Lineaarikuvauksen R n R m matriisi
|
|
- Eero Mattila
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos: Lause 51 Oletetaan, että T : R n R m on lineaarikuvaus. Tällöin on olemassa täsmälleen yksi matriisi A M m n, jolla T ( v) = A v kaikilla v R n. LM2, Kesä /202
2 Ennen lauseen 51 perustelua tutkitaan hiukan matriistuloa A v: a 11 a 12 a 1n v 1 a 21 a 22 a 2n v 2 A v =... a m1 a m2 a mn v n a 11 v 1 + a 12 v a 1n v n a 21 v 1 + a 22 v a 2n v n =. a m1 v 1 + a m2 v a mn v n = v 1 a 11 a 21. a m1 + v 2 a 12 a 22. a m2 + + v n a 1n a 2n.. a mn LM2, Kesä /202
3 Lineaarikuvauksen R n R m matriisi Tulo A v on siis matriisin A sarakkeiden lineaarikombinaatio, jossa kertoimina ovat vektorin v komponentit. Lauseen 51 todistus. Muodostetaan matriisi A seuraavasti: Katsotaan, miten avaruuden R n luonnollisen kannan (ē 1, ē 2,..., ē n ) vektorit kuvautuvat lineaarikuvauksessa T eli määritetään T (ē 1 ), T (ē 2 ),..., T (ē n ). Laitetaan kuvavektorit T (ē 1 ), T (ē 2 ),..., T (ē n ) matriisin A sarakkeiksi tässä järjestyksessä. LM2, Kesä /202
4 Matriisin A sarakkeet ovat siis T (ē 1 ), T (ē 2 ),..., T (ē n ) R m ja tällöin voidaan merkitä lyhyesti [ ] A = T (ē 1 ) T (ē 2 )... T (ē n ). Huomaa, että matriisin jokaisessa sarakkeessa on m alkiota ja sarakkeita on n kappaletta, joten A todella on m n -matriisi. Osoitetaan, että matriisin A määräämä lineaarikuvaus L A : R n R m on sama kuin T : R n R m. Koska kantavektorien kuvavektorit määräävät lineaarikuvauksen (lause 49), niin riittää osoittaa, että kantavektorit ē 1, ē 2,..., ē n kuvautuvat samalla tavalla kuvauksissa L A ja T. LM2, Kesä /202
5 Matriisin A määräämässä kuvauksessa L A esimerkiksi a 11 a 12 a 13 a 1n a 21 L A (ē 2 ) = Aē 2 = a a a 2n. a m1 a m2 a m3 a mn a 12 a 22 =. = T (ē 2), a m2 sillä tulo Aē 2 on matriisin A sarakkeiden lineaarikombinaatio, jossa kertoimina ovat vektorin ē 2 komponentit; matriisin A sarakkeet ovat kuvavektorit T (ē 1 ),..., T (ē n ). LM2, Kesä /202
6 Näin voidaan osoittaa, että L A (ē i ) = T (ē i ) kaikilla i {1,..., n}. Lineaarikuvaukset L A ja T ovat siten lauseen 49 nojalla sama kuvaus, eli T ( v) = A v kaikilla v R n. Osoitetaan vielä, ettei muita sopivia m n -matriiseja ole. Oletetaan, että A, B M m n ovat sellaisia, että T ( v) = A v ja T ( v) = B v kaikilla v R n. Tällöin A v = B v kaikilla v R n. LM2, Kesä /202
7 Erityisesti esimerkiksi Aē 1 = Bē 1 eli a 11 a 12 a 1n b 11 b 12 b 1n a a a 2n. = 1 b b b 2n.. a m1 a m2 a mn b m1 b m2 b mn Siis a 11 b 11 a 21. = b 21. a m1 b m1 ts. matriiseilla A ja B on sama ensimmäinen sarake. Vastaavalla tavalla voidaan vektorien ē 2,..., ē n avulla päätellä, että matriisien A ja B muutkin sarakkeet vastaavat toisiaan. Siis A = B. LM2, Kesä /202
