Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi
|
|
- Hanna-Mari Kivelä
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi
2 Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään raaka-aineita A, B ja C. Kuinka paljon raaka-aineita A, B ja C on käytettävä, kun 1. Tehdään 100 kg:n erä 2. Entsyymiä E on oltava 8000 mg ja 3. Erä saa maksaa 2000? Ehdoista 1-3 saadaan yhtälöryhmä: 1. x 1 + x 2 + x 3 = x x x 3 = x x x 3 = 2000 A B C Valmistettava määrä (kg) x 1 x 2 x 3 Entsyymin E määrä (mg/kg) Hinta ( /kg) Yhtälöryhmän voi esittää matriisimuodossa: Kerroinmatriisi A Muuttujavektori x x 1 x 2 x 3 = Ax = b Side-ehto- Vektori b
3 Lineaarikuvaus Oletetaan, ettei side-ehtoa (massaa, entsyymin E määrää ja hintaa) ole kiinnitetty etukäteen Tällöin matriisi A määrittelee lineaarisen funktion, joka kuvaa kaikki mahdolliset raakaainemääräyhdistelmät x = [x 1, x 2, x 3 ] R 3 massa- E:n määrä-hinta-yhdistelmiksi y = [y 1, y 2, y 3 ] R 3 : A: R 3 R 3, y = Ax Kerroinmatriisi A Raakaainemäärävektori x x 1 x 2 x 3 = Massa-E:n määrähintavektori y y 1 y 2 y 3 Esim. Jos raaka-aineita on x 1 = 5 kg, x 2 = 10 kg, x 3 = 20 kg, niin vastaava massa-e:n määrä-hintayhdistelmä on Ax = y y = = =
4 Lineaarikuvaus Yleisemmin: Jokainen matriisi A R m n määrittelee funktion A: R n R m, y = Ax: y = Ax = a 11, a 12 a 1n a m1, a m2 a mn x 1 x n = a 11 x 1 + a 12 x a 1n x n a m1 x 1 + a m2 x a mn x n m n n 1 m 1 Tällaista funktiota sanotaan (matriisin A määrittelemäksi) lineaarikuvaukseksi 4
5 Käänteiskuvaus Alkuperäistä yhtälöryhmää vastaus kysymykseen x 1 x 2 x 3 = ratkaistaessa halutaan Mikä on x = x 1 x 2 x 3, jos Ax = ? Yleisemmin voidaan kysyä neliömatriisin A määrittelemään lineaarikuvaukseen liittyen: Mikä on x = x 1 x 2 x 3, jos Ax = y 1 y 2 y 3 = y? Jos vastaus on olemassa, se saadaan lineaarikuvauksen käänteisfunktiolla eli käänteiskuvauksella, jonka määrittää käänteismatriisi A 1 : R 3 R 3, x = A 1 y 5
6 Käänteiskuvaus Esim. Mikä on x, jos x 1 x 2 x 3 = 4 3? 1 x 1 + 2x 2 + x 3 = 4 x 1 x 2 + x 3 = 3 x 2 = 3 x 1 + x 3 = 10 liian vähän yhtälöitä, ääretön määrä ratkaisuja 3 Esim. Mikä on x, jos x 1 x 2 = 1 1 2? x 1 + x 2 = 1 2x 1 x 2 = 1 2x 2 = 2 x 1 = 0 x 1 = 1 liikaa yhtälöitä, ei ratkaisua x 2 = 1 Käänteiskuvausta on mielekästä tarkastella vain neliömatriisien tapauksessa 6
7 Käänteiskuvauksen graafinen tulkinta A:n rivit lin. riippumattomat Jos A R 2 2, yhtälöryhmän Ax = y ratkaisu x = A 1 y on kahden suoran leikkauspisteessä Leikkauspisteitä eli ratkaisuja x on Yksi, jos suorat ovat erisuuntaiset, esim. A = , y = 2 1 : x 1 + 2x 2 = 2 x 1 + x 2 = 1 x 2 = 1 0.5x 1 x 2 = 1 + x 1 x 1 = 0 x 2 = 1 A:n rivit lin. riippuvat A:n rivit lin. riippuvat Ääretön määrä, jos suorat ovat samat, esim. A = , y = 2 2 : x 1 + 2x 2 = 2 x 1 2x 2 = 2 x 2 = 1 0.5x 1 x 2 = 1 0.5x 1 Ei yhtään, jos suorat ovat samansuuntaiset mutteivät samat, esim. A = , y = 2 2 : x 1 + 2x 2 = 2 x 1 2x 2 = 2 x 2 = 1 0.5x 1 x 2 = 1 0.5x 1 7
