1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

Koko: px
Aloita esitys sivulta:

Download "1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät"

Transkriptio

1 1 1 LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT Muotoa 11 Lineaariset yhtälöryhmät (1) a 1 x 1 + a x + + a n x n b oleva yhtälö on tuntemattomien x 1,, x n lineaarinen yhtälö, jonka kertoimet ovat luvut a 1,, a n R ja vakio on b R (1):n ratkaisut ovat ne reaalilukujonot (s 1,, s n ), joilla (1) toteutuu, kun sijoitetaan x 1 s 1,, x n s n Esimerkki 111 a) Yhtälön 6x 1 3x + 4x 3 13 eräs ratkaisu on x 1, x 3, x 3 4 b) Tapaus n : Tuntemattomia merkitään usein symboleilla x ja y Yhtälön a 1 x + a y b (a 1 0 tai a 0) ratkaisut muodostavat suoran xy-tasossa (tästä nimitys lineaarinen ) () Äärellinen jono tuntemattomien x 1,, x n lineaarisia yhtälöitä a 11 x 1 + a 1 x + + a 1n x n b 1 a 1 x 1 + a x + + a n x n b a m1 x 1 + a m x + + a mn x n b m on lineaarinen yhtälöryhmä (tässä on m yhtälöä ja n tuntematonta; m 1, n 1), jonka kertoimet ovat a ij R (1 i m, 1 j n) ja vakiot b i (1 i m) ():n i:s yhtälö a i1 x 1 + a i x + + a in x n b i kirjoitetaan joskus muodossa L i 0, missä L i a i1 x 1 + a i x + + a in x n b i Lukujono (s 1,, s n ) on ():n ratkaisu, jos se on ():n jokaisen yhtälön ratkaisu Yhtälöryhmä () on homogeeninen, jos b 1 b n 0 Homogeenisella yhtälöryhmällä on aina triviaali ratkaisu x 1 x n 0 Homogeenisen yhtälöryhmän ratkaisu, jossa jokin x i 0, on epätriviaali Kaksi tuntemattomien x 1,, x n yhtälöryhmää ovat ekvivalentit, jos niillä on täsmälleen samat ratkaisut, so sama ratkaisujoukko Tämä tarkoittaa sitä, että jokainen ensimmäisen yhtälöryhmän ratkaisu on myös toisen ratkaisu, ja kääntäen, jokainen toisen yhtälöryhmän ratkaisu on myös ensimmäisen ratkaisu

2 Yhtälöryhmän () ratkaiseminen tarkoittaa sen kaikkien ratkaisujen (ts ratkaisujoukon) määrittämistä Strategia: Muodostetaan ():n kanssa ekvivalentteja yhtälöryhmiä, joista ratkaisu voidaan helpommin lukea Seuraavat esimerkit 11 (a) (e) on tarkoitettu johdatukseksi lineaaristen yhtälöryhmien ratkaisemiseen Systemaattinen ratkaisumenetelmä esitetään kappaleessa 15 Esimerkki 11 { x1 3x 7 (a) x 1 + x 7 (1) { x1 3x 7 7x 1 () { x1 3x 7 x 3 (3) { x x x 3 (4) { x1 x 3 Yhtälöryhmällä on siis täsmälleen yksi ratkaisu, nimittäin (x 1, x ) (, 3) Selitykset: (1) Alempaan yhtälöön lisätään ylempi yhtälö kerrottuna puolittain puolittain luvulla, jolloin saadaan eliminoitua tuntematon x 1 alemmasta yhtälöstä () Alempi yhtälö kerrotaan puolittain luvulla 1 7, jolloin saadaan ratkaistua tuntematon x alemmasta (3) Ylemmästä yhtälöstä ratkaistaan tuntematon x 1 tuntemattoman x avulla (4) Sijoitetaan x 3 ylempään, jolloin saadaan x 1 Usein esitystä on tapana pelkistää yhdistämällä itsestään selviä välivaiheita Esimerkiksi vaiheet (), (3) ja (4) voidaan yhdistää: { x1 3x 7 x 1 + x 7 { x1 3x 7 7x 1 { x x x 3 8x 1 3x 7 7x 1 14 { x1 (b) 3x 1 x 0 7x 1 14 (1) 10x 1 x 14 () x 5x x 1 x 14 Saatiin siis yksikäsitteinen ratkaisu (x 1, x ) (, 3) Koska ratkaisu on sama kuin kohdassa (a), kyseiset yhtälöryhmät ovat ekvivalentit Selitykset: (1) Toiseen yhtälöön lisätään kolmas yhtälö kerrottuna puolittain luvulla 1, jolloin saadaan eliminoitua tuntematon x toisesta yhtälöstä Vastaavasti ensimmäiseen

3 yhtälöön lisätään kolmas yhtälö puolittain luvulla 3 kerrottuna, jolloin saadaan eliminoitua tuntematon x ensimmäisestä yhtälöstä () Koska ensimmäinen ja toinen yhtälö ovat samoja, voidaan toinen niistä pudottaa pois Kerrotaan ensimmäinen yhtälö luvulla 1, jolloin kyseisestä yhtälöstä 7 saadaan x 1 Ratkaistaan kolmannesta yhtälöstä x x 1 :n avulla ja sijoitetaan x 1, jolloin saadaan x 3 3 (c) { x1 3x 7 x 1 6x 7 (1) { x1 3x Koska yhtälö 0 1 ei toteudu millään parilla (x 1, x ), yhtälöparilla ei ole ratkaisua Selitykset: (1) Lisätään alempaan yhtälöön ylempi yhtälö kerrottuna puolittain luvulla, jolloin saadaan eliminoitua alemmasta tuntematon x 1 Osoittautuu, että samalla eliminoituu myös tuntematon x (d) x 1 + x + 3x 3 6 x 1 3x + x x 1 + x x 3 x 1 + x + 3x 3 6 7x 4x 3 x + x 3 4 x 1 + x + 3x 3 6 x + x x 3 30 (3) (1) (5) x 1 + x + 3x 3 6 7x 4x 3 5x 10x 3 0 x 1 + x + 3x 3 6 x + x 3 4 7x 4x 3 (4) x 1 6 x 3x 3 1 x 4 x 3 x 3 3 () Saatiin yksikäsitteinen ratkaisu (x 1, x, x 3 ) (1,, 3) Selitykset: (1) Eliminoidaan tuntematon x 1 toisesta yhtälöstä lisäämällä toiseen yhtälöön ensimmäinen yhtälö luvulla kerrottuna Vastaavasti eliminoidaan x 1 kolmannesta yhtälöstä lisäämällä kolmanteen yhtälöön ensimmäinen yhtälö luvulla 3 kerrottuna () Sievennetään kolmas yhtälö kertomalla se puolittain luvulla 1 5 (3) Vaihdetaan keskenään toinen ja kolmas yhtälö

4 (4) Eliminoidaan tuntematon x (uudesta) kolmannesta yhtälöstä lisäämällä (uusi) toinen yhtälö luvulla 7 kerrottuna kolmanteen yhtälöön (5) Ratkaistaan tuntematon x 3 kolmannesta yhtälöstä kertomalla kyseinen yhtälö puolittain luvulla 1 10 ; saadaan x 3 3 Ratkaistaan toisesta yhtälöstä tuntematon x tuntemattoman x 3 avulla ja sijoitetaan edellä saatu x 3 3; saadaan x Ratkaistaan lopuksi ensimmäisestä yhtälöstä tuntematon x 1 tuntemattomien x ja x 3 avulla ja sijoitetaan edellä saadut x ja x 3 3; saadaan x (e) { x1 + x 3x 3 4 x 1 + x 3x 3 4 (1) { x1 + x 3x 3 4 3x + 3x 3 1 () { x1 4 x + 3x 3 4 (x 3 4) + 3x 3 x x x 3 4 Ratkaisut ovat siis (x 1, x, x 3 ) (t + 4, t 4, t), missä x 3 t R on mikä tahansa reaaliluku (parametri); ratkaisuja on ääretön määrä Selitykset: (1) Eliminoidaan muuttuja x alemmasta yhtälöstä lisäämällä alempaan yhtälöön ylempi yhtälö puolittain luvulla kerrottuna () Ratkaistaan alemmasta yhtälöstä tuntematon x tuntemattoman x 3 avulla ja ylemmästä yhtälöstä tuntematon x 1 tuntemattomien x ja x 3 avulla Sijoitetaan x :n lauseke ylempään yhtälöön, jolloin saadaan x 1 pelkästään x 3 :n avulla lausuttuna Nähdään, että jokaista arvoa x 3 t R kohti saadaan ratkaisu (x 1, x, x 3 ) (t + 4, t 4, t); kaikkiaan näitä rataisuja on ääretön määrä (niiden joukko on yhtä mahtava kuin reaalilukujen t joukko) Huomautus 113 Esimerkistä 11 nähdään, että lineaarisella yhtälöryhmällä voi olla ratkaisuja (ainakin) jokin seuraavista määristä: a) tasan yksi, b) ei yhtään, c) ääretön määrä Geometrinen tulkinta yhtälöparin { a11 x 1 + a 1 x b 1 (a 11 0 tai a 1 0) a 1 x 1 + a x b (a 1 0 tai a 0) tapauksessa: x 1 x -tason kahden suoran leikkaus on a) piste, b) tyhjä, c) suora l 1 a) b) l 1 l c) l 1 l l

5 Kuvailemme lopuksi yleisesti ne operaatiot, joilla yhtälöryhmiä esimerkissä 11 manipuloitiin Tarkastellaan yhtälöryhmää () eli L i 0, i 1,, m, missä L i a i1 x 1 + a i x + + a in x n b i Muodostetaan uusi yhtälöryhmä ( ) L i 0, i 1,, m, suorittamalla jokin seuraavista toimituksista: I Olkoon r s Määritellään L r L s, L s L r ja L i L i kaikilla i r, s; siis vaihdetaan ():n yhtälöt r ja s keskenään II Olkoon r {1,,, m} ja c R, c 0 Määritellään L r c L r ja L i L i kaikilla i r; siis kerrotaan ():n yhtälö r (puolittain) vakiolla c 0 III Olkoon r, s {1,,, m}, r s ja c R Määritellään L s L s + c L r ja L i L i kaikilla i s; siis ():n yhtälöön s lisätään c (yhtälö r) Lause 114 Yhtälöryhmät () ja ( ) ovat ekvivalentit Todistus Tapaus I on selvä Tapaus II Oletetaan, että L i 0 i Tällöin L i L i 0 i r ja L r c L r c 0 0 Oletetaan kääntäen, että L i 0 i Tällöin L i L i 0 i r ja L r (1/c) L r (1/c) 0 0 (Tässä tarvitaan ehtoa c 0!) Tapaus III Oletetaan, että L i 0 i Tällöin L i L i 0 i s ja L s L s + c L r 0 + c 0 0 Oletetaan kääntäen, että L i 0 i Tällöin L i L i 0 i s ja L s L s c L r L s c L r 0 c 0 0 Myöhemmin selitetään, millaiseen yhtälöryhmään toimituksilla I - III kannattaa pyrkiä 1 Matriisit ja matriisitoimitukset Kun edellä operoitiin lineaarisilla yhtälöryhmillä, käsiteltiin itse asiassa vain yhtälöryhmien kertoimia ja vakioita; tuntemattomat olivat vain paikanpitäjinä Kootaan kertoimet ja vakiot matriiseiksi Määritelmä 11 Olkoot m 1 ja n 1 kokonaislukuja (Reaalinen) m n - matriisi on lukukaavio a 11 a 1 a 1n a A 1 a a n a m1 a m a mn (a ij R kaikilla i, j); 5

6 6 reaaliluku a ij A(i, j) on A:n (i, j)-alkio; 1 n -matriisi [ a i1 a i a in ] on A:n i:s rivi (i 1,,, m); m 1 -matriisi a 1j a j a mj on A:n j:s sarake (j 1,,, n) Jos m n, A on neliömatriisi; tällöin a 11, a,, a nn ovat A:n lävistäjäalkiot Merkitään R m n kaikkien (reaalisten) m n -matriisien joukko; siis A R m n A on m n -matriisi Usein merkitään lyhyesti A [ a ij ] Määritelmä 11 Matriisit A [ a ij ] ja B [ b ij ] ovat samankokoiset jos niillä on yhtä monta riviä ja yhtä monta saraketta (esimerkiksi molemmat ovat m n - matriiseja) Edelleen matriisit A ja B ovat samat, merkitään A B, jos ne ovat samankokoiset ja a ij b ij i, j Esimerkki 13 1 [ 1 ] ; w x 4 w 1, x 3, y 0, z y 4 z Määritelmä 14 (Yhteenlasku) m n -matriisien A [ a ij ] ja B [ b ij ] summa on m n -matriisi A + B [ c ij ], missä c ij a ij + b ij i, j Esimerkki ei ole määritelty (matriisit ovat erikokoiset);

7 Määritelmä 16 (Skalaarilla kertominen) Jos A [ a ij ] on m n -matriisi ja t R on skalaari, niin ta [ c ij ] on se m n -matriisi, jolla c ij ta ij i, j Esimerkki 17 ( ) Kahden m n -matriisin erotus on Esimerkki A B A + ( 1)B Summamerkintä Kun a 1, a,, a n R, merkitään a 1 + a + + a n n a i R i1 Täsmällisemmin tämä merkintä määritellään rekursiivisesti: 1 a i a 1 ; i1 ( n+1 n ) a i a i + a n+1 i1 i1 Summausindeksi i on sidottu muuttuja ; summa ei riipu sen merkintätavasta: Laskusääntöjä: n a i i1 n a r r1 n ca i c i1 n a i Tapauksessa n kyseessä on osittelulaki ca 1 + ca c(a 1 + a ); yleisesti kaava todistetaan induktiolla i1

8 8 Kaksinkertaisen summan summausjärjestyksen vaihtamissääntö: m n a ij ( n m ) a ij i1 j1 j1 i1 Tapaus m n : i1 j1 a ij (a i1 + a i ) (a 11 + a 1 ) + (a 1 + a ), i1 ( ) a ij j1 i1 (a 1j + a j ) (a 11 + a 1 ) + (a 1 + a ) j1 Reaalilukujen yhteenlaskun vaihdannaisuudesta ja liitännäisyydestä seuraa, että yllä olevissa yhtälöissä oikealla olevat lausekkeet ovat samat, joten kaksoissummat ovat samat Yleinen tapaus voidaan todistaa induktiolla Kysymys on siitä, että matriisin [ a ij ] rivisummien summa ja sarakesummien summa ovat yhtäsuuret; molemmat antavat tulokseksi kaikkien lukujen a ij summan Määritelmä 19 (Matriisitulo) m n -matriisin A [ a ij ] ja n p -matriisin B [ b ij ] tulo on m p -matriisi AB [ c ij ], jolla c ij n a ik b kj a i1 b 1j + a i b j + + a in b n,j, k1 i {1,, m}, j {1,, p} Huomautus 110 AB on määritelty A:n sarakkeiden lukumäärä B:n rivien lukumäärä j b 1j b j i a i1 a i a in c ij b nj c ij a i1 b 1j + a i b j + + a in b nj

9 9 Esimerkki [ 1 ( ) ( 1) ( 3) + ( 1) 1 3 ( ) ( 3) ] Olkoon A R m n ja B R n p Tällöin siis AB R m p on määritelty Kysymys: Mitä voidaan sanoa matriisista BA? Vastaus: BA on määritelty vain, jos p m Tällöin BA R n n (ja siis AB R m p R m m ) Jos m n, AB ja BA eivät ole samankokoiset, joten AB BA Jos m n, AB ja BA ovat molemmat n n -matriiseja ja voi olla AB BA, mutta yleensä tällöinkin AB BA Esimerkki (a) ; ei ole määritelty (b) (c) [ 1 ] [ 1 ] (1 1 -matriisi), [ 1 ] ( -matriisi) Huomautus 113 Olkoon A R m n ja B R n p ; A 1,, A m R 1 n A:n rivit ja B 1,, B p R n 1 B:n sarakkeet Tällöin AB:n rivit ovat A 1 B,, A m B R 1 p ; AB:n sarakkeet ovat AB 1,, AB p R m 1 ; A i 0 B j0 [ (AB)(i 0, j 0 ) ] R 1 1 Lineaarisen yhtälöryhmän matriisiesitys Tarkastellaan lineaarista yhtälöryhmää a 11 x 1 + a 1 x + + a 1n x n b 1 a 1 x 1 + a x + + a n x n b (1) a m1 x 1 + a m x + + a mn x n b m

10 Merkitään a 11 a 1 a 1n a A 1 a a n a m1 a m a mn, X x 1 x x n, B A R m n, X R n 1, B R m 1 A on (1):n kerroinmatriisi, a 11 a 1 a 1n b 1 a [ A B ] 1 a a n b (m (n + 1) -matriisi) a m1 a m a mn sen täydennetty matriisi Tulo AX on määritelty ja a 11 x 1 + a 1 x + + a 1n x n a AX 1 x 1 + a x + + a n x n a m1 x 1 + a m x + + a mn x n Siten (x 1, x,, x n ) on (1):n ratkaisu jos ja vain jos X toteuttaa matriisiyhtälön AX B Esimerkki e):n yhtälöryhmä on matriisimuodossa 1 3 x 1 x x 3 Yhtälöryhmän (1) voi A:n sarakkeiden avulla myös kirjoittaa muodossa a 11 b 1 a x x + + x n b a 1 a b m a 1n a n b 1 b b m ; 10 a m1 a m a mn b m Transponointi Määritelmä 115 m n -matriisin A [ a ij ] transpoosi eli transponoitu matriisi on n m -matriisi A T [ c ij ], jolla c ij a ji kaikilla i, j Esimerkki 116 T Huomautus 117 Jos A i on A:n i:s rivi ja A j A:n j:s sarake, niin (A i ) T A T :n i:s sarake ja (A j ) T on A T :n j:s rivi on

11 13 Matriisien laskulakeja m n -matriisien yhteenlasku toteuttaa samanlaiset laskulait kuin reaalilukujen yhteenlasku: (1) A + (B + C) (A + B) + C kaikilla A, B, C R m n (liitännäisyys) () A + 0 A kaikilla A R m n, missä mn Rm n on m n -nollamatriisi (nollarivejä m kappaletta ja nollasarakkeita n kappaletta) Jos m n, merkitään 0 n 0 nn (3) A + ( 1)A 0 kaikilla A R m n, missä A ( 1)A on A:n vastamatriisi (4) A + B B + A kaikilla A, B R m n (vaihdantalaki) Perustelu Yllä olevat tulokset seuraavat matriisien yhteenlaskun määritelmän nojalla reaalilukujen vastaavista ominaisuuksista Esimerkiksi liitäntälaki (1) seuraa reaalilukujen liitäntälaista, sillä a ij + (b ij + c ij ) (a ij + b ij ) + c ij kaikilla i, j 11 Skalaarilla kertomisen ominaisuudet on yhtä helppo johtaa: (5) s(a + B) sa + sb kaikilla A, B R m n, s R (6) (s + t)a sa + ta kaikilla A R m n, s, t R (7) s(ta) (st)a kaikilla A R m n, s, t R (8) 1A A kaikilla A R m n Matriisia I n Rn n kutsutaan ykkösmatriisiksi; siis I n [ δ ij ], missä { 1, kun i j δ ij 0, kun i j Matriisitulon ominaisuuksia:

12 Lause 131 Jos A, A R m n, B, B R n p, C R p q ja t R, niin seuraavat kaavat pätevät (ja erityisesti niissä esiintyvät matriisit ovat määriteltyjä): (a) A(B + B ) AB + AB, (b) (A + A )B AB + A B, (c) t(ab) (ta)b A(tB), (d) A(BC) (AB)C, (e) I m A A AI n Todistus Todistetaan malliksi kohdat (d) ja (e): 1 (d) ( ) n A(BC) (i, j) A(i, k) (BC)(k, j) k1 n ( p ) A(i, k) B(k, l) C(l, j) k1 l1 p ( n ) A(i, k) B(k, l) C(l, j) l1 k1 n ( p k1 l1 p ( n l1 k1 p (AB)(i, l) C(l, j) ( (AB)C ) (i, j) i, j l1 ) A(i, k) B(k, l) C(l, j) ) A(i, k) B(k, l) C(l, j) (e) (I m A)(i, j) m δ ik A(k, j) δ ii A(i, j) + k1 m δ ik A(k, j) A(i, j) i, j, sillä δ ii 1 ja δ ik 0, kun i k Vastaavasti (AI n )(i, j) A(i, j) i, j Huomautus 13 Matriisitulolta puuttuu osa reaalilukujen kertolaskun ominaisuuksista 11:ssa todettiin, että jos A, B R n n (ja n ), niin voi olla AB BA (tulo ei ole vaihdannainen ); lisäksi voi olla AB 0, vaikka A 0 ja B 0 ( tulon nollasääntö ei päde) Esimerkki Transponoinnin ominaisuuksia: k1 k i ( ) 1 ( 6) ( ) ( 6) + 4 3

13 13 Lause 134 Olkoot A, A R m n, B R n p ja t R Tällöin (a) (A T ) T A, (b) (A + A ) T A T + A T, (c) (AB) T B T A T, (d) (ta) T ta T Todistus Todistetaan malliksi (c): n n (AB) T (i, j) (AB)(j, i) A(j, k) B(k, i) B(k, i) A(j, k) k1 k1 n B T (i, k) A T (k, j) (B T A T )(i, j) i, j k1 14 Eräitä erityisiä matriiseja Neliömatriisi A [ a ij ] R n n on lävistäjämatriisi, jos a ij 0 aina, kun i j (so lävistäjän ulkopuoliset alkiot 0); jos lisäksi a ii a R kaikilla i, A on skalaarimatriisi ( a I n ) Esimerkki , , ovat lävistäjämatriiseja; ovat skalaarimatriiseja Jokainen skalaarimatriisi on tietysti myös lävistäjämatriisi Neliömatriisi A [ a ij ] R n n on yläkolmiomatriisi, jos a ij 0 aina kun i > j, ja alakolmiomatriisi, jos a ij 0 aina, kun i < j Esimerkki 14 Lävistäjämatriisi on sekä ylä- että alakolmiomatriisi; on yläkolmiomatriisi; on alakolmiomatriisi; (Neliö)matriisi A [ a ij ] on symmetrinen, jos A T A eli a ji a ij kaikilla i, j, ja antisymmetrinen, jos A T A eli a ji a ij kaikilla i, j Antisymmetrisellä matriisilla erityisesti a ii a ii kaikilla i, joten jokainen lävistäjäalkio a ii 0

14 14 Esimerkki on symmetrinen; on antisymmetrinen Säännölliset matriisit Määritelmä 144 Neliömatriisi A R n n on säännöllinen eli kääntyvä, jos on olemassa sellainen matriisi B R n n, että AB I n ja BA I n Muussa tapauksessa A on singulaarinen Huomautus 145 Jos A R n n on säännöllinen, niin 144:ssä mainittu B R n n on yksikäsitteinen Jos nimittäin myös C R n n toteuttaa ehdot AC I n ja CA I n, niin C CI n C(AB) (CA)B I n B B Voidaan siis merkitä B A 1, säännöllisen matriisin käänteismatriisi Esimerkki 146 a) 1 1 -matriisi [ a ] R 1 1 on säännöllinen a 0; tällöin [ a ] 1 [ 1/a ] b) R 1 0 on säännöllinen ja, sillä c) R 0 0 ei ole säännöllinen, sillä joka ei voi olla I b11 b 1 b1 b, 0 0 b 1 b Kappaleessa 16 kehitämme menetelmän, jolla voi selvittää, onko annettu A R n n säännöllinen, ja myönteisessä tapauksessa määrittää A 1 :n Lause 147 Jos A, B R n n ovat säännöllisiä, niin myös A 1, AB ja A T ovat säännöllisiä ja (A 1 ) 1 A, (AB) 1 B 1 A 1, (A T ) 1 (A 1 ) T

15 Todistus A 1 :n säännöllisyyttä ja käänteismatriisia koskevat väitteet seuraavat heti käänteismatriisin määritelmästä ja yhtälöistä AA 1 I n A 1 A Muut väitteet seuraavat yhtälöistä (AB)(B 1 A 1 ) A(BB 1 )A 1 AI n A 1 AA 1 I n, (B 1 A 1 )(AB) B 1 (A 1 A)B B 1 I n B B 1 B I n ; 15 A T (A 1 ) T (A 1 A) T I T n I n (A 1 ) T A T (AA 1 ) T I T n I n, joissa käytettiin laskulakeja 131 d) ja 134 c) Lineaariset yhtälöryhmät ja käänteismatriisit Tarkastellaan lineaarista yhtälöryhmää, jossa on n yhtälöä ja n tuntematonta, matriisimuodossa AX B, missä A R n n ja X, B R n 1 Lause 148 Jos A R n n on säännöllinen, yhtälöryhmällä AX B on yksikäsitteinen ratkaisu X R n 1, nimittäin X A 1 B Todistus Jos X A 1 B, niin AX A(A 1 B) (AA 1 )B IB B, koska AA 1 I Kääntäen, jos AX B, niin X IX (A 1 A)X A 1 (AX) A 1 B, koska A 1 A I Todistuksessa tarvittiin siis molempia yhtälöitä AA 1 I ja A 1 A I Huomautus 149 Jos A R n n on säännöllinen ja B R n p, niin vastaavasti matriisiyhtälöllä AX B on yksikäsitteinen ratkaisu X A 1 B R n p 148:n tilanteessa(kin) yhtälöryhmä AX B on yleensä helpointa ratkaista suoraan 15:ssä esitettävillä menetelmillä, etsimättä käänteismatriisia A 1 15 Porrasmatriisit ja lineaaristen yhtälöryhmien ratkaiseminen Määritelmä 151 Matriisi on porrasmuotoinen eli porrasmatriisi, jos seuraavat ehdot (1), () ja (3) ovat voimassa: (1) Nollarivit (jos niitä on) ovat alimpina () Jokaisen nollasta eroavan rivin vasemmalta lukien ensimmäinen nollasta eroava alkio, ko rivin johtava alkio, on 1 (3) Alemman rivin johtavan alkion sarake sijaitsee aina ylemmän rivin johtavan alkion sarakkeen oikealla puolella Porrasmatriisi on redusoitu jos lisäksi (4) Jokainen johtava alkio on sarakkeensa ainoa nollasta eroava alkio

16 Olkoon A [ a ij ] R m n porrasmatriisi, jossa on r nollasta eroavaa riviä Ehdosta 151 (1) seuraa, että nollasta eroavat rivit ovat rivit 1,,, r ja nollarivit ovat rivit r + 1, r +,, m Olkoon i:nnen rivin johtava alkio kohdassa (i, j i ) (i 1,,, r) ():n nojalla a iji 1 kaikilla i {1,,, r} ja (3):n nojalla 1 j 1 < j < < j r n 16 Erityisesti täytyy olla 0 r min {m, n} A on muotoa a 1,j1 +1 a 1n a,j +1 a n a 3,j3 +1 a 3n a r,jr +1 a rn Jos A on redusoitu, niin lisäksi a kji 0, kun k < i (i 1,,, r) Havainto 15 Jos neliömatriisi A [ a ij ] R n n on redusoidussa porrasmuodossa, niin joko (1) A:ssa on nollarivejä, tai () A I n (Tapaukset (1) ja () eivät ole yhtä aikaa voimassa) Todistus Olkoot A:n johtavat alkiot kohdissa (1, j 1 ),,(r, j r ) kuten yllä Oletetaan, että A:ssa ei ole nollarivejä Tällöin r n Koska 1 j 1 < j < < j n n ja lukuja j 1, j,, j n on n kappaletta, niin välttämättä j 1 1, j,, j n n, ja siis a 11 a a nn 1 151:n kohtien () (4) nojalla muut A:n alkiot 0 Rivitoimitukset Olkoot A, B R m n m n -matriiseja, joiden rivit ovat rivit A 1,, A m ja B 1,, B m

17 Määritelmä 153 B on saatu A:sta yhdellä alkeisrivitoimituksella seuraavissa kolmessa tapauksessa: I Eräillä r, s {1,,, m}, r s, on B r A s, B s A r ja B i A i Kaikilla i r, s (A:n rivit r ja s on vaihdettu) II Eräillä r {1,,, m} ja c R, c 0, on B r ca r ja B i A i Kaikilla i r (A:n rivi r on kerrottu vakiolla c 0) III Eräillä r, s {1,,, m}, r s, ja c R on B s A s + c A r ja B i A i kaikilla i s (A:n riviin s on lisätty c (A:n rivi r)) Määritelmä 154 Matriisi A R m n on riviekvivalentti matriisin B R m n kanssa, jos B saadaan A:sta äärellisen monella alkeisrivitoimituksella, ts jos on olemassa sellaiset matriisit A 0, A 1,, A k, että A 0 A, A k B ja A l+1 on saatu A l :stä yhdellä alkeisrivitoimituksella (l 0, 1,, k 1) Lause 155 Jokainen m n -matriisi A on riviekvivalentti jonkin redusoidun porrasmatriisin kanssa Todistus Esitämme algoritmin, joka muuntaa A:n alkeisrivitoimituksin redusoituun porrasmuotoon Jos A 0, A on jo redusoidussa porrasmuodossa (pelkkiä nollarivejä) Olkoon siis A 0 Vaihe 1: A muunnetaan porrasmuotoon (1) Etsitään (vasemmalta lukien) A:n ensimmäinen nollasta eroava sarake ja valitaan ko sarakkeesta jokin alkio a 0 () Siirretään a:n sisältävä rivi ylimmäksi vaihtamalla (tarvittaessa) kaksi riviä keskenään (3) Kerrotaan 1 (ylin) rivi luvulla 1/a On päästy muotoon (missä mikä tahansa luku) a 0 a m (4) Lisätään i:nteen riviin ( a i ) (1 rivi), i,, m; tuloksena on matriisi A,

18 missä A on (m 1) p -matriisi jollakin p < n (5) Jos A 0, on saatu porrasmatriisi; jos A 0, sovelletaan siihen kohtia (1) (4) Äärellisen monen askeleen jälkeen saadaan porrasmatriisi C Vaihe : Porrasmatriisi C muunnetaan redusoiduksi porrasmatriisiksi Olkoot C:n johtavat alkiot kohdissa (1, j 1 ),, (r, j r ) (1) Muutetaan kohdissa (i, j r ), i 1,,, r 1, mahdollisesti olevat nollasta eroavat alkiot nolliksi lisäämällä kyseisiin riveihin r:nnen rivin sopivat kerrannaiset () Seuraavaksi tuotetaan vastaavasti nollat kohdan (r 1, j r 1 ) yläpuolelle jne Esimerkki 156 Muunnetaan annettu 4 5 -matriisi a) porrasmatriisiksi, b) redusoiduksi porrasmatriisiksi (a) (1) Selitykset: () (3) (4) (5) (6) [ 1 3 (7) 3 4 ] [ 1 3 (8) (1) Vaihdetaan rivit 1 ja 3 keskenään ja kerrotaan sen jälkeen rivi 1 vakiolla 1 () Lisätään riviin 4 rivi 1 vakiolla kerrottuna (3) Koska rivi 1 ja sarake 1 eivät tämän jälkeen muutu, ne voidaan jättää jatkotarkasteluissa pois (4) Vaihdetaan rivit 1 ja ja kerrotaan sen jälkeen rivi 1 luvulla 1 (5) Lisätään riviin 3 rivi 1 luvulla kerrottuna ] 18

19 (6) Koska rivi 1 ja sarake 1 eivät tämän jälkeen muutu, ne voidaan jättää jatkotarkasteluissa pois (7) Kerrotaan rivi 1 luvulla 1 (8) Lisätään riviin rivi 1 luvulla kerrottuna Koska saatiin matriisi, jonka alin rivi on nollarivi, tehtävä on valmis Lopuksi yhdistetään yllä olevat vaiheet (), (5) ja (8) jolloin saadaan alkuperäisen kanssa riviekvivalentti porrasmatriisi b) Redusoidun porrasmatriisin saamiseksi jatketaan viimeksi saadusta muodosta (1) () Selitykset: (1) Koska alin johtava kerroin on kohdassa (3, 3), hävitetään aluksi kolmannelta sarakkeelta mainitun kohdan yläpuolella olevat nollasta eroavat alkiot Sitä varten lisätään toiseen riviin kolmas rivi luvulla 3 kerrottuna, ja ensimmäiseen riviin lisätään kolmas rivi luvulla 5 kerrottuna 19 () Koska seuraavaksi alin johtava kerroin sijaitsee kohdassa (, ), lisätään ensimmäiseen riviin toinen rivi luvulla 1 kerrottuna Näin saadaan alkuperäisen matriisin kanssa riviekvivalentti redusoitu porrasmatriisi Lineaarisen yhtälöryhmän ratkaiseminen Haluamme ratkaista (matriisimuotoisen) lineaarisen yhtälöryhmän AX B, A R m n, X R n 1, B R m 1 Tarkastelemme täydennettyä matriisia [ A B ] R m (n+1) Lause 157 Jos [ A B ] on riviekvivalentti [ C D ]:n kanssa, yhtälöryhmät AX B ja CX D ovat ekvivalentit (eli niillä on samat ratkaisut) Todistus Tyyppiä I, II ja III olevat alkeisrivitoimitukset (ks 153) vastaavat lineaarisille yhtälöryhmille suoritettavia toimituksia I, II ja III (sivu 5) Väite seuraa siten lauseesta :n nojalla yllä [ C D ]:ksi voidaan valita (jopa redusoitu) porrasmatriisi Tällöin CX D on helppo ratkaista:

20 Esimerkki 158 Yhtälöryhmän CX D ratkaiseminen, kun [ C D ] on a) porrasmatriisi, b) redusoitu porrasmatriisi: a) Myös C on selvästi porrasmatriisi Olkoot C:n johtavat alkiot kohdissa (1, j 1 ),, (r, j r ) Tällöin [ C D ] on muotoa c 1,j1 +1 d c,j +1 d c 3,j3 +1 d c r,jr +1 d r 0 0 d r missä d r+1 0 tai 1 (1) Jos r < m (C:ssä on nollarivejä) ja d r+1 1 0, mukana on mahdoton yhtälö 0 d r+1 1, joten yhtälöryhmällä ei ole ratkaisuja tässä tapauksessa () Oletetaan, että r m (C:ssä ei ole nollarivejä) tai d r+1 0 i) Tuntemattomat x k, k / {j 1,, j r } (n r kappaletta), ovat vapaat muuttujat, joiden arvot voidaan valita vapaasti: annetaan vapaille muuttujille x k1, x k,, x kn r, missä 1 k 1 < k < < k n r n, arvot ii) Yhtälöstä r, x k1 s 1 R, x k s R,, x kn r s n r R x jr + k l >j r c rkl s l d r, lausutaan x jr parametrien s l (k l > j r ) avulla iii) Yhtälöön r 1, x jr 1 + c r 1,jr x jr + c r 1,kl s l d r 1, k l >j r 1 sijoitetaan takaisin x jr kohdasta ii) ja lausutaan x jr 1 parametrien s l (k l > j r 1 ) avulla iv) Ratkaistaan vastaavalla tavalla muita johtavien kertoimien sarakkeita vastaavat tuntemattomat järjestyksessä x jr,, x j, x j1 0,

21 Huomautus Jos ():ssa r n, vapaita muuttujia ei ole, ja ratkaisu on yksikäsitteinen Jos r < n, jokaista parametrijonoa (s 1,, s n r ) vastaa tietty ratkaisu (x 1,, x n ) (ääretön määrä ratkaisuja) b) Olkoon [ C D ] redusoitu porrasmatriisi Menetellään kuten a)-kohdassa, paitsi että kohdan () takaisinsijoituksia ei tarvita, vaan suoraan x jp d p k l >j p c pkl s l, p 1,, r 1 Esimerkki 159 Olkoon [ [ C D ] ] Tällöin CX D on { x1 + x + x 3 5 x 5 3 x x 5 1 Vapaat muuttujat ovat x, x 3 ja x 5 Merkitään x s 1 R, x 3 s R, x 5 s 3 R, jolloin ratkaisut ovat tai matriisimuodossa X x 1 x x 3 x 4 x 5 x 1 3 x x x 5 3 s 1 s + 5 s 3 x s 1 x 3 s x x s 3 x 5 s 3, s s 1 + s ; s 1, s, s 3 R Lineaarinen yhtälöryhmä AX B voidaan siis ratkaista (mm) jommallakummalla seuraavista menetelmistä: Gaussin eliminointimenetelmä: A Etsitään (rivitoimituksin) [ A B ]:n kanssa riviekvivalentti porrasmatriisi [ C D ] B Ratkaistaan CX D takaisinsijoituksin (jos ratkaisuja on)

22 Gaussin-Jordanin eliminointimenetelmä: A Etsitään (rivitoimituksin) [ A B ]:n kanssa riviekvivalentti redusoitu porrasmatriisi [ C D ] B Luetaan suoraan yhtälöryhmän CX D ratkaisut (jos niitä on) Esimerkki 1510 Ratkaise Gaussin menetelmällä x + 3x 3 4x 4 1 x 3 + 3x 4 4 x 1 + x 5x 3 + x 4 4 x 1 6x 3 + 9x 4 7 Ratkaisu [ A B ] muunnettiin rivitoimituksin porrasmuotoon [ C D ] 156 a):ssa Yhtälöryhmän CX D eli x 1 + x 5 x 3 + x 4 x + 3 x 3 x 4 1 x x ratkaisu on x 1 x + 5 x 3 x 4 ( s) + 5 ( 3 s) s 19 x 1 3 x 3 + x ( 3 s) + s s x 3 3 x 4 3 s x 4 s R 9s Huomautus 1511 Porrasmuotoon pyrkiminen ei aina ole nopein ratkaisumenetelmä Esimerkiksi yhtälöryhmästä x 1 1 x 1 1 x 1 x 3 0 saadaan heti x 1 + x 1 + x 3 1 x 1 x + x 3 1 x 3 x 1 1, vaikka matriisi ei ole porrasmuotoinen Homogeeniset yhtälöryhmät Tarkastellaan homogeenista ryhmää AX 0, A R m n, X R n 1 (m yhtälöä ja n tuntematonta) Tällä on aina triviaali ratkaisu X 0

23 Lause 151 Jos m < n (eli yhtälöitä on vähemmän kuin tuntemattomia), yhtälöryhmällä AX 0 on myös epätriviaaleja ratkaisuja Todistus Täydennetyn matriisin [ A 0 ] kanssa riviekvivalentti porrasmatriisi on muotoa [ C 0 ], eli siinäkin vakiot ovat nollia Kun yhtälöryhmää CX 0 ratkaistaan kuten 158 a):ssa, tapaus (1) ei näin ollen ole mahdollinen, joten yhtälöryhmällä on ratkaisuja joko tasan yksi tai ääretön määrä sen mukaan, onko vapaiden muuttujien lukumäärä n r nolla vai positiivinen Koska m < n, on r min {m, n} m < n; siis vapaita muuttujia on n r > 0 kappaletta, ja ratkaisuja on ääretön määrä Ratkaisuista yksi on triviaali ja muut (joita on ääretön määrä) epätriviaaleja Tarkastellaan lopuksi yleistä lineaarista yhtälöryhmää AX B, A R m n, X R n 1, B R m 1 Lause 1513 Olkoon S 0 R n 1 yhtälöryhmän AX B eräs ratkaisu Silloin S R n 1 on ko ryhmän (yleinen) ratkaisu S S 0 + T, missä T R n 1 on homogeenisen ryhmän AX 0 (yleinen) ratkaisu Todistus Olkoon S S 0 + T, missä AT 0 Koska AS 0 B, on AS A(S 0 + T ) AS 0 + AT B + 0 B Olkoon AS B Tällöin S S 0 + (S S 0 ) S 0 + T, missä AT A(S S 0 ) AS AS 0 B B 0 16 Alkeismatriisit ja matriisin säännöllisyys Kun r, s {1,,, m}, määritellään neliömatriisi I rs [ e ij ] R m m asettamalla { 1, kun (i, j) (r, s) e ij 0, muulloin Siis I rs :n (r, s)-alkio 1, kaikki muut alkiot 0 (Samalla tavalla voidaan yleisemmin määritellä m n -matriisi I rs, kun r {1,, m}, s {1,, n}) Olkoon A [ a ij ] R m n m n -matriisi Lasketaan I rs A: m (I rs A)(i, j) e ik a kj k1 Kun i r, e ik a kj 0 a kj 0 kaikilla k; kun i r, { 1 asj a sj, kun k s e rk a kj 0 a kj 0, kun k s Näin ollen { asj, kun i r (I rs A)(i, j) 0, kun i r, ts I rs A:n r:s rivi A:n s:s rivi ja I rs A:n muut rivit 0 3

24 Määritelmä 161 m m -matriisi E on alkeismatriisi, jos se saadaan ykkösmatriisista I m yhdellä alkeisrivitoimituksella Lemma 16 Olkoon A R m n m n -matriisi, ja olkoon alkeismatriisi E R m m saatu I m :stä tietyllä alkeisrivitoimituksella Tällöin EA saadaan A:sta samalla alkeisrivitoimituksella Todistus Tutkitaan alkeisrivitoimitusten tyypit I, II ja III erikseen rivit A 1, A,, A m R 1 n 4 Olkoot A:n I Vaihdetaan rivit r ja s (r s) Tarkastellaan ensin erikoistapausta m 3, r, s 3, eli kolmirivisessä ykkösmatriisissa vaihdetaan toinen ja kolmas rivi Tällöin saadaan alkeismatriisi E I 3 + I 3 + I Yleisessä tapauksessa saadaan tämän erikoistapauksen mukaisesti E I rs + I sr + I kk, josta edelleen seuraa Edellä todetun mukaan k r,s EA I rs A + I sr A + (1) I rs A:n r:s rivi A s ; muut rivit 0 () I sr A:n s:s rivi A r ; muut rivit 0 k r,s I kk A (3) I kk A:n k:s rivi A k ; muut rivit 0 (k r, s) Näin ollen EA:n r:s rivi A s, s:s rivi A r, k:s rivi A k (k r, s) II Kerrotaan rivi r luvulla c, c 0 Tarkastellaan jälleen ensin erikoistapausta m 3, r 3, ts kerrotaan ykkösmatriisin I 3 kolmas rivi vakiolla c, jolloin saadaan alkeismatriisi E ci 33 + I 11 + I 0 0 c 0 0 c Tämän mukaisesti yleisessä tapauksessa E ci rr + k r I kk,

LINEAARIALGEBRA I. Hannu Honkasalo. Helsingin yliopiston matematiikan laitos v w u ...

LINEAARIALGEBRA I. Hannu Honkasalo. Helsingin yliopiston matematiikan laitos v w u ... LINEAARIALGEBRA I Hannu Honkasalo v w u h w A v Helsingin yliopiston matematiikan laitos 003 SISÄLTÖ 1 Lineaariset yhtälöryhmät ja matriisit 11 Lineaariset yhtälöryhmät 1 1 Matriisit ja matriisitoimitukset

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

1.1. Määritelmiä ja nimityksiä

1.1. Määritelmiä ja nimityksiä 1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, kertausta Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Kaavio kirjoitetaan kaarisulkujen väliin

Lisätiedot

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218 Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.

Lisätiedot

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 3. Kirsi Valjus. Jyväskylän yliopisto. Luento 3 () Numeeriset menetelmät / 45

Numeeriset menetelmät TIEA381. Luento 3. Kirsi Valjus. Jyväskylän yliopisto. Luento 3 () Numeeriset menetelmät / 45 Numeeriset menetelmät TIEA381 Luento 3 Kirsi Valjus Jyväskylän yliopisto Luento 3 () Numeeriset menetelmät 20.3.2013 1 / 45 Luennon 3 sisältö Luku 2: Epälineaarisen yhtälön ratkaiseminen Polynomin reaaliset

Lisätiedot

2.8. Kannanvaihto R n :ssä

2.8. Kannanvaihto R n :ssä 28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R }

Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R } 7 Kompleksiluvut Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. 7.1 Kompleksilukujen määritelmä Määritelmä 7.1.1. Kompleksilukujen joukko

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä

Lisätiedot

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.

Lisätiedot

Determinantti. Määritelmä

Determinantti. Määritelmä Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j) (a) Jos n = 1, niin det(a) = a 11 (b) Muussa tapauksessa n det(a)

Lisätiedot

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ( 0, 4, ( ( 1 4 2, a 11 a 12 a 21 a 22 Kaavio kirjoitetaan kaarisulkujen väliin (amer. kirjoissa

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

Lukion matematiikkakilpailun alkukilpailu 2015

Lukion matematiikkakilpailun alkukilpailu 2015 Lukion matematiikkakilpailun alkukilpailu 015 Avoimen sarjan tehtävät ja niiden ratkaisuja 1. Olkoot a ja b peräkkäisiä kokonaislukuja, c = ab ja d = a + b + c. a) Osoita, että d on kokonaisluku. b) Mitä

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Inversio-ongelmien laskennallinen peruskurssi Luento 2 Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +

Lisätiedot

LAUSEKKEET JA NIIDEN MUUNTAMINEN

LAUSEKKEET JA NIIDEN MUUNTAMINEN LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Ratkaisut Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,...

Ratkaisut Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,... Ratkaisut 1 1. Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,.... Nolla, koska kerrotaan nollalla. 3. 16 15 50 = ( 8) 15 50 = (8 15) ( 50) = 1000 500 = 500 000. 4.

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

(2n 1) = n 2

(2n 1) = n 2 3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

802120P Matriisilaskenta (5 op)

802120P Matriisilaskenta (5 op) 802120P Matriisilaskenta (5 op) Marko Leinonen Matemaattiset tieteet Syksy 2016 1 / 220 Luennoitsija: Marko Leinonen marko.leinonen@oulu.fi MA333 Kurssilla käytetään Noppaa (noppa.oulu.fi) Luentomoniste

Lisätiedot

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)

Lisätiedot

Esko Turunen Luku 3. Ryhmät

Esko Turunen Luku 3. Ryhmät 3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,

Lisätiedot

Aiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa.

Aiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa. Yhtälöryhmän ratkaisujen lukumäärä, L26 Esimerkki 1 kvadraattinen 1 Haluamme ratkaista n 4x + y z = 2 x + 2y + z = 5 2x + 2y + 2z = 4 4 1 1 1 2 1 2 2 2 x 4 1 2 + y x y z 1 2 2 = + z 2 5 4 1 1 2 = 2 5 4

Lisätiedot

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1.

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 2 Ratkaisut palautettava viimeistään maanantaina 25.5.2015 klo 16.15. Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on

Lisätiedot

Lause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat

Lause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat jen Kahden joukon A ja B samuutta todistettaessa kannattaa usein osoittaa, että A on B:n osajoukko ja että B on A:n osajoukko. Tällöin sovelletaan implikaation ja ekvivalenssin yhteyttä. Lause 5. (s. 50).

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 27. marraskuuta 2015 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Vektoriavaruuksien R 2 ja R 3 vektorit........................

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos...

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos... 2 Logiikkaa Tässä luvussa tutustutaan joihinkin logiikan käsitteisiin ja merkintöihin. Lisätietoja ja tarkennuksia löytyy esimerkiksi Jouko Väänäsen kirjasta Logiikka I 2.1 Loogiset konnektiivit Väitelauseen

Lisätiedot

Algebra. 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. 2. Laske. a) Luku 2 on luonnollinen luku.

Algebra. 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. 2. Laske. a) Luku 2 on luonnollinen luku. Algebra 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. a) Luku on luonnollinen luku. b) Z c) Luvut 5 6 ja 7 8 ovat rationaalilukuja, mutta luvut ja π eivät. d) sin(45 ) R e)

Lisätiedot

Algebran perusteet. 44 ϕ(105) = (105). Näin ollen

Algebran perusteet. 44 ϕ(105) = (105). Näin ollen Algebran perusteet Harjoitus 4, ratkaisut kevät 2016 1 a) Koska 105 = 5 21 = 3 5 7 ja 44 = 2 2 11, niin syt(44, 105) = 1 Lisäksi ϕ(105) = ϕ(3 5 7) = (3 1)(5 1)(7 1) = 2 4 6 = 48, joten Eulerin teoreeman

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen

4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen 4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen Käypä kantaratkaisu löytyy helposti, esimerkiksi tapauksessa Ax b, b 0 x 0 jolloin sen määräävät puutemuuttujat. Tällöin simplex-menetelmän alustus

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

Algebra I, Harjoitus 6, , Ratkaisut

Algebra I, Harjoitus 6, , Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut (MV 6 sivua 1. Olkoot M ja M multiplikatiivisia monoideja. Kuvaus f : M M on monoidihomomorfismi jos 1 f(ab = f(af(b

Lisätiedot

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 2 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, 15-17

Lisätiedot

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a. Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai

Lisätiedot

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1)

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1) Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Osoita, että kompleksilukujen yhteenlasku määriteltynä tasopisteiden kautta koordinaateittain on liitännäinen, so. z + (z + z ) = (z + z )

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun

Lisätiedot

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C = BMA58 Funktiot, lineaarialgebra ja vektorit Harjoitus 6, Syksy 5. Olkoon [ 6 6 A =, B = 4 [ 3 4, C = 4 3 [ 5 Määritä matriisien A ja C ominaisarvot ja ominaisvektorit. Näytä lisäksi että matriisilla B

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

6 MATRIISIN DIAGONALISOINTI

6 MATRIISIN DIAGONALISOINTI 6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,

Lisätiedot

SARJAT JA DIFFERENTIAALIYHTÄLÖT

SARJAT JA DIFFERENTIAALIYHTÄLÖT SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 43 0.5 0.4 0.3 0.2 0.1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 Kuva 12. Esimerkin 4.26(c kuvauksen

Lisätiedot

3.2.2 Tikhonovin regularisaatio

3.2.2 Tikhonovin regularisaatio 3 Tikhonovin regularisaatio Olkoon x 0 R n tuntematon, M R m n teoriamatriisi ja y Mx + ε R m (316 annettu data Häiriöherkässä ongelmassa pienimmän neliösumman miniminormiratkaisu x M + y Q N (M x + M

Lisätiedot

3 Skalaari ja vektori

3 Skalaari ja vektori 3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

6. Toisen ja korkeamman kertaluvun lineaariset

6. Toisen ja korkeamman kertaluvun lineaariset SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1) Kertaus K1. a) OA i k b) B = (, 0, 5) K. K. a) AB (6 ( )) i () ( ( 7)) k 8i 4k AB 8 ( 1) 4 64116 819 b) 1 1 AB( ( 1)) i 1 i 4 AB ( ) ( 4) 416 0 45 5 K4. a) AB AO OB OA OB ( i ) i i i 5i b) Pisteen A paikkavektori

Lisätiedot

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kantavektorien kuvavektorit määräävät lineaarikuvauksen Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot