUT Sievin lukio Keskiviikko 12.4.2017 VASTAA YHTEENSÄ VIITEEN TEHTÄVÄÄN! MAOL JA LASKIN/LAS- KINOHJELMAT OVAT SALLITTUJA! 1. Olkoot vektorit a, b ja c seuraavasti
LisätiedotVektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa
Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden
LisätiedotOppimistavoitematriisi
Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Arvosanaan 1 2 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä ja yhtälöpareja Osaan muokata
LisätiedotOppimistavoitematriisi
Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Esitiedot Arvosanaan 1 2 riittävät Arvosanaan 3 4 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä
LisätiedotLineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
LisätiedotVEKTORIT paikkavektori OA
paikkavektori OA Piste A = (2, -1) Paikkavektori OA = 2i j 3D: kuvan piirtäminen hankalaa Piste A = (2, -3, 4) Paikkavektori OA = 2i 3j + 4k Piste A = (a 1, a 2, a 3 ) Paikkavektori OA = a 1 i + a 2 j
LisätiedotMatriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo
Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Antti Rasila 2016 Vektoriavaruuden kannan olemassaolo Jos {v 1, v 2,..., v k } on äärellisulotteisen vektoriavaruuden V lineaarisesti riippumaton
Lisätiedot2.5. Matriisin avaruudet ja tunnusluvut
2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja
Lisätiedot3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h
HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)
LisätiedotLineaarialgebra (muut ko)
Lineaarialgebra (muut ko) p. 1/103 Lineaarialgebra (muut ko) Tero Laihonen Lineaarialgebra (muut ko) p. 2/103 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v
LisätiedotKanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
Lisätiedot1 Ominaisarvot ja ominaisvektorit
1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin
LisätiedotOsoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
LisätiedotDeterminantti. Määritelmä
Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi. Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j). (a) Jos n = 1, niin det(a) = a 11. (b) Muussa tapauksessa n det(a)
Lisätiedot9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista
29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n
LisätiedotSeuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117
Seuraava luento ti 31.10 on salissa XXII Lineaarialgebra (muut ko) p. 1/117 Lineaarialgebra (muut ko) p. 2/117 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v
Lisätiedot802118P Lineaarialgebra I (4 op)
802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 17.5.2017 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Martina Aaltonen, martina.aaltonen@helsinki.fi, 1/18 Siirry istumaan jonkun viereen. Kaikilla on
LisätiedotPistetulo eli skalaaritulo
Pistetulo eli skalaaritulo VEKTORIT, MAA4 Pistetulo on kahden vektorin välinen tulo. Tarkastellaan ensin kahden vektorin välistä kulmaa. Vektorien a ja, kun a 0, välinen kulma on (kuva) kovera kun a vektorit
LisätiedotJuuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( )
Kertaus K1. a) OA =- i + j + k K. b) B = (, 0, 5) K. a) AB = (6 -(- )) i + ( - ) j + (- -(- 7)) k = 8i - j + 4k AB = 8 + (- 1) + 4 = 64+ 1+ 16 = 81= 9 b) 1 1 ( ) AB = (--(- 1)) i + - - 1 j =-i - 4j AB
Lisätiedot3 Skalaari ja vektori
3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,
LisätiedotTehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1.
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 2 Ratkaisut palautettava viimeistään maanantaina 25.5.2015 klo 16.15. Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja
LisätiedotEnnakkotehtävän ratkaisu
Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb
Lisätiedotx = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
LisätiedotTalousmatematiikan perusteet: Luento 9
Talousmatematiikan perusteet: Luento 9 Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo ja pituus Vektorien välinen kulma Motivointi Tähän asti olemme tarkastelleet yhden
LisätiedotTekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.
Tekijä Pitkä matematiikka 4 9.1.016 79 a) Kuvasta nähdään, että a = 3i + j. b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. 5a b = 5(3i + j) ( i 4 j)
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotVektorialgebra 1/5 Sisältö ESITIEDOT: vektori
Vektorialgebra 1/5 Sisältö Skalaaritulo Vektoreiden yhteenlaskun ja skalaarilla kertomisen lisäksi vektoreiden välille voidaan määritellä myös kertolasku. Itse asiassa näitä on kaksi erilaista. Seurauksena
Lisätiedots = 11 7 t = = 2 7 Sijoittamalla keskimmäiseen yhtälöön saadaan: k ( 2) = 0 2k = 8 k = 4
BM0A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 5, Syksy 05. (a) i. Jotta vektori c sijaitsisi a:n ja b:n virittämällä tasolla, c on voitava esittää a:n ja b:n lineaarikombinaationa. c ta + sb
Lisätiedot9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa
9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.
Lisätiedot