8 Käänteiskuvauksen olemassaolo Luennoilta 4 ja 5 muistamme, ettei käänteismatriisin A 1 määrittämää funktiota (tai mitään muutakaan funktiota) ole olemassa, ellei se kuvaa lähtöjoukkonsa vektoria y yksikäsitteisesti arvojoukkonsa vektoriksi x = A 1 y Edellä nähtiin, että kun A R 2 2, yhtälöryhmän Ax = y ratkaisu x = A 1 y on yksikäsitteinen jos ja vain jos matriisin A rivit ovat lineaarisesti riippumattomat Käänteismatriisi A 1 R 2 2 on olemassa jos ja vain jos matriisin A R 2 2 rivit ovat lineaarisesti riipumattomat Tämä pätee myös yleisemmin: Käänteismatriisi A 1 R n n on olemassa jos ja vain jos matriisin A R n n rivit ovat lineaarisesti riippumattomat 8
9 Matriisin aste Matriisin A R m n aste rank(a) on matriisin lineaarisesti riippumattomien rivien / sarakkeiden lukumäärä Esim. A = Rm n Rivivektorit [1,2,3] ja [4,5,6] ovat keskenään lineaarisesti riippumattomat, sillä ei ole olemassa vakiota a siten, että a [1,2,3]= [4,5,6] Sarakevektoreista aina kaksi on keskenään lineaarisesti riippumattomia, mutta kolme ei; esim = 3 6 Matriisin aste rank A = 2 Esim. B = Rm n Rivivektorit riippuvat lineaarisesti toisistaan, sillä 2 [1,2,3]= [2,4,6] Kukin sarakevektori riippuu lineaarisesti kummastakin muusta sarakevektorista, sillä: = Matriisin aste rank B = = 9
10 Matriisin aste Kaikille matriiseille A R m n pätee: rank(a) min{n, m} (lineaarisesti riippumattomia rivejä / sarakkeita ei voi olla enempää kuin rivejä / sarakkeita) Jos rank A = min{m, n}, matriisia sanotaan täysiasteiseksi Esim. A = Rm n : rank A = 2 = min{2,3} A on täysiasteinen Esim. A = Rm n : rank A = 1 < min{2,3} A ei ole täysiasteinen Erityisesti täysiasteisen neliömatriisin A R n n aste on n Neliömatriisi A on täysiasteinen Neliömatriisin A rivit ja sarakkeet ovat lin.riippumattomat Tällöin kalvon 8 laatikko voidaan kirjoittaa myös muotoon Käänteismatriisi A 1 R n n on olemassa jos ja vain jos matriisi A R n n on täysiasteinen Laitoksen nimi 10
11 Presemo-kysymys Määritä matriisin A = aste. 1. rank A = 1 2. rank A = 2 3. rank A = 3 11
12 Determinantti Neliömatriisin A täysiasteisuus voidaan helposti todeta A:n determinantin avulla, jota merkitään det A, det A tai A Determinantti on eräänlainen matriisin skaalausvakio 1 1-matriisin (eli vakion) a determinantti on a 2 2-matriisin A = a b c d determinantti a b c d Esim. Määritä det(a), kun A = = ad bc det A = = = 43 12
13 Determinantin geometrinen tulkinta Kuvalähde: matriisin A = a b c d determinantin itseisarvo det A = ad bc on A:n rivitai sarakevektoreiden määräämän suunnikkaan pinta-ala Esim = 43 Esim = 0 Huom! Rivivektorit (ja sarakevektorit) riippuvat lineaarisesti toisistaan. 1. rivi = [ 1,2] Pintaala = rivi = [4,5] 2. rivi = [3, 7] Summa = [7, 2] Summa = [1, 2] 2. rivi = [2, 4] 13
14 Determinantti 3 3-matriisin A = a d g b e h c f i determinantti on a e h f i b d g f i + c d e g h = a ei fh b di fg + c dh eg = aei + bfg + cdh ceg bdi afh 3 3-matriisin determinantin itseisarvo det A on A:n rivivektoreiden r 1 = a, b, c, r 2 = d, e, f, r 3 = [g, h, i] (tai sarakevektoreiden) määräämän suuntaissärmiön tilavuus Mitä tilavuudelle tapahtuu, jos rivivektorit ovat kaikki samassa 2- ulotteisessa tasossa, eli keskenään lineaarisesti riippuvia? 14
15 Determinantti Edellisten perusteella Matriisin A determinantti det A 0 jos ja vain jos A:n rivit ovat lineaarisesti riippumattomat mikä oli yhtäpitävää matriisin täysiasteisuuden kanssa sekä käänteismatriisin A 1 olemassaolon kanssa 15
16 Determinantti, täysiasteisuus ja käänteismatriisin olemassaolo Neliömatriisi A on täysiasteinen det A 0 Käänteismatriisi A 1 on olemassa Matriisin A täysiasteisuus ja täten käänteismatriisin A 1 olemassaolo voidaan helposti tarkistaa determinantin det A avulla! 16
17 Determinantin laskeminen Determinantin laskeminen käsin 2 2-tyyppiä korkeamman tyypin matriiseille on työlästä Esim. Määritä det(a), kun A = Excel: MDETERM() Syntaksi: det({{2,1,3},{4,5,6},{7,8,9}}) 17
18 Determinantin ominaisuuksia Determinantilla on monia laskutoimituksia helpottavia ominaisuuksia: 1. Jos matriisin A jonkin rivin tai sarakkeen kaikki alkiot ovat nollia, niin det A = 0; esim. A = det A = = 0 1. rivi = [ 1,2] Summa = [ 1,2] 2. rivi = [0,0] 2. Jos matriisi B saadaan kertomalla matriisin A jonkin rivin tai sarakkeen kaikki alkiot vakiolla c, niin det B = c det A; esim. A = B = det A = = 43 det B = = rivi = [4,5] 1. rivi = 2 4,5 = [8,10] Pintaala = 43 Summa = [11,3] 3. Jos matriisin kaksi riviä (tai saraketta) vaihdetaan keskenään, niin determinantin merkki muuttuu, esim. A = B = det A = = 43 det B = = 43 Pintaala = rivi = [3, 7] Summa = [7, 2] 18
19 Determinantin ominaisuuksia 4. Jos matriisissa A on kaksi (tai usempi) samaa riviä, niin det A = 0 (syy: nämä rivit riippuvat toisistaan lineaarisesti) 5. Jos matriisin k. rivi (sarake) kerrotaan vakiolla ja lisätään i. riviin (sarakkeeseen), determinantin arvo ei muutu, esim. 6. det AB = det A det B, esim. A = 2 4 A = det A = = 43 B = det B = = 43 det A = = B = 2 1 det B = = AB = 8 6 det AB = 56 6 = det A T = det A, esim. A = 2 4 det A = = A T = det AT = = 10 19
20 Presemo-kysymys Laske matriisin A = determinantti Laitoksen nimi 20
21 Käänteismatriisi Matriisin A käänteismatriisi A 1 määritellään siten, että AA 1 = A 1 A = I Matriisia, jolla on olemassa käänteismatriisi, sanotaan kääntyväksi, säännölliseksi tai epäsingulaariseksi Matriisia, jolla ei ole olemassa käänteismatriisia, sanotaan singulaariseksi 21
22 Käänteismatriisin laskeminen 2 2- matriiseille 2 2-matriisin A = a b c d käänteismatriisi on A 1 = 1 det A d b c a = 1 ad bc d c b a Esim. A = A 1 = = Tulos voidaan tarkistaa laskemalla tulot AA 1 ja A 1 A: AA 1 = = = = I A 1 A = = = = I 2 22
23 Käänteismatriisin laskeminen yleisessä tapauksessa Käänteismatriisi lasketaan yleisesti kaavalla A 1 = 1 det A adj(a) missä adj(a) on A:n liittomatriisi (ei käsitellä) Isojen käänteismatriisien laskeminen käsin on kuitenkin työlästä Excel (kömpelöhkö): Maalaa em. solusta lähtien käänteismatriisin kokoinen alue Kirjoita alueen vas. yläkulman soluun =MINVERSE(range) Paina yhtäaikaa Shift+Ctrl+Enter (hidas): Syntaksi: inverse{{1,0,2}, {2,3,1},{4,2,3}} Matlab (täydellinen): Syntaksi matriisin luomiseen: A=[1 0 2; 2 3 1; 4 2 3] Syntaksi käänteismatriisin laskemiseen: inv(a) Laitoksen nimi 23
24 Käänteismatriisi vs. käänteisluku Reaaliluvun a R käänteisluku 1 a erikoistapaus R on käänteismatriisin 1-ulotteinen Käänteismatriisin ominaisuus AA 1 = A 1 A = I vastaa käänteisluvun ominaisuutta a 1 a = 1 a a = 1 Singulaarisen matriisin A R n n (det A = 0) kääntäminen vastaa nollalla jakamista: 1 a = 0, =?!?!? a det A = 0, A 1 = 1 adj(a) =?!?!? det A 24
25 Käänteismatriisi laskusäännöt Jos A ja B ovat säännöllisiä neliömatriiseja ja k on vakio, niin 1. (A 1 ) 1 = A 2. (AB) 1 = B 1 A 1 3. (ka) 1 = 1 k A 1 4. (A T ) 1 = (A 1 ) T 25
26 Ortogonaalinen matriisi Erikoistapaus: Jos A 1 = A T, matriisia A sanotaan ortogonaaliseksi, esim. A = = AT A 1 1 = = = AT 2. rivi = 2. sarake = [0,1] 1. rivi = 1. sarake = [1,0] A = = AT A 1 1 = = = AT rivi = 1. sarake = [ 1 2, 12 ] Ortogonaalisen n n-matriisin rivi- ja sarakevektorit muodostavat R n :n ortonormaalisen kannan Rivivektorit ovat kohtisuorassa toisiaan vastaan Sarakevektorit ovat kohtisuorassa toisiaan vastaan Kunkin rivi- ja sarakevektorin pituus on 1 2. rivi = 2. sarake = [ 1 2, 1 2 ] Laitoksen nimi 26
27 Lineaarisen yhtälöryhmän ratkaisu käänteismatriisilla Pirjo valmistaa laskiaisriehaansa gin tonic -boolia. Kuinka paljon Pirjon tulee ostaa giniä ja tonicia, jotta 1. Boolia olisi 10 litraa ja 2. Alkoholin osuus olisi 10%? Giniä Tonicia Määrät (l) x 1 x 2 Alkoholin osuus (%/l) 50% 0% Ehdoista 1-2 saadaan yhtälöryhmä: 1. x 1 + x 2 = x 1 + 0x 2 = 0.1 x 1 + x 2 0.4x 1 0.1x 2 = 0 Matriisimuodossa Ax = b: Matriisiyhtälön ratkaisu: A 1 = = x 1 x 2 = 10 0 x 1 x 2 = = Ax = b A 1 Ax = A 1 b Ix = A 1 b x = A 1 b x 1 x 2 = =
28 Lineaarisen yhtälöryhmän ratkaisu käänteismatriisilla Kuinka paljon raaka-aineita A, B ja C on käytettävä, kun 1. Tehdään 100 kg:n erä 2. Entsyymiä E on oltava 8000 mg ja 3. Erä saa maksaa 2000? A B C Valmistettava määrä (kg) x 1 x 2 x 3 Entsyymin E määrä (mg/kg) Hinta ( /kg) Ehdoista 1-3 saatiin matriisiyhtälö Ax = b: x x x 2 = 8000 x 2 = x x = =
29 Presemo-kysymys Määritä käänteismatriisi A 1, kun A = A 1 = A 1 = A 1 =
30 Yhteenveto Lineaarinen n:n yhtälön ja n:n muuttujan yhtälöryhmä voidaan esittää matriisimuodossa Ax = b, missä A R n n, x, b R n Yhtälöryhmä voidaan ratkaista käänteismatriisin A 1 avulla, jos sellainen on olemassa: x = A 1 y Käänteismatriisi A 1 on olemassa jos ja vain jos Matriisi A on täysiasteinen Matriisin A rivit ja sarakkeet ovat lineaarisesti riippumattomat Matriisin determinantti det A 0 a b Matriisin A = c d R2 2 Determinantti det A = ad bc Käänteismatriisi A 1 = 1 ad bc d c b a 30
Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi
Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku
LisätiedotTalousmatematiikan perusteet: Luento 10. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti
Talousmatematiikan perusteet: Luento 1 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,
LisätiedotTalousmatematiikan perusteet: Luento 9. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo
Talousmatematiikan perusteet: Luento 9 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,
LisätiedotMatematiikka B2 - Avoin yliopisto
6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
LisätiedotTalousmatematiikan perusteet: Luento 9
Talousmatematiikan perusteet: Luento 9 Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo ja pituus Vektorien välinen kulma Motivointi Tähän asti olemme tarkastelleet yhden
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
LisätiedotKäänteismatriisi 1 / 14
1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella
LisätiedotA = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:
11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta
LisätiedotMatematiikka B2 - TUDI
Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
Lisätiedot1 Matriisit ja lineaariset yhtälöryhmät
1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
LisätiedotMatriisien tulo. Matriisit ja lineaarinen yhtälöryhmä
Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1
LisätiedotTalousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu
Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita
LisätiedotTalousmatematiikan perusteet: Luento 8. Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo
Talousmatematiikan perusteet: Luento 8 Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo Motivointi Esim. Herkkumatikka maksaa 50 /kg. Paljonko
LisätiedotJohdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 5. luento.2.27 Lineaarialgebraa - Miksi? Neuroverkon parametreihin liittyvät kaavat annetaan monesti
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 4.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Viimeiset harjoitukset on palautettava torstaina 13.6. Laskaripisteensä ja läsnäolonsa voi kukin tarkistaa
LisätiedotDeterminantti 1 / 30
1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen
LisätiedotNeliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja
7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien
LisätiedotEnnakkotehtävän ratkaisu
Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb
LisätiedotKäänteismatriisin ominaisuuksia
Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
Lisätiedot3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA =
3 3 Olkoot 9 8 B 7 6 ja A 5 4 [ 3 4 Nyt A + B, AB ja BB eivät ole mielekkäitä (vastaavilla lineaarikuvauksilla menisivät dimensiot solmuun tällaisista yhdistelmistä) Kuitenkin voidaan laskea BA ja 9( )
Lisätiedot9 Matriisit. 9.1 Matriisien laskutoimituksia
9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä
Lisätiedot2.5. Matriisin avaruudet ja tunnusluvut
2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja
LisätiedotLineaariset yhtälöryhmät ja matriisit
Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää
LisätiedotMatriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.
Matriisilaskenta Harjoitusten ratkaisut (Kevät 9). Olkoot ja A = B = 5. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Tapa Käänteismatriisin määritelmän nojalla riittää osoittaa, että AB
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
LisätiedotDeterminantit. Kaksirivinen determinantti. Aiheet. Kaksirivinen determinantti. Kaksirivinen determinantti. Kolmirivinen determinantti
Determinantit 1 2 2-matriisin ( A = on det(a) = a 11 a 12 a 21 a 22 a 11 a 12 a 21 a 22 ) = a 11a 22 a 12 a 21. 1 2 2-matriisin on det(a) = Esim. Jos A = ( a 11 a 12 a 21 a 22 A = a 11 a 12 a 21 a 22 )
Lisätiedot3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset
32 Idea: Lineaarikuvausten laskutoimitusten avulla määritellään vastaavat matriisien laskutoimitukset Vakiolla kertominen ja summa Olkoon t R ja A, B R n m Silloin ta, A + B R n m ja määritellään ta ta
Lisätiedot6 MATRIISIN DIAGONALISOINTI
6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotLineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg
Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa
LisätiedotMatikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )
LisätiedotOsittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi).
Liukuluvut Tietokonelaskuissa käytetään liukulukuja: mikä esittää lukua ± α α α M β k ± ( M α i β i )β k, i= β on järjestelmän kantaluku, α α M liukuluvun mantissa, α,, α M lukuja,,,, β, siten että α Esimerkki
LisätiedotDeterminantti. Määritelmä
Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi. Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j). (a) Jos n = 1, niin det(a) = a 11. (b) Muussa tapauksessa n det(a)
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotYhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
LisätiedotMatikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210 Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2
LisätiedotLiittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.
Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla
LisätiedotOrtogonaalinen ja ortonormaali kanta
Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä
LisätiedotLineaariset kongruenssiyhtälöryhmät
Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................
LisätiedotMatriisi-vektori-kertolasku, lineaariset yhtälöryhmät
Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa
Lisätiedot1 Ominaisarvot ja ominaisvektorit
1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin
LisätiedotYhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
LisätiedotVille Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007
Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear
Lisätiedotx 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili
6 4 2 x 2 x 3 15 10 5 0 5 15 5 3 2 1 1 2 3 2 0 x 2 = 1 2x 1 0 4 x 2 = 3 x 1 x 5 2 5 x 1 10 x 1 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili Sisältö
LisätiedotMS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
Lisätiedot2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio
x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A
LisätiedotMatriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi
Matriisit, kertausta Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Kaavio kirjoitetaan kaarisulkujen väliin
LisätiedotOrtogonaaliset matriisit, määritelmä 1
, määritelmä 1 Määritelmä (a). Neliömatriisi Q on ortogonaalinen, jos Q T Q = I. Määritelmästä voidaan antaa samaa tarkoittavat, mutta erilaiselta näyttävät muodot: Määritelmä (b). n n neliömatriisi Q,
LisätiedotLU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24
LU-hajotelma 1 / 24 LU-hajotelma Seuravassa tarkastellaan kuinka neliömatriisi voidaan esittää kahden kolmiomatriisin tulona. Käytämme alkeismatriiseja tälläisen esityksen löytämiseen. Edellä mainittua
LisätiedotInversio-ongelmien laskennallinen peruskurssi Luento 3
Inversio-ongelmien laskennallinen peruskurssi Luento 3 Kevät 2011 1 Singulaariarvohajotelma (Singular Value Decomposition, SVD) Olkoon A R m n matriisi 1. Tällöin A voidaan esittää muodossa A = UΣV T,
LisätiedotKurssin loppuosassa tutustutaan matriiseihin ja niiden käyttöön yhtälöryhmien ratkaisemisessa.
7 Matriisilaskenta Kurssin loppuosassa tutustutaan matriiseihin ja niiden käyttöön yhtälöryhmien ratkaisemisessa. 7.1 Lineaariset yhtälöryhmät Yhtälöryhmät liittyvät tilanteisiin, joissa on monta tuntematonta
LisätiedotMS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47
MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö
Lisätiedot3.1 Lineaarikuvaukset. MS-A0007 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
3 MS-A7 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 925 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita ratkotaan
LisätiedotTalousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu
Talousmatematiikan perusteet: Luento 14 Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Luennolla 6 Tarkastelimme yhden muuttujan funktion f(x) rajoittamatonta optimointia
Lisätiedot5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
LisätiedotLineaarialgebra (muut ko)
Lineaarialgebra (muut ko) p. 1/103 Lineaarialgebra (muut ko) Tero Laihonen Lineaarialgebra (muut ko) p. 2/103 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v
LisätiedotLineaarinen yhtälöryhmä
Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.
LisätiedotMS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).
LisätiedotMatemaattinen Analyysi / kertaus
Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen
Lisätiedot110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3
4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5
Lisätiedot10 Matriisit ja yhtälöryhmät
10 Matriisit ja yhtälöryhmät Tässä luvussa esitellään uusi tapa kirjoittaa lineaarinen yhtälöryhmä matriisien avulla käyttäen hyväksi matriisikertolaskua sekä sarakevektoreita Pilkotaan sitä varten yhtälöryhmän
LisätiedotMatriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n.
Matriisipotenssi Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: Määritelmä Oletetaan, että A on n n -matriisi (siis neliömatriisi) ja k
LisätiedotMS-A0003/A Matriisilaskenta Laskuharjoitus 6
MS-A3/A - Matriisilaskenta Laskuharjoitus 6 Ratkaisuehdotelmia. Diagonalisointi on hajotelma A SΛS, jossa diagonaalimatriisi Λ sisältää matriisin A ominaisarvot ja matriisin S sarakkeet ovat näitä ominaisarvoja
LisätiedotOminaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
LisätiedotLineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
LisätiedotInversio-ongelmien laskennallinen peruskurssi Luento 2
Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +
Lisätiedot1.1. Määritelmiä ja nimityksiä
1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b
LisätiedotBM20A0700, Matematiikka KoTiB2
BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin
Lisätiedot1 Kannat ja kannanvaihto
1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:
LisätiedotOminaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.
Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (
LisätiedotOsoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lisätiedot3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
Lisätiedot5 OMINAISARVOT JA OMINAISVEKTORIT
5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön
LisätiedotOminaisarvo ja ominaisvektori
Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
LisätiedotKäänteismatriisin. Aiheet. Käänteismatriisin ominaisuuksia. Rivioperaatiot matriisitulona. Matriisin kääntäminen rivioperaatioiden avulla
Käänteismatriisi, L5 1 Tässä kalvosarjassa käsittelemme neliömatriiseja. Ilman asian jatkuvaa toistamista oletamme seuraavassa, että kaikki käsittelemämme matriisit ovat neliömatriiseja. Määritelmä. Olkoon
Lisätiedot4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =
BMA58 Funktiot, lineaarialgebra ja vektorit Harjoitus 6, Syksy 5. Olkoon [ 6 6 A =, B = 4 [ 3 4, C = 4 3 [ 5 Määritä matriisien A ja C ominaisarvot ja ominaisvektorit. Näytä lisäksi että matriisilla B
LisätiedotKannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
Lisätiedot(1.1) Ae j = a k,j e k.
Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim
Lisätiedot802120P MATRIISILASKENTA (5 op)
802120P MARIIILAKENA (5 op) Oulun yliopisto Matemaattiset tieteet 2015 ero Vedenjuoksu 1 Alkusanat ämä luentomoniste pohjautuu osaksi Esa Järvenpään (2011) ja osaksi Hanna Kiilin (2014) kurssin Lineaarialgebra
LisätiedotMatriisialgebra harjoitukset, syksy 2016
Matriisialgebra harjoitukset, syksy 6 MATRIISIALGEBRA, s. 6, Ratkaisuja/ M.Hamina & M. Peltola 8. Olkoon 4 A 6. 4 Tutki, onko A diagonalisoituva. Jos on, niin määrää matriisi D T AT ja siihen liittyvä
LisätiedotMatriisihajotelmat. MS-A0007 Matriisilaskenta. 5.1 Diagonalisointi. 5.1 Diagonalisointi
MS-A0007 Matriisilaskenta 5. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 25.11.2015 Laskentaongelmissa käsiteltävät matriisit ovat tyypillisesti valtavia.
LisätiedotBijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.
Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma
LisätiedotTalousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 12 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
LisätiedotDeterminantti. Määritelmä
Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j) (a) Jos n = 1, niin det(a) = a 11 (b) Muussa tapauksessa n det(a)
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä
LisätiedotLineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
Lisätiedotax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 7, Syksy 206 Tutkitaan yhtälöryhmää x + y + z 0 2x + y + az b ax + y + 2z 0 (a) Jos a 0 ja b 0 niin mikä on yhtälöryhmän ratkaisu? Tulkitse ratkaisu
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
LisätiedotAiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa.
Yhtälöryhmän ratkaisujen lukumäärä, L8 Esimerkki kvadraattinen Haluamme ratkaista n 4x + y z = x + y + z = 5 x + y + z = 4 4 x 4 + y x y z = + z 5 4 = 5 4 Esimerkki kvadraattinen Yhtälöryhmä on kvadraattinen,
LisätiedotSimilaarisuus. Määritelmä. Huom.
Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP
Lisätiedot