8 Lineaarikuvauksen R n R m matriisi Määritelmä Oletetaan, että T : R n R m on lineaarikuvaus. Edellä lauseessa 51 määriteltyä matriisia [ ] A = T (ē 1 ) T (ē 2 )... T (ē n ) kutsutaan lineaarikuvauksen T standardimatriisiksi. Huom. Jos A on lineaarikuvauksen T : R n R m standardimatriisi, niin lauseen 51 nojalla T ( v) = A v kaikilla v R n. LM2, Kesä /202
9 Esimerkki 52 Lineaarikuvauksen R n R m matriisi Tarkastellaan kuvausta L, joka peilaa tason R 2 vektorit suoran y = x suhteen. Alla olevan kuvan avulla voidaan järkeillä, että tämä kuvaus on lineaarinen: v v + w w c w L( v) L( w) L( v + w) = L( v) + L( w) L(c w) = cl( w) LM2, Kesä /202
10 Määritetään kuvauksen L standardimatriisi päättelemällä kantavektorien ē 1 = (1, 0) ja ē 2 = (0, 1) kuvavektorit: ē 2 L(ē 2 ) ē 1 L(ē 1 ) Havaitaan, että L(ē 1 ) = (0, 1) ja L(ē 2 ) = ( 1, 0). Kuvauksen L standardimatriisi on siten [ ] [ ] 0 1 A = L(ē 1 ) L(ē 2 ) =. 1 0 Siis kuvaukselle L pätee L( v) = A v kaikilla v R 2. LM2, Kesä /202
11 Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka toteuttaa yllä mainitun ehdon kutsutaan ominaisarvoon λ liittyväksi ominaisvektoriksi. Huom. Edellinen määritelmä on sekä ominaisarvon että ominaisvektorin määritelmä. Ominaisarvoa ei voida määritellä ilman ominaisvektoria eikä ominaisvektoreista voida puhua mainitsematta ominaisarvoa. LM2, Kesä /202
12 Ominaisarvo ja ominaisvektori Huom. Matriisin A ominaisvektori on vektori, jolle matriisilla A kertominen vastaa reaaliluvulla λ kertomista. Nollavektorin ei haluta olevan ominaisvektori, sillä jos niin olisi, kaikki reaaliluvut olisivat kaikkien matriisien ominaisarvoja. LM2, Kesä /202
13 Ominaisarvo ja ominaisvektori Esimerkki 53 Matriisilla A = on ominaisarvo 4, sillä [ ] [ ] = [ ] [ ] 4 = 4 4 [ ] 1. 1 Eräs ominaisarvoa 4 vastaava ominaisvektori on siis (1, 1). LM2, Kesä /202
14 Samaa ominaisarvoa voi vastata useampi eri ominaisvektori. Esimerkiksi (2, 2) on myös matriisin A ominaisarvoa 4 vastaava ominaisvektori, sillä [ ] [ ] [ ] [ ] = = Matriisilla A on toinenkin ominaisarvo: [ ] [ ] [ ] [ ] = = 2, joten reaaliluku 2 on matriisin A ominaisarvo ja (1, 1) on yksi siihen liittyvä ominaisvektori. LM2, Kesä /202
15 Ominaisarvo ja ominaisavaruus Jos kaikki matriisin A ominaisarvoa λ vastaavat ominaisvektorit sekä nollavektori kerätään yhteen, saadaan ominaisarvoa vastaava ominaisavaruus. Määritelmä Oletetaan, että matriisilla A M n n on ominaisarvo λ R. Ominaisarvoa λ vastaava ominaisavaruus on joukko V λ = { v R n A v = λ v }. LM2, Kesä /202
16 Ominaisavaruus Lause 54 Matriisin A M n n ominaisarvoa λ vastaava ominaisavaruus V λ on vektoriavaruuden R n aliavaruus. Todistus. Oletetaan, että v, w V λ ja c R. Tällöin A v = λ v ja A w = λ w. Aliavaruuden määritelmän ehdot: (a) Tutkitaan summaa v + w: A( v + w) = A v + A w = λ v + λ w = λ( v + w), joten v + w V λ. LM2, Kesä /202
17 (b) Tutkitaan skalaarimonikertaa c v: A(c v) = c(a v) = c(λ v) = λ(c v), joten c v V λ. (c) Lisäksi A 0 = 0 = λ 0, joten 0 V λ. LM2, Kesä /202
18 Esimerkki 55 Ominaisavaruus Määritetään esimerkin 53 matriisin [ ] 3 1 A = 1 3 ominaisarvoa 4 vastaava ominaisavaruus eli kaikki ominaisarvoa 4 vastaavat ominaisvektorit. Vektori v = (v 1, v 2 ) R 2 on ominaisarvoa 4 vastaava ominaisvektori, jos ja vain jos [ ] [ ] [ ] 3 1 v1 v1 = v 2 v 2 eli [ ] [ ] [ ] 3 1 v1 4v1 = 1 3 v 2 4v 2 [ ] 0. 0 LM2, Kesä /202
19 Yhtälö saadaan muotoon [ ] v1 + v 2 = v 1 v 2 [ ] 0 0 ja sitä vastaava lineaarinen yhtälöryhmä on { v1 + v 2 = 0 v 1 v 2 = 0, jossa tuntemattomina ovat v 1 ja v 2. Yhtälöryhmän ratkaisuiksi saadaan { v1 = s missä s R. v 2 = s, Koska nollavektori ei ole ominaisvektori, ovat ominaisvektorit muotoa (s, s), missä s R \ {0}. LM2, Kesä /202
20 Ominaisavaruuteen otetaan mukaan myös nollavektori. Siten ominaisarvoa 4 vastaava ominaisavaruus on V 4 = { (s, s) s R } = { s(1, 1) s R } = span((1, 1)). LM2, Kesä /202
21 Ominaisarvot ja ominaisvektorit Esimerkki 56 Tarkastellaan esimerkin 23 matriisien [ ] [ ] A =, B = ja C = [ ] ominaisarvoja. LM2, Kesä /202
22 Matriisia A vastaava lineaarikuvaus L A venyttää vektoreita vaaka-akselin suunnassa kaksinkertaisiksi. Tästä voidaan päätellä, että matriisin A ominaisvektoreita ovat vektorit muotoa t(1, 0), missä t R {0}, ja vastaava ominaisarvo on 2. matriisin A ominaisvektoreita ovat vektorit muotoa t(0, 1), missä t R {0}, ja vastaava ominaisarvo on 1. L A LM2, Kesä /202
23 Matriisia B vastaava lineaarikuvaus L B peilaa vektorit pystyakselin suhteen. Tästä voidaan päätellä, että matriisin B ominaisvektoreita ovat vektorit muotoa t(1, 0), missä t R {0}, ja vastaava ominaisarvo on 1. matriisin B ominaisvektoreita ovat vektorit muotoa t(0, 1), missä t R {0}, ja vastaava ominaisarvo on 1. L B LM2, Kesä /202
24 Matriisia C vastaava lineaarikuvaus L C kiertää vektoreita origon ympäri 90 vastapäivään eli positiiviseen kiertosuuntaan. Tästä voidaan päätellä, että matriisilla C ei ole ominaisvektoreita eikä ominaisarvoja. L C LM2, Kesä /202
25 Karakteristinen polynomi Lause 57 Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin A ominaisarvo, jos ja vain jos det(a λi) = 0. Todistus. : Oletetaan, että λ R on matriisin A ominaisarvo. Tällöin on olemassa v R n \ { 0}, jolle pätee A v = λ v. Matriisien laskusääntöjen nojalla tätä yhtälöä voidaan muokata: A v = λ v A v = λi v A v λi v = 0 (A λi) v = 0. Vektori v on siis yhtälöä (A λi) x = 0 vastaavan homogeenisen yhtälöryhmän epätriviaali (eli nollasta poikkeava) ratkaisu. Siten matriisi A λi ei ole kääntyvä. Näin ollen det(a λi) = 0. LM2, Kesä /202
26 : Oletetaan, että det(a λi) = 0 jollakin λ R. Tällöin matriisi A λi ei ole kääntyvä. Tästä seuraa, että yhtälöllä (A λi) x = 0 on epätriviaali ratkaisu. Olkoon tuo ratkaisu v. Nyt siis v 0. Koska (A λi) v = 0, saadaan matriisien laskusääntöjen avulla yhtälö A v = λ v kuten edellä. Siten λ on matriisin A ominaisarvo. LM2, Kesä /202
27 Karakteristinen polynomi Määritelmä Oletetaan, että A on n n -neliömatriisi. Muuttujan λ polynomi, joka saadaan kirjoittamalla auki determinantti det(a λi), on nimeltään matriisin A karakteristinen poynomi. Esimerkki 58 Matriisin A = [ ] 1 2 karakteristinen polynomi on λ λ 4, sillä 1 λ 2 det(a λi) = = (1 λ)(2 λ) λ = 2 λ 2λ + λ 2 6 = λ 2 3λ 4. LM2, Kesä /202
28 Ominaisarvojen ja -avaruuksien määrittäminen Esimerkki 59 Määritetään esimerkin 58 matriisin [ ] 1 2 A = 3 2 ominaisarvot ja niitä vastaavat ominaisavaruudet. Reaaliluku λ on matriisin A ominaisarvo, jos ja vain jos det(a λi) = 0. Huomaa, että A λi = [ ] [ ] [ ] λ 0 1 λ 2 =. 0 λ 3 2 λ LM2, Kesä /202
29 Matriisin A λi determinantti on esimerkin 58 mukaan 1 λ 2 det(a λi) = 3 2 λ = = λ2 3λ 4. Näin ollen det(a λi) = 0 λ 2 3λ 4 = 0. Matriisin A ominaisarvot ovat siten yhtälön λ 2 3λ 4 = 0 ratkaisut. Toisen asteen yhtälön ratkaisukaavan avulla saadaan yhtälön ratkaisuiksi λ = 4 ja λ = 1. Siis matriisin A ominaisarvot ovat 4 ja 1. LM2, Kesä /202
30 Ominaisarvoa 4 vastaava ominaisavaruus V 4 = { v R 2 A v = 4 v } löydetään ratkaisemalla yhtälö A x = 4 x eli yhtälö (A 4I) x = 0. Vastaavan homogeenisen yhtälöryhmän täydennetty matriisi: [ ] r 2 + r 1 [ ] r [ ] 1 1 2/ Ratkaisut ovat { x1 = 2t/3, t R. x 2 = t LM2, Kesä /202
31 Näin ollen V 4 = { v R 2 A v = 4 v } = { (2t/3, t) t R } = { t(2/3, 1) t R } = span ( (2/3, 1) ) = span ( (2, 3) ) Matriisia A vastaava lineaarikuvaus L A venyttää siis ominaisavaruuden V 4 = span ( (2, 3) ) vektorit nelinkertaisiksi: L A v A v = 4 v LM2, Kesä /202
32 Ominaisarvoa 1 vastaava ominaisavaruus V 1 = { v R 2 A v = v } löydetään vastaavasti ratkaisemalla yhtälö A x = x eli yhtälö (A + I) x = 0. Vastaavan homogeenisen yhtälöryhmän täydennetty matriisi: [ ] r [ ] r 2 3r 1 [ 1 1 ] Ratkaisut ovat { x1 = t, t R. x 2 = t LM2, Kesä /202
33 Näin ollen V 1 = { v R 2 A v = v } = { ( t, t) t R } = { t( 1, 1) t R } = span ( ( 1, 1) ) Matriisia A vastaava lineaarikuvaus L A kääntää siis ominaisavaruuden V 1 = span ( ( 1, 1) ) vektorien suunnan päinvastaiseksi: L A v A v = v LM2, Kesä /202
34 Näillä tiedoilla voidaan päätellä minkä tahansa vektorin kuvautuminen: L A LM2, Kesä /202
35 Ominaisarvojen lukumäärästä Huom. Voidaan osoittaa, että n n -matriisin karakteristisen polynomin aste on n eli se on muotoa c 0 + c 1 λ + + c n λ n, missä c 0,..., c n R ja c n 0. Algebran peruslauseen mukaan yhtälöllä c 0 + c 1 λ + + c n λ n = 0 on enintään n erilaista ratkaisua. Näin ollen n n -matriisilla on enintään n eri ominaisarvoa. LM2, Kesä /202
36 Ominaisvektoreiden lineaarinen riippumattomuus Lause 60 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin niitä vastaavat ominaisvektorit. Tällöin jono ( v 1,..., v m ) on vapaa. Todistus. Tehdään vastaoletus (antiteesi), että jono ( v 1,..., v m ) on sidottu. Tiedetään, että tällöin jokin jonon vektoreista on muiden lineaarikombinaatio. Esimerkiksi voi olla v 3 = 2 v 1 4 v v 7. Tästä seuraa, että jokin jonon vektoreista on sitä edeltävien jonon vektoreiden lineaarikombinaatio. Edellisessä esimerkkitilanteessa v 7 = ( 2/9) v v 2 + (1/9) v v 4 + (4/9) v v 6. LM2, Kesä /202
37 Olkoon v k+1 jonon ensimmäinen vektori, joka on sitä edeltävien vektoreiden lineaarikombinaatio. Tällöin on olemassa c 1,..., c k R, joilla c 1 v c k v k = v k+1. (1) Lisäksi jono ( v 1,..., v k ) on vapaa (muuten v k+1 ei olisikaan ensimmäinen vektori, joka on sitä edeltävien vektoreiden lineaarikombinaatio). Kertomalla yhtälön (1) molemmat puolet vasemmalta matriisilla A ja käyttämällä sen jälkeen matriisien laskusääntöjä ja oletusta, että vektorit v 1,..., v k ovat matriisin A ominaisvektoreita, saadaan A(c 1 v c k v k ) = A v k+1 c 1 A v c k A v k = A v k+1 c 1 λ 1 v c k λ k v k = λ k+1 v k+1. (2) LM2, Kesä /202
38 Kertomalla yhtälön (1) molemmat puolet luvulla λ k+1 saadaan c 1 λ k+1 v c k λ k+1 v k = λ k+1 v k+1. (3) Vähennetään yhtälöstä (2) puolittain yhtälö (3), jolloin saadaan c 1 (λ 1 λ k+1 ) v c k (λ k λ k+1 ) v k = 0. Jono ( v 1,..., v k ) on vapaa, joten tästä yhtälöstä seuraa, että sen kaikki kertoimet ovat nollia: c 1 (λ 1 λ k+1 ) = 0,..., c k (λ k λ k+1 ) = 0. Koska λ 1,..., λ m ovat kaikki eri ominaisarvoja, niin (λ i λ k+1 ) 0 kaikilla i {1,..., k}. Tulon nollasäännön nojalla tällöin c 1 = 0, c 2 = 0,..., c k = 0. LM2, Kesä /202
39 Näin ollen v k+1 = c 1 v c k v k = 0 v v k = 0. Toisaalta oletuksen mukaan v k+1 on matriisin A ominaisvektori, joten v k+1 0. Päädyttiin ristiriitaan, joten vastaoletus ei voi olla tosi. Siis alkuperäinen väite pätee eli jono ( v 1,..., v m ) on vapaa. LM2, Kesä /202
Ominaisarvo ja ominaisvektori
Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
LisätiedotOminaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
LisätiedotKantavektorien kuvavektorit määräävät lineaarikuvauksen
Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin
LisätiedotOminaisvektoreiden lineaarinen riippumattomuus
Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotKuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
LisätiedotOrtogonaalisen kannan etsiminen
Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,
LisätiedotSimilaarisuus. Määritelmä. Huom.
Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP
LisätiedotKannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
LisätiedotVapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotLineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)
Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä
LisätiedotBijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.
Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin
LisätiedotVektorien virittämä aliavaruus
Vektorien virittämä aliavaruus Esimerkki 13 Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w kuuluu vektoreiden v 1 = (3, 2, 1), v 2 = (2, 2, 6) ja v 3 = (3, 4, 5) virittämään
LisätiedotVektoreiden virittämä aliavaruus
Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /310
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/310 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
Lisätiedot7 Vapaus. 7.1 Vapauden määritelmä
7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan
LisätiedotOsoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
LisätiedotMatriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Antti Rasila 2016 Ominaisarvot ja ominaisvektorit 1/5 Määritelmä Skalaari λ C on matriisin A C n n ominaisarvo ja vektori v C n sitä
LisätiedotMS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
LisätiedotHY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden
LisätiedotMS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48
MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?
LisätiedotOminaisarvot ja ominaisvektorit 140 / 170
Ominaisarvot ja ominaisvektorit 140 / 170 Seuraavissa luvuissa matriisit ja vektori ajatellaan kompleksisiksi, ts. kertojakuntana oletetaan olevan aina kompleksilukujoukko C Huomaa, että reaalilukujoukko
LisätiedotYhteenlaskun ja skalaarilla kertomisen ominaisuuksia
Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotOminaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.
Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (
LisätiedotMatemaattinen Analyysi / kertaus
Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen
LisätiedotEsimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt
Esimerkki 4.4. Määrää matriisin 2 2 1 A = 1 3 1 2 4 3 ominaisarvot ja -vektorit. Ratk. Nyt det(a λi ) = 1 + 2 λ 2 1 + 1 λ 1 λ 1 3 λ 1 = 1 3 λ 1 2 4 3 λ 2 4 3 λ 1 λ = 1 4 λ 1 = (1 λ)( 1)1+1 4 λ 1 2 6 3
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:
Lisätiedotominaisvektorit. Nyt 2 3 6
Esimerkki 2 6 8 Olkoon A = 40 0 6 5. Etsitäänmatriisinominaisarvotja 0 0 2 ominaisvektorit. Nyt 2 0 2 6 8 2 6 8 I A = 40 05 40 0 6 5 = 4 0 6 5 0 0 0 0 2 0 0 2 15 / 172 Täten c A ( )=det( I A) =( ) ( 2)
LisätiedotTehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun
LisätiedotLineaarialgebra ja matriisilaskenta I. LM1, Kesä /218
Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.
LisätiedotJAKSO 2 KANTA JA KOORDINAATIT
JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause
Lisätiedot1 Ominaisarvot ja ominaisvektorit
1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin
LisätiedotInsinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 06 laskuharjoituksien esimerkkiratkaisut Alla olevat esimerkkiratkaisut ovat melko ksitiskohtaisia Tenttivastauksissa ei leensä tarvitse muistaa lauseiden, määritelmien, esimerkkien
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.
Lisätiedot5 OMINAISARVOT JA OMINAISVEKTORIT
5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot
Lisätiedot5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
Lisätiedot8 KANNAT JA ORTOGONAALISUUS. 8.1 Lineaarinen riippumattomuus. Vaasan yliopiston julkaisuja 151
Vaasan yliopiston julkaisuja 151 8 KANNAT JA ORTOGONAALISUUS KantaOrthogon Sec:LinIndep 8.1 Lineaarinen riippumattomuus Lineaarinen riippumattomuus on oikeastaan jo määritelty, mutta kirjoitamme määritelmät
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
Lisätiedot2 / :03
file:///c:/users/joonas/desktop/linis II Syksy /Ratkaisuehdotukse / 8 76 3:3 Kysymys Pisteet,, Määritellään positiivisten reaalilukujen joukossa R + = {x R x > } yhteenlasku ja skalaarikertolasku seuraavasti:
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä
Lisätiedot1 Avaruuksien ja lineaarikuvausten suora summa
MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................
LisätiedotPäättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1
Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon
LisätiedotTehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin
LisätiedotAvaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Lotta Oinonen ja Johanna Rämö 6. joulukuuta 2012 Helsingin yliopisto Matematiikan ja tilastotieteen laitos 2012 Sisältö 1 Avaruus R n 4 1 Avaruuksien R 2 ja R 3 vektorit.....................
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /
MS-A3/A5 Matriisilaskenta, II/27 MS-A3/A5 Matriisilaskenta Laskuharjoitus 3 / 3. 7..27 Tehtävä (L): Etsi kaikki yhtälön Ax = b ratkaisut, kun 3 5 4 A = 3 2 4 ja b = 6 8 7 4. Ratkaisu : Koetetaan ratkaista
LisätiedotLineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
LisätiedotDeterminantti 1 / 30
1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen
LisätiedotTehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2016 Harjoitus 3 Ratkaisut palautettava viimeistään maanantaina 29.8.2016 klo 13.15. Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä
Lisätiedot1 Matriisit ja lineaariset yhtälöryhmät
1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n
LisätiedotOrtogonaalinen ja ortonormaali kanta
Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä
Lisätiedot6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio
6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.
Lisätiedot2.5. Matriisin avaruudet ja tunnusluvut
2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja
Lisätiedot(1.1) Ae j = a k,j e k.
Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:
Lisätiedot6. OMINAISARVOT JA DIAGONALISOINTI
0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos
LisätiedotKäänteismatriisi 1 / 14
1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella
LisätiedotMatematiikka B2 - Avoin yliopisto
6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
LisätiedotLineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi
Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja
LisätiedotMatriisialgebra harjoitukset, syksy 2016
MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 7 Onko kuvaus F : R R, F(x 1,x = (x 1 +x,5x 1, x 1 +6x lineaarinen kuvaus? Jos on, niin määrää sen matriisi luonnollisen kannan suhteen Jos ei ole, niin
LisätiedotMääritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.
1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:
LisätiedotEnnakkotehtävän ratkaisu
Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb
LisätiedotMatematiikka B2 - TUDI
Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
LisätiedotRatkaisuehdotukset LH 3 / alkuvko 45
Ratkaisuehdotukset LH 3 / alkuvko 45 Tehtävä : Olkoot A, B, X R n n, a, b R n ja jokin vektorinormi. Kätetään vektorinormia vastaavasta operaattorinormista samaa merkintää. Nätä, että. a + b a b, 2. A
LisätiedotLineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila
Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin
Lisätiedot3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
LisätiedotMatriisi-vektori-kertolasku, lineaariset yhtälöryhmät
Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa
LisätiedotKanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
Lisätiedot1 Kannat ja kannanvaihto
1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 25. lokakuuta 2015 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus... 111 16 Aliavaruus... 117 16.1 Vektoreiden
LisätiedotLineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg
Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa
LisätiedotLineaariset yhtälöryhmät ja matriisit
Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää
LisätiedotLiittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.
Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla
LisätiedotVektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
LisätiedotOminaisarvo-hajoitelma ja diagonalisointi
Ominaisarvo-hajoitelma ja a 1 Lause 1: Jos reaalisella n n matriisilla A on n eri suurta reaalista ominaisarvoa λ 1,λ 2,...,λ n, λ i λ j, kun i j, niin vastaavat ominaisvektorit x 1, x 2,..., x n muodostavat
LisätiedotKanta ja Kannan-vaihto
ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotRistitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti
14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on
LisätiedotTalousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu
Talousmatematiikan perusteet: Luento 14 Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Luennolla 6 Tarkastelimme yhden muuttujan funktion f(x) rajoittamatonta optimointia
LisätiedotMiten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
LisätiedotDeterminantti. Määritelmä
Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi. Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j). (a) Jos n = 1, niin det(a) = a 11. (b) Muussa tapauksessa n det(a)
LisätiedotA = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:
11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta
Lisätiedot9 Matriisit. 9.1 Matriisien laskutoimituksia
9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä
LisätiedotDemorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104
Lineaarialgebra (muut ko) p. 1/104 Ensi viikolla luennot salissa X Torstaina 7.12. viimeiset demot (12.12. ja 13.12. viimeiset luennot). Torstaina 14.12 on välikoe 2, muista ilmoittautua! Demorastitiedot
Lisätiedot