Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218"

Transkriptio

1 Lineaarialgebra ja matriisilaskenta I LM1, Kesä /218

2 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }. Avaruuden R 2 alkioita kutsutaan vektoreiksi. Jos c R ja d R, niin (c, d) on avaruuden R 2 vektori ja sanotaan, että c ja d ovat vektorin (c, d) komponentit. Huom. Jos ū R 2, niin ū = (u 1, u 2 ) joillakin u 1 R ja u 2 R. LM1, Kesä /218

3 Havainnollistuksia: Avaruuden R 2 vektoria v = (v 1, v 2 ) voi ajatella tason pisteenä: (1,3) ( 3, 2) (3,1) ( 1, 2) v = (v 1, v 2 ) LM1, Kesä /218

4 Avaruuden R 2 vektoria v = (v 1, v 2 ) voi ajatella sitä vastaavan tason pisteen paikkavektorina: ( 3, 2) (1,3) (3,1) v = (v 1, v 2 ) ( 1, 2) LM1, Kesä /218

5 Avaruuden R 2 vektoria v = (v 1, v 2 ) voi ajatella lukiosta tuttuna tason vektorina: ( 3, 2) v = (v 1, v 2 ) (1, 3) ( 1, 2) (3,1) LM1, Kesä /218

6 Yhteenlasku ja skalaarikertolasku Määritelmä Oletetaan, että v = (v 1, v 2 ) R 2, w = (w 1, w 2 ) R 2 ja c R. Vektoreiden v ja w summa on vektori v + w = (v 1 + w 1, v 2 + w 2 ). Skalaarikertolasku tarkoittaa vektorin kertomista reaaliluvulla. On sovittu, että c v = (cv 1, cv 2 ). LM1, Kesä /218

7 Yhteenlasku ja skalaarikertolasku Esimerkki 1 Merkitään v = ( 5, 3) ja w = ( 2, 7). Lasketaan (a) v + w = ( 5, 3) + ( 2, 7) = ( 5 2, 3 7) = ( 7, 4) (b) 4 v = 4( 5, 3) = ( 20, 12) (c) 3 w = 3( 2, 7) = (6, 21) (d) 2 v + 6 w = ( 10, 6) + ( 12, 42) = ( 22, 36). LM1, Kesä /218

8 Havainnollistuksia: Vektoreiden yhteenlasku: w v + w w v v LM1, Kesä /218

9 Vektorin vastavektori ja vektoreiden erotus Määritelmä Vektorin v vastavektori on skalaarimonikerta ( 1) v. Sitä merkitään v. Vektoreiden v ja w erotus tarkoittaa summaa Sitä merkitään v w. v + ( w) = v + ( 1) w. LM1, Kesä /218

10 Havainnollistuksia: Vektorin kertominen skalaarilla: ū 3ū ū 2ū LM1, Kesä /218

11 Havainnollistuksia: Vektoreiden vähennyslasku: w v v w v w LM1, Kesä /218

12 Havainnollistuksia: Yhteenlasku vs. vähennyslasku: w v + w w w v w v w v v v LM1, Kesä /218

13 Avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja. Toisin sanottuna R n = { (v 1, v 2,..., v n ) v 1, v 2,..., v n R }. Avaruuden R n alkioita kutsutaan vektoreiksi. Jos u 1, u 2,..., u n R, niin ū = (u 1, u 2,..., u n ) on avaruuden R n vektori ja sanotaan, että u 1, u 2,..., u n ovat vektorin ū komponentit. LM1, Kesä /218

14 Yhteenlasku ja skalaarikertolasku Määritelmä Oletetaan, että v = (v 1,..., v n ) R n, w = (w 1,..., w n ) R n ja c R. Vektoreiden v ja w summa on vektori v + w = (v 1 + w 1, v 2 + w 2,..., v n + w n ). Skalaarikertolasku tarkoittaa vektorin kertomista reaaliluvulla. On sovittu, että c v = (cv 1, cv 2,..., cv n ). LM1, Kesä /218

15 Vektorin vastavektori ja vektoreiden erotus Määritelmä Vektorin v vastavektori on skalaarimonikerta ( 1) v. Sitä merkitään v. Vektoreiden v ja w erotus tarkoittaa summaa Sitä merkitään v w. v + ( w) = v + ( 1) w. LM1, Kesä /218

16 Esimerkki 2 Merkitään v = ( 5, 3, 0, 1, 1) ja w = ( 2, 4, 2, 3, 5). Tällöin v ja w ovat avaruuden R 5 vektoreita. Lasketaan (a) 2 v 3 w = ( 10, 6, 0, 2, 2) ( 6, 12, 6, 9, 15) = ( 4, 18, 6, 7, 17) (b) 5 v w = (25, 15, 0, 5, 5) ( 2, 4, 2, 3, 5) = (27, 11, 2, 8, 0). LM1, Kesä /218

17 Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella todeksi nojautumalla määritelmiin ja aikaisemmin perusteltuihin väitteisiin. LM1, Kesä /218

18 Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Alla esiintyvä vektori 0 = (0, 0,..., 0) on nimeltään nollavektori. Lause 1 Oletetaan, että v, w, ū R n ja a, c R. Tällöin (a) v + w = w + v (vaihdannaisuus) (b) (ū + v) + w = ū + ( v + w) (liitännäisyys) (c) v + 0 = v (d) v + ( v) = 0 (e) c( v + w) = c v + c w (osittelulaki) (f) (a + c) v = a v + c v (osittelulaki) (g) a(c v) = (ac) v (h) 1 v = v LM1, Kesä /218

19 Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Perustellaan malliksi kohta (a). Oletus: v, w R n. Väite: v + w = w + v. Perustelu: Oletuksesta v, w R n seuraa, että v = (v 1,..., v n ) ja w = (w 1,..., w n ) joillakin v 1,..., v n, w 1,..., w n R. Voidaan päätellä v + w (1) = (v 1 + w 1, v 2 + w 2,..., v n + w n ) (2) = (w 1 + v 1, w 2 + v 2,..., w n + v n ) (1) = w + v Kohdissa (1) käytetään yhteenlaskun määritelmää ja kohdassa (2) reaalilukujen yhteenlaskun vaihdannaisuutta. Huomaa, että komponentit ovat tavallisia reaalilukuja! LM1, Kesä /218

20 Yhdensuuntaisuus Määritelmä Oletetaan, että v R n ja w R n. Vektorit v ja w ovat yhdensuuntaiset, jos v = t w jollakin t R {0}. Tällöin merkitään v w. w w 2 w w Jos vektorit v ja w eivät ole yhdensuuntaiset, merkitään v w. LM1, Kesä /218

21 Lineaarikombinaatiot Määritelmä Oletetaan, että w R n ja v 1, v 2,..., v k R n. Vektori w on vektoreiden v 1, v 2,..., v k lineaarikombinaatio, jos on olemassa sellaiset reaaliluvut a 1, a 2,..., a k, että w = a 1 v 1 + a 2 v a k v k. LM1, Kesä /218

22 Lineaarikombinaatiot Esimerkki 3 Merkitään v 1 = (1, 1), v 2 = ( 1, 2) ja w = (5, 1). Vektori w on vektoreiden v 1 ja v 2 lineaarikombinaatio, sillä 3 v 1 2 v 2 = 3(1, 1) 2( 1, 2) = (3, 3) ( 2, 4) = (5, 1) = w. v 1 v 2 3 v 1 2 v 2 w w LM1, Kesä /218

23 Pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w v n w n. Huom. Pistetulo v w on reaaliluku! Esimerkki 4 Merkitään ū = (1, 2, 3) ja w = ( 3, 5, 2). Lasketaan ū w: ū w = 1 ( 3) ( 3) 2 = = 1. LM1, Kesä /218

24 Pistetulon ominaisuuksia Lause 2 Oletetaan, että v, w, ū R n ja c R. Tällöin (a) v w = w v (vaihdannaisuus) (b) v ( w + ū) = v w + v ū (osittelulaki) (c) (c v) w = c( v w) Huom. Muista, että lause tarkoittaa väitettä, joka voidaan perustella todeksi nojautumalla määritelmiin ja aikaisemmin perusteltuihin väitteisiin. LM1, Kesä /218

25 Pistetulon ominaisuuksia; kohdan (b) perustelu Oletus: v, w, ū R n. Väite: v ( w + ū) = v w + v ū. Perustelu: Oletuksesta v, w, ū R n seuraa, että v = (v 1,..., v n ), w = (w 1,..., w n ) ja ū = (u 1,..., u n ), missä kaikki komponentit ovat reaalilukuja. Voidaan päätellä v ( w + ū) (1) = (v 1,..., v n ) (w 1 + u 1, w 2 + u 2,..., w n + u n ) (2) = (v 1 (w 1 + u 1 ), v 2 (w 2 + u 2 ),..., v n (w n + u n )) (3) = (v 1 w 1 + v 1 u 1, v 2 w 2 + v 2 u 2,..., v n w n + v n u n ) (1) = (v 1 w 1, v 2 w 2,..., v n w n ) + (v 1 u 1, v 2 u 2,..., v n u n ) (2) = v w + v ū LM1, Kesä /218

26 Pistetulon ominaisuuksia; kohdan (b) perustelu Selityksiä: (1) vektorien yhteenlaskun määritelmä; (2) pistetulon määritelmä; (3) reaalilukujen laskusäännöt (osittelulaki). LM1, Kesä /218

27 Vektorin pistetulo itsensä kanssa Lause 3 Oletetaan, että v R n. Tällöin (a) v v 0. (b) v v = 0, jos ja vain jos v = 0. Perustelun ideat: (a) v v = v1 2 + v v n = 0. (b) Jos v v = 0, niin v1 2 + v v n 2 = 0. Tästä seuraa, että v 1 = 0 ja v 2 = 0 ja... ja v n = 0 (huomaa, että jokainen yhteenlaskettava vi 2 0). Siten v = (0, 0,..., 0) = 0. Jos v = 0, niin v v = = 0. LM1, Kesä /218

