1 Lineaariavaruus eli Vektoriavaruus
|
|
- Otto Auvinen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus + eli kuvaus + : V V V, (v, w) v + w, missä v + w V, kun v V ja w V sekä laskutoimitus eli kuvaus missä k v V, kun k K ja v V. Määritelmä 1. : K V V, (k, v) k v, Pari (K, V ) on K-kertoiminen lineaariavaruus eli vektoriavaruus, jos laskutoimitukset toteuttavat seuraavat aksiomit eli ehdot: 1. Yhteenlaskun aksiomit: (a) u + (v + w) = (u + v) + w kaikilla u, v, w V (liitännäisyys). (b) v + w = w + v kaikilla v, w V (vaihdannaisuus). (c) On olemassa neutraalialkio 0 V, jolle 0 + v = v kaikilla v V. (d) Kaikilla v V on olemassa vasta-alkio v V, jolle v + ( v) = Skalaarilla kertomisen aksiomit: (a) (λµ) v = λ (µ v) kaikilla v V ja λ, µ K. (b) 1 v = v kaikilla v V. 3. Osittelulait: 1
2 (a) λ (v + w) = λ v + λ w kaikilla v, w V ja λ K. (b) (λ + µ) v = λ v + µ v kaikilla v V ja λ, µ K. Määritelmän 1 mukaista joukkoa V kutsutaan lineaariavaruudeksi eli vektoriavaruudeksi kunnan K yli tai K-lineaariavaruudeksi tai K-vektoriavaruudeksi ja annettuja ehtoja sanotaan lineaariavaruuden V aksiomeiksi ja joukon V alkioita voidaan kutsua vektoreiksi sekä joukon K alkioita skalaareiksi. Edelleen laskutoimitusta + kutsutaan yhteenlaskuksi ja laskutoimitusta skalaarilla kertomiseksi. Erikoistapauksia: Esimerkki 1. Reaalinen vektoriavaruus, kun K = R. Tällöin yhteenlasku + on kuvaus + : V V V ja reaaliluvulla kertominen on kuvaus : R V V. Esimerkki 2. Kompleksinen vektoriavaruus, kun K = C. Tällöin yhteenlasku + on kuvaus + : V V V ja kompleksiluvulla kertominen on kuvaus Huomautus 1. Identiteetin : C V V. v = w molemmille puolin saa lisätä saman alkion y, jolloin v + y = w + y. Merkintä 1. Yleensä kertolasku jätetään merkitsemättä eli tehdään samaistus: λv := λ v. 2
3 Merkintä 2. λ v := (λ v). Merkintä 3. Asetetaan u v := u + ( v). (1) Esimerkki 3. Joukko R n, n Z + on vektoriavaruus, kun vektoreiden x = (x 1,..., x n ) R n, y = (y 1,..., y n ) R n identtisyys, yhteenlasku ja reaaliluvulla λ kertominen määritellään koordinaateittain: x = y x i = y i i = 1,..., n; x + y = (x 1 + y 1,..., x n + y n ); λ x = (λx 1,..., λx n ). Erityisesti R 1 on vektoriavaruus, joka voidaan samaistaa R:n kanssa. Lähtökohtana on, että reaaliluvut on kunta, jolloin reaaliluvut toteuttavat kunta-aksiomit eli liitännäisyyden, vaihdannaisuuden, etc. Aluksi nähdään, että reaalilukujen assosiatiivisuus-ominaisuus nousee vektoreiden assosiatiivisuudeksi. Osoitetaan Vektoriavaruuden Määritelmän 1 kohta 1a (liitännäisyys) eli kaikilla x, y, z R n. Lasketaan ensin vasen puoli x + (y + z) = (x + y) + z x + (y + z) =(x 1,..., x n ) + ((y 1,..., y n ) + (z 1,..., z n )) = (x 1,..., x n ) + (y 1 + z 1,..., y n + z n ) = (x 1 + (y 1 + z 1 ),..., x n + (y n + z n )) = ((x 1 + y 1 ) + z 1,..., (x n + y n ) + z n ), missä koordinaateissa on käytetty reaalilukujen liitännäisyyttä. Ja sitten oikea puoli (x + y) + z =((x 1,..., x n ) + (y 1,..., y n )) + (z 1,..., z n ) = (x 1 + y 1,..., x n + y n ) + (z 1,..., z n ) = ((x 1 + y 1 ) + z 1,..., (x n + y n ) + z n ). 3
4 Havaitaan, että vasen ja oikea puoli ovat samat kaikilla x, y, z R n. Seuraavaksi osoitetaan, että nolla-alkio on (0,..., 0). Lasketaan siis: x + (0,..., 0) = (x 1,..., x n ) + (0,..., 0) = (x 1 + 0,..., x n + 0) = (x 1,..., x n ) = x, joka pätee kaikilla x R n. Siten 0 = (0,..., 0). Osoitetaan vielä Vektoriavaruuden Määritelmän 1 kohta 2(a) eli (λµ) x = λ (µ x) kaikilla x R n ja λ, µ R. Lasketaan ensin vasen puoli ja sitten oikea puoli (λµ) x = (λµ) (x 1,..., x n ) = (λµx 1,..., λµx n ) (2) λ (µ x) = λ (µx 1,..., µx n ) = (λµx 1,..., λµx n ). (3) R. Havaitaan, että vasen ja oikea puoli ovat samat kaikilla x R n ja λ, µ Esimerkki 4. Olkoon K kunta. Tällöin joukko K n, n Z + on vektoriavaruus, kun vektoreiden x = (x 1,..., x n ) K n, y = (y 1,..., y n ) K n identtisyys, yhteenlasku ja skalaarilla λ K kertominen määritellään koordinaateittain: x = y x i = y i i = 1,..., n; x + y = (x 1 + y 1,..., x n + y n ); λ x = (λx 1,..., λx n ). Erityisesti K 1 on vektoriavaruus, joka voidaan samaistaa K:n kanssa. Esimerkki 5. Joukko M(k, n) = {A A on k n matriisi} on vektoriavaruus, kun se varustetaan tavallisella matriisien yhteenlaskulla ja reaaliluvulla kertomisella. Esimerkki 6. Olkoon F(R, R) = {f f : R R on kuvaus}. 4
5 Määritellään kaikilla f, g F(R, R) ja λ R identtisyys, yhteenlasku ja reaaliluvulla kertominen seuraavasti: f = g, jos f(x) = g(x) (4) (f + g)(x) = f(x) + g(x) (5) (λ f)(x) = λf(x) (6) kaikilla x R. Tällöin F(R, R) on vektoriavaruus. Osoitetaan Vektoriavaruuden Määritelmän 1 kohta 1c): Määritellään nollafunktio O asettamalla Tällöin O(x) = 0 x R. (7) (O + f)(x) = O(x) + f(x) = 0 + f(x) = f(x) x R, (8) joten funktioiden identtisyyden nojalla O + f = f. (9) Siten nollafunktio on yhteenlaskun neutraalialkio funktioavaruudessa. Osoitetaan kohta 1d): Määritellään f asettamalla Tällöin (f + ( f))(x) = f(x) + ( f)(x) = joten funktioiden identtisyyden nojalla ( f)(x) = f(x) x R. (10) Siten f on alkion f vasta-alkio funktioavaruudessa. f(x) f(x) = 0 = O(x) x R, (11) f + ( f) = O. (12) 1.2 Laskusääntöjä Lause 1. Olkoon V vektoriavaruus. Tällöin (a) yhteenlaskun neutraalialkio on yksikäsitteinen; 5
6 (b) vektorin vasta-alkio on yksikäsitteinen; (c) kaikilla v, w V on olemassa täsmälleen yksi x V, jolle v + x = w (toisin sanoen yhtälöllä v + x = w on yksikäsitteinen ratkaisu). Koska (V, +) on Abelin ryhmä, niin todistukset löytyvät kurssilta A Algebran perusteet. Lause 2. Olkoon V vektoriavaruus ja 0 V sen nolla-alkio ja 0 K. Kaikilla v, w V ja λ, µ K pätee a] 0 v = λ 0 = 0; b] ( 1) v = v; c] ( v) = v; d] (v + w) = v w; e] λ v = ( λ) v = λ ( v); f] ( λ) ( v) = λ v; g] λ (v w) = λ v λ w; h] (λ µ) v = λ v µ v; i] λ v = 0 jos ja vain jos λ = 0 tai v = 0; j] Jos λ v = λ w ja λ 0, niin v = w; k] Jos λ v = µ v ja v 0, niin λ = µ. Todistetaan kohdan a] tapaus: 0 v = 0. Aluksi 0 v = (0 + 0) v = 0 v + 0 v. (13) 6
7 Lisätään vasta-alkio 0 v yhtälön molemmille puolille, jolloin 0 = 0 v + ( 0 v) = (0 v + 0 v) + ( 0 v) = b] ( 1) v = v. Lasketaan ( 1) v + v: 0 v + (0 v 0 v) = 0 v + 0 = 0 v. (14) ( 1) v + v = ( 1) v + 1 v = ( 1 + 1) v = 0 v = 0. (15) Täten vasta-alkion määritelmän ja yksikäsitteisyyden nojalla ( 1) v = v. e] Osoitetaan tapaus λ v = ( λ) v käyttämällä b]-kohdan tulosta w = ( 1) w. Lasketaan V.P = λ v = ( 1) (λ v) = (( 1)λ) v = ( λ) v = O.P. (16) i] Esitetään ensin väite muodossa: λ v = 0 λ = 0 tai v = 0. :n todistus: Oletuksena on, että λ = 0 tai v = 0. Nyt on osoitettava, että λ v = 0. Katso a]-kohta. :n todistus: Nyt oletuksena on On siis osoitettava, että λ = 0 tai v = 0. Tehdään vastaoletus: λ 0 ja v 0. λ v = 0. (17) Tällöin λ 1 K, joten yhtälö (17) voidaan kertoa puolittain alkiolla λ 1. Saadaan λ 1 (λ v) = λ 1 0 (λ 1 λ) v = 0 1 v = v = 0. (18) 7
8 Ristiriita vastaoletuksen kanssa. 1.3 Aliavaruus Määritelmä 2. Vektoriavaruuden V epätyhjä osajoukko W on vektoriavaruuden V aliavaruus, jos W on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen, toisin sanoen 1. W V ; 2. jos w 1, w 2 W, niin w 1 + w 2 W ; 3. jos w W ja λ K, niin λw W. Seuraava lause antaa hyvän tavan todeta joukko vektoriavaruudeksi: Osoitetaan joukko jonkin tunnetun vektoriavaruuden aliavaruudeksi. Lause 3. Epätyhjä joukko W V on vektoriavaruuden V aliavaruus jos ja vain jos W varustettuna avaruuden V yhteenlaskulla ja skalaarilla kertomisella on vektoriavaruus. Esimerkki 7. Olkoon V vektoriavaruus ja 0 V sen nolla-alkio. Tällöin osajoukot {0} ja V ovat vektoriavaruuden V aliavaruuksia. Todistetaan, että {0} on aliavaruus. Merkitään hetkeksi W 0 = {0}. AA1. Koska 0 W 0, niin W 0. AA2. Olkoot w 1, w 2 W 0. Tällöin w 1 = w 2 = 0 ja siten w 1 + w 2 = 0 W 0. AA3. Olkoot λ K ja w W 0. Tällöin w = 0 ja siten λ w = λ 0 = 0 W 0. Huomautus 2. Sanotaan, että {0} ja V ovat triviaalit aliavaruudet. Esimerkki 8. Joukko C(R, R) = {f f : R R on jatkuva kuvaus} on vektoriavaruuden F(R, R) aliavaruus. 8
9 AA1. Koska nollakuvaus O : R R on jatkuva, niin O C(R, R) ja siten C(R, R). AA2. Jos f, g C(R, R), niin f + g on jatkuva ja siten f + g C(R, R). AA3. Olkoot λ R ja f C(R, R), tällöin λf on jatkuva, joten λf C(R, R). Esimerkki 9. Olkoon Pol(R, R) = {f F(R, R) f(x) = a 0 + a 1 x a n x n kaikilla x R joillekin n N ja a 0,..., a n R} eli Pol(R, R) on kaikkien polynomien joukko. Tällöin Pol(R, R) on vektoriavaruuksien C(R, R) ja F(R, R) aliavaruus. Esimerkki 10. Olkoot k N ja Pol k (R, R) = {f Pol(R, R) polynomin f aste k}. Saadaan siis ali- Tällöin Pol k (R, R) on avaruuden Pol(R, R) aliavaruus. avaruusketju Pol 0 (R, R) Pol 1 (R, R)... Pol k (R, R) Pol k+1 (R, R) Pol(R, R) C(R, R) F(R, R). Huomautus 3. Olkoon K kunta. Yleensä K-kertoimisten polynomien joukolle käytetään merkintää K[x] = {f(x) f(x) = a 0 + a 1 x a n x n joillekin n N ja a 0,..., a n K}. Kun polynomien yhteen- ja kertolasku määritellään tavanomaisesti, niin saadaan polynomirengas (K[x], +, ), missä nolla- ja ykköspolynomit ovat 0(x) = x + 0 x , 1(x) = x + 0 x Edelleen vakiopolynomille a(x) = a + 0 x + 0 x voidaan käyttää lyhennysmerkintää a. 9
10 1.4 Lineaarikombinaatio ja lineaarinen verho Määritelmä 3. Olkoon V vektoriavaruus kunnan K yli. Vektori v V on vektoreiden v 1,..., v n V (äärellinen) lineaarikombinaatio, jos on olemassa sellaiset luvut λ 1,..., λ n K, että v = n λ i v i. (19) i=1 Esimerkki 11. V = R 3, K = R, v 1 = (1, 1, 0), v 2 = (0, 1, 1), v 3 = (1, 0, 1) ja v = (3, 3, 0). Tällöin v = v 1 + 2v 2 + 2v 3 (20) = 2v 1 + v 2 + v 3. (21) Siten (3, 3, 0) on vektoreiden v 1, v 2 ja v 3 lineaarikombinaatio mutta esitys ei ole yksikäsitteinen. Esimerkki 12. V = C 3, K = C. ( i, i, 2 + i) = 1 ( i, i, i) + 1 (0, 0, 2) (22) = i ( 1, 1, 1) + i (0, 0, 2i). (23) Määritelmä 4. K-vektoriavaruuden V epätyhjän osajoukon S lineaarinen verho S koostuu kaikista joukon S äärellisistä K-lineaarikombinaatioista, toisin sanoen S K = S = {u V u = n λ i v i, i=1 joillekin n N, v 1,..., v n S ja λ 1,..., λ n K}. Esimerkki 13. V = R 2, K = R, e 1 = (1, 0), e 2 = (0, 1). Tällöin e 1, e 2 R = {λ 1 e 1 + λ 2 e 2 = (λ 1, λ 2 ) λ 1, λ 2 R} = R 2. (24) Esimerkki 14. Koska f Pol 1 (R, R) täsmälleen silloin, kun on olemassa sellaiset a 0, a 1 R, että f(x) = a 0 + a 1 x, niin Yleisemmin Pol 1 (R, R) = 1, x R. Pol k (R, R) = 1, x,..., x k R. 10
11 Lause 4. Olkoot V vektoriavaruus kunnan K yli ja S V epätyhjä osajoukko. Tällöin (a) S K on avaruuden V aliavaruus. (b) Jos S W ja W on avaruuden V aliavaruus, niin S K W. 1.5 Lineaarinen vapaus ja riippuvuus Seuraavassa tarkastellaan vektoreiden s 1,..., s n V muodostamia listoja s 1,..., s n, missä n N on listan pituus. Tapaus n = 0 tarkoittaa, että lista on tyhjä eli listassa ei ole alkioita. Määritelmä 5. Olkoon V vektoriavaruus kunnan K yli ja s 1,..., s n V, n N. Tapaus n = 0: Tyhjä lista on lineaarisesti vapaa. Tapaus n 1: Alkiolista s 1,..., s n on lineaarisesti vapaa (kunnan K yli) jos ehdosta seuraa, että n λ i s i = 0, λ 1,..., λ n K, (25) i=1 λ 1 = λ 2 =... = λ n = 0. (26) Muutoin lista s 1,..., s n on lineaarisesti sidottu (kunnan K yli). Lineaarisesti vapaa=lineaarisesti riippumaton vektorit ovat lineaarisesti vapaita eli riippumattomia lineaarisesti sidottu=lineaarisesti riippuva vektorit ovat lineaarisesti sidottuja eli riippuvia 11
12 Lause 5. Olkoot V vektoriavaruus kunnan K yli ja s 1,..., s n V, n Z +. Alkiolista s 1,..., s n on lineaarisesti riippuva (kunnan K yli) jos ja vain jos on olemassa sellaiset luvut λ 1,..., λ n K, että ja ainakin yksi λ i 0, 1 i n. n λ i s i = 0 (27) i=1 Esimerkki 15. Tutkitaan listaa s 1, s 2, missä vektorit ovat identtiset eli s 1 = s 2 = s. Tällöin 1 s 1 + ( 1) s 2 = s s = 0, joten lista s 1, s 2 = s, s on lineaarisesti sidottu. Edelleen kaikki listat, joissa on toisto eli sama alkio esiintyy vähintään kahdesti, ovat lineaarisesti sidottuja. Olkoon s 1,..., s n, n N, lineaarisesti vapaa lista. Tällöin listassa ei esiinny toistoa, joten listassa ja joukossa S = {s 1,..., s n } on sama määrä alkioita. Siten on luonnollista sanoa, että joukko S = {s 1,..., s n } on lineaarisesti vapaa. Tyhjää listaa vastaa tyhjä joukko, jonka takia sovitaan, että on lineaarisesti vapaa. Edelleen, jos listassa s 1,..., s n, n Z + ei ole toistoa ja lista on lineaarisesti sidottu, niin myös vastaavaa joukkoa S = {s 1,..., s n } sanotaan lineaarisesti sidotuksi. Esimerkki 16. Nolla-alkion muodostama lista 0 on lineaarisesti sidottu, koska 1 0 = 0. Siten joukko {0} on lineaarisesti sidottu. 12
13 Esimerkki 17. Olkoon 0 v V. Alkion v muodostama lista v on lineaarisesti vapaa, koska ehdosta λ v = 0 seuraa λ = 0. Niinpä yhden vektorin muodostama joukko {v} on lineaarisesti vapaa, jos v 0. Esimerkki 18. V = R 3, K = R, s 1 = (1, 1, 0), s 2 = (0, 1, 1), s 3 = (1, 0, 1) ja s 4 = (3, 3, 0). Koska 1 s 1 + ( 1) s 2 + ( 1) s 3 = 0; (28) 2 s s s 3 + ( 1) s 4 = 0, (29) niin s 1, s 2, s 3 on lineaarisesti riippuva ja myös s 1, s 2, s 3, s 4 on lineaarisesti riippuva. Esimerkki 19. Joukko {1, 3} on lineaarisesti vapaa kunnan Q yli. Esimerkki 20. Joukko {1, 3} on lineaarisesti sidottu kunnan R yli. Määritelmä 6. Olkoot V vektoriavaruus kunnan K yli ja S V epätyhjä osajoukko. Joukko S on lineaarisesti vapaa (kunnan K yli) jos ja vain jos sen jokainen äärellinen epätyhjä osajoukko on lineaarisesti vapaa, toisin sanoen ehdosta n λ i s i = 0, λ i K, (30) i=1 seuraa, että λ 1 = λ 2 =... = λ n = 0 (31) kaikilla joukon S äärellisillä osajoukoilla {s 1,..., s n }. Muutoin S on lineaarisesti sidottu. Lause 6. Olkoot V vektoriavaruus kunnan K yli ja S V epätyhjä osajoukko. Joukko S on lineaarisesti sidottu (kunnan K yli), jos on olemassa äärellisen monta alkiota s 1,..., s n S ja sellaiset luvut λ 1,..., λ n K, että ja ainakin yksi λ i 0, 1 i n. n λ i s i = 0 (32) i=1 13
14 Lause 7. Olkoot V vektoriavaruus kunnan K yli, S V epätyhjä osajoukko ja x V. Tällöin x S K {x} S K = S K ; (33) Jos S on lineaarisesti vapaa kunnan K yli, niin x V \ S K {x} S on lineaarisesti vapaa/k. (34) Todistetaan (34) tapauksessa S = {s 1,..., s n }. : Oletuksena siis, että x / S K. Asetetaan lineaarikombinaatio nollaksi Jos α n+1 0, niin α 1 s α n s n + α n+1 x = 0, α k K. (35) x = β 1 s β n s n, β k K x S K. (36) Ristiriita. Joten α n+1 = 0 ja siten α 1 s α n s n = 0, α k = 0 k. (37) Siten x, s 1,..., s n on lineaarisesti vapaa. : Oletuksena siis, että x, s 1,..., s n on lineaarisesti vapaa. Vastaoletus: x S K. Tällöin x = λ 1 s λ n s n, λ k K, (38) Siten x, s 1,..., s n on lineaarisesti sidottu. Ristiriita oletuksen kanssa, joten vastaoletus väärä. Niinpä x / S K. Esimerkki 21. Joukko {1(x), x, x 2 } Pol 2 (R, R) on lineaarisesti riippumaton (kunnan R yli). Todistus: Olkoot λ 0, λ 1, λ 2 R sellaiset, että kaikilla x R. λ 0 1(x) + λ 1 x + λ 2 x 2 = 0(x) Valitaan x = 0, jolloin saadaan λ = 0, eli λ 0 = 0. Valitaan x = 1 ja x = 1, jolloin saadaan { { λ 1 + λ 2 = 0 λ 1 = 0 λ 1 + λ 2 = 0 λ 2 = 0. Siis λ 0 = λ 1 = λ 2 = 0. 14
15 Esimerkki 22. Joukko {1, x,..., x k } Pol k (R, R) on lineaarisesti riippumaton. Esimerkki 23. Joukko {1, x,..., x k,...} Pol(R, R) on lineaarisesti riippumaton. Esimerkki 24. Joukko {1, sin 2, cos 2 } C(R, R) on lineaarisesti riippuva (kunnan R yli), sillä kaikilla x R. 1 sin 2 x + 1 cos 2 x 1 1 = 0 = 0(x) 1.6 Kanta ja dimensio Määritelmä 7. K-Vektoriavaruuden V epätyhjä osajoukko S on avaruuden V kanta (kunnan K yli), jos (a) S on lineaarisesti riippumaton kunnan K yli, ja (b) S K = V. Lause 8 (Hamelin kantalause). Jokaisella vektoriavaruudella V {0} on olemassa kanta. Todistus, joka perustuu valinta-aksiomiin on aika haastava eikä kuulu tämän kurssin vaatimuksiin. Lause 9. Olkoon V vektoriavaruus kunnan K yli, R, T V, r := #R ja t := #T. Jos R T K ja r > t 1, (39) niin R on lineaarisesti sidottu kunnan K yli. Todistus. Induktio lukumäärän t suhteen. Olkoon t = 1, jolloin r 2. Kirjoitetaan Koska R T K, niin R = {x 1,..., x r }, T = {y 1 }. x 1 =a 1 y 1, a 1 K x 2 =a 2 y 1, a 2 K, 15
16 missä ainakin toinen luvuista a i 0, olkoon a 1 0. Tällöin 1 x 2 a 1 1 a 2 x 1 = 0 (40) joten x 1, x 2 on lineaarisesti sidottu ja siten R on lineaarisesti sidottu. Olkoon s Z +. Induktio-oletus: Kaikilla t s väite pätee. Induktioaskel: Olkoon t = s + 1 = #T, r = #R, r > t ja R = {x 1,..., x r }, T = {y 1,..., y s+1 }. Aluksi huomataan, että r s + 2. Oletuksen R T K nojalla x 1 =a 1,1 y 1 + a 1,2 y a 1,s+1 y s+1, x 2 =a 2,1 y 1 + a 2,2 y a 2,s+1 y s+1,... x r =a r,1 y 1 + a r,2 y a r,s+1 y s+1, missä a i,j K. Jos olisi a 1,1 = a 2,1 =... = a r,1 = 0, niin R y 2,..., y s+1 K, #R = r s + 2 > #{y 2,..., y s+1 } = s, (41) joten induktio-oletuksen nojalla R olisi lineaarisesti sidottu tässä tapauksessa. Tarkastellaan seuraavaksi tapaus, josa ainakin yksi luvuista a 1,1, a 2,1,..., a r,1 on nollasta eroava, olkoon a 1,1 0. Määritellään seuraavaksi uudet vektorit joille pätee: x 1 = 0 ja x k = x k a 1 1,1a k,1 x 1, k = 1,..., r, R := {x 2,..., x r} y 2,..., y s+1 K. (42) Jos joukossa R olisi identtisiä alkioita, niin R olisi sidottu. Muutoin joukkojen lukumäärille pätee #R = r 1 s + 1 > #{y 2,..., y s+1 } = s, (43) joten induktio-oletuksen nojalla R on nytkin lineaarisesti sidottu. Siten b 2 x b r x r = 0, b k K, (44) ja b j 0, jollakin 2 j r. Sijoitetaan x k = x k a 1 1,1a k,1 x 1 takaisin, jolloin saadaan lineaarikombinaatio ( b 2 a 1 1,1a 2,1... b r a 1 1,1a r,1 )x 1 + b 2 x b r x r = 0, (45) missä ainakin yksi kerroin on nollasta eroava, nimittäin b j 0. Niinpä x 1, x 2,..., x r on lineaarisesti sidottu mikä todistaa induktioaskeleen. 16
17 Lause 10. Olkoon V {0} vektoriavaruus kunnan K yli. Jos avaruudella V on olemassa äärellinen kanta kunnan K yli, niin kaikissa kannoissa kunnan K yli on sama määrä alkioita. Todistus. Olkoot S 1 ja S 2 kantoja, s 1 := #S 1 ja s 2 := #S 2. Tällöin S 1 on lineaarisesti vapaa ja S 2 on lineaarisesti vapaa sekä S 1 K = S 2 K = V. Jos olisi ja koska S 1 Ristiriita. s 1 > s 2, (46) S 2 K, niin Lauseen 9 nojalla S 1 olisi lineaarisesti sidottu. Määritelmä 8. K-vektoriavaruus V on äärellisulotteinen, jos sillä on olemassa äärellinen kanta (kunnan K yli). Myös {0} on äärellisulotteinen. Muulloin V on ääretönulotteinen. Jos avaruuden V kannassa on n alkiota (kunnan K yli), missä n N, niin avaruuden V dimensio on n. Tällöin käytetään merkintää dim K V = dim V = n. Jos V = {0}, niin dim K V = 0. Muulloin dim K V =. Huomautus 4. Lauseen 10 nojalla vektoriavaruuden V dimensio on hyvin määritelty. Seuraus 1. Jos dim K V = n, jollain n Z +, niin jokainen lineaarisesti riippumaton avaruuden V osajoukko S, jossa on n alkiota, on avaruuden V kanta. Seuraus 2. Jos dim K V = n jollain n N, niin jokainen sellainen avaruuden V osajoukko, jossa on vähintään n + 1 alkiota, on lineaarisesti riippuva kunnan K yli. 17
18 Seuraus 3. Jos V on vektoriavaruus kunnan K yli, W on avaruuden V aliavaruus ja S on avaruuden W kanta, niin on olemassa sellainen avaruuden V kanta T, että S T. Erityisesti dim K W dim K V. (47) Lause 11. Olkoot V äärellisulotteinen vektoriavaruus kunnan K yli ja S = {v 1,..., v n } avaruuden V kanta. Tällöin jokaista vektoria v V kohti on olemassa yksikäsitteiset luvut λ 1,..., λ n K siten, että v = n λ i v i. (48) i=1 Määritelmä 9. Lineaarikombinaatiota (48) sanotaan vektorin v kantaesitykseksi kannan S suhteen ja kertoimet λ i ovat vektorin v koordinaatit kannassa S. Tällöin voidaan kirjoittaa v = (λ 1,..., λ n ) S = (λ 1,..., λ n ), jota sanotaan vektorin v koordinaattiesitykseksi kannassa S. Esimerkki 25. Koska {1, x,..., x n } on avaruuden Pol n (R, R) eräs kanta, niin dim Pol n (R, R) = n + 1. Koska {1, x, x 2,..., x k,...} Pol(R, R) on lineaarisesti riippumaton, niin Tuloksen (47) nojalla saadaan Esimerkki 26. dim Pol(R, R) =. dim Pol(R, R) = dim C(R, R) = dim F(R, R) =. Laske dim S, kun S = {1 + x, 1 + x 2, 1 + 2x 3x 2 } Pol 2 (R, R). Ratkaisu: Tutkitaan, onko joukko S lineaarisesti riippumaton. Nyt a(1 + x) + b(1 + x 2 ) + c( 1 + 2x 3x 2 ) = 0 (a + b c)1 + (a + 2c)x + (b 3c)x 2 = 0 18
19 Koska 1, x, x 2 on lineaarisesti vapaa, niin saadaan a + b c = 0 a + 2c = 0 a + 2c = 0 a + 2c = 0 b 3c = 0 b 3c = 0 a = 2c b = 3c c R. (Ensimmäisessä kohdassa viimeinen yhtälö on vähennetty ensimmäisestä.) Koska yllä olevalla yhtälöryhmällä on epätriviaali ratkaisu, esim. a = 2, b = 3, c = 1, niin S on lineaarisesti riippuva. Tästä nähdään, että polynomi 1 + 2x 3x 2 on lineaarikombinaatio polynomeista 1 + x ja 1 + x 2, joten S = 1 + x, 1 + x 2. Joukko {1 + x, 1 + x 2 } on lineaarisesti riippumaton, sillä a(1 + x) + b(1 + x 2 ) = 0 (a + b)1 + ax + bx 2 = 0 a = 0 ja b = 0. Näin ollen dim S = 2. Esimerkki 27. Reaaliluvut muodostavat ääretönulotteisen vektoriavaruuden rationaalilukujen kunnan yli eli dim Q R =. Todistus on aika haastava eikä kuulu tämän kurssin vaatimuksiin. 19
802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
Lisätiedot802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I
802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 1 Contents 1 Lineaariavaruus eli Vektoriavaruus 3 1.1 Määritelmä ja esimerkkejä....................
Lisätiedot802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I
802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVT 2019 1 Contents 1 Lineaariavaruus eli Vektoriavaruus 3 1.1 Määritelmä ja esimerkkejä....................
LisätiedotAvaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
Lisätiedotx = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
Lisätiedotpdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus Lineaarikuvaus Ominaisarvo 0-68
SISÄLTÖ Sisältö pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus 0-1 2 Sisätuloavaruus 0-20 3 Lineaarikuvaus 0-41 4 Ominaisarvo 0-68 5 Esimerkkejä 0-88 1. Lineaariavaruus eli V 1 Lineaariavaruus
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
Lisätiedotx = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
LisätiedotLINEAARIALGEBRA A 2016 TOMI ALASTE EDITED BY T.M. FROM THE NOTES OF
LINEAARIALGEBRA 83A 6 EDITED BY T.M. FROM THE NOTES OF TOMI ALASTE SISÄLTÖ Sisältö Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus 3 Lineaarikuvaus 4 Ominaisarvo 34 5 Esimerkkejä 44 . Lineaariavaruus
LisätiedotMääritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.
1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:
Lisätiedot1 Sisätulo- ja normiavaruudet
1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v
LisätiedotKanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
Lisätiedot6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio
6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.
Lisätiedot802320A LINEAARIALGEBRA OSA II
802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen
LisätiedotLineaarialgebra II P
Lineaarialgebra II 89P Sisältö Vektoriavaruus Sisätuloavaruus 8 3 Lineaarikuvaus 5 4 Ominaisarvo 5 Luku Vektoriavaruus Määritelmä.. Epätyhjä joukko V on vektoriavaruus, jos seuraavat ehdot ovat voimassa:.
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon
LisätiedotLineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.
Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat
Lisätiedot802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita
802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 25 Lukujoukkoja N = {0, 1, 2,..., GOOGOL 10,...} = {ei-negatiiviset
LisätiedotOsoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
LisätiedotLineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lisätiedotx = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia/Exercises 2017 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
LisätiedotBijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.
Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin
Lisätiedot9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista
29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotKannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
LisätiedotLINEAARIALGEBRA. Harjoituksia/Exercises 2017 Valittuja ratkaisuja/selected solutions
LINEAARIALGEBRA Harjoituksia/Exercises 2017 Valittuja ratkaisuja/selected solutions 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n )
LisätiedotLiittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.
Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla
LisätiedotVapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus
LisätiedotMatriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotLINEAARIALGEBRA. Harjoituksia/Exercises 2019 Valittuja ratkaisuja/selected solutions
LINEAARIALGEBRA Harjoituksia/Exercises 2019 Valittuja ratkaisuja/selected solutions 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n )
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO Syksy 2017 LINEAARIALGEBRA 1 / 59 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
LisätiedotOminaisvektoreiden lineaarinen riippumattomuus
Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin
Lisätiedot3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h
HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2019 LINEAARIALGEBRA 1 / 60 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
LisätiedotLineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
Lisätiedot7 Vapaus. 7.1 Vapauden määritelmä
7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan
Lisätiedot802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III
802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Contents 1 Lineaarikuvaus 2 1.1 Määritelmä............................ 2 1.2 Matriisiesitys/Matrix
LisätiedotJAKSO 2 KANTA JA KOORDINAATIT
JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause
LisätiedotHY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden
LisätiedotLineaarialgebra Kerroinrenkaat. Kevät Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto
Lineaarialgebra 2 Kevät 2014 Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto Á Ë Ð Ö Ø Ú ØÓÖ Ø 1. Kerroinrenkaat 1.1. Määritelmä. Yhden laskutoimituksen rakenne(g, + on Abelin ryhmä, jos
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:
Lisätiedot7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi
7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).
Lisätiedot{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja
5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotYleiset lineaarimuunnokset
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos
LisätiedotLineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila
Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden
LisätiedotVektorit, suorat ja tasot
, suorat ja tasot 1 / 22 Koulussa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä (x 1, x 2 ). Jos vektorin
LisätiedotVastaavasti, jos vektori kerrotaan positiivisella reaaliluvulla λ, niin
1 / 14 Lukiossa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Tarkastellaan aluksi tason vektoreita (R 2 ). Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä
Lisätiedotja jäännösluokkien joukkoa
3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi
LisätiedotKanta ja Kannan-vaihto
ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V
LisätiedotYhteenlaskun ja skalaarilla kertomisen ominaisuuksia
Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella
LisätiedotMiten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
LisätiedotKuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
LisätiedotAlgebra I, harjoitus 5,
Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /310
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/310 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
Lisätiedot1 Avaruuksien ja lineaarikuvausten suora summa
MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
Lisätiedot3 Skalaari ja vektori
3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,
LisätiedotEsko Turunen Luku 3. Ryhmät
3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,
Lisätiedot1 Ominaisarvot ja ominaisvektorit
1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin
Lisätiedot2. REAALIKERTOIMISET VEKTORIAVARUUDET
30 REAALIKERTOIMISET VEKTORIAVARUUDET 1 Koordinaattiavaruus R n Olkoon n N = {1,, 3, } positiivinen kokonaisluku (luonnollisten lukujen joukko on tällä kurssilla N = {0, 1,, 3, }) Merkitään R n = R n 1
Lisätiedot5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
Lisätiedot802120P Matriisilaskenta (5 op)
802120P Matriisilaskenta (5 op) Marko Leinonen Matemaattiset tieteet Syksy 2016 1 / 220 Luennoitsija: Marko Leinonen marko.leinonen@oulu.fi MA333 Kurssilla käytetään Noppaa (noppa.oulu.fi) Luentomoniste
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
LisätiedotVektorien virittämä aliavaruus
Vektorien virittämä aliavaruus Esimerkki 13 Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w kuuluu vektoreiden v 1 = (3, 2, 1), v 2 = (2, 2, 6) ja v 3 = (3, 4, 5) virittämään
LisätiedotPäättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1
Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon
Lisätiedotominaisvektorit. Nyt 2 3 6
Esimerkki 2 6 8 Olkoon A = 40 0 6 5. Etsitäänmatriisinominaisarvotja 0 0 2 ominaisvektorit. Nyt 2 0 2 6 8 2 6 8 I A = 40 05 40 0 6 5 = 4 0 6 5 0 0 0 0 2 0 0 2 15 / 172 Täten c A ( )=det( I A) =( ) ( 2)
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
Lisätiedot802320A LINEAARIALGEBRA OSA II/PART II
802320A LINEAARIALGEBRA OSA II/PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2019 LINEAARIALGEBRA 1 / 69 Sisätuloavaruus/Inner product space Määritelmä 1 Olkoon V reaalinen vektoriavaruus.
Lisätiedot802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II
802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVT 2019 1 Contents 1 Sisätulo- ja normiavaruudet 3 1.1 Sisätuloavaruus/Inner product space..............
Lisätiedotx 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili
6 4 2 x 2 x 3 15 10 5 0 5 15 5 3 2 1 1 2 3 2 0 x 2 = 1 2x 1 0 4 x 2 = 3 x 1 x 5 2 5 x 1 10 x 1 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili Sisältö
Lisätiedotjonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä
4. Ryhmät Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoimitukselta oletamme muutamia yksinkertaisia ominaisuuksia: Määritelmä 4.1. Laskutoimituksella varustettu joukko
Lisätiedot802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II
802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Contents 1 Sisätulo- ja normiavaruudet 2 1.1 Sisätuloavaruus/Inner product space..............
Lisätiedot1. Normi ja sisätulo
Kurssimateriaalia K3/P3-kursille syksyllä 3 83 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni Normi ja sisätulo
LisätiedotOrtogonaaliprojektio äärellisulotteiselle aliavaruudelle
Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka
Lisätiedot5 OMINAISARVOT JA OMINAISVEKTORIT
5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön
Lisätiedot1. Lineaarinen yhtälöryhmä ja matriisi
I LINEAARISET YHTÄLÖRYHMÄT 1 Lineaarinen yhtälöryhmä ja matriisi Tällä kurssilla käytämme kirjainta K tarkoittamaan reaalilukuja R, kompleksilukuja C tai rationaalilukuja Q (aluksi K = R) Nämä lukujoukot
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lisätiedot802320A LINEAARIALGEBRA OSA II/PART II
802320A LINEAARIALGEBRA OSA II/PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 LINEAARIALGEBRA 1 / 67 Sisätuloavaruus/Inner product space Määritelmä 1 Olkoon V reaalinen vektoriavaruus.
LisätiedotOrtogonaalisen kannan etsiminen
Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,
LisätiedotKantavektorien kuvavektorit määräävät lineaarikuvauksen
Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin
LisätiedotMääritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )
Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä
LisätiedotKäänteismatriisi 1 / 14
1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella
LisätiedotOminaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
LisätiedotLineaarialgebra I. Oulun yliopisto Matemaattisten tieteiden laitos Esa Järvenpää Kirjoittanut Tuula Ripatti
Lineaarialgebra I Oulun yliopisto Matemaattisten tieteiden laitos 2011 Esa Järvenpää Kirjoittanut Tuula Ripatti 2 1 Lineaarinen yhtälöryhmä 11 Esimerkki (a) Ratkaise yhtälö 5x = 7 Kerrotaan yhtälö puolittain
LisätiedotMatriisialgebra harjoitukset, syksy x 1 + x 2 = a 0
MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 22 Virittääkö vektorijoukko S vektoriavaruuden V, kun a V = R 3 ja S = {(1,0, 1,(2,0,4,( 5,0,2,(0,0,1} b V = P 2 (R ja S = {t1,t 2 1,t 2 t} ( ( 1 0 c
LisätiedotEnnakkotehtävän ratkaisu
Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb
LisätiedotOminaisarvo ja ominaisvektori
Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
Lisätiedot