Insinöörimatematiikka D

Koko: px
Aloita esitys sivulta:

Download "Insinöörimatematiikka D"

Transkriptio

1 Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 1 of 20

2 Kertausta Määritelmä Olkoon A n n-matriisi. Jos on olemassa sellainen n n-matriisi B, että AB = I n = BA, sanotaan, että B on A:n käänteismatriisi ja merkitään B = A 1. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 2 of 20

3 Kertausta Määritelmä Olkoon A n n-matriisi. Jos on olemassa sellainen n n-matriisi B, että AB = I n = BA, sanotaan, että B on A:n käänteismatriisi ja merkitään B = A 1. Jos A:lla on käänteismatriisi, sanotaan että A on säännöllinen. Muutoin A on singulaarinen. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 2 of 20

4 Kertausta Määritelmä Olkoon A n n-matriisi. Jos on olemassa sellainen n n-matriisi B, että AB = I n = BA, sanotaan, että B on A:n käänteismatriisi ja merkitään B = A 1. Jos A:lla on käänteismatriisi, sanotaan että A on säännöllinen. Muutoin A on singulaarinen. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 2 of 20

5 Kertausta Säännöllisen matriisin ominaisuuksia Olkoon A n n-matriisi. Seuraavat ehdot ovat yhtäpitäviä: Matriisi A on säännöllinen eli on olemassa matriisi B, jolle AB = I n ; Matriisin A redusoidussa porrasmuodossa on tarkalleen n porrasta ; A I n ; Matriisin A rivit ovat lineaarisesti riippumattomat; Matriisin A sarakkeet ovat lineaarisesti riippumattomat; Matriisi A on täysiasteinen eli r(a) = n; AB = 0 B = 0 (tai BA = 0 B = 0); det(a) 0. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 3 of 20

6 Kertausta Käänteismatriisi Gaussin-Jordanin menetelmällä Muodostetaan edellisistä yhtälöryhmistä (useampikertaisesti) augmentoitu matriisi ja saatetaan se redusoituun porrasmuotoon: ( A I ) ( I A 1 ) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 4 of 20

7 Kertausta Käänteismatriisi Gaussin-Jordanin menetelmällä Muodostetaan edellisistä yhtälöryhmistä (useampikertaisesti) augmentoitu matriisi ja saatetaan se redusoituun porrasmuotoon: ( A I ) ( I A 1 ) Huomautus Jos Gaussin-Jordanin menetelmä ei muuta lohkomuodon (A I) vasemmanpuoleista matriisia A identiteettimatriisiksi, voidaan todeta että A:lla ei ole käänteismatriisia. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 4 of 20

8 Kertausta Determinantin määritelmä ja laskeminen Olkoon A = ( ) a b. c d Silloin determinantti det(a) = ad bc. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 5 of 20

9 Kertausta Determinantin määritelmä ja laskeminen Olkoon A = ( ) a b. c d Silloin determinantti det(a) = ad bc. Useampi riviset determinantit lasketaan käyttämällä determinanttien laskusääntöjä sekä kehittämällä determinantti rivien tai sarakkeiden suhteen (jolloin lopulta päädytään 2 2-determinantteihin). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 5 of 20

10 Kertausta Determinantin määritelmä ja laskeminen Olkoon A = ( ) a b. c d Silloin determinantti det(a) = ad bc. Useampi riviset determinantit lasketaan käyttämällä determinanttien laskusääntöjä sekä kehittämällä determinantti rivien tai sarakkeiden suhteen (jolloin lopulta päädytään 2 2-determinantteihin). Determinantin ominaisuudet det(a) 0 tarkalleen silloin kun A on säännöllinen (eli A 1 on olemassa) det(ab) = det(a) det(b) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 5 of 20

11 Kertausta Huomautus Olkoon A n n-matriisi. Jos det(a) 0, niin A 1 on olemassa ja homogeenisella yhtälöryhmällä Ax = 0 tarkalleen yksi ratkaisu x = A 1 0 = 0. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 6 of 20

12 Kertausta Huomautus Olkoon A n n-matriisi. Jos det(a) 0, niin A 1 on olemassa ja homogeenisella yhtälöryhmällä Ax = 0 tarkalleen yksi ratkaisu x = A 1 0 = 0. Jos det(a) = 0, on yhtälöllä aina muitakin ratkaisuja x 0. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 6 of 20

13 Determinanteista Käsitteitä ja laskeminen Olkoon A = (a ij ) i,j n n-matriisi. Determinanttia M ij, joka saadaan matriisin A determinantista poistamalla i:s rivi ja j:s sarake, kutsutaan determinantin det(a) alideterminantiksi. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 7 of 20

14 Determinanteista Käsitteitä ja laskeminen Olkoon A = (a ij ) i,j n n-matriisi. Determinanttia M ij, joka saadaan matriisin A determinantista poistamalla i:s rivi ja j:s sarake, kutsutaan determinantin det(a) alideterminantiksi. Matriisin A alkion a ij liittotekijä on C ij = ( 1) i+j M ij. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 7 of 20

15 Determinanteista Käsitteitä ja laskeminen Olkoon A = (a ij ) i,j n n-matriisi. Determinanttia M ij, joka saadaan matriisin A determinantista poistamalla i:s rivi ja j:s sarake, kutsutaan determinantin det(a) alideterminantiksi. Matriisin A alkion a ij liittotekijä on C ij = ( 1) i+j M ij. Tällöin matriisin A determinantti voidaan laskea rivin i suhteen tai sarakkeen j suhteen det(a) = a i1 C i a in C in det(a) = a 1j C 1j +...+a nj C nj. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 7 of 20

16 Determinanteista Käänteismatriisi (Cramerin sääntö) Olkoon A säännöllinen n n-matriisi. Tällöin käyttäen alideterminantteja saadaan matriisin A käänteismatriisi yhtälöstä C 11 C C n1 A 1 = 1 C 12 C C n2 det(a) C 1n C 2n... C nn M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 8 of 20

17 Määritelmä Olkoon A neliömatriisi. λ C on matriisin A ominaisarvo, jos on olemassa x 0 siten, että Ax = λx. Jokaista tämän yhtälön toteuttavaa vektoria x sanotaan ominaisarvoon λ kuuluvaksi ominaisvektoriksi. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 9 of 20

18 Esimerkki Ix = x = 1 x, joten 1 on identiteettimatriisin ominaisarvo ja mikä hyvänsä x 0 siihen liiittyvä ominaisvektori. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 10 of 20

19 Esimerkki Ix = x = 1 x, joten 1 on identiteettimatriisin ominaisarvo ja mikä hyvänsä x 0 siihen liiittyvä ominaisvektori. Esimerkki ( )( 1 0 ) = ( 2 0 ) ( 1 = 2 0 ) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 10 of 20

20 Esimerkki Ix = x = 1 x, joten 1 on identiteettimatriisin ominaisarvo ja mikä hyvänsä x 0 siihen liiittyvä ominaisvektori. Esimerkki ( )( ) ( ) = ( )( ) ( ) = ( 1 = 2 0 ( 0 = 3 1 ) ) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 10 of 20

21 Esimerkki Ix = x = 1 x, joten 1 on identiteettimatriisin ominaisarvo ja mikä hyvänsä x 0 siihen liiittyvä ominaisvektori. Esimerkki ( )( ) ( ) = ( )( ) ( ) = ( 1 = 2 0 ( 0 = 3 1 Siis (1, 0) on ominaisarvoon 2 kuuluva ominaisvektori ja (0, 1) arvoon 3 kuuluva. ) ) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 10 of 20

22 Seuraus 1 Jos Ax = λx, on A i x = A i 1 Ax = A i 1 λx = = λ i x. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 11 of 20

23 Seuraus 1 Jos Ax = λx, on A i x = A i 1 Ax = A i 1 λx = = λ i x. Seuraus 2 Olkoot λ 1,..., λ n matriisin A ominaisarvoja ja x 1,..., x n näihin kuuluvat ominaisvektorit. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 11 of 20

24 Seuraus 1 Jos Ax = λx, on A i x = A i 1 Ax = A i 1 λx = = λ i x. Seuraus 2 Olkoot λ 1,..., λ n matriisin A ominaisarvoja ja x 1,..., x n näihin kuuluvat ominaisvektorit. Jos x = c 1 x c n x n, on Ax = c 1 Ax c n Ax n M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 11 of 20

25 Seuraus 1 Jos Ax = λx, on A i x = A i 1 Ax = A i 1 λx = = λ i x. Seuraus 2 Olkoot λ 1,..., λ n matriisin A ominaisarvoja ja x 1,..., x n näihin kuuluvat ominaisvektorit. Jos x = c 1 x c n x n, on Ax = c 1 Ax c n Ax n = c 1 λ 1 x c n λ n x n, M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 11 of 20

26 Seuraus 1 Jos Ax = λx, on A i x = A i 1 Ax = A i 1 λx = = λ i x. Seuraus 2 Olkoot λ 1,..., λ n matriisin A ominaisarvoja ja x 1,..., x n näihin kuuluvat ominaisvektorit. Jos x = c 1 x c n x n, on Ax = c 1 Ax c n Ax n = c 1 λ 1 x c n λ n x n, ja induktiolla A i x = c 1 λ i 1x c n λ i nx n. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 11 of 20

27 Geometrinen tulkinta Jokainen n n-matriisi A määrittelee lineaarikuvauksen R n R n, x Ax. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 12 of 20

28 Geometrinen tulkinta Jokainen n n-matriisi A määrittelee lineaarikuvauksen R n R n, x Ax. Jokainen matriisin A ominaisvektori x vastaa sellaista suuntaa, jossa A toimii venyttävänä tai kutistavana kuvauksena: Ax = λx. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 12 of 20

29 Ominaisarvojen määrittäminen Vaatimus: Yhtälöllä Ax = λx oltava ratkaisu x 0. Ax = λx M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 13 of 20

30 Ominaisarvojen määrittäminen Vaatimus: Yhtälöllä Ax = λx oltava ratkaisu x 0. Ax = λx Ax = λix M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 13 of 20

31 Ominaisarvojen määrittäminen Vaatimus: Yhtälöllä Ax = λx oltava ratkaisu x 0. Ax = λx Ax = λix (A λi)x = 0 M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 13 of 20

32 Ominaisarvojen määrittäminen Vaatimus: Yhtälöllä Ax = λx oltava ratkaisu x 0. Ax = λx Ax = λix (A λi)x = 0 Ratkaisu x 0 olemassa tarkalleen silloin kun A λi ei ole säännöllinen. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 13 of 20

33 Ominaisarvojen määrittäminen Vaatimus: Yhtälöllä Ax = λx oltava ratkaisu x 0. Ax = λx Ax = λix (A λi)x = 0 Ratkaisu x 0 olemassa tarkalleen silloin kun A λi ei ole säännöllinen. Ominaisarvoyhtälö Ratkaisu x 0 on olemassa tarkalleen silloin kun det(a λi) = 0. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 13 of 20

34 Ominaisarvojen määrittäminen Vaatimus: Yhtälöllä Ax = λx oltava ratkaisu x 0. Ax = λx Ax = λix (A λi)x = 0 Ratkaisu x 0 olemassa tarkalleen silloin kun A λi ei ole säännöllinen. Ominaisarvoyhtälö Ratkaisu x 0 on olemassa tarkalleen silloin kun det(a λi) = 0. Huomautus Jos A on n n-matriisi, on det(a λi) astetta n oleva λ:n polynomi. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 13 of 20

35 Lause Matriisin A ominaisarvot λ ovat tarkalleen seuraavan yhtälön ratkaisut: det(a λi) = 0. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 14 of 20

36 Lause Matriisin A ominaisarvot λ ovat tarkalleen seuraavan yhtälön ratkaisut: det(a λi) = 0. Ominaisvektorien määrittäminen Jos ominaisarvo λ on tunnettu, voidaan siihen kuuluvat ominaisvektorit x määrittää yhtälöstä Gaussin-Jordanin menetelmällä. Ax = λx M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 14 of 20

37 Aliavaruuden määritelmä Vektoriavaruuden V epätyhjä osajoukko U V on aliavaruus, jos c 1 v 1 +c 2 v 2 U aina kun v 1, v 2 U. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 15 of 20

38 Aliavaruuden määritelmä Vektoriavaruuden V epätyhjä osajoukko U V on aliavaruus, jos c 1 v 1 +c 2 v 2 U aina kun v 1, v 2 U. Lause Olkoon V n n-matriisin A ominaisarvoon λ liittyvien ominaisvektoreiden joukko. Tällöin V on avaruuden R n aliavaruus. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 15 of 20

39 Esimerkki Etsitään matriisin A = ( ) ominaisarvot ja niihin kuuluvat ominaisvektorit. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 16 of 20

40 Esimerkki Etsitään matriisin A = ( ) ominaisarvot ja niihin kuuluvat ominaisvektorit. Esimerkki Lasketaan edellisen esimerkin matriisille ( ) A i 5. 7 M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 16 of 20

41 Määritelmä Neliömatriisit A ja B ovat similaareja, jos on olemassa sellainen säännöllinen matriisi P, että A = P 1 BP. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 17 of 20

42 Määritelmä Neliömatriisit A ja B ovat similaareja, jos on olemassa sellainen säännöllinen matriisi P, että A = P 1 BP. Huomautus Jos A ja B ovat similaarisia, siis A = P 1 BP jollekin säännölliselle matriisille P, on A i = A A... A = P 1 BP P 1 BP... P 1 BP = P 1 B i P. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 17 of 20

43 Määritelmä Neliömatriisit A ja B ovat similaareja, jos on olemassa sellainen säännöllinen matriisi P, että A = P 1 BP. Huomautus Jos A ja B ovat similaarisia, siis A = P 1 BP jollekin säännölliselle matriisille P, on A i = A A... A = P 1 BP P 1 BP... P 1 BP = P 1 B i P. Huomautus Matriisien similaarisuus (merk. A B ) on ekvivalenssirelaatio: A A, koska A = I 1 AI M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 17 of 20

44 Määritelmä Neliömatriisit A ja B ovat similaareja, jos on olemassa sellainen säännöllinen matriisi P, että A = P 1 BP. Huomautus Jos A ja B ovat similaarisia, siis A = P 1 BP jollekin säännölliselle matriisille P, on A i = A A... A = P 1 BP P 1 BP... P 1 BP = P 1 B i P. Huomautus Matriisien similaarisuus (merk. A B ) on ekvivalenssirelaatio: A A, koska A = I 1 AI Jos A B, on A = P 1 BP B = PAP 1, joten B A. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 17 of 20

45 Määritelmä Neliömatriisit A ja B ovat similaareja, jos on olemassa sellainen säännöllinen matriisi P, että A = P 1 BP. Huomautus Jos A ja B ovat similaarisia, siis A = P 1 BP jollekin säännölliselle matriisille P, on A i = A A... A = P 1 BP P 1 BP... P 1 BP = P 1 B i P. Huomautus Matriisien similaarisuus (merk. A B ) on ekvivalenssirelaatio: A A, koska A = I 1 AI Jos A B, on A = P 1 BP B = PAP 1, joten B A. Jos A B ja B C, on A = P1 1 BP 1, B = P2 1 CP 2, joten A = (P 2 P 1 ) 1 C(P 2 P 1 ), siis A C. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 17 of 20

46 Huomautus Oletetaan, että n n-matriisilla A on n ominaisarvoa λ 1,..., λ n ja näihin liittyvät ominais(pysty)vektorit x 1,..., x n. Merkitään P = (x 1...x n ), jolloin AP = (Ax 1...Ax n ) = (λ 1 x 1...λ n x n ). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 18 of 20

47 Huomautus AP = (Ax 1...Ax n ) = (λ 1 x 1...λ n x n ) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 19 of 20

48 Huomautus AP = (Ax 1...Ax n ) = (λ 1 x 1...λ n x n ) ja λ λ (λ 1 x 1...λ n x n ) = (x 1...x n )..... = PD λ n }{{} D M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 19 of 20

49 Huomautus AP = (Ax 1...Ax n ) = (λ 1 x 1...λ n x n ) ja λ λ (λ 1 x 1...λ n x n ) = (x 1...x n )..... = PD λ n }{{} D Siis AP = PD. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 19 of 20

50 Huomautus AP = (Ax 1...Ax n ) = (λ 1 x 1...λ n x n ) ja λ λ (λ 1 x 1...λ n x n ) = (x 1...x n )..... = PD λ n }{{} D Siis AP = PD. Täten P 1 AP = D, jos P:llä on käänteismatriisi. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 19 of 20

51 Huomautus AP = (Ax 1...Ax n ) = (λ 1 x 1...λ n x n ) ja λ λ (λ 1 x 1...λ n x n ) = (x 1...x n )..... = PD λ n }{{} D Siis AP = PD. Täten P 1 AP = D, jos P:llä on käänteismatriisi. Esimerkki Jatketaan edellistä esimerkkiä. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 19 of 20

52 Huomautus Olkoon AP = PD kuten edellä. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 20 of 20

53 Huomautus Olkoon AP = PD kuten edellä. P 1 on olemassa M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 20 of 20

54 Huomautus Olkoon AP = PD kuten edellä. P 1 on olemassa det(p) 0 M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 20 of 20

55 Huomautus Olkoon AP = PD kuten edellä. P 1 on olemassa det(p) 0 P:n sarakkeet ovat lineaarisesti riippumattomat M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 20 of 20

56 Huomautus Olkoon AP = PD kuten edellä. P 1 on olemassa det(p) 0 P:n sarakkeet ovat lineaarisesti riippumattomat Matriisin A ominaisvektorit muodostavat C n :n kannan M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 20 of 20

57 Huomautus Olkoon AP = PD kuten edellä. P 1 on olemassa det(p) 0 P:n sarakkeet ovat lineaarisesti riippumattomat Matriisin A ominaisvektorit muodostavat C n :n kannan Esimerkki Etsitään seuraavan matriisin ominaisarvot: A = M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 6 20 of 20

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.

Lisätiedot

Matematiikka B2 - TUDI

Matematiikka B2 - TUDI Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 06 laskuharjoituksien esimerkkiratkaisut Alla olevat esimerkkiratkaisut ovat melko ksitiskohtaisia Tenttivastauksissa ei leensä tarvitse muistaa lauseiden, määritelmien, esimerkkien

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3. Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Similaarisuus. Määritelmä. Huom.

Similaarisuus. Määritelmä. Huom. Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP

Lisätiedot

ominaisvektorit. Nyt 2 3 6

ominaisvektorit. Nyt 2 3 6 Esimerkki 2 6 8 Olkoon A = 40 0 6 5. Etsitäänmatriisinominaisarvotja 0 0 2 ominaisvektorit. Nyt 2 0 2 6 8 2 6 8 I A = 40 05 40 0 6 5 = 4 0 6 5 0 0 0 0 2 0 0 2 15 / 172 Täten c A ( )=det( I A) =( ) ( 2)

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104

Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104 Lineaarialgebra (muut ko) p. 1/104 Ensi viikolla luennot salissa X Torstaina 7.12. viimeiset demot (12.12. ja 13.12. viimeiset luennot). Torstaina 14.12 on välikoe 2, muista ilmoittautua! Demorastitiedot

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Käänteismatriisi 1 / 14

Käänteismatriisi 1 / 14 1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Ennakkotehtävän ratkaisu

Ennakkotehtävän ratkaisu Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162 Tällä viikolla viimeiset luennot ja demot Lineaarialgebra (muut ko) p. 1/162 Lineaarialgebra (muut ko) p. 2/162 Kertausta Vektorin u = (u 1,u 2 ) R 2 pituus u = u 2 1 +u2 2 Vektorien u ja v = (v 1,v 2

Lisätiedot

Alkeismuunnokset matriisille, sivu 57

Alkeismuunnokset matriisille, sivu 57 Lineaarialgebra (muut ko) p. 1/88 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

Esimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt

Esimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt Esimerkki 4.4. Määrää matriisin 2 2 1 A = 1 3 1 2 4 3 ominaisarvot ja -vektorit. Ratk. Nyt det(a λi ) = 1 + 2 λ 2 1 + 1 λ 1 λ 1 3 λ 1 = 1 3 λ 1 2 4 3 λ 2 4 3 λ 1 λ = 1 4 λ 1 = (1 λ)( 1)1+1 4 λ 1 2 6 3

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa. LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Lineaariset yhtälöryhmät ja matriisit

Lineaariset yhtälöryhmät ja matriisit Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää

Lisätiedot

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81 Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus

Lisätiedot

Lineaarialgebra (muut ko)

Lineaarialgebra (muut ko) Lineaarialgebra (muut ko) p. 1/103 Lineaarialgebra (muut ko) Tero Laihonen Lineaarialgebra (muut ko) p. 2/103 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).

Lisätiedot

Seuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117

Seuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117 Seuraava luento ti 31.10 on salissa XXII Lineaarialgebra (muut ko) p. 1/117 Lineaarialgebra (muut ko) p. 2/117 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v

Lisätiedot

Avaruuden R n aliavaruus

Avaruuden R n aliavaruus Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla

Lisätiedot

802120P Matriisilaskenta (5 op)

802120P Matriisilaskenta (5 op) 802120P Matriisilaskenta (5 op) Marko Leinonen Matemaattiset tieteet Syksy 2016 1 / 220 Luennoitsija: Marko Leinonen marko.leinonen@oulu.fi MA333 Kurssilla käytetään Noppaa (noppa.oulu.fi) Luentomoniste

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Lineaarikuvaukset Lineaarikuvaus Olkoot U ja V

Lisätiedot

Ominaisarvo-hajoitelma ja diagonalisointi

Ominaisarvo-hajoitelma ja diagonalisointi Ominaisarvo-hajoitelma ja a 1 Lause 1: Jos reaalisella n n matriisilla A on n eri suurta reaalista ominaisarvoa λ 1,λ 2,...,λ n, λ i λ j, kun i j, niin vastaavat ominaisvektorit x 1, x 2,..., x n muodostavat

Lisätiedot

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210 Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210 Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2

Lisätiedot

6. OMINAISARVOT JA DIAGONALISOINTI

6. OMINAISARVOT JA DIAGONALISOINTI 0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos

Lisätiedot

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA =

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA = 3 3 Olkoot 9 8 B 7 6 ja A 5 4 [ 3 4 Nyt A + B, AB ja BB eivät ole mielekkäitä (vastaavilla lineaarikuvauksilla menisivät dimensiot solmuun tällaisista yhdistelmistä) Kuitenkin voidaan laskea BA ja 9( )

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on? Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi

Lisätiedot

Determinantti. Määritelmä

Determinantti. Määritelmä Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j) (a) Jos n = 1, niin det(a) = a 11 (b) Muussa tapauksessa n det(a)

Lisätiedot

2.8. Kannanvaihto R n :ssä

2.8. Kannanvaihto R n :ssä 28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit

Lisätiedot

Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41

Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41 MS-A0004/MS-A0006 Matriisilaskenta, I/06 Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 4 Tehtävä 5 (L): a) Oletetaan, että λ 0 on kääntyvän matriisin A ominaisarvo. Osoita, että /λ on matriisin A

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 4.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Viimeiset harjoitukset on palautettava torstaina 13.6. Laskaripisteensä ja läsnäolonsa voi kukin tarkistaa

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

Determinantti 1 / 30

Determinantti 1 / 30 1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen

Lisätiedot

Determinantti. Määritelmä

Determinantti. Määritelmä Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi. Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j). (a) Jos n = 1, niin det(a) = a 11. (b) Muussa tapauksessa n det(a)

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48 MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Determinantit. Kaksirivinen determinantti. Aiheet. Kaksirivinen determinantti. Kaksirivinen determinantti. Kolmirivinen determinantti

Determinantit. Kaksirivinen determinantti. Aiheet. Kaksirivinen determinantti. Kaksirivinen determinantti. Kolmirivinen determinantti Determinantit 1 2 2-matriisin ( A = on det(a) = a 11 a 12 a 21 a 22 a 11 a 12 a 21 a 22 ) = a 11a 22 a 12 a 21. 1 2 2-matriisin on det(a) = Esim. Jos A = ( a 11 a 12 a 21 a 22 A = a 11 a 12 a 21 a 22 )

Lisätiedot

800350A / S Matriisiteoria

800350A / S Matriisiteoria 800350A / 800693S Matriisiteoria Emma Leppälä Tero Vedenjuoksun luentomonisteen pohjalta 15 syyskuuta 2017 Sisältö 1 Lineaarialgebraa 2 11 Merkintöjä 2 12 Matriisien perusominaisuuksia 4 13 Matriisien

Lisätiedot

6 MATRIISIN DIAGONALISOINTI

6 MATRIISIN DIAGONALISOINTI 6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 23.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Käytännön asioita Ensimmäiset tehtävät olivat sujuneet hyvin. Kansilehdet on oltava mukana tehtäviä palautettaessa,

Lisätiedot

Lineaarialgebra, kertausta aiheita

Lineaarialgebra, kertausta aiheita Lineaarialgebra, kertausta aiheita Matriisitulo käänteismatriisi determinantin kehittäminen determinantin ominaisuudet adjungaatti ja Cramerin kaavat yhtälöryhmän eri esitystavat Gauss-Jordan -algoritmi

Lisätiedot

Johdatus lineaarialgebraan. Juha Honkala 2017

Johdatus lineaarialgebraan. Juha Honkala 2017 Johdatus lineaarialgebraan Juha Honkala 2017 Sisällysluettelo 1 Lineaariset yhtälöryhmät ja matriisit 11 Lineaariset yhtälöryhmät 12 Matriisit 13 Matriisien alkeismuunnokset ja porrasmatriisit 14 Yhtälöryhmien

Lisätiedot

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku

Lisätiedot

MATRIISIN HESSENBERGIN MUOTO. Niko Holopainen

MATRIISIN HESSENBERGIN MUOTO. Niko Holopainen MATRIISIN HESSENBERGIN MUOTO Niko Holopainen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Syksy 2013 Tiivistelmä: Niko Holopainen, Matriisin Hessenbergin muoto Matematiikan

Lisätiedot

Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit

Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Antti Rasila 2016 Ominaisarvot ja ominaisvektorit 1/5 Määritelmä Skalaari λ C on matriisin A C n n ominaisarvo ja vektori v C n sitä

Lisätiedot

Neliömatriisin adjungaatti, L24

Neliömatriisin adjungaatti, L24 Neliömatriisin adjungaatti, L24 1 2 1 3 Matriisi = A = 7 4 6 5 2 0 ( ) 7 6 Alimatriisi = A 12 = 5 0 Minori = det(a 12 ) = 7 6 5 0 = 30 Kofaktori = ( 1) 1+2 det(a 12 ) = 30 2 Määritelmä n n neliö-matriisin

Lisätiedot

Käänteismatriisin ominaisuuksia

Käänteismatriisin ominaisuuksia Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun

Lisätiedot

Kaksirivisen matriisin determinantille käytämme myös merkintää. a 11 a 12 a 21 a 22. = a 11a 22 a 12 a 21. (5.1) kaksirivine

Kaksirivisen matriisin determinantille käytämme myös merkintää. a 11 a 12 a 21 a 22. = a 11a 22 a 12 a 21. (5.1) kaksirivine Vaasan yliopiston julkaisuja 97 5 DETERMINANTIT Ch:Determ Sec:DetDef 5.1 Determinantti Tämä kappale jakautuu kolmeen alakappaleeseen. Ensimmäisessä alakappaleessa määrittelemme kaksi- ja kolmiriviset determinantit.

Lisätiedot

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili 6 4 2 x 2 x 3 15 10 5 0 5 15 5 3 2 1 1 2 3 2 0 x 2 = 1 2x 1 0 4 x 2 = 3 x 1 x 5 2 5 x 1 10 x 1 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili Sisältö

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin

Lisätiedot

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa

Lisätiedot

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/159

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/159 Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/159 Lineaarialgebra (muut ko) p. 2/159 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 ) Skalaarilla

Lisätiedot

LINEAARIALGEBRA P. LUENTOMONISTE ja HARJOITUSTEHTÄVÄT

LINEAARIALGEBRA P. LUENTOMONISTE ja HARJOITUSTEHTÄVÄT LINEAARIALGEBRA II 802119P LUENTOMONISTE ja HARJOITUSTEHTÄVÄT syksy 2008 30 V SISÄTULOAVARUUKSISTA 1. Sisätulon määritelmä Tarkastellaan sisätulon määrittelyä varten kompleksilukujen joukkoa C = {x + iy

Lisätiedot

Lineaariset kongruenssiyhtälöryhmät

Lineaariset kongruenssiyhtälöryhmät Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................

Lisätiedot

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Matriisilaskenta Harjoitusten ratkaisut (Kevät 9). Olkoot ja A = B = 5. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Tapa Käänteismatriisin määritelmän nojalla riittää osoittaa, että AB

Lisätiedot

Ortogonaaliset matriisit, määritelmä 1

Ortogonaaliset matriisit, määritelmä 1 , määritelmä 1 Määritelmä (a). Neliömatriisi Q on ortogonaalinen, jos Q T Q = I. Määritelmästä voidaan antaa samaa tarkoittavat, mutta erilaiselta näyttävät muodot: Määritelmä (b). n n neliömatriisi Q,

Lisätiedot

Muistutus: Matikkapaja ke Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta yms.

Muistutus: Matikkapaja ke Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta yms. Lineaarialgebra (muut ko) p. 1/139 Ensi viikon luennot salissa X Muistutus: Matikkapaja ke 14-16 Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta

Lisätiedot

Matemaattinen Analyysi / kertaus

Matemaattinen Analyysi / kertaus Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

10 Matriisit ja yhtälöryhmät

10 Matriisit ja yhtälöryhmät 10 Matriisit ja yhtälöryhmät Tässä luvussa esitellään uusi tapa kirjoittaa lineaarinen yhtälöryhmä matriisien avulla käyttäen hyväksi matriisikertolaskua sekä sarakevektoreita Pilkotaan sitä varten yhtälöryhmän

Lisätiedot

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66 Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/66 Lineaarialgebra (muut ko) p. 2/66 Redusoitu porrasmuoto 1 1 2 4 1 1 4 6 2 2 5 9 1 1 0 2 0 0 1 1 0 0 0 0 Eli aste r(a) = 2 ja vaakariviavaruuden

Lisätiedot

Neliömatriisit A ja B ovat similaareja toistensa suhteen, A B, jos on olemassa kääntyvä matriisi P, jolle pätee A = PBP 1.

Neliömatriisit A ja B ovat similaareja toistensa suhteen, A B, jos on olemassa kääntyvä matriisi P, jolle pätee A = PBP 1. Similaarisuus 1 (Kreyszig 8.4, Lay 5.2) Aalto MS-C1340, 2014, Kari Eloranta Määritelmä Neliömatriisit A ja B ovat similaareja toistensa suhteen, A B, jos on olemassa kääntyvä matriisi P, jolle pätee A

Lisätiedot