28 Määritelmä Vektorin v R n normi on Huom. Vektorin normi (eli pituus) v = v v. Jos v = (v 1, v 2,..., v n ), niin v = v v v 2 n. Normin määritelmästä seuraa, että v 2 = v v. v v v LM1, Kesä /218

29 Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) = 13. w = v = LM1, Kesä /218

30 Normin ominaisuuksia I Lause 4 Oletetaan, että v R n. Tällöin v = 0, jos ja vain jos v = 0. Perustelun idea lausetta 3 hyödyntäen: v = 0 v 2 = 0 v v = 0 v = 0. LM1, Kesä /218

31 Normin ominaisuuksia I Lause 5 Oletetaan, että v R n ja c R. Tällöin c v = c v. Perustelun idea lausetta 2 hyödyntäen: c v 2 = (c v) (c v) = c 2 ( v v) = c 2 v 2, joten c v = ±c v. Normit epänegatiivisia, joten c v = c v. LM1, Kesä /218

32 Yksikkövektorit Määritelmä Vektori ū R n on yksikkövektori, jos sen normi (eli pituus) on 1; ts. ū = 1. Huom. Tuttuja yksikkövektoreita avaruuden R 2 vektorit ī = (1, 0) ja j = (0, 1); avaruuden R 3 vektorit ī = (1, 0, 0), j = (0, 1, 0) ja k = (0, 0, 1). j ī LM1, Kesä /218

33 Yksikkövektorit Lause 6 Vektorin v R n { 0} suuntainen yksikkövektori on 1 v v. v v = v 1 5 v = 1 Voit perustella tämän hyödyntäen lausetta 5. LM1, Kesä /218

34 Vektoreiden välinen etäisyys Määritelmä Oletetaan, että v, w R n. Vektorien v ja w välinen etäisyys on d( v, w) = v w. Kaksi näkökulmaa: v v w v 2 w 2 v w v w v 1 w 1 w LM1, Kesä /218

35 Lause 7 (Schwarzin epäyhtälö) Normin ominaisuuksia II Oletetaan, että v R n ja w R n. Tällöin v w v w. Lause 8 (Kolmioepäyhtälö) Oletetaan, että v R n ja w R n. Tällöin v + w v + w. v + w w v LM1, Kesä /218

36 Vektorien välinen kulma Schwarzin epäyhtälöstä saadaan Lemma 9 Oletetaan, että v R n \ { 0} ja w R n \ { 0}. Tällöin 1 v w v w 1. LM1, Kesä /218

37 Määritelmä Vektorien välinen kulma Vektorien v R n \ { 0} ja w R n \ { 0} välinen kulma on se kulma α, jolle pätee 0 α 180 ja cos α = v w v w. Vektorit v R n ja w R n ovat ortogonaaliset eli kohtisuorassa toisiaan vastaan, jos v w = 0. Tällöin merkitään v w. w v LM1, Kesä /218

38 Havainnollistuksia: Kosinilauseen mukaan alla olevassa kolmiossa w v 2 = v 2 + w 2 2 v w cos α. w w v v Toisaalta normin määritelmän nojalla w v 2 = ( w v) ( w v) =... = v 2 + w 2 2( v w). Siten cos α = v w v w. LM1, Kesä /218

39 Lause 10 (Pythagoraan lause) Oletetaan, että v R n ja w R n. Vektorit v ja w ovat ortogonaaliset (eli kohtisuorassa toisiaan vastaan), jos ja vain jos v + w 2 = v 2 + w 2. v + w w v LM1, Kesä /218

40 Määritelmä Projektio Oletetaan, että n = 2 tai n = 3. Oletetaan, että v, w R n ja w 0. Vektorin v projektio vektorin w määräämälle suoralle on proj w ( v) = v w w w w. v proj w ( v) w LM1, Kesä /218

41 Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1, Kesä /218

42 Olkoon S avaruuden R n suora (n = 2). Tämä tarkoittaa, että missä p, v R n ja v 0. S = { p + t v t R}, Oletetaan, että a, b R. Jos (a, b) S, niin sanotaan, että piste (a, b) on suoralla S tai että suora S kulkee pisteen (a, b) kautta. t v (a, b) p Vastaavasti avaruudessa R 3. LM1, Kesä /218

43 Huom. Sama suora voidaan kirjoittaa joukkona { p + t v t R} usealla eri tavalla: vektoriksi p voidaan valita suoran minkä tahansa pisteen paikkavektori; vektoriksi v voidaan valita mikä tahansa suoran suuntainen vektori. v v p p LM1, Kesä /218

44 Esimerkki 5 (a) Määritä pisteiden A = (2, 3, 5) ja B = (4, 1, 7) kautta kulkeva suora S. (b) Määritä pisteen C = (4, 1, 9) etäisyys suorasta S. C B A LM1, Kesä /218

45 (a) Suoran jonkin pisteen paikkavektori; esim. OA = (2, 3, 5). Jokin suoran suuntainen vektori; esim. Näin AB = OB OA = (2, 4, 2). S = { OA + t AB t R } = { (2, 3, 5) + t(2, 4, 2) t R }. LM1, Kesä /218

46 Pisteen etäisyys suorasta Oletetaan, että n = 2 tai n = 3. Pisteen Q etäisyys suorasta S = { p + t v t R}, missä p, v R n ja v 0, saadaan projektion avulla: Q ā proj v (ā) v ā P proj v (ā) LM1, Kesä /218

47 (b) Vektori jostakin suoran pisteestä tutkittavaan pisteeseen; esim. AC = OC OA = (2, 2, 4). Jokin suoran suuntainen vektori; esim. AB = (2, 4, 2). Vektorin AC projektio suoralle S: Erotus proj AB ( AC) = AC AB AB AB AB = 20 AB = 5 AB AC proj AB ( AC) = AC 5 AB = (2, 2, 4) 5 (2, 4, 2) 6 Erotuksen normi = 1 6 (12 10, 12 20, 24 10) = 1 (1, 4, 7). 3 AC proj AB ( AC) = 1 3 (1, 4, 7) = = LM1, Kesä /218

48 Taso Määritelmä Avaruuden R 3 taso on joukko { p + s w + t v s, t R}, missä p, w, v R 3, w 0 v ja w v. Tässä p on tason jonkin pisteen paikkavektori ja v sekä w ovat kaksi tason suuntaista vektoria. w v p O LM1, Kesä /218

49 Olkoon T avaruuden R 3 taso. Tämä tarkoittaa, että T = { p + s w + t v s, t R}, missä p, w, v R 3, w 0 v ja w v. Oletetaan, että a, b, c R. Jos (a, b, c) T, niin sanotaan, että piste (a, b, c) on tasossa T tai että taso T kulkee pisteen (a, b, c) kautta. t v s w (a, b, c) p O LM1, Kesä /218

50 Huom. Sama taso voidaan kirjoittaa joukkona { p + s w + t v s, t R} usealla eri tavalla: vektoriksi p voidaan valita tason minkä tahansa pisteen paikkavektori; vektoreiksi w ja v voidaan valita mitkä tahansa tason suuntaisen vektorit, kunhan w v. w v w v p O p O LM1, Kesä /218

51 Esimerkki 6 Määritä pisteiden A = (0, 1, 0), B = ( 1, 3, 2) ja C = ( 2, 0, 1) kautta kulkeva taso T. C A B LM1, Kesä /218

52 Tason jonkin pisteen paikkavektori; esim. OA = (0, 1, 0). Jotkin tason suuntaiset vektorit; esim. AB = OB OA = ( 1, 2, 2) ja AC = OC OA = ( 2, 1, 1). Huomaa, että nämä eivät ole yhdensuuntaiset; ts. AB t AC kaikilla t R {0}. Näin T = { OA + s AB + t AC s, t R } = { (0, 1, 0) + s( 1, 2, 2) + t( 2, 1, 1) s, t R }. LM1, Kesä /218

53 Määritelmä Ristitulo Oletetaan, että v, w R 3. Vektorien v = (v 1, v 2, v 3 ) ja w = (w 1, w 2, w 3 ) ristitulo on vektori v w = (v 2 w 3 v 3 w 2, v 3 w 1 v 1 w 3, v 1 w 2 v 2 w 1 ). Muistisääntö ristitulon laskemiseen: yhtenäisellä viivalla yhdistettyjen komponenttien tulosta vähennetään katkoviivalla yhdistettyjen komponenttien tulo. v 1 v 2 v 3 v 1 v 2 w 1 w 2 w 3 w 1 w 2 LM1, Kesä /218

54 Ristitulo Esimerkki 7 Merkitään ā = (2, 1, 2) ja b = (3, 1, 3). Lasketaan ā b. ā b = ( 3 ( 2), 6 ( 6), 2 3) = ( 1, 12, 5) LM1, Kesä /218

55 Ristitulon ominaisuuksia Lause 11 Oletetaan, että ū, v, w R 3 ja c R. Tällöin (a) v w = ( w v) (antikommutointi) (b) ū ( v + w) = ū v + ū w (osittelulaki) (c) ( v + w) ū = v ū + w ū (osittelulaki) (d) c( v w) = (c v) w = v (c w) (e) v v = 0 (f) 0 v = 0 ja v 0 = 0 (g) ū ( v w) = (ū v) w Paina mieleesi erikoiset ominaisuudet (a), (e) ja (g)! v w w v LM1, Kesä /218

56 Ristitulon ominaisuuksia Lause 12 Oletetaan, että ū, v, w R 3. Tällöin (h) (ū v) w = (ū w) v ( v w)ū (i) ū ( v w) = (ū w) v (ū v) w (j) v w 2 = v 2 w 2 ( v w) 2 (Lagrangen identiteetti) Lagrangen identiteetti voidaan perustella kohtien (g) ja (h) avulla. Muut kohdat lauseissa 11 ja 12 voidaan perustella ristitulon määritelmään nojautuen. LM1, Kesä /218

57 Ristitulon ominaisuuksia Lause 13 Oletetaan, että v, w R 3. Tällöin (a) ( v w) v ja ( v w) w; v w (b) jos v 0 ja w 0, niin v w = v w sin α, missä α on vektorien v ja w välinen kulma. w v w sin Ristitulovektorin v w pituus on yhtä suuri kuin vektorien v ja w määräämän suunnikkaan ala! LM1, Kesä /218

58 Suuntaissärmiön tilavuus Suuntaissärmiön tilavuus on pohjan pinta-alan v w ja korkeuden h tulo. cos β = cos(180 β), joten h = ū cos β. Siis tilavuus on v w ū cos β = v w ū cos β = ( v w) ū h ū v v w w Tilavuus on ns. skalaarikolmitulon itseisarvo! LM1, Kesä /218

59 Pisteen etäisyys tasosta Pisteen Q etäisyys tasosta T saadaan ristitulon ja projektion avulla: v w P proj v w (ā) w ā v Q LM1, Kesä /218

60 Tason normaalimuotoinen yhtälö Piste Q = (x, y, z) on tasossa T, jos ja vain jos n ( q p) = 0, missä n on jokin tasoa T vastaan kohtisuora vektori (ns. tason T normaali). n q p Q P p q Huom. jos T = { p + s w + t v s, t R}, voidaan valita n = v w. O LM1, Kesä /218

61 Tason normaalimuotoinen yhtälö Esimerkki 8 Merkitään A = (0, 1, 0), B = ( 1, 3, 2) ja C = ( 2, 0, 1). Taso T kulkee pisteiden A, B ja C kautta. Määritä (a) tason T normaalimuotoinen yhtälö; (b) pisteen D = (1, 2, 3) etäisyys tasosta T. D C A B LM1, Kesä /218

62 (a) Jokin tason normaali; esim. tason suuntaisten vektoreiden AB = ( 1, 2, 2) ja AC = ( 2, 1, 1) ristitulo AB AC = (4, 3, 5). Vektori jostakin tason pisteestä pisteeseen Q = (x, y, z); esim. AQ = OQ OA = (x, y 1, z). Tason normaalimuotoinen yhtälö on näin ( AB AC) AQ = 0 eli (4, 3, 5) (x, y 1, z) = 0 4x 3(y 1) + 5z = 0 4x 3y + 5z + 3 = 0. LM1, Kesä /218

63 (b) Jokin tason normaali; esim. tason suuntaisten vektoreiden AB = ( 1, 2, 2) ja AC = ( 2, 1, 1) ristitulo AB AC = (4, 3, 5). Vektori jostakin tason pisteestä pisteeseen D = (1, 2, 3); esim. AD = OD OA = (1, 1, 3). Vektorin AD projektio normaalin n = AB AC määräämälle suoralle proj n ( AD n 16 8 AD) = n = (4, 3, 5) = (4, 3, 5). n n Projektion normi eli pituus proj n ( AD) = 8 25 (4, 3, 5) = = = LM1, Kesä /218

64 Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden joukkoa; ts. span( v 1, v 2,... v k ) = { a 1 v 1 + a 2 v a k v k a 1,..., a k R }. LM1, Kesä /218

65 Yhden vektorin virittämä aliavaruus Oletetaan, että n = 2 tai n = 3 ja v R n. Jos v = 0, niin vektorin v virittämä aliavaruus on span( 0) = { t 0 t R } = { 0} eli joukko, johon kuuluu ainoastaan nollavektori (origo). span( 0) LM1, Kesä /218

66 Yhden vektorin virittämä aliavaruus Jos v 0, niin vektorin v virittämä aliavaruus on span( v) = { t v t R } = { 0 + t v t R } eli origon kautta kulkeva suora. span( v) LM1, Kesä /218

67 Kahden vektorin virittämä aliavaruus Oletetaan, että v, w R 3. Jos w 0 v ja w v, niin vektoreiden v ja w virittämä aliavaruus on span( v, w) = { s v + t w s, t R } = { 0 + s v + t w s, t R } eli origon kautta kulkeva taso. Huom. jos oletukset w 0 v ja w v eivät ole voimassa, niin span( v, w) on suora tai origon yksiö. LM1, Kesä /218

68 Vektoreiden virittämän aliavaruuden ominaisuuksia Lause 14 Oletetaan, että v 1, v 2,..., v k R n. Tällöin (a) jos ū, w span( v 1,..., v k ), niin ū + w span( v 1,..., v k ). (b) jos w span( v 1,..., v k ) ja a R, niin a w span( v 1,..., v k ). (c) 0 span( v 1,..., v k ). LM1, Kesä /218

69 Lauseen 14 perustelu: (a) Oletetaan, että ū, w span( v 1,..., v k ). Tällöin ū = a 1 v a k v k ja w = c 1 v c k v k joillakin reaaliluvuilla a 1,..., a k ja c 1,..., c k. Näin ū + w = (a 1 v a k v k ) + (c 1 v c k v k ) = (a 1 + c 1 ) v (a k + c k ) v k, missä kertoimet a 1 + c 1,..., a k + c k R. Siis ū + w on vektoreiden v 1,..., v k lineaarikombinaatio; ts. ū + w span( v 1,..., v k ). (c) Nollavektori voidaan kirjoittaa muodossa Siis 0 span( v 1,..., v k ). 0 = 0 v v v k. LM1, Kesä /218

70 Vektoreiden virittämä aliavaruus Esimerkki 9 Selvitä, kuuluuko vektori w = (6, 3, 2, 1) vektoreiden v 1 = (0, 1, 2, 1), v 2 = (2, 0, 1, 1) ja v 3 = (4, 2, 2, 0) virittämään aliavaruuteen span( v 1, v 2, v 3 ). Toisin sanottuna selvitä, onko vektori w vektoreiden v 1, v 2 ja v 3 lineaarikombinaatio. Ts. selvitä, onko yhtälöllä x 1 v 1 + x 2 v 2 + x 3 v 3 = w eli yhtälöllä x 1 (0, 1, 2, 1) + x 2 (2, 0, 1, 1) + x 3 (4, 2, 2, 0) = ( 2, 3, 2, 1) ratkaisuja reaalilukujen joukossa. LM1, Kesä /218

71 Päädytään lineaariseen yhtälöryhmään 2x 2 + 4x 3 = 6 x 1 + 2x 3 = 3 2x 1 + x 2 + 2x 3 = 2 x 1 x 2 = 1, joka voidaan ratkaista Gaussin-Jordanin eliminointimenetelmällä. LM1, Kesä /218

72 Lineaarisen yhtälöryhmän ratkaiseminen Esimerkki 10 Muodostetaan lineaarisen yhtälöryhmän 2x 2 + 4x 3 = 6 x 1 + 2x 3 = 3 2x 1 + x 2 + 2x 3 = 2 x 1 x 2 = 1, täydennetty matriisi kokoamalla kaikki kertoimet ja vakiot taulukkoon: LM1, Kesä /218

73 Muunnetaan tämä matriisi alkeisrivitoimituksia käyttäen redusoiduksi porrasmatriisiksi. Teet alkeisrivitoimituksen, jos I. vaihdat matriisin kaksi riviä keskenään; II. kerrot rivin jollakin nollasta poikkeavalla reaaliluvulla; III. lisäät johonkin riviin jokin toisen rivin reaaliluvulla kerrottuna; / / / LM1, Kesä /218

74 Redusoidusta porrasmatriisista ratkaisut on helppo lukea: matriisia / / / vastaa yhtälöryhmä x 1 = 1/2 x 2 = 1/2 x 3 = 5/4 0 = 0, jossa alin yhtälö on aina tosi. LM1, Kesä /218

75 Miten tunnistan redusoidun porrasmatriisin? Ensinnäkin se on porrasmatriisi eli nollarivit ovat alimpina, jos niitä on; jokaisella rivillä ensimmäinen nollasta poikkeava alkio (eli johtava alkio) on ylemmän rivin johtavan alkion oikealla puolella. Esimerkki porrasmatriisista: LM1, Kesä /218

76 Miten tunnistan redusoidun porrasmatriisin? Se on porrasmatriisi. Jokaisen rivin johtava alkio on 1. Jokainen johtava alkio on sarakkeensa ainoa nollasta poikkeava alkio. Esimerkki redusoidusta porrasmatriisista: 0 1 3/ / / LM1, Kesä /218

77 Gaussin-Jordanin eliminointimenetelmän perusta Voidaan osoittaa, että jos lineaarisen yhtälöryhmän täydennettyä matriisia muokataan alkeisrivitoimituksilla, niin näin saatua uutta matriisia vastaavalla yhtälöryhmällä on täsmälleen samat ratkaisut kuin alkuperäisellä yhtälöryhmällä. a 11 a a 1n b 1 a 21 a a 2n b 2.. a m1 a m2... a mn b m alkeisrivi- toimituksia c 11 c c 1n d 1 c 21 c c 2n d 2.. c m1 c m2... c mn d m a 11 x a 1n x n = b 1 a 21 x a 2n x n = b 2. =.. a m1 x a mnx n = b m samat ratkaisut c 11 x c 1n x n = d 1 c 21 x c 2n x n = d 2. =.. c m1 x c mnx n = d m LM1, Kesä /218

78 Gaussin-Jordanin eliminointimenetelmä Kirjoita yhtälöryhmän täydennetty matriisi. Muuta se alkeisrivitoimituksilla porrasmatriisiksi. Ohjeita: porrasmatriisia muodostetaan vasemmalta oikealle ja ylhäältä alaspäin; johtavat alkiot kannattaa useimmiten muuttaa ykkösiksi; johtavien alkioiden avulla muutetaan niiden alapuolella olevat alkiot nolliksi. Muuta porrasmatriisi redusoiduksi porrasmatriisiksi. Ohjeita: redusoitua porrasmatriisia muodostetaan oikealta vasemmalle ja alhaalta ylöspäin; johtavien alkioiden avulla muutetaan niiden yläpuolella olevat alkiot nolliksi. Lue ratkaisut redusoidusta porrasmatriisista. Tee alkeisrivitoimitukset yksi kerrallaan! LM1, Kesä /218

79 Esimerkki 11 Ratkaise lineaarinen yhtälöryhmä 3x + 5y = 22 3x + 4y = 4 4x 8y = r 1 + r r 3 4r r 2 3r r 2 / LM1, Kesä /218

80 r 3 4r r 1 + 3r Vastaava yhtälöryhmä on x = 4 y = 2 0 = 0. Alin yhtälö on aina tosi, joten yhtälöryhmän ratkaisu on x = 4 ja y = 2. LM1, Kesä /218

81 Esimerkki 12 Ratkaise lineaarinen yhtälöryhmä { x + 2y + z = 8 3x 6y 3z = 21. [ ] r 2 + 3r 1 [ ] Vastaava yhtälöryhmä on { x + 2y + z = 8 0 = 3. Alin yhtälö on aina epätosi, joten yhtälöryhmällä ei ole ratkaisua. LM1, Kesä /218

82 Esimerkki 13 Ratkaise lineaarinen yhtälöryhmä 3x 1 + 3x 2 15x 3 = 9 x 1 2x 3 = 1 2x 1 x 2 x 3 = r 1 / r 3 2r r 2 r r LM1, Kesä /218

83 r 3 + 3r r 1 r Alinta riviä vastaava yhtälö 0 = 0 on aina tosi. Tuntematonta x 3 vastaavassa sarakkeessa ei ole johtavaa alkiota, joten se on ns. vapaa muuttuja. Merkitään x 3 = t, missä t R. Ratkaistaan muut tuntemattomat: x 1 2t = 1 { x1 = 1 + 2t x 2 t = 2 t R. x 2 = 2 + t, 0 = 0 LM1, Kesä /218

84 Esimerkki 14 Lineaarisen yhtälöryhmän täydennetty matriisi muutettiin alkeisrivitoimituksilla redusoiduksi porrasmatriisiksi: Mikä on yhtälöryhmän ratkaisu? Havaitaan, että johtavat alkiot (rivien ensimmäiset nollasta poikkeavat alkiot) ovat sarakkeissa 1, 3 ja 6. Muita sarakkeita vastaavat tuntemattomat x 2, x 4 ja x 5 ovat vapaita muuttujia. Merkitään x 2 = r, x 4 = s ja x 5 = t, missä r, s, t R. LM1, Kesä /218

85 Yhtälöryhmä on tällöin x 1 + 3r + 4s = 0 x 3 + 2s = 0 x 6 = 3 x 1 = 3r 4s x 3 = 2s x 6 = 3. Ratkaisu on siis x 1 = 3r 4s x 2 = r x 3 = 2s x 4 = s x 5 = t x 6 = 3, r, s, t R. LM1, Kesä /218

86 Esimerkki 15 Tarkastellaan yhtälöryhmää x + y + kz = 1 x + ky + z = 1 kx + y + z = 2. Määritä ne reaaliluvut k, joilla tällä yhtälöryhmällä (a) ei ole ratkaisua; (b) on tasan yksi ratkaisu; (c) on äärettömän paljon ratkaisuja. LM1, Kesä /218

87 1 1 k k 1 1 k 1 1 r 2 r 1 0 k 1 1 k 0 k k r 3 kr k 1 0 k 1 1 k k 1 k 2 2 k r 3 + r k 1 0 k 1 1 k 0 r 2 /(k 1) k k 2 2 k Oletus: k k k k 2 2 k LM1, Kesä /218

88 Oletus: k 1 0 eli k 1. Alimman rivin johtavassa alkiossa esiintyy k, joten tarkastellaan eri tapaukset. Jos kerroin 2 k k 2 = 0 eli k = 2 (tai k = 1) on periaatteessa kaksi mahdollisuutta: Jos myös vakio 2 k = 0 eli k = 2, niin yhtälöllä on äärettömän monta ratkaisua. Alinta riviä nimittäin vastaa yhtälö 0 = 0 ja x 3 on vapaa muuttuja. Jos vakio 2 k 0 eli k 2, ei nyt voida päätellä mitään, koska on mahdotonta, että yhtä aikaa k = 2 ja k 2. Jos kerroin 2 k k 2 0 eli k 2 ja k 1, niin saadaan ratkaistua x 3 = ( 2 k)/(2 k k 2 ) ja ylemmistä yhtälöistä saadaan muut tuntemattomat. Yhtälöryhmällä on tasan yksi ratkaisu. LM1, Kesä /218

89 Tapaus k 1 = 0 eli k = 1. Yhtälöryhmä on tällöin x + y + z = 1 x + y + z = 1 x + y + z = 2. Ylin ja alin yhtälö ovat keskenään ristiriitaiset, joten yhtälöryhmällä ei ole ratkaisua. Yhteenveto: (a) ei ratkaisua, jos ja vain jos k = 1; (b) tasan yksi ratkaisu, jos ja vain jos k 2 ja k 1; (c) äärettömän monta ratkaisua, jos ja vain jos k = 2. LM1, Kesä /218

90 Vektorien virittämä aliavaruus Esimerkki 16 Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w kuuluu vektoreiden v 1 = (3, 2, 1), v 2 = (2, 2, 6) ja v 3 = (3, 4, 5) virittämään aliavaruuteen span( v 1, v 2, v 3 )? Toisin sanottuna: Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w on vektoreiden v 1, v 2 ja v 3 lineaarikombinaatio? LM1, Kesä /218

91 Tarkastellaan yhtälöä x 1 v 1 + x 2 v 2 + x 3 v 3 = w eli yhtälöä x 1 (3, 2, 1) + x 2 (2, 2, 6) + x 3 (3, 4, 5) = (w 1, w 2, w 3 ). Muokataan vastaavan yhtälöryhmän täydennetty matriisi porrasmatriisiksi: w 1 ( 1) r w w w 2 r 2 2r w w w w 2 + 2w w 1 r 3 3r w w 2 + 2w w 1 + 3w 3 r 3 2r 2 r 1 LM1, Kesä /218

92 1 6 5 w w 2 + 2w 3 r 2 / w 1 + 3w 3 2(w 2 + 2w 3 ) w /5 (w 2 + 2w 3 )/ w 1 2w 2 w 3 Havaitaan, että yhtälöryhmällä on ratkaisuja, jos ja vain jos w 1 2w 2 w 3 = 0. Siten span( v 1, v 2, v 3 ) = { w R 3 w 1 2w 2 w 3 = 0 } = { (x, y, z) R 3 x 2y z = 0 } eli origon kautta kulkeva taso, jonka yksi normaali on (1, 2, 1). LM1, Kesä /218

93 Vektorien virittämä aliavaruus Esimerkki 17 Merkitään ī = (1, 0) ja j = (0, 1). Osoita, että span(ī, j) = R 2. Toisin sanottuna: osoita, että jokainen avaruuden R 2 vektori voidaan esittää vektoreiden ī ja j lineaarikombinaationa. j ī LM1, Kesä /218

94 Oletetaan, että w R 2. Tällöin w = (w 1, w 2 ) joillakin reaaliluvuilla w 1 ja w 2. Huomataan, että w 1 ī + w 2 j = w 1 (1, 0) + w 2 (0, 1) = (w 1, 0) + (0, w 2 ) = (w 1, w 2 ) = w. Siis w voidaan kirjoittaa vektoreiden ī ja j lineaarikombinaationa eli w span(ī, j). Näin on osoitettu, että R 2 span(ī, j). Toinen suunta span(ī, j) R 2 on selvä, koska jokainen vektoreiden ī, j R 2 lineaarikombinaatio kuuluu avaruuteen R 2. LM1, Kesä /218

95 Vektoreiden virittämä aliavaruus Esimerkki 18 Onko totta, että span( v 1, v 2, v 3, v 4 ) = R 3, jos (a) v 1 = (1, 1, 0), v 2 = (1, 0, 1), v 3 = (0, 1, 1) ja v 4 = ( 2, 1, 1)? (b) v 1 = (1, 1, 0), v 2 = ( 1, 0, 1), v 3 = (0, 1, 1) ja v 4 = (2, 1, 1)? Kielteisessä tapauksessa määritä span( v 1, v 2, v 3, v 4 ). Myönteisessä tapauksessa tutki, kuinka monella tavalla vektori w = (w 1, w 2, w 3 ) voidaan esittää vektoreiden v 1, v 2, v 3 ja v 4 lineaarikombinaationa. LM1, Kesä /218

96 (a) Tarkastellaan yhtälöä x 1 v 1 + x 2 v 2 + x 3 v 3 + x 4 v 4 = w. Muokataan vastaavan yhtälöryhmän täydennetty matriisi joksikin porrasmatriisiksi: w w w w w 1 w (w 3 + w 2 w 1 )/2 Havaitaan, että yhtälöryhmällä on aina ratkaisu; itseasiassa niitä on äärettömän monta, koska x 4 on vapaa muuttuja. Siis span( v 1, v 2, v 3, v 4 ) = R 3 ja jokainen avaruuden R 3 vektori voidaan esittää äärettömän monella tavalla vektoreiden v 1, v 2, v 3 ja v 4 lineaarikombinaationa. LM1, Kesä /218

97 (b) Tarkastellaan yhtälöä x 1 v 1 + x 2 v 2 + x 3 v 3 + x 4 v 4 = w. Muokataan vastaavan yhtälöryhmän täydennetty matriisi joksikin porrasmatriisiksi: w w w w w 1 w w 1 + w 2 + w 3. Havaitaan, että yhtälöryhmällä on ratkaisu, jos ja vain jos w 1 + w 2 + w 3 = 0. Siten span( v 1, v 2, v 3, v 4 ) = { w R 3 w 1 + w 2 + w 3 = 0 } = { (x, y, z) R 3 x + y + z = 0 } eli origon kautta kulkeva taso, jonka yksi normaali on (1, 1, 1). LM1, Kesä /218

98 Jos w 1 + w 2 + w 3 = 0, niin vektori w voidaan esittää vektoreiden v 1, v 2, v 3 ja v 4 lineaarikombinaationa äärettömän monella tavalla, sillä x 3 ja x 4 ovat vapaita muuttujia. Erityisesti voidaan valita x 3 = 0 ja x 4 = 0 ja saadaan esitys w = w 2 v 1 + ( w 1 w 2 ) v 2. Näin ollen span( v 1, v 2, v 3, v 4 ) = span( v 1, v 2 ). LM1, Kesä /218

99 Havaintoja Edellisen esimerkin perusteella: Joskus osajono virittää saman aliavaruuden kuin alkuperäinen virittäjäjono ( v 1,..., v k ). Joskus aliavaruuden span( v 1,..., v k ) vektorit voidaan esittää usealla eri tavalla virittäjävektorien lineaarikombinaatioina. Miten löytää virittäjäjono, jossa ei ole turhia vektoreita? Miten löytää sellainen virittäjäjono, että kaikki aliavaruuden vektorit voidaan esittää tasan yhdellä tavalla virittäjävektorien lineaarikombinaatioina? LM1, Kesä /218

100 Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Jos jono ( v 1, v 2,..., v k ) on vapaa, sanotaa, että vektorit v 1, v 2,..., v k ovat lineaarisesti riippumattomia. Jos jono ei ole vapaa, sanotaan, että se on sidottu. LM1, Kesä /218

101 Esimerkki 19 Merkitään v 1 = (1, 2) ja v 2 = ( 3, 1). Onko jono ( v 1, v 2 ) vapaa vai sidottu? v 1 v 2 LM1, Kesä /218

102 Oletetaan, että c 1 v 1 + c 2 v 2 = 0 joillakin reaaliluvuilla c 1 ja c 2. Tällöin c 1 (1, 2) + c 2 ( 3, 1) = (0, 0) eli komponentteittain: { c1 3c 2 = 0 2c 1 c 2 = 0. Ratkaistaan tästä c 1 ja c 2 : [ ] [ ] r 2 2r r 2 /5 [ ] [ ] r1 + 3r Ainoa ratkaisu on c 1 = 0 ja c 2 = 0. Jono ( v 1, v 2 ) on vapaa. LM1, Kesä /218

103 Esimerkki 20 Merkitään v 1 = (1, 2), v 2 = ( 3, 1) ja v 3 = ( 1, 1). Onko jono ( v 1, v 2, v 3 ) vapaa vai sidottu? v 3 v 1 v 2 LM1, Kesä /218

104 Oletetaan, että c 1 v 1 + c 2 v 2 + c 3 v 3 = 0 joillakin c 1, c 2, c 3 R. Tällöin c 1 (1, 2) + c 2 ( 3, 1) + c 3 ( 1, 1) = (0, 0) eli komponentteittain: { c1 3c 2 c 3 = 0 2c 1 c 2 + c 3 = 0. Ratkaistaan tästä c 1 ja c 2 : [ ] [ ] r 2 2r r 2 /5 [ ] [ ] r1 + 3r / / /5 0 Voidaan valita esimerkiksi c 3 = 5, jolloin c 2 = 3 ja c 1 = 4. Näin 4 v 1 3 v v 3 = 0. Jono ( v 1, v 2, v 3 ) on sidottu. LM1, Kesä /218

105 5 v 3 4 v 1 3 v 2 4 v 1 3 v v 3 = 0 LM1, Kesä /218

106 Esimerkki 21 Merkitään w 1 = (2, 1) ja w 2 = ( 4, 2). Onko jono ( w 1, w 2 ) vapaa vai sidottu? w 1 w 2 Esimerkiksi 2 w 1 + w 2 = 0, joten jono ( w 1, w 2 ) on sidottu. LM1, Kesä /218

107 Vähintään kahdesta vektorista muodostuva vektorijono on sidottu, jos ja vain jos jokin sen vektoreista voidaan ilmaista toisten lineaarikombinaationa: Lause 15 Oletetaan, että v 1,..., v k R n, missä k 2 ja n {1, 2,...}. (a) Jono ( v 1 ) on sidottu, jos ja vain jos v = 0. (b) Jono ( v 1,..., v k ) on sidottu, jos ja vain jos v i span( v 1,..., v i 1, v i+1,..., v k ) jollakin i {1,..., k}. LM1, Kesä /218

108 Perustelu: (a) Tarkastellaan eri mahdollisuudet: Jos v 1 = 0, niin esim. 8 v 1 = 8 0 = 0. Siis jono ( v 1 ) on sidottu. Jos v 1 0, niin t v 1 = 0 t = 0. Siis jono ( v 1 ) on vapaa. Havaitaan, että jono ( v 1 ) on sidottu, jos ja vain jos v 1 = 0. (b) : Oletetaan, että jono ( v 1,..., v k ) on sidottu. Tällöin c 1 v c k v k = 0, missä ainakin yksi kertoimista c i 0. Oletetaan, että esim. c 2 0. Tällöin c 2 v 2 = c 1 v 1 c 3 v 3 c k v k ja v 2 = c 1 v 1 + c 3 c 2 c 2 v c k c 2 v k. Tässä jokainen c i /c 2 R, joten v 2 span( v 1, v 3,..., v k ). LM1, Kesä /218

109 : Oletetaan, että esimerkiksi v 3 span( v 1, v 2, v 4,..., v k ). Tällöin v 3 = a 1 v 1 + a 2 v 2 + a 4 v a k v k joillakin reaaliluvuilla a 1, a 2, a 4,..., a k. Siten 0 = a 1 v 1 + a 2 v 2 v 3 + a 4 v a k v k. Tässä ainakin vektorin v 3 kerroin 1 0, joten jono ( v 1,..., v k ) on sidottu. LM1, Kesä /218

110 Esimerkki 22 Merkitään v 1 = (1, 1, 0), v 2 = (1, 1, 0), v 3 = (0, 0, 2) ja v 4 = (3, 1, 0). Tällöin esimerkiksi 2 v 1 + v v 3 v 4 = 0, joten jono ( v 1, v 2, v 3, v 4 ) on sidottu. Lisäksi esimerkiksi v 2 = 2 v v 3 + v 4 mutta v 3 a v 1 + b v 2 + c v 4 kaikilla a, b, c R. LM1, Kesä /218

111 Lause 16 Vapaan jonon osajono on vapaa. Huom. Osajono tarkoittaa jonoa, joka saadaan jättämällä alkuperäisestä jonosta pois yksi tai useampia vektoreita. Myös alkuperäinen jono sellaisenaan on yksi osajono. Lauseista 16 ja 15 seuraa, että vapaassa jonossa ( v 1, v 2,..., v k ) ei ole nollavektoria; jokainen vektori esiintyy vain kerran; v i v j kaikilla i j. LM1, Kesä /218

112 Lauseen 16 perustelun idea: Oletetaan, että v 1,..., v 5 R n ja jono ( v 1,..., v 5 ) on vapaa. Osoitetaan, että sen osajono ( v 2, v 4, v 5 ) on vapaa. Tarkastellaan yhtälöä x v 2 + y v 4 + z v 5 = 0: x v 2 + y v 4 + z v 5 = 0 0 v 1 + x v v 3 + y v 4 + z v 5 = 0 Oletuksen mukaan jono ( v 1, v 2, v 3, v 4, v 5 ) on vapaa, joten oikeanpuoleinen yhtälö toteutuu vain, jos kaikki kertoimet ovat nollia. Tästä seuraa, että vasemmanpuoleisen yhtälön ainoa ratkaisu on x = 0, y = 0 ja z = 0. Siis jono ( v 2, v 4, v 5 ) on vapaa. LM1, Kesä /218

113 Jos virittäjäjono on vapaa, niin kaikki aliavaruuden vektorit voidaan esittää tasan yhdellä tavalla virittäjävektorien lineaarikombinaatioina: Lause 17 Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,...}. Jono ( v 1, v 2,..., v k ) on vapaa, jos ja vain jos jokainen aliavaruuden span( v 1, v 2,..., v k ) alkio voidaan kirjoittaa täsmälleen yhdellä tavalla vektorien v 1, v 2,..., v k lineaarikombinaationa. LM1, Kesä /218

114 Perustelu: : Oletetaan, että jono ( v 1, v 2,..., v k ) on vapaa. Oletetaan, että w span( v 1, v 2,..., v k ). Tämä tarkoittaa, että w voidaan kirjoittaa ainakin yhdellä tavalla vektoreiden v 1,..., v k lineaarikombinaationa. Oletetaan nyt, että w = a 1 v a k v k ja w = b 1 v b k v k joillakin a 1,..., a k, b 1,..., b k R. Tällöin a 1 v a k v k = b 1 v b k v k, joten a 1 v a k v k (b 1 v b k v k ) = 0 ja edelleen (a 1 b 1 ) v (a k b k ) v k = 0. Jono ( v 1,..., v k ) on oletuksen mukaan vapaa, joten viimeisestä yhtälöstä seuraa, että a 1 b 1 = 0, a 2 b 2 = 0,..., a k b k = 0. Siten a 1 = b 1,..., a k = b k. Näin ollen vektoria w ei voida kirjoittaa lineaarikombinaationa usealla eri tavalla. LM1, Kesä /218

115 : Oletetaan, että jokainen aliavaruuden span( v 1,..., v k ) alkio voidaan kirjoittaa täsmälleen yhdellä tavalla vektorien v 1,..., v k lineaarikombinaationa. Osoitetaan, että jono ( v 1,..., v k ) on vapaa. Sitä varten oletetaan, että luvut c 1,..., c k R ovat sellaisia, että c 1 v 1 + c 2 v c k v k = 0. Koska vektori 0 on aliavaruuden span( v 1,..., v k ) alkio, se voidaan kirjoittaa vektorien lineaarikombinaationa täsmälleen yhdellä tavalla. Tiedetään, että 0 v v v k = 0, joten täytyy päteä c 1 = 0, c 2 = 0,..., c k = 0. Siten jono ( v 1, v 2,..., v k ) on vapaa. LM1, Kesä /218

116 Homogeeniset yhtälöryhmät Määritelmä Lineaarinen yhtälöryhmä, jonka kaikki vakiot ovat 0, on nimeltään homogeeninen yhtälöryhmä. a 11 x 1 + a 12 x a 1n x n = 0 a 21 x 1 + a 22 x a 2n x n = 0. =. a m1 x 1 + a m2 x a mn x n = 0 Huom. Homogeenisella yhtälöryhmällä on aina ainakin yksi ratkaisu: x 1 = 0, x 2 = 0,..., x n = 0. LM1, Kesä /218

117 Lause 18 Jos homogeenisessa yhtälöryhmässä tuntemattomien määrä n on suurempi kuin yhtälöiden määrä m, niin homogeenisella yhtälöryhmällä on äärettömän monta ratkaisua. Esim. n = 5 ja m = 3: a 11 x 1 + a 12 x 2 + a 13 x 3 + a 14 x 4 + a 15 x 5 = 0 a 21 x 1 + a 22 x 2 + a 23 x 3 + a 34 x 4 + a 25 x 5 = 0 a 31 x 1 + a 32 x 2 + a 33 x 3 + a 34 x 4 + a 35 x 5 = 0 Homogeenisella yhtälöryhmällä on ainakin yksi ratkaisu. Johtavia alkioita enintään yksi joka rivillä; siis enintään m kpl. Vapaita muuttujia on ainakin yksi, koska tuntemattomien määrä n > m; ts. yhtälöryhmän matriisissa on ainakin yksi sarake, jossa ei ole johtavaa alkiota! LM1, Kesä /218

118 Lause 19 Oletetaan, että v 1, v 2,..., v m R n, missä n {1, 2,...}. Jos m > n, niin jono ( v 1, v 2,..., v m ) on sidottu. Huom. Merkitsemällä v k = (v 1k, v 2k,..., v nk ) kaikilla k {1,..., m} saadaan yhtälöä x 1 v 1 + x 2 v x m v m = 0 vastaavaksi matriisiksi v 11 x 1 + v 12 x v 1n x m = 0 v 21 x 1 + v 22 x v 2n x m = 0. =. v n1 x 1 + v n2 x v nm x m = 0. LM1, Kesä /218

119 Huom. Jos homogeenisessa yhtälöryhmässä tuntemattomien määrä n on pienempi tai yhtä suuri kuin yhtälöiden määrä m, ei lausetta 18 voi käyttää. Ratkaisuja voi olla yksi (x 1 = 0,..., x n = 0) tai äärettömän monta. Esim. n = 2 ja m = 4: a 11 x 1 + a 12 x 2 = 0 a 21 x 1 + a 22 x 2 = 0 a 31 x 1 + a 32 x 2 = 0 a 41 x 1 + a 42 x 2 = 0 LM1, Kesä /218

120 Esimerkki 23 Oletetaan, että v 1, v 2, v 3 R n, missä n {1, 2,... }. Oletetaan lisäksi, että jono ( v 1, v 2, v 3 ) on vapaa. Onko jono tällöin vapaa? ( v 1 + v 2 + v 3, 2 v 1 v 2 + v 3, v 3 4 v 1 5 v 2 ) Oletetaan, että c 1, c 2 ja c 3 ovat sellaisia reaalilukuja, että c 1 ( v 1 + v 2 + v 3 ) + c 2 (2 v 1 v 2 + v 3 ) + c 3 ( v 3 4 v 1 5 v 2 ) = 0. Muokataa yhtälöä kertomalla sulut auki: c 1 v 1 + c 1 v 2 + c 1 v 3 + 2c 2 v 1 c 2 v 2 + c 2 v 3 + c 3 v 3 4c 3 v 1 5c 3 v 2 = 0. LM1, Kesä /218

121 Otetaan yhteisiksi tekijöiksi vektorit v 1, v 2 ja v 3 : (c 1 + 2c 2 4c 3 ) v 1 + (c 1 c 2 5c 3 ) v 2 + (c 1 + c 2 + c 3 ) v 3 = 0. Jono ( v 1, v 2, v 3 ) on oletuksen mukaan vapaa, joten saatu yhtälö toteutuu, jos ja vain jos sen kaikki kertoimet ovat nollia. Saadaan homogeeninen yhtälöryhmä c 1 + 2c 2 4c 3 = 0 c 1 c 2 5c 3 = 0 c 1 + c 2 + c 3 = Ainoa ratkaisu on c 1 = 0, c 2 = 0 ja c 3 = 0, joten alkuperäinen jono on vapaa. LM1, Kesä /218

122 Kanta Oletetaan, että v 1,..., v j R n, missä n {1, 2,...}. Merkitään W = span( v 1,..., v j ); ts. W on vektoreiden v 1,..., v j virittämä aliavaruus. Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden W kanta, jos (a) W = span( w 1, w 2,..., w k ) (b) ( w 1, w 2,..., w k ) on vapaa. LM1, Kesä /218

123 Kanta Esimerkki 24 Merkitään ē 1 = (1, 0) ja ē 2 = (0, 1). Osoitetaan, että jono (ē 1, ē 2 ) on avaruuden R 2 kanta. ē 2 ē 1 Huom. Lukion merkinnöillä kysymyksessä on jono (ī, j). Vastaavasti voidaan osoittaa, että jono (ē 1,..., ē n ) on avaruuden R n kanta. Vektorin ē i komponentit ovat nollia lukuunottamatta i:nnettä komponenttia, joka on 1. LM1, Kesä /218

124 Esimerkin 24 ratkaisu Käytetään kannan määritelmää: (a) Oletetaan, että w R 2. Tällöin w = (w 1, w 2 ) joillakin reaaliluvuilla w 1 ja w 2. Havaitaan, että w = w 1 (1, 0) + w 2 (0, 1) = w 1 ī + w 2 j. Näin mikä tahansa avaruuden R 2 vektori voidaan esittää vektoreiden ī ja j lineaarikombinaationa. Siten span(ī, j) = R 2. (b) Oletetaan, että c 1 ī + c 2 j = 0 joillakin c 1, c 2 R. Tällöin c 1 (1, 0) + c 2 (0, 1) = (0, 0) eli (c 1, c 2 ) = (0, 0), mistä seuraa, että c 1 = 0 ja c 2 = 0. Siis jono (ī, j) on vapaa. LM1, Kesä /218

125 Lause 20 Kanta ja koordinaatit Jono ( w 1,..., w k ) on aliavaruuden W kanta, jos ja vain jos jokainen aliavaruuden W vektori voidaan kirjoittaa täsmälleen yhdellä tavalla vektoreiden w 1,..., w k lineaarikombinaationa. Lause 20 mahdollistaa seuraavan määritelmän: Määritelmä Oletetaan, että B = ( w 1,..., w k ) on aliavaruuden W kanta. Oletetaan, että ū W. Vektorin ū koordinaateiksi kannan B suhteen kutsutaan reaalilukuja a 1,..., a k, joilla ū = a 1 w a k w k. LM1, Kesä /218

126 Lauseen 20 perustelu: : Oletetaan, että jono ( w 1,..., w k ) on aliavaruuden W kanta. Tällöin kannan määritelmän nojalla W = span( w 1,..., w k ) ja jono ( w 1,..., w k ) on vapaa. Lauseesta 17 seuraa, että jokainen aliavaruuden W = span( w 1,..., w k ) vektori voidaan kirjoittaa tasan yhdellä tavalla vektoreiden w 1,..., w k lineaarikombinaationa. : Oletetaan, että jokainen aliavaruuden W vektori voidaan kirjoittaa täsmälleen yhdellä tavalla vektoreiden w 1,..., w k lineaarikombinaationa. Tästä seuraa ensinnäkin, että W = span( w 1,..., w k ). Tämän jälkeen voidaan käyttää lausetta 17, jonka mukaan jono ( w 1,..., w k ) on tällöin vapaa. Näin kannan määritelmän molemmat ehdot täyttyvät. Siis ( w 1,..., w k ) on aliavaruuden W kanta. LM1, Kesä /218

127 Kanta ja koordinaatit Esimerkki 25 Merkitään w 1 = (2, 1), w 2 = (1, 3) ja ū = (8, 3). (a) Osoita lauseen 20 avulla, että ( w 1, w 2 ) on avaruuden R 2 kanta. (b) Määritä vektorin ū koordinaatit avaruuden R 2 ns. luonnollisen kannan E 2 = (ē 1, ē 2 ) suhteen. (c) Määritä vektorin ū koordinaatit kannan B = ( w 1, w 2 ) suhteen. LM1, Kesä /218

128 (a) Oletetaan, että v R 2. Ratkaistaan yhtälö x 1 w 1 + x 2 w 2 = v eli yhtälö x 1 (2, 1) + x 2 (1, 3) = (v 1, v 2 ). Komponenteittain: { 2x1 + x 2 = v 1 x 1 + 3x 2 = v 2. [ ] 2 1 v v 2 [ ] 1 0 (3v1 v 2 )/ (v 1 + 2v 2 )/7 Tasan yksi ratkaisu riippumatta vektorista v R 2. Siis jono ( w 1, w 2 ) on avaruuden R 2 kanta lauseen 20 nojalla. LM1, Kesä /218

129 Kanta ja koordinaatit (b) Vektorin ū = (8, 3) koordinaatit avaruuden R 2 luonnollisen kannan E 2 = (ē 1, ē 2 ) suhteen ovat 8 ja 3, sillä ū = 8(1, 0) + 3(0, 1) = 8ē 1 + 3ē 2. 3ē 2 ē 2 ū = 8ē 1 + 3ē 2 ē 1 8ē 1 LM1, Kesä /218

130 (c) Vektorin ū = (8, 3) koordinaatit avaruuden R 2 kannan B = ( w 1, w 2 ) suhteen saadaan a-kohdan avulla. Sen mukaan x 1 w 1 +x 2 w 2 = ū, jos ja vain jos { x1 = (3u 1 u 2 )/7 = (24 3)/7 = 3 x 2 = (u 1 + 2u 2 )/7 = (8 + 6)/7 = 2. Siis ū = 3 w w 2 eli kysytyt koordinaatit ovat 3 ja 2. LM1, Kesä /218

131 Kanta ja koordinaatit 2 w 2 w 2 ū = 3 w w 2 w 1 3 w 1 LM1, Kesä /218

132 Kanta ja dimensio Lause 21 Aliavaruuden W jokaisessa kannassa on yhtä monta vektoria. Lause 21 mahdollistaa seuraavan määritelmän: Määritelmä Aliavaruuden W kannan vektorien lukumäärä on aliavaruuden W dimensio. Sitä merkitään dim(w ). Jos aliavaruuden dimensio on n, sanotaan, että aliavaruus on n-ulotteinen. LM1, Kesä /218

133 Kanta ja dimensio Esimerkki 26 Esimerkin 24 mukaan vektorit ē 1 = (1, 0) ja ē 2 = (0, 1) muodostavat avaruuden R 2 kannan. Siten dim(r 2 ) = 2. ē 2 ē 1 Esimerkki 27 Merkitään v 1 = (3, 1, 5), v 2 = (2, 1, 3) ja v 3 = (0, 5, 1). Olkoon W = span( v 1, v 2, v 3 ). Määritä aliavaruuden W dimensio. LM1, Kesä /218

134 Esimerkin 27 ratkaisu Oletetaan, että ū R 3. Ratkaistaan yhtälö x 1 v 1 + x 2 v 2 + x 3 v 3 = ū eli yhtälö x 1 (3, 1, 5) + x 2 (2, 1, 3) + x 3 (0, 5, 1) = (u 1, u 2, u 3 ). Komponentteittain 3x 1 + 2x 2 = u 1 x 1 + x 2 5x 3 = u 2 5x 1 + 3x 2 + x 3 = u u u u (u 1 + 3u 2 )/ u (5u 3 + u 2 8u 1 )/5 LM1, Kesä /218

135 Havaitaan, että yhtälöryhmällä on ratkaisu, jos ja vain jos 5u 3 + u 2 8u 1 = 0. Siten W = span( v 1, v 2, v 3 ) = { (x, y, z) 8x + y + 5z = 0 } on origon kautta kulkeva taso, jonka yksi normaali on ( 8, 1, 5). Jos 5u 3 + u 2 8u 1 = 0, niin x 3 on vapaa muuttuja ja voidaan valita x 3 = 0. Siten jokainen tason vektori voidaan ilmaista vektoreiden v 1 ja v 2 lineaarikombinaationa; ts. W = span( v 1, v 2, v 3 ) = span( v 1, v 2 ). Lisäksi v 1 v 2, joten lauseen 15 nojalla jono ( v 1, v 2 ) on vapaa. Näin jono ( v 1, v 2 ) on avaruuden W kanta ja siten dim(w ) = 2. LM1, Kesä /218

136 Lauseen 21 perustelu: Oletetaan, että B = ( v 1,..., v j ) ja C = ( w 1,..., w k ) ovat aliavaruuden W kantoja. Pyritään osoittamaan, että j = k. Tehdään se osoittamalla, että muut vaihtoehdot j < k ja k < j johtavat ristiriitaan. Oletetaan, että j < k. Tarkastellaan yhtälöä x 1 w x k w k = 0. (1) Koska B on W :n kanta, voidaan kaikki kannan C vektorit kirjoittaa kannan B vektorien lineaarikombinaatioina: w 1 = a 11 v 1 + a 12 v a 1j v j w 2 = a 21 v 1 + a 22 v a 2j v j. w k = a k1 v 1 + a k2 v a kj v j LM1, Kesä /218

137 Sijoittamalla nämä yhtälöön 1 saadaan yhtäpitävä yhtälö: x 1 (a 11 v 1 + a 12 v a 1j v j ) + x 2 (a 21 v 1 + a 22 v a 2j v j ) + + x k (a k1 v 1 + a k2 v a kj v j ) = 0 ja edelleen ryhmittelemällä: (x 1 a 11 + x 2 a x k a k1 ) v 1 + (x 1 a 12 + x 2 a x k a k2 ) v (x 1 a 1j + x 2 a 2j + + x k a kj ) v j = 0 LM1, Kesä /218

138 Jono B = ( v 1,..., v j ) on kanta, joten se on vapaa. Siten edellinen yhtälö toteutuu, jos ja vain jos kaikki kertoimet ovat nollia: x 1 a 11 + x 2 a x k a k1 = 0 x 1 a 12 + x 2 a x k a k2 = 0. =. x 1 a 1j + x 2 a 2j + + x k a kj = 0 Kyseessä on homogeeninen yhtälöryhmä, jossa tuntemattomien määrä k on suurempi kuin yhtälöiden määrä j. Lauseen 18 mukaan yhtälöryhmällä on muitakin ratkaisuja kuin x 1 = 0,..., x k = 0. Siis jono C = ( w 1,..., w k ) on sidottu. Ristiriita! Tapaus j > k käsitellään vastaavasti. LM1, Kesä /218

139 Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä i j. Kantaa ( w 1,..., w k ) kutsutaan ortonormaaliksi, jos se on ortogonaalinen ja lisäksi sen kaikkien vektorien normi on yksi eli w i = 1 kaikilla i {1, 2,..., k}. LM1, Kesä /218

140 Ortogonaalinen ja ortonormaali kanta Huom. Oletetaan, että n {1, 2,...}. Avaruuden R n luonnollinen kanta E n = (ē 1,..., ē n ) on ortonormaali, sillä ē i ē j = 0, jos i j ja ē i = 1 kaikilla i. ē 2 ē 3 ē 1 LM1, Kesä /218

141 Ortogonaalinen ja ortonormaali kanta Projektiota voidaan käyttää kannan ortogonalisoimiseen (tästä lisää jatkokurssilla): Esimerkki 28 Merkitään v 1 = ( 1, 2) ja v 2 = (3, 1). Tällöin jono ( v 1, v 2 ) on avaruuden R 2 kanta. v 1 (Voit osoittaa sen käyttämällä lausetta 20 tai kannan määritelmää.) v 2 LM1, Kesä /218

142 Muodostetaan uusi jono ( w 1, w 2 ) seuraavasti: Valitaan w 1 = v 1. Valitaan w 2 = v 2 proj w1 ( v 2 ). w 1 = v 1 proj w1 ( v 2 ) v 2 w 2 = v 2 proj w1 ( v 2 ) LM1, Kesä /218

143 Näin saatu jono ( w 1, w 2 ) on avaruuden R 2 ortogonaalinen kanta. w 1 w 2 Tässä siis w 1 = ( 1, 2) ja w 2 = v 2 v 2 w 1 w 1 w 1 w 1 = (3, 1) + ( 1, 2) = (2, 1). LM1, Kesä /218

144 Vielä voidaan muodostaa uusi jono (ū 1, ū 2 ) seuraavasti: Valitaan ū 1 = 1 w 1 w 1. Valitaan ū 2 = 1 w 2 w 2. ū 1 ū 2 Jono (ū 1, ū 2 ) on avaruuden R 2 ortonormaali kanta. Tässä ū 1 = 1 5 ( 1, 2) ja ū 2 = 1 5 (2, 1). LM1, Kesä /218

145 Ortonormaali kanta Vektorin koordinaatit ortonormaalin kannan suhteen on helppo määrittää: Lause 22 Oletetaan, että B = (ū 1,..., ū k ) on aliavaruuden W ortonormaali kanta. Oletetaan, että w W. Tällöin vektorin w koordinaatit kannan B suhteen ovat w ū 1, w ū 2,..., w ū k eli w = ( w ū 1 )ū 1 + ( w ū 2 )ū ( w ū k )ū k. LM1, Kesä /218

146 Lauseen 22 perustelu: Oletetaan, että B = (ū 1,..., ū k ) on aliavaruuden W ortonormaali kanta. Tutkitaan vektorin w W koordinaatteja kannan B suhteen. Merkitään koordinaatteja a 1,..., a k ; ts. Huomataan, että w = a 1 ū 1 + a 2 ū a k ū k. w ū 1 = (a 1 ū 1 + a 2 ū a k ū k ) ū 1 = a 1 (ū 1 ū 1 ) + a 2 (ū 2 ū 1 ) + + a k (ū k ū 1 ) = a a a k 0 = a 1. Vastaavalla tavalla nähdään, että w ū i = a i kaikilla i {1, 2,..., k}. Vektorin w koordinaatit saadaan siis laskemalla kantavektorien pistetulo vektorin w kanssa. LM1, Kesä /218

147 Esimerkki 29 Vektorin w = (2, 9, 7) koordinaantit ortonormaalin kannan E 3 = (ē 1, ē 2, ē 3 ) suhteen ovat lauseen 22 nojalla w ē 1 = (2, 9, 7) (1, 0, 0) = 2, w ē 2 = (2, 9, 7) (0, 1, 0) = 9, w ē 3 = (2, 9, 7) (0, 0, 1) = 7. Siis w = 2ē 1 + 9ē 2 7ē 3. LM1, Kesä /218

148 Esimerkki 30 Ortonormaali kanta Tarkastellaan esimerkissä 28 muodostettua avaruuden R 2 ortonormaalia kantaa (ū 1, ū 2 ), jossa ū 1 = 1 5 ( 1, 2) ja ū 2 = 1 5 (2, 1). Vektorin v = (3, 4) koordinaatit tämän kannan suhteen ovat lauseen 22 nojalla v ū 1 = 1 ) ((3, 4) ( 1, 2) = 5 = 5, 5 5 v ū 2 = 1 ) ((3, 4) (2, 1) = 10 = LM1, Kesä /218

149 v = 5ū ū 2 5 ū1 ū 1 ū ū2 LM1, Kesä /218

150 Matriisit Määritelmä Reaalialkioinen m n -matriisi on reaalilukutaulukko, jossa on m riviä ja n saraketta. Esimerkiksi a 11 a a 1n a 21 a a 2n A =... a m1 a m2... a mn on m n -matriisi. Sanotaan, että matriisin A tyyppi on m n. Matriisissa olevia lukuja kutsutaan matriisin alkioiksi, ja rivillä i sarakkeessa j olevaa alkiota merkitään A(i, j) tai a ij. Kaikkien reaalialkioisten m n -matriisien joukkoa merkitään R m n. LM1, Kesä /218

151 Esimerkki 31 Merkitään B = Tällöin B on reaalikertoiminen 4 3 -matriisi eli B R 4 3. Nähdään, että B(1, 3) = 5 ja B(2, 2) = 11. LM1, Kesä /218

152 Määritelmä Matriisien yhteenlasku Oletetaan, että A, B R m n. Matriisien A ja B summa saadaan laskemalla yhteen samoissa kohdissa olevat alkiot. Tuloksena on m n -matriisi A + B, jolle pätee (A + B)(i, j) = A(i, j) + B(i, j). kaikilla i {1,..., m} ja j {1,..., n}. Esimerkiksi ( 1) = = Vain matriiseja, joilla on sama tyyppi, voidaan laskea yhteen. LM1, Kesä /218

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v. Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause

Lisätiedot

Vektorien virittämä aliavaruus

Vektorien virittämä aliavaruus Vektorien virittämä aliavaruus Esimerkki 13 Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w kuuluu vektoreiden v 1 = (3, 2, 1), v 2 = (2, 2, 6) ja v 3 = (3, 4, 5) virittämään

Lisätiedot

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R}, Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Lotta Oinonen ja Johanna Rämö 6. joulukuuta 2012 Helsingin yliopisto Matematiikan ja tilastotieteen laitos 2012 Sisältö 1 Avaruus R n 4 1 Avaruuksien R 2 ja R 3 vektorit.....................

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä) Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä

Lisätiedot

Ortogonaalinen ja ortonormaali kanta

Ortogonaalinen ja ortonormaali kanta Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä

Lisätiedot

Esimerkki 8. Ratkaise lineaarinen yhtälöryhmä. 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3. 0 13 26 4 8 32 r 3 4r 1. LM1, Kesä 2014 47/68

Esimerkki 8. Ratkaise lineaarinen yhtälöryhmä. 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3. 0 13 26 4 8 32 r 3 4r 1. LM1, Kesä 2014 47/68 Esimerkki 8 Ratkaise lineaarinen yhtälöryhmä 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3 3 4 4 4 8 32 1 3 10 0 13 26 4 8 32 r 3 4r 1 1 3 10 3 4 4 r 2 3r 1 4 8 32 1 3 10 0 13 26 r 2 /13 0 4 8

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 23.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Käytännön asioita Ensimmäiset tehtävät olivat sujuneet hyvin. Kansilehdet on oltava mukana tehtäviä palautettaessa,

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 27. marraskuuta 2015 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Vektoriavaruuksien R 2 ja R 3 vektorit........................

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 9 heinäkuuta 2013 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Avaruuksien R 2 ja R 3 vektorit 4 11 Kaksiulotteisen

Lisätiedot

5 Lineaariset yhtälöryhmät

5 Lineaariset yhtälöryhmät 5 Lineaariset yhtälöryhmät Edellisen luvun lopun esimerkissä päädyttiin yhtälöryhmään, jonka ratkaisemisesta riippui, kuuluuko tietty vektori eräiden toisten vektorien virittämään aliavaruuteen Tämäntyyppisiä

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 11. syyskuuta 2016 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Vektoriavaruuksien R 2 ja R 3 vektorit........................

Lisätiedot

Lineaariset yhtälöryhmät ja matriisit

Lineaariset yhtälöryhmät ja matriisit Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

JAKSO 2 KANTA JA KOORDINAATIT

JAKSO 2 KANTA JA KOORDINAATIT JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210 Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210 Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2

Lisätiedot

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81 Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )

Lisätiedot

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/310 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 25. lokakuuta 2015 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus... 111 16 Aliavaruus... 117 16.1 Vektoreiden

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kantavektorien kuvavektorit määräävät lineaarikuvauksen Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin

Lisätiedot

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla: 11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta

Lisätiedot

9 Matriisit. 9.1 Matriisien laskutoimituksia

9 Matriisit. 9.1 Matriisien laskutoimituksia 9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä

Lisätiedot

Oppimistavoitematriisi

Oppimistavoitematriisi Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Arvosanaan 1 2 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä ja yhtälöpareja Osaan muokata

Lisätiedot

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden

Lisätiedot

Oppimistavoitematriisi

Oppimistavoitematriisi Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Esitiedot Arvosanaan 1 2 riittävät Arvosanaan 3 4 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä

Lisätiedot

Lineaarialgebra (muut ko)

Lineaarialgebra (muut ko) Lineaarialgebra (muut ko) p. 1/103 Lineaarialgebra (muut ko) Tero Laihonen Lineaarialgebra (muut ko) p. 2/103 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v

Lisätiedot

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.

Lisätiedot

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Antti Rasila 2016 Vektoriavaruuden kannan olemassaolo Jos {v 1, v 2,..., v k } on äärellisulotteisen vektoriavaruuden V lineaarisesti riippumaton

Lisätiedot

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista 29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n

Lisätiedot

Determinantti. Määritelmä

Determinantti. Määritelmä Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi. Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j). (a) Jos n = 1, niin det(a) = a 11. (b) Muussa tapauksessa n det(a)

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa. LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 17.5.2017 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Martina Aaltonen, martina.aaltonen@helsinki.fi, 1/18 Siirry istumaan jonkun viereen. Kaikilla on

Lisätiedot

Pistetulo eli skalaaritulo

Pistetulo eli skalaaritulo Pistetulo eli skalaaritulo VEKTORIT, MAA4 Pistetulo on kahden vektorin välinen tulo. Tarkastellaan ensin kahden vektorin välistä kulmaa. Vektorien a ja, kun a 0, välinen kulma on (kuva) kovera kun a vektorit

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( )

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( ) Kertaus K1. a) OA =- i + j + k K. b) B = (, 0, 5) K. a) AB = (6 -(- )) i + ( - ) j + (- -(- 7)) k = 8i - j + 4k AB = 8 + (- 1) + 4 = 64+ 1+ 16 = 81= 9 b) 1 1 ( ) AB = (--(- 1)) i + - - 1 j =-i - 4j AB

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1.

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 2 Ratkaisut palautettava viimeistään maanantaina 25.5.2015 klo 16.15. Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja

Lisätiedot

3 Skalaari ja vektori

3 Skalaari ja vektori 3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,

Lisätiedot

Seuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117

Seuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117 Seuraava luento ti 31.10 on salissa XXII Lineaarialgebra (muut ko) p. 1/117 Lineaarialgebra (muut ko) p. 2/117 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v

Lisätiedot

Talousmatematiikan perusteet: Luento 9

Talousmatematiikan perusteet: Luento 9 Talousmatematiikan perusteet: Luento 9 Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo ja pituus Vektorien välinen kulma Motivointi Tähän asti olemme tarkastelleet yhden

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.

Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. Tekijä Pitkä matematiikka 4 9.1.016 79 a) Kuvasta nähdään, että a = 3i + j. b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. 5a b = 5(3i + j) ( i 4 j)

Lisätiedot

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori Vektorialgebra 1/5 Sisältö Skalaaritulo Vektoreiden yhteenlaskun ja skalaarilla kertomisen lisäksi vektoreiden välille voidaan määritellä myös kertolasku. Itse asiassa näitä on kaksi erilaista. Seurauksena

Lisätiedot

s = 11 7 t = = 2 7 Sijoittamalla keskimmäiseen yhtälöön saadaan: k ( 2) = 0 2k = 8 k = 4

s = 11 7 t = = 2 7 Sijoittamalla keskimmäiseen yhtälöön saadaan: k ( 2) = 0 2k = 8 k = 4 BM0A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 5, Syksy 05. (a) i. Jotta vektori c sijaitsisi a:n ja b:n virittämällä tasolla, c on voitava esittää a:n ja b:n lineaarikombinaationa. c ta + sb

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

Similaarisuus. Määritelmä. Huom.

Similaarisuus. Määritelmä. Huom. Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP

Lisätiedot

Tekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r.

Tekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r. Tekijä Pitkä matematiikka 4 16.12.2016 K1 Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r. 3 r s = 0 4 r+ 4s = 2 12r 4s = 0 + r+ 4s = 2 13 r = 2 r = 2 13 2 Sijoitetaan r = esimerkiksi yhtälöparin

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Talousmatematiikan perusteet: Luento 8. Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo

Talousmatematiikan perusteet: Luento 8. Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo Talousmatematiikan perusteet: Luento 8 Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo Motivointi Esim. Herkkumatikka maksaa 50 /kg. Paljonko

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

2 / :03

2 / :03 file:///c:/users/joonas/desktop/linis II Syksy /Ratkaisuehdotukse / 8 76 3:3 Kysymys Pisteet,, Määritellään positiivisten reaalilukujen joukossa R + = {x R x > } yhteenlasku ja skalaarikertolasku seuraavasti:

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

Suorista ja tasoista LaMa 1 syksyllä 2009

Suorista ja tasoista LaMa 1 syksyllä 2009 Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden

Lisätiedot

Laudatur 5 MAA5 ratkaisut kertausharjoituksiin. Peruskäsitteitä 282. Vastaus: CA = a b, = BA + AC BA = BC AC = AC CB. Vastaus: DC = AC BC

Laudatur 5 MAA5 ratkaisut kertausharjoituksiin. Peruskäsitteitä 282. Vastaus: CA = a b, = BA + AC BA = BC AC = AC CB. Vastaus: DC = AC BC Laudatur 5 MAA5 ratkaisut kertausharjoituksiin Peruskäsitteitä 8. CA CB + BA BC AB b a a b DA DB + BA ( BC) + ( AB) b a a b Vastaus: CA a b, DA a b 8. DC DA + AC BA + AC BA BC AC ( BC AC ) + AC AC CB Vastaus:

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

Matemaattinen Analyysi / kertaus

Matemaattinen Analyysi / kertaus Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen

Lisätiedot

Käänteismatriisin ominaisuuksia

Käänteismatriisin ominaisuuksia Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. 4 Suora ja taso Ennakkotehtävät 1. a) Kappale kulkee yhdessä sekunnissa vektorin s, joten kahdessa sekunnissa kappale kulkee vektorin 2 s. Pisteestä A = ( 3, 5) päästään pisteeseen P, jossa kappale sijaitsee,

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot