1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

Koko: px
Aloita esitys sivulta:

Download "1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät"

Transkriptio

1 1 1 LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT Muotoa 11 Lineaariset yhtälöryhmät (1) a 1 x 1 + a x + + a n x n b oleva yhtälö on tuntemattomien x 1,, x n lineaarinen yhtälö, jonka kertoimet ovat luvut a 1,, a n R ja vakio on b R (1):n ratkaisut ovat ne reaalilukujonot (s 1,, s n ), joilla (1) toteutuu, kun sijoitetaan x 1 s 1,, x n s n Esimerkki 111 a) Yhtälön 6x 1 3x + 4x 3 13 eräs ratkaisu on x 1, x 3, x 3 4 b) Tapaus n : Tuntemattomia merkitään usein symboleilla x ja y Yhtälön a 1 x + a y b (a 1 0 tai a 0) ratkaisut muodostavat suoran xy-tasossa (tästä nimitys lineaarinen ) () Äärellinen jono tuntemattomien x 1,, x n lineaarisia yhtälöitä a 11 x 1 + a 1 x + + a 1n x n b 1 a 1 x 1 + a x + + a n x n b a m1 x 1 + a m x + + a mn x n b m on lineaarinen yhtälöryhmä (tässä on m yhtälöä ja n tuntematonta; m 1, n 1), jonka kertoimet ovat a ij R (1 i m, 1 j n) ja vakiot b i (1 i m) ():n i:s yhtälö a i1 x 1 + a i x + + a in x n b i kirjoitetaan joskus muodossa L i 0, missä L i a i1 x 1 + a i x + + a in x n b i Lukujono (s 1,, s n ) on ():n ratkaisu, jos se on ():n jokaisen yhtälön ratkaisu Yhtälöryhmä () on homogeeninen, jos b 1 b n 0 Homogeenisella yhtälöryhmällä on aina triviaali ratkaisu x 1 x n 0 Homogeenisen yhtälöryhmän ratkaisu, jossa jokin x i 0, on epätriviaali Kaksi tuntemattomien x 1,, x n yhtälöryhmää ovat ekvivalentit, jos niillä on täsmälleen samat ratkaisut, so sama ratkaisujoukko Tämä tarkoittaa sitä, että jokainen ensimmäisen yhtälöryhmän ratkaisu on myös toisen ratkaisu, ja kääntäen, jokainen toisen yhtälöryhmän ratkaisu on myös ensimmäisen ratkaisu

2 Yhtälöryhmän () ratkaiseminen tarkoittaa sen kaikkien ratkaisujen (ts ratkaisujoukon) määrittämistä Strategia: Muodostetaan ():n kanssa ekvivalentteja yhtälöryhmiä, joista ratkaisu voidaan helpommin lukea Seuraavat esimerkit 11 (a) (e) on tarkoitettu johdatukseksi lineaaristen yhtälöryhmien ratkaisemiseen Systemaattinen ratkaisumenetelmä esitetään kappaleessa 15 Esimerkki 11 { x1 3x 7 (a) x 1 + x 7 (1) { x1 3x 7 7x 1 () { x1 3x 7 x 3 (3) { x x x 3 (4) { x1 x 3 Yhtälöryhmällä on siis täsmälleen yksi ratkaisu, nimittäin (x 1, x ) (, 3) Selitykset: (1) Alempaan yhtälöön lisätään ylempi yhtälö kerrottuna puolittain puolittain luvulla, jolloin saadaan eliminoitua tuntematon x 1 alemmasta yhtälöstä () Alempi yhtälö kerrotaan puolittain luvulla 1 7, jolloin saadaan ratkaistua tuntematon x alemmasta (3) Ylemmästä yhtälöstä ratkaistaan tuntematon x 1 tuntemattoman x avulla (4) Sijoitetaan x 3 ylempään, jolloin saadaan x 1 Usein esitystä on tapana pelkistää yhdistämällä itsestään selviä välivaiheita Esimerkiksi vaiheet (), (3) ja (4) voidaan yhdistää: { x1 3x 7 x 1 + x 7 { x1 3x 7 7x 1 { x x x 3 8x 1 3x 7 7x 1 14 { x1 (b) 3x 1 x 0 7x 1 14 (1) 10x 1 x 14 () x 5x x 1 x 14 Saatiin siis yksikäsitteinen ratkaisu (x 1, x ) (, 3) Koska ratkaisu on sama kuin kohdassa (a), kyseiset yhtälöryhmät ovat ekvivalentit Selitykset: (1) Toiseen yhtälöön lisätään kolmas yhtälö kerrottuna puolittain luvulla 1, jolloin saadaan eliminoitua tuntematon x toisesta yhtälöstä Vastaavasti ensimmäiseen

3 yhtälöön lisätään kolmas yhtälö puolittain luvulla 3 kerrottuna, jolloin saadaan eliminoitua tuntematon x ensimmäisestä yhtälöstä () Koska ensimmäinen ja toinen yhtälö ovat samoja, voidaan toinen niistä pudottaa pois Kerrotaan ensimmäinen yhtälö luvulla 1, jolloin kyseisestä yhtälöstä 7 saadaan x 1 Ratkaistaan kolmannesta yhtälöstä x x 1 :n avulla ja sijoitetaan x 1, jolloin saadaan x 3 3 (c) { x1 3x 7 x 1 6x 7 (1) { x1 3x Koska yhtälö 0 1 ei toteudu millään parilla (x 1, x ), yhtälöparilla ei ole ratkaisua Selitykset: (1) Lisätään alempaan yhtälöön ylempi yhtälö kerrottuna puolittain luvulla, jolloin saadaan eliminoitua alemmasta tuntematon x 1 Osoittautuu, että samalla eliminoituu myös tuntematon x (d) x 1 + x + 3x 3 6 x 1 3x + x x 1 + x x 3 x 1 + x + 3x 3 6 7x 4x 3 x + x 3 4 x 1 + x + 3x 3 6 x + x x 3 30 (3) (1) (5) x 1 + x + 3x 3 6 7x 4x 3 5x 10x 3 0 x 1 + x + 3x 3 6 x + x 3 4 7x 4x 3 (4) x 1 6 x 3x 3 1 x 4 x 3 x 3 3 () Saatiin yksikäsitteinen ratkaisu (x 1, x, x 3 ) (1,, 3) Selitykset: (1) Eliminoidaan tuntematon x 1 toisesta yhtälöstä lisäämällä toiseen yhtälöön ensimmäinen yhtälö luvulla kerrottuna Vastaavasti eliminoidaan x 1 kolmannesta yhtälöstä lisäämällä kolmanteen yhtälöön ensimmäinen yhtälö luvulla 3 kerrottuna () Sievennetään kolmas yhtälö kertomalla se puolittain luvulla 1 5 (3) Vaihdetaan keskenään toinen ja kolmas yhtälö

4 (4) Eliminoidaan tuntematon x (uudesta) kolmannesta yhtälöstä lisäämällä (uusi) toinen yhtälö luvulla 7 kerrottuna kolmanteen yhtälöön (5) Ratkaistaan tuntematon x 3 kolmannesta yhtälöstä kertomalla kyseinen yhtälö puolittain luvulla 1 10 ; saadaan x 3 3 Ratkaistaan toisesta yhtälöstä tuntematon x tuntemattoman x 3 avulla ja sijoitetaan edellä saatu x 3 3; saadaan x Ratkaistaan lopuksi ensimmäisestä yhtälöstä tuntematon x 1 tuntemattomien x ja x 3 avulla ja sijoitetaan edellä saadut x ja x 3 3; saadaan x (e) { x1 + x 3x 3 4 x 1 + x 3x 3 4 (1) { x1 + x 3x 3 4 3x + 3x 3 1 () { x1 4 x + 3x 3 4 (x 3 4) + 3x 3 x x x 3 4 Ratkaisut ovat siis (x 1, x, x 3 ) (t + 4, t 4, t), missä x 3 t R on mikä tahansa reaaliluku (parametri); ratkaisuja on ääretön määrä Selitykset: (1) Eliminoidaan muuttuja x alemmasta yhtälöstä lisäämällä alempaan yhtälöön ylempi yhtälö puolittain luvulla kerrottuna () Ratkaistaan alemmasta yhtälöstä tuntematon x tuntemattoman x 3 avulla ja ylemmästä yhtälöstä tuntematon x 1 tuntemattomien x ja x 3 avulla Sijoitetaan x :n lauseke ylempään yhtälöön, jolloin saadaan x 1 pelkästään x 3 :n avulla lausuttuna Nähdään, että jokaista arvoa x 3 t R kohti saadaan ratkaisu (x 1, x, x 3 ) (t + 4, t 4, t); kaikkiaan näitä rataisuja on ääretön määrä (niiden joukko on yhtä mahtava kuin reaalilukujen t joukko) Huomautus 113 Esimerkistä 11 nähdään, että lineaarisella yhtälöryhmällä voi olla ratkaisuja (ainakin) jokin seuraavista määristä: a) tasan yksi, b) ei yhtään, c) ääretön määrä Geometrinen tulkinta yhtälöparin { a11 x 1 + a 1 x b 1 (a 11 0 tai a 1 0) a 1 x 1 + a x b (a 1 0 tai a 0) tapauksessa: x 1 x -tason kahden suoran leikkaus on a) piste, b) tyhjä, c) suora l 1 a) b) l 1 l c) l 1 l l

5 Kuvailemme lopuksi yleisesti ne operaatiot, joilla yhtälöryhmiä esimerkissä 11 manipuloitiin Tarkastellaan yhtälöryhmää () eli L i 0, i 1,, m, missä L i a i1 x 1 + a i x + + a in x n b i Muodostetaan uusi yhtälöryhmä ( ) L i 0, i 1,, m, suorittamalla jokin seuraavista toimituksista: I Olkoon r s Määritellään L r L s, L s L r ja L i L i kaikilla i r, s; siis vaihdetaan ():n yhtälöt r ja s keskenään II Olkoon r {1,,, m} ja c R, c 0 Määritellään L r c L r ja L i L i kaikilla i r; siis kerrotaan ():n yhtälö r (puolittain) vakiolla c 0 III Olkoon r, s {1,,, m}, r s ja c R Määritellään L s L s + c L r ja L i L i kaikilla i s; siis ():n yhtälöön s lisätään c (yhtälö r) Lause 114 Yhtälöryhmät () ja ( ) ovat ekvivalentit Todistus Tapaus I on selvä Tapaus II Oletetaan, että L i 0 i Tällöin L i L i 0 i r ja L r c L r c 0 0 Oletetaan kääntäen, että L i 0 i Tällöin L i L i 0 i r ja L r (1/c) L r (1/c) 0 0 (Tässä tarvitaan ehtoa c 0!) Tapaus III Oletetaan, että L i 0 i Tällöin L i L i 0 i s ja L s L s + c L r 0 + c 0 0 Oletetaan kääntäen, että L i 0 i Tällöin L i L i 0 i s ja L s L s c L r L s c L r 0 c 0 0 Myöhemmin selitetään, millaiseen yhtälöryhmään toimituksilla I - III kannattaa pyrkiä 1 Matriisit ja matriisitoimitukset Kun edellä operoitiin lineaarisilla yhtälöryhmillä, käsiteltiin itse asiassa vain yhtälöryhmien kertoimia ja vakioita; tuntemattomat olivat vain paikanpitäjinä Kootaan kertoimet ja vakiot matriiseiksi Määritelmä 11 Olkoot m 1 ja n 1 kokonaislukuja (Reaalinen) m n - matriisi on lukukaavio a 11 a 1 a 1n a A 1 a a n a m1 a m a mn (a ij R kaikilla i, j); 5

6 6 reaaliluku a ij A(i, j) on A:n (i, j)-alkio; 1 n -matriisi [ a i1 a i a in ] on A:n i:s rivi (i 1,,, m); m 1 -matriisi a 1j a j a mj on A:n j:s sarake (j 1,,, n) Jos m n, A on neliömatriisi; tällöin a 11, a,, a nn ovat A:n lävistäjäalkiot Merkitään R m n kaikkien (reaalisten) m n -matriisien joukko; siis A R m n A on m n -matriisi Usein merkitään lyhyesti A [ a ij ] Määritelmä 11 Matriisit A [ a ij ] ja B [ b ij ] ovat samankokoiset jos niillä on yhtä monta riviä ja yhtä monta saraketta (esimerkiksi molemmat ovat m n - matriiseja) Edelleen matriisit A ja B ovat samat, merkitään A B, jos ne ovat samankokoiset ja a ij b ij i, j Esimerkki 13 1 [ 1 ] ; w x 4 w 1, x 3, y 0, z y 4 z Määritelmä 14 (Yhteenlasku) m n -matriisien A [ a ij ] ja B [ b ij ] summa on m n -matriisi A + B [ c ij ], missä c ij a ij + b ij i, j Esimerkki ei ole määritelty (matriisit ovat erikokoiset);

7 Määritelmä 16 (Skalaarilla kertominen) Jos A [ a ij ] on m n -matriisi ja t R on skalaari, niin ta [ c ij ] on se m n -matriisi, jolla c ij ta ij i, j Esimerkki 17 ( ) Kahden m n -matriisin erotus on Esimerkki A B A + ( 1)B Summamerkintä Kun a 1, a,, a n R, merkitään a 1 + a + + a n n a i R i1 Täsmällisemmin tämä merkintä määritellään rekursiivisesti: 1 a i a 1 ; i1 ( n+1 n ) a i a i + a n+1 i1 i1 Summausindeksi i on sidottu muuttuja ; summa ei riipu sen merkintätavasta: Laskusääntöjä: n a i i1 n a r r1 n ca i c i1 n a i Tapauksessa n kyseessä on osittelulaki ca 1 + ca c(a 1 + a ); yleisesti kaava todistetaan induktiolla i1

8 8 Kaksinkertaisen summan summausjärjestyksen vaihtamissääntö: m n a ij ( n m ) a ij i1 j1 j1 i1 Tapaus m n : i1 j1 a ij (a i1 + a i ) (a 11 + a 1 ) + (a 1 + a ), i1 ( ) a ij j1 i1 (a 1j + a j ) (a 11 + a 1 ) + (a 1 + a ) j1 Reaalilukujen yhteenlaskun vaihdannaisuudesta ja liitännäisyydestä seuraa, että yllä olevissa yhtälöissä oikealla olevat lausekkeet ovat samat, joten kaksoissummat ovat samat Yleinen tapaus voidaan todistaa induktiolla Kysymys on siitä, että matriisin [ a ij ] rivisummien summa ja sarakesummien summa ovat yhtäsuuret; molemmat antavat tulokseksi kaikkien lukujen a ij summan Määritelmä 19 (Matriisitulo) m n -matriisin A [ a ij ] ja n p -matriisin B [ b ij ] tulo on m p -matriisi AB [ c ij ], jolla c ij n a ik b kj a i1 b 1j + a i b j + + a in b n,j, k1 i {1,, m}, j {1,, p} Huomautus 110 AB on määritelty A:n sarakkeiden lukumäärä B:n rivien lukumäärä j b 1j b j i a i1 a i a in c ij b nj c ij a i1 b 1j + a i b j + + a in b nj

9 9 Esimerkki [ 1 ( ) ( 1) ( 3) + ( 1) 1 3 ( ) ( 3) ] Olkoon A R m n ja B R n p Tällöin siis AB R m p on määritelty Kysymys: Mitä voidaan sanoa matriisista BA? Vastaus: BA on määritelty vain, jos p m Tällöin BA R n n (ja siis AB R m p R m m ) Jos m n, AB ja BA eivät ole samankokoiset, joten AB BA Jos m n, AB ja BA ovat molemmat n n -matriiseja ja voi olla AB BA, mutta yleensä tällöinkin AB BA Esimerkki (a) ; ei ole määritelty (b) (c) [ 1 ] [ 1 ] (1 1 -matriisi), [ 1 ] ( -matriisi) Huomautus 113 Olkoon A R m n ja B R n p ; A 1,, A m R 1 n A:n rivit ja B 1,, B p R n 1 B:n sarakkeet Tällöin AB:n rivit ovat A 1 B,, A m B R 1 p ; AB:n sarakkeet ovat AB 1,, AB p R m 1 ; A i 0 B j0 [ (AB)(i 0, j 0 ) ] R 1 1 Lineaarisen yhtälöryhmän matriisiesitys Tarkastellaan lineaarista yhtälöryhmää a 11 x 1 + a 1 x + + a 1n x n b 1 a 1 x 1 + a x + + a n x n b (1) a m1 x 1 + a m x + + a mn x n b m

10 Merkitään a 11 a 1 a 1n a A 1 a a n a m1 a m a mn, X x 1 x x n, B A R m n, X R n 1, B R m 1 A on (1):n kerroinmatriisi, a 11 a 1 a 1n b 1 a [ A B ] 1 a a n b (m (n + 1) -matriisi) a m1 a m a mn sen täydennetty matriisi Tulo AX on määritelty ja a 11 x 1 + a 1 x + + a 1n x n a AX 1 x 1 + a x + + a n x n a m1 x 1 + a m x + + a mn x n Siten (x 1, x,, x n ) on (1):n ratkaisu jos ja vain jos X toteuttaa matriisiyhtälön AX B Esimerkki e):n yhtälöryhmä on matriisimuodossa 1 3 x 1 x x 3 Yhtälöryhmän (1) voi A:n sarakkeiden avulla myös kirjoittaa muodossa a 11 b 1 a x x + + x n b a 1 a b m a 1n a n b 1 b b m ; 10 a m1 a m a mn b m Transponointi Määritelmä 115 m n -matriisin A [ a ij ] transpoosi eli transponoitu matriisi on n m -matriisi A T [ c ij ], jolla c ij a ji kaikilla i, j Esimerkki 116 T Huomautus 117 Jos A i on A:n i:s rivi ja A j A:n j:s sarake, niin (A i ) T A T :n i:s sarake ja (A j ) T on A T :n j:s rivi on

11 13 Matriisien laskulakeja m n -matriisien yhteenlasku toteuttaa samanlaiset laskulait kuin reaalilukujen yhteenlasku: (1) A + (B + C) (A + B) + C kaikilla A, B, C R m n (liitännäisyys) () A + 0 A kaikilla A R m n, missä mn Rm n on m n -nollamatriisi (nollarivejä m kappaletta ja nollasarakkeita n kappaletta) Jos m n, merkitään 0 n 0 nn (3) A + ( 1)A 0 kaikilla A R m n, missä A ( 1)A on A:n vastamatriisi (4) A + B B + A kaikilla A, B R m n (vaihdantalaki) Perustelu Yllä olevat tulokset seuraavat matriisien yhteenlaskun määritelmän nojalla reaalilukujen vastaavista ominaisuuksista Esimerkiksi liitäntälaki (1) seuraa reaalilukujen liitäntälaista, sillä a ij + (b ij + c ij ) (a ij + b ij ) + c ij kaikilla i, j 11 Skalaarilla kertomisen ominaisuudet on yhtä helppo johtaa: (5) s(a + B) sa + sb kaikilla A, B R m n, s R (6) (s + t)a sa + ta kaikilla A R m n, s, t R (7) s(ta) (st)a kaikilla A R m n, s, t R (8) 1A A kaikilla A R m n Matriisia I n Rn n kutsutaan ykkösmatriisiksi; siis I n [ δ ij ], missä { 1, kun i j δ ij 0, kun i j Matriisitulon ominaisuuksia:

12 Lause 131 Jos A, A R m n, B, B R n p, C R p q ja t R, niin seuraavat kaavat pätevät (ja erityisesti niissä esiintyvät matriisit ovat määriteltyjä): (a) A(B + B ) AB + AB, (b) (A + A )B AB + A B, (c) t(ab) (ta)b A(tB), (d) A(BC) (AB)C, (e) I m A A AI n Todistus Todistetaan malliksi kohdat (d) ja (e): 1 (d) ( ) n A(BC) (i, j) A(i, k) (BC)(k, j) k1 n ( p ) A(i, k) B(k, l) C(l, j) k1 l1 p ( n ) A(i, k) B(k, l) C(l, j) l1 k1 n ( p k1 l1 p ( n l1 k1 p (AB)(i, l) C(l, j) ( (AB)C ) (i, j) i, j l1 ) A(i, k) B(k, l) C(l, j) ) A(i, k) B(k, l) C(l, j) (e) (I m A)(i, j) m δ ik A(k, j) δ ii A(i, j) + k1 m δ ik A(k, j) A(i, j) i, j, sillä δ ii 1 ja δ ik 0, kun i k Vastaavasti (AI n )(i, j) A(i, j) i, j Huomautus 13 Matriisitulolta puuttuu osa reaalilukujen kertolaskun ominaisuuksista 11:ssa todettiin, että jos A, B R n n (ja n ), niin voi olla AB BA (tulo ei ole vaihdannainen ); lisäksi voi olla AB 0, vaikka A 0 ja B 0 ( tulon nollasääntö ei päde) Esimerkki Transponoinnin ominaisuuksia: k1 k i ( ) 1 ( 6) ( ) ( 6) + 4 3

13 13 Lause 134 Olkoot A, A R m n, B R n p ja t R Tällöin (a) (A T ) T A, (b) (A + A ) T A T + A T, (c) (AB) T B T A T, (d) (ta) T ta T Todistus Todistetaan malliksi (c): n n (AB) T (i, j) (AB)(j, i) A(j, k) B(k, i) B(k, i) A(j, k) k1 k1 n B T (i, k) A T (k, j) (B T A T )(i, j) i, j k1 14 Eräitä erityisiä matriiseja Neliömatriisi A [ a ij ] R n n on lävistäjämatriisi, jos a ij 0 aina, kun i j (so lävistäjän ulkopuoliset alkiot 0); jos lisäksi a ii a R kaikilla i, A on skalaarimatriisi ( a I n ) Esimerkki , , ovat lävistäjämatriiseja; ovat skalaarimatriiseja Jokainen skalaarimatriisi on tietysti myös lävistäjämatriisi Neliömatriisi A [ a ij ] R n n on yläkolmiomatriisi, jos a ij 0 aina kun i > j, ja alakolmiomatriisi, jos a ij 0 aina, kun i < j Esimerkki 14 Lävistäjämatriisi on sekä ylä- että alakolmiomatriisi; on yläkolmiomatriisi; on alakolmiomatriisi; (Neliö)matriisi A [ a ij ] on symmetrinen, jos A T A eli a ji a ij kaikilla i, j, ja antisymmetrinen, jos A T A eli a ji a ij kaikilla i, j Antisymmetrisellä matriisilla erityisesti a ii a ii kaikilla i, joten jokainen lävistäjäalkio a ii 0

14 14 Esimerkki on symmetrinen; on antisymmetrinen Säännölliset matriisit Määritelmä 144 Neliömatriisi A R n n on säännöllinen eli kääntyvä, jos on olemassa sellainen matriisi B R n n, että AB I n ja BA I n Muussa tapauksessa A on singulaarinen Huomautus 145 Jos A R n n on säännöllinen, niin 144:ssä mainittu B R n n on yksikäsitteinen Jos nimittäin myös C R n n toteuttaa ehdot AC I n ja CA I n, niin C CI n C(AB) (CA)B I n B B Voidaan siis merkitä B A 1, säännöllisen matriisin käänteismatriisi Esimerkki 146 a) 1 1 -matriisi [ a ] R 1 1 on säännöllinen a 0; tällöin [ a ] 1 [ 1/a ] b) R 1 0 on säännöllinen ja, sillä c) R 0 0 ei ole säännöllinen, sillä joka ei voi olla I b11 b 1 b1 b, 0 0 b 1 b Kappaleessa 16 kehitämme menetelmän, jolla voi selvittää, onko annettu A R n n säännöllinen, ja myönteisessä tapauksessa määrittää A 1 :n Lause 147 Jos A, B R n n ovat säännöllisiä, niin myös A 1, AB ja A T ovat säännöllisiä ja (A 1 ) 1 A, (AB) 1 B 1 A 1, (A T ) 1 (A 1 ) T

15 Todistus A 1 :n säännöllisyyttä ja käänteismatriisia koskevat väitteet seuraavat heti käänteismatriisin määritelmästä ja yhtälöistä AA 1 I n A 1 A Muut väitteet seuraavat yhtälöistä (AB)(B 1 A 1 ) A(BB 1 )A 1 AI n A 1 AA 1 I n, (B 1 A 1 )(AB) B 1 (A 1 A)B B 1 I n B B 1 B I n ; 15 A T (A 1 ) T (A 1 A) T I T n I n (A 1 ) T A T (AA 1 ) T I T n I n, joissa käytettiin laskulakeja 131 d) ja 134 c) Lineaariset yhtälöryhmät ja käänteismatriisit Tarkastellaan lineaarista yhtälöryhmää, jossa on n yhtälöä ja n tuntematonta, matriisimuodossa AX B, missä A R n n ja X, B R n 1 Lause 148 Jos A R n n on säännöllinen, yhtälöryhmällä AX B on yksikäsitteinen ratkaisu X R n 1, nimittäin X A 1 B Todistus Jos X A 1 B, niin AX A(A 1 B) (AA 1 )B IB B, koska AA 1 I Kääntäen, jos AX B, niin X IX (A 1 A)X A 1 (AX) A 1 B, koska A 1 A I Todistuksessa tarvittiin siis molempia yhtälöitä AA 1 I ja A 1 A I Huomautus 149 Jos A R n n on säännöllinen ja B R n p, niin vastaavasti matriisiyhtälöllä AX B on yksikäsitteinen ratkaisu X A 1 B R n p 148:n tilanteessa(kin) yhtälöryhmä AX B on yleensä helpointa ratkaista suoraan 15:ssä esitettävillä menetelmillä, etsimättä käänteismatriisia A 1 15 Porrasmatriisit ja lineaaristen yhtälöryhmien ratkaiseminen Määritelmä 151 Matriisi on porrasmuotoinen eli porrasmatriisi, jos seuraavat ehdot (1), () ja (3) ovat voimassa: (1) Nollarivit (jos niitä on) ovat alimpina () Jokaisen nollasta eroavan rivin vasemmalta lukien ensimmäinen nollasta eroava alkio, ko rivin johtava alkio, on 1 (3) Alemman rivin johtavan alkion sarake sijaitsee aina ylemmän rivin johtavan alkion sarakkeen oikealla puolella Porrasmatriisi on redusoitu jos lisäksi (4) Jokainen johtava alkio on sarakkeensa ainoa nollasta eroava alkio

16 Olkoon A [ a ij ] R m n porrasmatriisi, jossa on r nollasta eroavaa riviä Ehdosta 151 (1) seuraa, että nollasta eroavat rivit ovat rivit 1,,, r ja nollarivit ovat rivit r + 1, r +,, m Olkoon i:nnen rivin johtava alkio kohdassa (i, j i ) (i 1,,, r) ():n nojalla a iji 1 kaikilla i {1,,, r} ja (3):n nojalla 1 j 1 < j < < j r n 16 Erityisesti täytyy olla 0 r min {m, n} A on muotoa a 1,j1 +1 a 1n a,j +1 a n a 3,j3 +1 a 3n a r,jr +1 a rn Jos A on redusoitu, niin lisäksi a kji 0, kun k < i (i 1,,, r) Havainto 15 Jos neliömatriisi A [ a ij ] R n n on redusoidussa porrasmuodossa, niin joko (1) A:ssa on nollarivejä, tai () A I n (Tapaukset (1) ja () eivät ole yhtä aikaa voimassa) Todistus Olkoot A:n johtavat alkiot kohdissa (1, j 1 ),,(r, j r ) kuten yllä Oletetaan, että A:ssa ei ole nollarivejä Tällöin r n Koska 1 j 1 < j < < j n n ja lukuja j 1, j,, j n on n kappaletta, niin välttämättä j 1 1, j,, j n n, ja siis a 11 a a nn 1 151:n kohtien () (4) nojalla muut A:n alkiot 0 Rivitoimitukset Olkoot A, B R m n m n -matriiseja, joiden rivit ovat rivit A 1,, A m ja B 1,, B m

17 Määritelmä 153 B on saatu A:sta yhdellä alkeisrivitoimituksella seuraavissa kolmessa tapauksessa: I Eräillä r, s {1,,, m}, r s, on B r A s, B s A r ja B i A i Kaikilla i r, s (A:n rivit r ja s on vaihdettu) II Eräillä r {1,,, m} ja c R, c 0, on B r ca r ja B i A i Kaikilla i r (A:n rivi r on kerrottu vakiolla c 0) III Eräillä r, s {1,,, m}, r s, ja c R on B s A s + c A r ja B i A i kaikilla i s (A:n riviin s on lisätty c (A:n rivi r)) Määritelmä 154 Matriisi A R m n on riviekvivalentti matriisin B R m n kanssa, jos B saadaan A:sta äärellisen monella alkeisrivitoimituksella, ts jos on olemassa sellaiset matriisit A 0, A 1,, A k, että A 0 A, A k B ja A l+1 on saatu A l :stä yhdellä alkeisrivitoimituksella (l 0, 1,, k 1) Lause 155 Jokainen m n -matriisi A on riviekvivalentti jonkin redusoidun porrasmatriisin kanssa Todistus Esitämme algoritmin, joka muuntaa A:n alkeisrivitoimituksin redusoituun porrasmuotoon Jos A 0, A on jo redusoidussa porrasmuodossa (pelkkiä nollarivejä) Olkoon siis A 0 Vaihe 1: A muunnetaan porrasmuotoon (1) Etsitään (vasemmalta lukien) A:n ensimmäinen nollasta eroava sarake ja valitaan ko sarakkeesta jokin alkio a 0 () Siirretään a:n sisältävä rivi ylimmäksi vaihtamalla (tarvittaessa) kaksi riviä keskenään (3) Kerrotaan 1 (ylin) rivi luvulla 1/a On päästy muotoon (missä mikä tahansa luku) a 0 a m (4) Lisätään i:nteen riviin ( a i ) (1 rivi), i,, m; tuloksena on matriisi A,

18 missä A on (m 1) p -matriisi jollakin p < n (5) Jos A 0, on saatu porrasmatriisi; jos A 0, sovelletaan siihen kohtia (1) (4) Äärellisen monen askeleen jälkeen saadaan porrasmatriisi C Vaihe : Porrasmatriisi C muunnetaan redusoiduksi porrasmatriisiksi Olkoot C:n johtavat alkiot kohdissa (1, j 1 ),, (r, j r ) (1) Muutetaan kohdissa (i, j r ), i 1,,, r 1, mahdollisesti olevat nollasta eroavat alkiot nolliksi lisäämällä kyseisiin riveihin r:nnen rivin sopivat kerrannaiset () Seuraavaksi tuotetaan vastaavasti nollat kohdan (r 1, j r 1 ) yläpuolelle jne Esimerkki 156 Muunnetaan annettu 4 5 -matriisi a) porrasmatriisiksi, b) redusoiduksi porrasmatriisiksi (a) (1) Selitykset: () (3) (4) (5) (6) [ 1 3 (7) 3 4 ] [ 1 3 (8) (1) Vaihdetaan rivit 1 ja 3 keskenään ja kerrotaan sen jälkeen rivi 1 vakiolla 1 () Lisätään riviin 4 rivi 1 vakiolla kerrottuna (3) Koska rivi 1 ja sarake 1 eivät tämän jälkeen muutu, ne voidaan jättää jatkotarkasteluissa pois (4) Vaihdetaan rivit 1 ja ja kerrotaan sen jälkeen rivi 1 luvulla 1 (5) Lisätään riviin 3 rivi 1 luvulla kerrottuna ] 18

19 (6) Koska rivi 1 ja sarake 1 eivät tämän jälkeen muutu, ne voidaan jättää jatkotarkasteluissa pois (7) Kerrotaan rivi 1 luvulla 1 (8) Lisätään riviin rivi 1 luvulla kerrottuna Koska saatiin matriisi, jonka alin rivi on nollarivi, tehtävä on valmis Lopuksi yhdistetään yllä olevat vaiheet (), (5) ja (8) jolloin saadaan alkuperäisen kanssa riviekvivalentti porrasmatriisi b) Redusoidun porrasmatriisin saamiseksi jatketaan viimeksi saadusta muodosta (1) () Selitykset: (1) Koska alin johtava kerroin on kohdassa (3, 3), hävitetään aluksi kolmannelta sarakkeelta mainitun kohdan yläpuolella olevat nollasta eroavat alkiot Sitä varten lisätään toiseen riviin kolmas rivi luvulla 3 kerrottuna, ja ensimmäiseen riviin lisätään kolmas rivi luvulla 5 kerrottuna 19 () Koska seuraavaksi alin johtava kerroin sijaitsee kohdassa (, ), lisätään ensimmäiseen riviin toinen rivi luvulla 1 kerrottuna Näin saadaan alkuperäisen matriisin kanssa riviekvivalentti redusoitu porrasmatriisi Lineaarisen yhtälöryhmän ratkaiseminen Haluamme ratkaista (matriisimuotoisen) lineaarisen yhtälöryhmän AX B, A R m n, X R n 1, B R m 1 Tarkastelemme täydennettyä matriisia [ A B ] R m (n+1) Lause 157 Jos [ A B ] on riviekvivalentti [ C D ]:n kanssa, yhtälöryhmät AX B ja CX D ovat ekvivalentit (eli niillä on samat ratkaisut) Todistus Tyyppiä I, II ja III olevat alkeisrivitoimitukset (ks 153) vastaavat lineaarisille yhtälöryhmille suoritettavia toimituksia I, II ja III (sivu 5) Väite seuraa siten lauseesta :n nojalla yllä [ C D ]:ksi voidaan valita (jopa redusoitu) porrasmatriisi Tällöin CX D on helppo ratkaista:

20 Esimerkki 158 Yhtälöryhmän CX D ratkaiseminen, kun [ C D ] on a) porrasmatriisi, b) redusoitu porrasmatriisi: a) Myös C on selvästi porrasmatriisi Olkoot C:n johtavat alkiot kohdissa (1, j 1 ),, (r, j r ) Tällöin [ C D ] on muotoa c 1,j1 +1 d c,j +1 d c 3,j3 +1 d c r,jr +1 d r 0 0 d r missä d r+1 0 tai 1 (1) Jos r < m (C:ssä on nollarivejä) ja d r+1 1 0, mukana on mahdoton yhtälö 0 d r+1 1, joten yhtälöryhmällä ei ole ratkaisuja tässä tapauksessa () Oletetaan, että r m (C:ssä ei ole nollarivejä) tai d r+1 0 i) Tuntemattomat x k, k / {j 1,, j r } (n r kappaletta), ovat vapaat muuttujat, joiden arvot voidaan valita vapaasti: annetaan vapaille muuttujille x k1, x k,, x kn r, missä 1 k 1 < k < < k n r n, arvot ii) Yhtälöstä r, x k1 s 1 R, x k s R,, x kn r s n r R x jr + k l >j r c rkl s l d r, lausutaan x jr parametrien s l (k l > j r ) avulla iii) Yhtälöön r 1, x jr 1 + c r 1,jr x jr + c r 1,kl s l d r 1, k l >j r 1 sijoitetaan takaisin x jr kohdasta ii) ja lausutaan x jr 1 parametrien s l (k l > j r 1 ) avulla iv) Ratkaistaan vastaavalla tavalla muita johtavien kertoimien sarakkeita vastaavat tuntemattomat järjestyksessä x jr,, x j, x j1 0,

21 Huomautus Jos ():ssa r n, vapaita muuttujia ei ole, ja ratkaisu on yksikäsitteinen Jos r < n, jokaista parametrijonoa (s 1,, s n r ) vastaa tietty ratkaisu (x 1,, x n ) (ääretön määrä ratkaisuja) b) Olkoon [ C D ] redusoitu porrasmatriisi Menetellään kuten a)-kohdassa, paitsi että kohdan () takaisinsijoituksia ei tarvita, vaan suoraan x jp d p k l >j p c pkl s l, p 1,, r 1 Esimerkki 159 Olkoon [ [ C D ] ] Tällöin CX D on { x1 + x + x 3 5 x 5 3 x x 5 1 Vapaat muuttujat ovat x, x 3 ja x 5 Merkitään x s 1 R, x 3 s R, x 5 s 3 R, jolloin ratkaisut ovat tai matriisimuodossa X x 1 x x 3 x 4 x 5 x 1 3 x x x 5 3 s 1 s + 5 s 3 x s 1 x 3 s x x s 3 x 5 s 3, s s 1 + s ; s 1, s, s 3 R Lineaarinen yhtälöryhmä AX B voidaan siis ratkaista (mm) jommallakummalla seuraavista menetelmistä: Gaussin eliminointimenetelmä: A Etsitään (rivitoimituksin) [ A B ]:n kanssa riviekvivalentti porrasmatriisi [ C D ] B Ratkaistaan CX D takaisinsijoituksin (jos ratkaisuja on)

22 Gaussin-Jordanin eliminointimenetelmä: A Etsitään (rivitoimituksin) [ A B ]:n kanssa riviekvivalentti redusoitu porrasmatriisi [ C D ] B Luetaan suoraan yhtälöryhmän CX D ratkaisut (jos niitä on) Esimerkki 1510 Ratkaise Gaussin menetelmällä x + 3x 3 4x 4 1 x 3 + 3x 4 4 x 1 + x 5x 3 + x 4 4 x 1 6x 3 + 9x 4 7 Ratkaisu [ A B ] muunnettiin rivitoimituksin porrasmuotoon [ C D ] 156 a):ssa Yhtälöryhmän CX D eli x 1 + x 5 x 3 + x 4 x + 3 x 3 x 4 1 x x ratkaisu on x 1 x + 5 x 3 x 4 ( s) + 5 ( 3 s) s 19 x 1 3 x 3 + x ( 3 s) + s s x 3 3 x 4 3 s x 4 s R 9s Huomautus 1511 Porrasmuotoon pyrkiminen ei aina ole nopein ratkaisumenetelmä Esimerkiksi yhtälöryhmästä x 1 1 x 1 1 x 1 x 3 0 saadaan heti x 1 + x 1 + x 3 1 x 1 x + x 3 1 x 3 x 1 1, vaikka matriisi ei ole porrasmuotoinen Homogeeniset yhtälöryhmät Tarkastellaan homogeenista ryhmää AX 0, A R m n, X R n 1 (m yhtälöä ja n tuntematonta) Tällä on aina triviaali ratkaisu X 0

23 Lause 151 Jos m < n (eli yhtälöitä on vähemmän kuin tuntemattomia), yhtälöryhmällä AX 0 on myös epätriviaaleja ratkaisuja Todistus Täydennetyn matriisin [ A 0 ] kanssa riviekvivalentti porrasmatriisi on muotoa [ C 0 ], eli siinäkin vakiot ovat nollia Kun yhtälöryhmää CX 0 ratkaistaan kuten 158 a):ssa, tapaus (1) ei näin ollen ole mahdollinen, joten yhtälöryhmällä on ratkaisuja joko tasan yksi tai ääretön määrä sen mukaan, onko vapaiden muuttujien lukumäärä n r nolla vai positiivinen Koska m < n, on r min {m, n} m < n; siis vapaita muuttujia on n r > 0 kappaletta, ja ratkaisuja on ääretön määrä Ratkaisuista yksi on triviaali ja muut (joita on ääretön määrä) epätriviaaleja Tarkastellaan lopuksi yleistä lineaarista yhtälöryhmää AX B, A R m n, X R n 1, B R m 1 Lause 1513 Olkoon S 0 R n 1 yhtälöryhmän AX B eräs ratkaisu Silloin S R n 1 on ko ryhmän (yleinen) ratkaisu S S 0 + T, missä T R n 1 on homogeenisen ryhmän AX 0 (yleinen) ratkaisu Todistus Olkoon S S 0 + T, missä AT 0 Koska AS 0 B, on AS A(S 0 + T ) AS 0 + AT B + 0 B Olkoon AS B Tällöin S S 0 + (S S 0 ) S 0 + T, missä AT A(S S 0 ) AS AS 0 B B 0 16 Alkeismatriisit ja matriisin säännöllisyys Kun r, s {1,,, m}, määritellään neliömatriisi I rs [ e ij ] R m m asettamalla { 1, kun (i, j) (r, s) e ij 0, muulloin Siis I rs :n (r, s)-alkio 1, kaikki muut alkiot 0 (Samalla tavalla voidaan yleisemmin määritellä m n -matriisi I rs, kun r {1,, m}, s {1,, n}) Olkoon A [ a ij ] R m n m n -matriisi Lasketaan I rs A: m (I rs A)(i, j) e ik a kj k1 Kun i r, e ik a kj 0 a kj 0 kaikilla k; kun i r, { 1 asj a sj, kun k s e rk a kj 0 a kj 0, kun k s Näin ollen { asj, kun i r (I rs A)(i, j) 0, kun i r, ts I rs A:n r:s rivi A:n s:s rivi ja I rs A:n muut rivit 0 3

24 Määritelmä 161 m m -matriisi E on alkeismatriisi, jos se saadaan ykkösmatriisista I m yhdellä alkeisrivitoimituksella Lemma 16 Olkoon A R m n m n -matriisi, ja olkoon alkeismatriisi E R m m saatu I m :stä tietyllä alkeisrivitoimituksella Tällöin EA saadaan A:sta samalla alkeisrivitoimituksella Todistus Tutkitaan alkeisrivitoimitusten tyypit I, II ja III erikseen rivit A 1, A,, A m R 1 n 4 Olkoot A:n I Vaihdetaan rivit r ja s (r s) Tarkastellaan ensin erikoistapausta m 3, r, s 3, eli kolmirivisessä ykkösmatriisissa vaihdetaan toinen ja kolmas rivi Tällöin saadaan alkeismatriisi E I 3 + I 3 + I Yleisessä tapauksessa saadaan tämän erikoistapauksen mukaisesti E I rs + I sr + I kk, josta edelleen seuraa Edellä todetun mukaan k r,s EA I rs A + I sr A + (1) I rs A:n r:s rivi A s ; muut rivit 0 () I sr A:n s:s rivi A r ; muut rivit 0 k r,s I kk A (3) I kk A:n k:s rivi A k ; muut rivit 0 (k r, s) Näin ollen EA:n r:s rivi A s, s:s rivi A r, k:s rivi A k (k r, s) II Kerrotaan rivi r luvulla c, c 0 Tarkastellaan jälleen ensin erikoistapausta m 3, r 3, ts kerrotaan ykkösmatriisin I 3 kolmas rivi vakiolla c, jolloin saadaan alkeismatriisi E ci 33 + I 11 + I 0 0 c 0 0 c Tämän mukaisesti yleisessä tapauksessa E ci rr + k r I kk,

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

LAUSEKKEET JA NIIDEN MUUNTAMINEN

LAUSEKKEET JA NIIDEN MUUNTAMINEN LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

Matriisilaskenta. Ville Tilvis

Matriisilaskenta. Ville Tilvis Matriisilaskenta Ville Tilvis 1 joulukuuta 2013 Sisältö Johdanto 1 1 Matriisit ja vektorit 2 11 Nimityksiä 2 12 Peruslaskutoimitukset 4 2 Lineaariset yhtälöryhmät 10 21 Lineaarinen yhtälö ja yhtälöryhmä

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

Mika Hirvensalo. Insinöörimatematiikka D 2015

Mika Hirvensalo. Insinöörimatematiikka D 2015 Mika Hirvensalo Insinöörimatematiikka D 2015 Sisältö 1 Lineaarialgebran peruskäsitteitä............................................... 5 1.1 Lineaariset yhtälöryhmät..................................................

Lisätiedot

Äärellisesti generoitujen Abelin ryhmien peruslause

Äärellisesti generoitujen Abelin ryhmien peruslause Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.

Lisätiedot

5.2 Ensimmäisen asteen yhtälö

5.2 Ensimmäisen asteen yhtälö 5. Ensimmäisen asteen ytälö 5. Ensimmäisen asteen yhtälö Aloitetaan antamalla nimi yhtälön osille. Nyt annettavat nimet eivät riipu yhtälön tyypistä tai asteesta. Tarkastellaan seuraavaa yhtälöä. Emme

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

Insinöörimatematiikka IA

Insinöörimatematiikka IA Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

Polynomimatriisit. Antti Lindberg. Matematiikan pro gradu -tutkielma

Polynomimatriisit. Antti Lindberg. Matematiikan pro gradu -tutkielma Polynomimatriisit Antti Lindberg Matematiikan pro gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kesä 2014 Tiivistelmä: Antti Lindberg, Polynomimatriisit, Matematiikan pro

Lisätiedot

Yleiset lineaarimuunnokset

Yleiset lineaarimuunnokset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

LINEAARIALGEBRA, osat a ja b

LINEAARIALGEBRA, osat a ja b LINEAARIALGEBRA, osat a ja b Martti E. Pesonen Epsilon ry. huhtikuuta 06 LUKIJALLE Lineaarialgebran kursseja edeltäviksi opinnoiksi suositellaan jotain lukion matematiikkaa teoreettiselta kannalta täydentävää

Lisätiedot

a b c d + + + + + + + + +

a b c d + + + + + + + + + 28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista

Lisätiedot

Lukion. Calculus. Funktiot ja yhtälöt. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Funktiot ja yhtälöt. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Funktiot ja yhtälöt Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Funktiot ja yhtälöt (MAA) Pikatesti ja kertauskokeet Pikatesti

Lisätiedot

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0 Tensorialgebroista Esitysteorian kesäopintopiiri, Turun yliopisto, 2012 Jyrki Lahtonen Olkoon k jokin skalaarikunta. Kerrataan k-algebran käsite: A on k-algebra, jos se on sekä rengas että vektoriavaruus

Lisätiedot

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Renkaat ja modulit Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Tekijärenkaassa nollan ekvivalenssiluokka on alkuperäisen renkaan ideaali. Ideaalin käsitteen

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

Liite 2. Ryhmien ja kuntien perusteet

Liite 2. Ryhmien ja kuntien perusteet Liite 2. Ryhmien ja kuntien perusteet 1. Ryhmät 1.1 Johdanto Erilaisissa matematiikan probleemoissa törmätään usein muotoa a + x = b tai a x = b oleviin yhtälöihin, joissa tuntematon muuttuja on x. Lukujoukkoja

Lisätiedot

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi 3. Kongruenssit 3.1 Jakojäännös ja kongruenssi Tässä kappaleessa esitellään kokonaislukujen modulaarinen aritmetiikka (ns. kellotauluaritmetiikka), jossa luvut tyypillisesti korvataan niillä jakojäännöksillä,

Lisätiedot

v 8 v 9 v 5 C v 3 v 4

v 8 v 9 v 5 C v 3 v 4 Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi

Lisätiedot

Vastaus: Aikuistenlippuja myytiin 61 kappaletta ja lastenlippuja 117 kappaletta.

Vastaus: Aikuistenlippuja myytiin 61 kappaletta ja lastenlippuja 117 kappaletta. Seuraava esimerkki on yhtälöparin sovellus tyypillisimmillään Lukion ekaluokat suunnittelevat luokkaretkeä Sitä varten tarvitaan tietysti rahaa ja siksi oppilaat järjestävät koko perheen hipat Hippoihin

Lisätiedot

Talousmatematiikan perusteet, L3 Prosentti, yhtälöt Aiheet

Talousmatematiikan perusteet, L3 Prosentti, yhtälöt Aiheet Talousmatematiikan perusteet, L3 Prosentti, t Toisen Prosentti 1 Jos b on p% luvusta a, eli niin b = p 100 a a = perusarvo (Mihin verrataan?) (Minkä sadasosista on kysymys.) p = prosenttiluku (Miten monta

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x 8. Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme näiltä kahdella laskutoimituksella varustetuilta

Lisätiedot

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008 Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot

Lisätiedot

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi.

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. 10.1 Yleistä Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. Esimerkkejä: 2x 8 = 12 A = πr 2 5 + 7 = 12 Yhtälöissä voi olla yksi tai useampi muuttuja Tuntematonta muuttujaa merkitään usein

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Tarkastellaan seuraavaksi esimerkkien avulla yhtälöryhmän ratkaisemista käyttäen Gaussin eliminointimenetelmää.

Tarkastellaan seuraavaksi esimerkkien avulla yhtälöryhmän ratkaisemista käyttäen Gaussin eliminointimenetelmää. Yhtälörhmä Lineaarisen htälörhmän alkeisoperaatiot ovat ) kahden htälön järjestksen vaihto ) htälön kertominen puolittain nollasta eroavalla luvulla ja ) luvulla puolittain kerrotun htälön lisääminen johonkin

Lisätiedot

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori Jarkko Peltomäki Aliryhmän sentralisaattori ja normalisaattori Matematiikan aine Turun yliopisto Syyskuu 2009 Sisältö 1 Johdanto 2 2 Määritelmiä ja perusominaisuuksia 3 2.1 Aliryhmän sentralisaattori ja

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

Hahmon etsiminen syotteesta (johdatteleva esimerkki)

Hahmon etsiminen syotteesta (johdatteleva esimerkki) Hahmon etsiminen syotteesta (johdatteleva esimerkki) Unix-komennolla grep hahmo [ tiedosto ] voidaan etsia hahmon esiintymia tiedostosta (tai syotevirrasta): $ grep Kisaveikot SM-tulokset.txt $ ps aux

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

(Monisteen Esimerkki 2.6.8) Olkoon R polynomifunktioiden rengas R[x]. Kiinnitetään c R. Merkitään

(Monisteen Esimerkki 2.6.8) Olkoon R polynomifunktioiden rengas R[x]. Kiinnitetään c R. Merkitään Monisteen Esimerkki 2.6.8 Olkoon R polynomifunktioiden rengas R[x]. Kiinnitetään c R. Merkitään I c = {px R pc = 0}. Osoitetaan, että I c on renkaan R ihanne. Ratkaisu: Vakiofunktio 0 R I c joten I c.

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen

Lisätiedot

Sijoitusmenetelmä. 1.2. Yhtälöpari

Sijoitusmenetelmä. 1.2. Yhtälöpari MAB Yhtälöpari Yhtälöpari Yhtälöparilla tarkoitetaan tilannetta, missä on kaksi htälöä, joiden tät toteutua htä aikaa Tämä on sama asia kuin että kstään, missä pisteessä tai missä pisteissä htälöitä vastaavat

Lisätiedot

Talousmatematiikan perusteet, L2

Talousmatematiikan perusteet, L2 Talousmatematiikan perusteet, L2 orms.1030 EPKY / kevät 2011 Toisen Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat (alkaen sisältä ulospäin) 2. potenssit ja juuri 3. kerto-

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,

Lisätiedot

1.1 Yhtälön sieventäminen

1.1 Yhtälön sieventäminen 1.1 Yhtälön sieventäminen Lausekkeeksi voidaan kutsua jokaista merkittyä laskutoimitusta. Sellaisia matema-tiikan tehtäviä on vähän, joita suorittaessaan ei joutuisi sieventämään lausekkeita, millä tarkoitetaan

Lisätiedot

Outoja funktioita. 0 < x x 0 < δ ε f(x) a < ε.

Outoja funktioita. 0 < x x 0 < δ ε f(x) a < ε. Outoja funktioita Differentiaalilaskentaa harjoitettiin miltei 200 vuotta ennen kuin sen perustana olevat reaaliluvut sekä funktio ja sen raja-arvo määriteltiin täsmällisesti turvautumatta geometriseen

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

plot(f(x), x=-5..5, y=-10..10)

plot(f(x), x=-5..5, y=-10..10) [] Jokaisen suoritettavan rivin loppuun ; [] Desimaalierotin Maplessa on piste. [] Kommentteja koodin sekaan voi laittaa # -merkin avulla. Esim. #kommentti tähän [] Edelliseen tulokseen voi viitata merkillä

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo

1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo 1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo Olkoot a, b, c mielivaltaisesti valittuja reaalilukuja eli reaaliakselin pisteitä. Ne toteuttavat seuraavat laskulait (ns. kunta-aksioomat):

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Esimerkki 8. Ratkaise lineaarinen yhtälöryhmä. 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3. 0 13 26 4 8 32 r 3 4r 1. LM1, Kesä 2014 47/68

Esimerkki 8. Ratkaise lineaarinen yhtälöryhmä. 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3. 0 13 26 4 8 32 r 3 4r 1. LM1, Kesä 2014 47/68 Esimerkki 8 Ratkaise lineaarinen yhtälöryhmä 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3 3 4 4 4 8 32 1 3 10 0 13 26 4 8 32 r 3 4r 1 1 3 10 3 4 4 r 2 3r 1 4 8 32 1 3 10 0 13 26 r 2 /13 0 4 8

Lisätiedot

1. Kuinka monta erilaista tapaa on 10 hengen seurueella istuutua pyöreän pöydän ympärille?

1. Kuinka monta erilaista tapaa on 10 hengen seurueella istuutua pyöreän pöydän ympärille? Diskreetti matematiikka, syksy 00 Harjoitus -, ratkaisuista. Kuinka monta erilaista tapaa on 0 hengen seurueella istuutua pyöreän pöydän ympärille? Ratkaisu. Paikat identtisiä, istumajärjestys oleellinen,

Lisätiedot

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Lyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY

Lyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY Lyhyt yhteenvetokertaus nodaalimallista SÄTELYTUVAKESKUS STÅLSÄKEHETSCENTALEN ADATON AND NUCLEA SAFETY AUTHOTY Ei enää tarkastella neutronien kulkua, vaan työn alla on simppeli tuntemattoman differentiaaliyhtälöryhmä

Lisätiedot

Harjoitus 3 (31.3.2015)

Harjoitus 3 (31.3.2015) Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Vastaavuus puolestaan on erikoistapaus relaatiosta.

Lisätiedot

Esipuhe. Sirkka-Liisa Eriksson

Esipuhe. Sirkka-Liisa Eriksson 3 Esipuhe Matematiikka tieteiden kuningatar ja palvelija on lukioihin ja ammattikorkeakouluihin suunnattuun koulukohtaiseen valinnaiseen syventävään kurssiin perustuva kirja. Kirjan tarkoituksena on kerrata

Lisätiedot

Jukka Tulkki 8. Laskuharjoitus (ratkaisut) Palautus torstaihin 3.4 klo 12:00 mennessä. x 2

Jukka Tulkki 8. Laskuharjoitus (ratkaisut) Palautus torstaihin 3.4 klo 12:00 mennessä. x 2 S 437 Fysiikka III Kevät 8 Jukka Tulkki 8 askuharjoitus (ratkaisut) Palautus torstaihin 34 klo : mennessä Assistentit: Jaakko Timonen Ville Pale Pyry Kivisaari auri Salmia (jaakkotimonen@tkkfi) (villepale@tkkfi)

Lisätiedot

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Klassinen todennäköisyys ja kombinatoriikka TKK (c) Ilkka Mellin (2007) 1 Klassinen todennäköisyys ja kombinatoriikka >> Klassinen

Lisätiedot

Kansainväliset matematiikkaolympialaiset 2008

Kansainväliset matematiikkaolympialaiset 2008 Kansainväliset matematiikkaolympialaiset 2008 Tehtävät ja ratkaisuhahmotelmat 1. Teräväkulmaisen kolmion ABC korkeusjanojen leikkauspiste on H. Pisteen H kautta kulkeva ympyrä, jonka keskipiste on sivun

Lisätiedot

1.4 Funktion jatkuvuus

1.4 Funktion jatkuvuus 1.4 Funktion jatkuvuus Kun arkikielessä puhutaan jonkin asian jatkuvuudesta, mielletään asiassa olevan jonkinlaista yhtäjaksoisuutta, katkeamattomuutta. Tässä ei kuitenkaan käsitellä työasioita eikä ihmissuhteita,

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Roosa Niemi. Riippuvuuslogiikkaa

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Roosa Niemi. Riippuvuuslogiikkaa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Roosa Niemi Riippuvuuslogiikkaa Informaatiotieteiden yksikkö Matematiikka Syyskuu 2011 Tampereen yliopisto Informaatiotieteiden yksikkö ROOSA NIEMI: Riippuvuuslogiikkaa

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

2.7 Neliöjuuriyhtälö ja -epäyhtälö

2.7 Neliöjuuriyhtälö ja -epäyhtälö 2.7 Neliöjuuriyhtälö ja -epäyhtälö Neliöjuuren määritelmä palautettiin mieleen jo luvun 2.2 alussa. Neliöjuurella on mm. seuraavat ominaisuudet. ab = a b, a 0, b 0 a a b =, a 0, b > 0 b a2 = a a > b, a

Lisätiedot

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen.

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen. Sarjaoppia Käsitellään kompleksi- ja reaalisarjat yhdessä. Reaalilukujen ominaisuuksista (kuten järjestys) riippuvat asiat tulevat lisämausteena mukaan. Kirjallisuutta: 1. [KRE] Kreyszig: Advanced Engineering

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

Matriisialgebra harjoitukset, syksy 2015

Matriisialgebra harjoitukset, syksy 2015 Matriisialgebra harjoitukset, syksy 25 MATRIISIALGEBRA, s. 25, Ratkaisuja/ M.Hamina 2. Virittääkö vektorijoukko S vektoriavaruuden V seuraavissa tapauksissa. a V = R 3 ja S = {(, 4,3,(,3,,(3, 5,,(,2, 2}.

Lisätiedot

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja.

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja. IsoInt Tietokoneiden muisti koostuu yksittäisistä muistisanoista, jotka nykyaikaisissa koneissa ovat 64 bitin pituisia. Muistisanan koko asettaa teknisen rajoituksen sille, kuinka suuria lukuja tietokone

Lisätiedot

Automaatit. Muodolliset kielet

Automaatit. Muodolliset kielet Automaatit Automaatit ovat teoreettisia koneita, jotka käsittelevät muodollisia sanoja. Automaatti lukee muodollisen sanan kirjain kerrallaan, vasemmalta oikealle, ja joko hyväksyy tai hylkää sanan. Täten

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:

Lisätiedot