Insinöörimatematiikka D

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Insinöörimatematiikka D"

Transkriptio

1 Insinöörimatematiikka D M. Hirvensalo V. Junnila A. Lepistö Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 1 of 20

2 Kertausta Määritelmä Olkoon A n n-matriisi. Jos on olemassa sellainen n n-matriisi B, että AB = I n = BA, sanotaan, että B on A:n käänteismatriisi ja merkitään B = A 1. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 2 of 20

3 Kertausta Määritelmä Olkoon A n n-matriisi. Jos on olemassa sellainen n n-matriisi B, että AB = I n = BA, sanotaan, että B on A:n käänteismatriisi ja merkitään B = A 1. Jos A:lla on käänteismatriisi, sanotaan että A on säännöllinen. Muutoin A on singulaarinen. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 2 of 20

4 Kertausta Määritelmä Olkoon A n n-matriisi. Jos on olemassa sellainen n n-matriisi B, että AB = I n = BA, sanotaan, että B on A:n käänteismatriisi ja merkitään B = A 1. Jos A:lla on käänteismatriisi, sanotaan että A on säännöllinen. Muutoin A on singulaarinen. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 2 of 20

5 Kertausta Säännöllisen matriisin ominaisuuksia Olkoon A n n-matriisi. Seuraavat ehdot ovat yhtäpitäviä: Matriisi A on säännöllinen eli on olemassa matriisi B, jolle AB = I n ; Matriisin A redusoidussa porrasmuodossa on tarkalleen n porrasta ; A I n ; Matriisin A rivit ovat lineaarisesti riippumattomat; Matriisin A sarakkeet ovat lineaarisesti riippumattomat; Matriisi A on täysiasteinen eli r(a) = n; AB = 0 B = 0 (tai BA = 0 B = 0); det(a) 0. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 3 of 20

6 Kertausta Käänteismatriisi Gaussin-Jordanin menetelmällä Muodostetaan edellisistä yhtälöryhmistä (useampikertaisesti) augmentoitu matriisi ja saatetaan se redusoituun porrasmuotoon: ( A I ) ( I A 1 ) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 4 of 20

7 Kertausta Käänteismatriisi Gaussin-Jordanin menetelmällä Muodostetaan edellisistä yhtälöryhmistä (useampikertaisesti) augmentoitu matriisi ja saatetaan se redusoituun porrasmuotoon: ( A I ) ( I A 1 ) Huomautus Jos Gaussin-Jordanin menetelmä ei muuta lohkomuodon (A I) vasemmanpuoleista matriisia A identiteettimatriisiksi, voidaan todeta että A:lla ei ole käänteismatriisia. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 4 of 20

8 Kertausta Determinantin määritelmä ja laskeminen Olkoon A = ( ) a b. c d Silloin determinantti det(a) = ad bc. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 5 of 20

9 Kertausta Determinantin määritelmä ja laskeminen Olkoon A = ( ) a b. c d Silloin determinantti det(a) = ad bc. Useampi riviset determinantit lasketaan käyttämällä determinanttien laskusääntöjä sekä kehittämällä determinantti rivien tai sarakkeiden suhteen (jolloin lopulta päädytään 2 2-determinantteihin). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 5 of 20

10 Kertausta Determinantin määritelmä ja laskeminen Olkoon A = ( ) a b. c d Silloin determinantti det(a) = ad bc. Useampi riviset determinantit lasketaan käyttämällä determinanttien laskusääntöjä sekä kehittämällä determinantti rivien tai sarakkeiden suhteen (jolloin lopulta päädytään 2 2-determinantteihin). Determinantin ominaisuudet det(a) 0 tarkalleen silloin kun A on säännöllinen (eli A 1 on olemassa) det(ab) = det(a) det(b) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 5 of 20

11 Kertausta Huomautus Olkoon A n n-matriisi. Jos det(a) 0, niin A 1 on olemassa ja homogeenisella yhtälöryhmällä Ax = 0 tarkalleen yksi ratkaisu x = A 1 0 = 0. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 6 of 20

12 Kertausta Huomautus Olkoon A n n-matriisi. Jos det(a) 0, niin A 1 on olemassa ja homogeenisella yhtälöryhmällä Ax = 0 tarkalleen yksi ratkaisu x = A 1 0 = 0. Jos det(a) = 0, on yhtälöllä aina muitakin ratkaisuja x 0. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 6 of 20

13 Determinanteista Käsitteitä ja laskeminen Olkoon A = (a ij ) i,j n n-matriisi. Determinanttia M ij, joka saadaan matriisin A determinantista poistamalla i:s rivi ja j:s sarake, kutsutaan determinantin det(a) alideterminantiksi. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 7 of 20

14 Determinanteista Käsitteitä ja laskeminen Olkoon A = (a ij ) i,j n n-matriisi. Determinanttia M ij, joka saadaan matriisin A determinantista poistamalla i:s rivi ja j:s sarake, kutsutaan determinantin det(a) alideterminantiksi. Matriisin A alkion a ij liittotekijä on C ij = ( 1) i+j M ij. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 7 of 20

15 Determinanteista Käsitteitä ja laskeminen Olkoon A = (a ij ) i,j n n-matriisi. Determinanttia M ij, joka saadaan matriisin A determinantista poistamalla i:s rivi ja j:s sarake, kutsutaan determinantin det(a) alideterminantiksi. Matriisin A alkion a ij liittotekijä on C ij = ( 1) i+j M ij. Tällöin matriisin A determinantti voidaan laskea rivin i suhteen tai sarakkeen j suhteen det(a) = a i1 C i a in C in det(a) = a 1j C 1j +...+a nj C nj. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 7 of 20

16 Determinanteista Käänteismatriisi (Cramerin sääntö) Olkoon A säännöllinen n n-matriisi. Tällöin käyttäen alideterminantteja saadaan matriisin A käänteismatriisi yhtälöstä C 11 C C n1 A 1 = 1 C 12 C C n2 det(a) C 1n C 2n... C nn M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 8 of 20

17 Määritelmä Olkoon A neliömatriisi. λ C on matriisin A ominaisarvo, jos on olemassa x 0 siten, että Ax = λx. Jokaista tämän yhtälön toteuttavaa vektoria x sanotaan ominaisarvoon λ kuuluvaksi ominaisvektoriksi. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 9 of 20

18 Esimerkki Ix = x = 1 x, joten 1 on identiteettimatriisin ominaisarvo ja mikä hyvänsä x 0 siihen liiittyvä ominaisvektori. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 10 of 20

19 Esimerkki Ix = x = 1 x, joten 1 on identiteettimatriisin ominaisarvo ja mikä hyvänsä x 0 siihen liiittyvä ominaisvektori. Esimerkki ( )( 1 0 ) = ( 2 0 ) ( 1 = 2 0 ) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 10 of 20

20 Esimerkki Ix = x = 1 x, joten 1 on identiteettimatriisin ominaisarvo ja mikä hyvänsä x 0 siihen liiittyvä ominaisvektori. Esimerkki ( )( ) ( ) = ( )( ) ( ) = ( 1 = 2 0 ( 0 = 3 1 ) ) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 10 of 20

21 Esimerkki Ix = x = 1 x, joten 1 on identiteettimatriisin ominaisarvo ja mikä hyvänsä x 0 siihen liiittyvä ominaisvektori. Esimerkki ( )( ) ( ) = ( )( ) ( ) = ( 1 = 2 0 ( 0 = 3 1 Siis (1, 0) on ominaisarvoon 2 kuuluva ominaisvektori ja (0, 1) arvoon 3 kuuluva. ) ) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 10 of 20

22 Seuraus 1 Jos Ax = λx, on A i x = A i 1 Ax = A i 1 λx = = λ i x. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 11 of 20

23 Seuraus 1 Jos Ax = λx, on A i x = A i 1 Ax = A i 1 λx = = λ i x. Seuraus 2 Olkoot λ 1,..., λ n matriisin A ominaisarvoja ja x 1,..., x n näihin kuuluvat ominaisvektorit. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 11 of 20

24 Seuraus 1 Jos Ax = λx, on A i x = A i 1 Ax = A i 1 λx = = λ i x. Seuraus 2 Olkoot λ 1,..., λ n matriisin A ominaisarvoja ja x 1,..., x n näihin kuuluvat ominaisvektorit. Jos x = c 1 x c n x n, on Ax = c 1 Ax c n Ax n M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 11 of 20

25 Seuraus 1 Jos Ax = λx, on A i x = A i 1 Ax = A i 1 λx = = λ i x. Seuraus 2 Olkoot λ 1,..., λ n matriisin A ominaisarvoja ja x 1,..., x n näihin kuuluvat ominaisvektorit. Jos x = c 1 x c n x n, on Ax = c 1 Ax c n Ax n = c 1 λ 1 x c n λ n x n, M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 11 of 20

26 Seuraus 1 Jos Ax = λx, on A i x = A i 1 Ax = A i 1 λx = = λ i x. Seuraus 2 Olkoot λ 1,..., λ n matriisin A ominaisarvoja ja x 1,..., x n näihin kuuluvat ominaisvektorit. Jos x = c 1 x c n x n, on Ax = c 1 Ax c n Ax n = c 1 λ 1 x c n λ n x n, ja induktiolla A i x = c 1 λ i 1x c n λ i nx n. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 11 of 20

27 Geometrinen tulkinta Jokainen n n-matriisi A määrittelee lineaarikuvauksen R n R n, x Ax. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 12 of 20

28 Geometrinen tulkinta Jokainen n n-matriisi A määrittelee lineaarikuvauksen R n R n, x Ax. Jokainen matriisin A ominaisvektori x vastaa sellaista suuntaa, jossa A toimii venyttävänä tai kutistavana kuvauksena: Ax = λx. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 12 of 20

29 Ominaisarvojen määrittäminen Vaatimus: Yhtälöllä Ax = λx oltava ratkaisu x 0. Ax = λx M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 13 of 20

30 Ominaisarvojen määrittäminen Vaatimus: Yhtälöllä Ax = λx oltava ratkaisu x 0. Ax = λx Ax = λix M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 13 of 20

31 Ominaisarvojen määrittäminen Vaatimus: Yhtälöllä Ax = λx oltava ratkaisu x 0. Ax = λx Ax = λix (A λi)x = 0 M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 13 of 20

32 Ominaisarvojen määrittäminen Vaatimus: Yhtälöllä Ax = λx oltava ratkaisu x 0. Ax = λx Ax = λix (A λi)x = 0 Ratkaisu x 0 olemassa tarkalleen silloin kun A λi ei ole säännöllinen. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 13 of 20

33 Ominaisarvojen määrittäminen Vaatimus: Yhtälöllä Ax = λx oltava ratkaisu x 0. Ax = λx Ax = λix (A λi)x = 0 Ratkaisu x 0 olemassa tarkalleen silloin kun A λi ei ole säännöllinen. Ominaisarvoyhtälö Ratkaisu x 0 on olemassa tarkalleen silloin kun det(a λi) = 0. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 13 of 20

34 Ominaisarvojen määrittäminen Vaatimus: Yhtälöllä Ax = λx oltava ratkaisu x 0. Ax = λx Ax = λix (A λi)x = 0 Ratkaisu x 0 olemassa tarkalleen silloin kun A λi ei ole säännöllinen. Ominaisarvoyhtälö Ratkaisu x 0 on olemassa tarkalleen silloin kun det(a λi) = 0. Huomautus Jos A on n n-matriisi, on det(a λi) astetta n oleva λ:n polynomi. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 13 of 20

35 Lause Matriisin A ominaisarvot λ ovat tarkalleen seuraavan yhtälön ratkaisut: det(a λi) = 0. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 14 of 20

36 Lause Matriisin A ominaisarvot λ ovat tarkalleen seuraavan yhtälön ratkaisut: det(a λi) = 0. Ominaisvektorien määrittäminen Jos ominaisarvo λ on tunnettu, voidaan siihen kuuluvat ominaisvektorit x määrittää yhtälöstä Gaussin-Jordanin menetelmällä. Ax = λx M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 14 of 20

37 Aliavaruuden määritelmä Vektoriavaruuden V epätyhjä osajoukko U V on aliavaruus, jos c 1 v 1 +c 2 v 2 U aina kun v 1, v 2 U. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 15 of 20

38 Aliavaruuden määritelmä Vektoriavaruuden V epätyhjä osajoukko U V on aliavaruus, jos c 1 v 1 +c 2 v 2 U aina kun v 1, v 2 U. Lause Olkoon V n n-matriisin A ominaisarvoon λ liittyvien ominaisvektoreiden joukko. Tällöin V on avaruuden R n aliavaruus. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 15 of 20

39 Esimerkki Etsitään matriisin A = ( ) ominaisarvot ja niihin kuuluvat ominaisvektorit. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 16 of 20

40 Esimerkki Etsitään matriisin A = ( ) ominaisarvot ja niihin kuuluvat ominaisvektorit. Esimerkki Lasketaan edellisen esimerkin matriisille ( ) A i 5. 7 M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 16 of 20

41 Määritelmä Neliömatriisit A ja B ovat similaareja, jos on olemassa sellainen säännöllinen matriisi P, että A = P 1 BP. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 17 of 20

42 Määritelmä Neliömatriisit A ja B ovat similaareja, jos on olemassa sellainen säännöllinen matriisi P, että A = P 1 BP. Huomautus Jos A ja B ovat similaarisia, siis A = P 1 BP jollekin säännölliselle matriisille P, on A i = A A... A = P 1 BP P 1 BP... P 1 BP = P 1 B i P. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 17 of 20

43 Määritelmä Neliömatriisit A ja B ovat similaareja, jos on olemassa sellainen säännöllinen matriisi P, että A = P 1 BP. Huomautus Jos A ja B ovat similaarisia, siis A = P 1 BP jollekin säännölliselle matriisille P, on A i = A A... A = P 1 BP P 1 BP... P 1 BP = P 1 B i P. Huomautus Matriisien similaarisuus (merk. A B ) on ekvivalenssirelaatio: A A, koska A = I 1 AI M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 17 of 20

44 Määritelmä Neliömatriisit A ja B ovat similaareja, jos on olemassa sellainen säännöllinen matriisi P, että A = P 1 BP. Huomautus Jos A ja B ovat similaarisia, siis A = P 1 BP jollekin säännölliselle matriisille P, on A i = A A... A = P 1 BP P 1 BP... P 1 BP = P 1 B i P. Huomautus Matriisien similaarisuus (merk. A B ) on ekvivalenssirelaatio: A A, koska A = I 1 AI Jos A B, on A = P 1 BP B = PAP 1, joten B A. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 17 of 20

45 Määritelmä Neliömatriisit A ja B ovat similaareja, jos on olemassa sellainen säännöllinen matriisi P, että A = P 1 BP. Huomautus Jos A ja B ovat similaarisia, siis A = P 1 BP jollekin säännölliselle matriisille P, on A i = A A... A = P 1 BP P 1 BP... P 1 BP = P 1 B i P. Huomautus Matriisien similaarisuus (merk. A B ) on ekvivalenssirelaatio: A A, koska A = I 1 AI Jos A B, on A = P 1 BP B = PAP 1, joten B A. Jos A B ja B C, on A = P1 1 BP 1, B = P2 1 CP 2, joten A = (P 2 P 1 ) 1 C(P 2 P 1 ), siis A C. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 17 of 20

46 Huomautus Oletetaan, että n n-matriisilla A on n ominaisarvoa λ 1,..., λ n ja näihin liittyvät ominais(pysty)vektorit x 1,..., x n. Merkitään P = (x 1...x n ), jolloin AP = (Ax 1...Ax n ) = (λ 1 x 1...λ n x n ). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 18 of 20

47 Huomautus AP = (Ax 1...Ax n ) = (λ 1 x 1...λ n x n ) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 19 of 20

48 Huomautus AP = (Ax 1...Ax n ) = (λ 1 x 1...λ n x n ) ja λ λ (λ 1 x 1...λ n x n ) = (x 1...x n )..... = PD λ n }{{} D M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 19 of 20

49 Huomautus AP = (Ax 1...Ax n ) = (λ 1 x 1...λ n x n ) ja λ λ (λ 1 x 1...λ n x n ) = (x 1...x n )..... = PD λ n }{{} D Siis AP = PD. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 19 of 20

50 Huomautus AP = (Ax 1...Ax n ) = (λ 1 x 1...λ n x n ) ja λ λ (λ 1 x 1...λ n x n ) = (x 1...x n )..... = PD λ n }{{} D Siis AP = PD. Täten P 1 AP = D, jos P:llä on käänteismatriisi. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 19 of 20

51 Huomautus AP = (Ax 1...Ax n ) = (λ 1 x 1...λ n x n ) ja λ λ (λ 1 x 1...λ n x n ) = (x 1...x n )..... = PD λ n }{{} D Siis AP = PD. Täten P 1 AP = D, jos P:llä on käänteismatriisi. Esimerkki Jatketaan edellistä esimerkkiä. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 19 of 20

52 Huomautus Olkoon AP = PD kuten edellä. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 20 of 20

53 Huomautus Olkoon AP = PD kuten edellä. P 1 on olemassa M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 20 of 20

54 Huomautus Olkoon AP = PD kuten edellä. P 1 on olemassa det(p) 0 M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 20 of 20

55 Huomautus Olkoon AP = PD kuten edellä. P 1 on olemassa det(p) 0 P:n sarakkeet ovat lineaarisesti riippumattomat M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 20 of 20

56 Huomautus Olkoon AP = PD kuten edellä. P 1 on olemassa det(p) 0 P:n sarakkeet ovat lineaarisesti riippumattomat Matriisin A ominaisvektorit muodostavat C n :n kannan M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 20 of 20

57 Huomautus Olkoon AP = PD kuten edellä. P 1 on olemassa det(p) 0 P:n sarakkeet ovat lineaarisesti riippumattomat Matriisin A ominaisvektorit muodostavat C n :n kannan Esimerkki Etsitään seuraavan matriisin ominaisarvot: A = M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 20 of 20

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.

Lisätiedot

Matematiikka B2 - TUDI

Matematiikka B2 - TUDI Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 06 laskuharjoituksien esimerkkiratkaisut Alla olevat esimerkkiratkaisut ovat melko ksitiskohtaisia Tenttivastauksissa ei leensä tarvitse muistaa lauseiden, määritelmien, esimerkkien

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3. Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Similaarisuus. Määritelmä. Huom.

Similaarisuus. Määritelmä. Huom. Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104

Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104 Lineaarialgebra (muut ko) p. 1/104 Ensi viikolla luennot salissa X Torstaina 7.12. viimeiset demot (12.12. ja 13.12. viimeiset luennot). Torstaina 14.12 on välikoe 2, muista ilmoittautua! Demorastitiedot

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162 Tällä viikolla viimeiset luennot ja demot Lineaarialgebra (muut ko) p. 1/162 Lineaarialgebra (muut ko) p. 2/162 Kertausta Vektorin u = (u 1,u 2 ) R 2 pituus u = u 2 1 +u2 2 Vektorien u ja v = (v 1,v 2

Lisätiedot

Alkeismuunnokset matriisille, sivu 57

Alkeismuunnokset matriisille, sivu 57 Lineaarialgebra (muut ko) p. 1/88 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

Esimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt

Esimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt Esimerkki 4.4. Määrää matriisin 2 2 1 A = 1 3 1 2 4 3 ominaisarvot ja -vektorit. Ratk. Nyt det(a λi ) = 1 + 2 λ 2 1 + 1 λ 1 λ 1 3 λ 1 = 1 3 λ 1 2 4 3 λ 2 4 3 λ 1 λ = 1 4 λ 1 = (1 λ)( 1)1+1 4 λ 1 2 6 3

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa. LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Lineaariset yhtälöryhmät ja matriisit

Lineaariset yhtälöryhmät ja matriisit Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81 Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus

Lisätiedot

Lineaarialgebra (muut ko)

Lineaarialgebra (muut ko) Lineaarialgebra (muut ko) p. 1/103 Lineaarialgebra (muut ko) Tero Laihonen Lineaarialgebra (muut ko) p. 2/103 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

Seuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117

Seuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117 Seuraava luento ti 31.10 on salissa XXII Lineaarialgebra (muut ko) p. 1/117 Lineaarialgebra (muut ko) p. 2/117 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on? Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Lineaarikuvaukset Lineaarikuvaus Olkoot U ja V

Lisätiedot

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210 Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210 Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2

Lisätiedot

802120P Matriisilaskenta (5 op)

802120P Matriisilaskenta (5 op) 802120P Matriisilaskenta (5 op) Marko Leinonen Matemaattiset tieteet Syksy 2016 1 / 220 Luennoitsija: Marko Leinonen marko.leinonen@oulu.fi MA333 Kurssilla käytetään Noppaa (noppa.oulu.fi) Luentomoniste

Lisätiedot

6. OMINAISARVOT JA DIAGONALISOINTI

6. OMINAISARVOT JA DIAGONALISOINTI 0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos

Lisätiedot

Determinantti. Määritelmä

Determinantti. Määritelmä Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j) (a) Jos n = 1, niin det(a) = a 11 (b) Muussa tapauksessa n det(a)

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

2.8. Kannanvaihto R n :ssä

2.8. Kannanvaihto R n :ssä 28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 4.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Viimeiset harjoitukset on palautettava torstaina 13.6. Laskaripisteensä ja läsnäolonsa voi kukin tarkistaa

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Determinantti. Määritelmä

Determinantti. Määritelmä Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi. Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j). (a) Jos n = 1, niin det(a) = a 11. (b) Muussa tapauksessa n det(a)

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään

Lisätiedot

Determinantit. Kaksirivinen determinantti. Aiheet. Kaksirivinen determinantti. Kaksirivinen determinantti. Kolmirivinen determinantti

Determinantit. Kaksirivinen determinantti. Aiheet. Kaksirivinen determinantti. Kaksirivinen determinantti. Kolmirivinen determinantti Determinantit 1 2 2-matriisin ( A = on det(a) = a 11 a 12 a 21 a 22 a 11 a 12 a 21 a 22 ) = a 11a 22 a 12 a 21. 1 2 2-matriisin on det(a) = Esim. Jos A = ( a 11 a 12 a 21 a 22 A = a 11 a 12 a 21 a 22 )

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 23.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Käytännön asioita Ensimmäiset tehtävät olivat sujuneet hyvin. Kansilehdet on oltava mukana tehtäviä palautettaessa,

Lisätiedot

6 MATRIISIN DIAGONALISOINTI

6 MATRIISIN DIAGONALISOINTI 6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,

Lisätiedot

Johdatus lineaarialgebraan. Juha Honkala 2017

Johdatus lineaarialgebraan. Juha Honkala 2017 Johdatus lineaarialgebraan Juha Honkala 2017 Sisällysluettelo 1 Lineaariset yhtälöryhmät ja matriisit 11 Lineaariset yhtälöryhmät 12 Matriisit 13 Matriisien alkeismuunnokset ja porrasmatriisit 14 Yhtälöryhmien

Lisätiedot

MATRIISIN HESSENBERGIN MUOTO. Niko Holopainen

MATRIISIN HESSENBERGIN MUOTO. Niko Holopainen MATRIISIN HESSENBERGIN MUOTO Niko Holopainen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Syksy 2013 Tiivistelmä: Niko Holopainen, Matriisin Hessenbergin muoto Matematiikan

Lisätiedot

Käänteismatriisin ominaisuuksia

Käänteismatriisin ominaisuuksia Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun

Lisätiedot

Lineaarialgebra, kertausta aiheita

Lineaarialgebra, kertausta aiheita Lineaarialgebra, kertausta aiheita Matriisitulo käänteismatriisi determinantin kehittäminen determinantin ominaisuudet adjungaatti ja Cramerin kaavat yhtälöryhmän eri esitystavat Gauss-Jordan -algoritmi

Lisätiedot

Muistutus: Matikkapaja ke Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta yms.

Muistutus: Matikkapaja ke Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta yms. Lineaarialgebra (muut ko) p. 1/139 Ensi viikon luennot salissa X Muistutus: Matikkapaja ke 14-16 Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta

Lisätiedot

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili 6 4 2 x 2 x 3 15 10 5 0 5 15 5 3 2 1 1 2 3 2 0 x 2 = 1 2x 1 0 4 x 2 = 3 x 1 x 5 2 5 x 1 10 x 1 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili Sisältö

Lisätiedot

Kaksirivisen matriisin determinantille käytämme myös merkintää. a 11 a 12 a 21 a 22. = a 11a 22 a 12 a 21. (5.1) kaksirivine

Kaksirivisen matriisin determinantille käytämme myös merkintää. a 11 a 12 a 21 a 22. = a 11a 22 a 12 a 21. (5.1) kaksirivine Vaasan yliopiston julkaisuja 97 5 DETERMINANTIT Ch:Determ Sec:DetDef 5.1 Determinantti Tämä kappale jakautuu kolmeen alakappaleeseen. Ensimmäisessä alakappaleessa määrittelemme kaksi- ja kolmiriviset determinantit.

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/159

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/159 Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/159 Lineaarialgebra (muut ko) p. 2/159 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 ) Skalaarilla

Lisätiedot

LINEAARIALGEBRA P. LUENTOMONISTE ja HARJOITUSTEHTÄVÄT

LINEAARIALGEBRA P. LUENTOMONISTE ja HARJOITUSTEHTÄVÄT LINEAARIALGEBRA II 802119P LUENTOMONISTE ja HARJOITUSTEHTÄVÄT syksy 2008 30 V SISÄTULOAVARUUKSISTA 1. Sisätulon määritelmä Tarkastellaan sisätulon määrittelyä varten kompleksilukujen joukkoa C = {x + iy

Lisätiedot

Ortogonaaliset matriisit, määritelmä 1

Ortogonaaliset matriisit, määritelmä 1 , määritelmä 1 Määritelmä (a). Neliömatriisi Q on ortogonaalinen, jos Q T Q = I. Määritelmästä voidaan antaa samaa tarkoittavat, mutta erilaiselta näyttävät muodot: Määritelmä (b). n n neliömatriisi Q,

Lisätiedot

Matemaattinen Analyysi / kertaus

Matemaattinen Analyysi / kertaus Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen

Lisätiedot

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66 Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/66 Lineaarialgebra (muut ko) p. 2/66 Redusoitu porrasmuoto 1 1 2 4 1 1 4 6 2 2 5 9 1 1 0 2 0 0 1 1 0 0 0 0 Eli aste r(a) = 2 ja vaakariviavaruuden

Lisätiedot

Neliömatriisit A ja B ovat similaareja toistensa suhteen, A B, jos on olemassa kääntyvä matriisi P, jolle pätee A = PBP 1.

Neliömatriisit A ja B ovat similaareja toistensa suhteen, A B, jos on olemassa kääntyvä matriisi P, jolle pätee A = PBP 1. Similaarisuus 1 (Kreyszig 8.4, Lay 5.2) Aalto MS-C1340, 2014, Kari Eloranta Määritelmä Neliömatriisit A ja B ovat similaareja toistensa suhteen, A B, jos on olemassa kääntyvä matriisi P, jolle pätee A

Lisätiedot

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin

Lisätiedot

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla: 11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta

Lisätiedot

Matriisialgebra harjoitukset, syksy 2016

Matriisialgebra harjoitukset, syksy 2016 Matriisialgebra harjoitukset, syksy 6 MATRIISIALGEBRA, s. 6, Ratkaisuja/ M.Hamina & M. Peltola 8. Olkoon 4 A 6. 4 Tutki, onko A diagonalisoituva. Jos on, niin määrää matriisi D T AT ja siihen liittyvä

Lisätiedot

Lineaariset kongruenssiyhtälöryhmät

Lineaariset kongruenssiyhtälöryhmät Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

Ositetuista matriiseista

Ositetuista matriiseista TAMPEREEN YLIOPISTO Pro gradu -tutkielma Anja Kuronen Ositetuista matriiseista Matematiikan ja tilastotieteen laitos Matematiikka Joulukuu 2010 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Ax, y = x, A y. A = A A hermiittinen. Jokainen reaalinen ja symmetrinen matriisi on määritelmän mukaan myös hermiittinen. A =, HARJOITUSTEHTÄVIÄ

Ax, y = x, A y. A = A A hermiittinen. Jokainen reaalinen ja symmetrinen matriisi on määritelmän mukaan myös hermiittinen. A =, HARJOITUSTEHTÄVIÄ X.. Matriisialgebra Esimerkki 4 Jos niin x =[i, +i, 2 i ] T C 3, y =[ 2i, 2i, i ] T C 3, x, x = x 2 =+(+)+(4+)=8, y, y =(+4)+4+(+)=, x, y = i( + 2i)+(+i)( 2i)+(2 i)( +i) = +3i. Matriisia A = ĀT sanotaan

Lisätiedot

Lineaarialgebra I. Oulun yliopisto Matemaattisten tieteiden laitos Esa Järvenpää Kirjoittanut Tuula Ripatti

Lineaarialgebra I. Oulun yliopisto Matemaattisten tieteiden laitos Esa Järvenpää Kirjoittanut Tuula Ripatti Lineaarialgebra I Oulun yliopisto Matemaattisten tieteiden laitos 2011 Esa Järvenpää Kirjoittanut Tuula Ripatti 2 1 Lineaarinen yhtälöryhmä 11 Esimerkki (a) Ratkaise yhtälö 5x = 7 Kerrotaan yhtälö puolittain

Lisätiedot

Matriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 48, , c)

Matriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 48, , c) Matriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 48, 2017 R Alkuviikko TEHTÄVÄ J1 Laske Gaussin algoritmilla ja Sarrus n säännöllä seuraavat determinantit: 2 3 1 a) 1 2 0 1 4 3, b) 0 2

Lisätiedot

1.1. Määritelmiä ja nimityksiä

1.1. Määritelmiä ja nimityksiä 1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Matriisinormeista. Sanni Carlson. Matematiikan pro gradu

Matriisinormeista. Sanni Carlson. Matematiikan pro gradu Matriisinormeista Sanni Carlson Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2015 Tiivistelmä: Sanni Carlson, Matriisinormeista (engl On matrix norms), matematiikan

Lisätiedot

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6 MATRIISILASKENTA(TFM) MALLIT AV 6 J (II.6.9) Päättele, että avaruusvetorit a, b ja c ovat lineaarisesti riippuvat täsmälleen un vetoreiden virittämän suuntaissärmiön tilavuus =. Tuti tällä riteerillä ovato

Lisätiedot

Neliömuodoista, matriisin ominaisarvoista ja avaruuden kierroista

Neliömuodoista, matriisin ominaisarvoista ja avaruuden kierroista Neliömuodoista matriisin ominaisarvoista ja avaruuden kierroista Marko Moisio 1 Neliömuodoista ja matriisin ominaisarvoista Tarkastellaan toisen asteen tasokäyrän määräävää yhtälöä a + by 2 + 2cxy = d

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti

Talousmatematiikan perusteet: Luento 10. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti Talousmatematiikan perusteet: Luento 1 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot