1 Lineaariavaruus eli Vektoriavaruus

Koko: px
Aloita esitys sivulta:

Download "1 Lineaariavaruus eli Vektoriavaruus"

Transkriptio

1 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus + eli kuvaus + : V V V, (v, w) v + w, missä v + w V, kun v V ja w V sekä laskutoimitus eli kuvaus missä k v V, kun k K ja v V. Määritelmä 1. : K V V, (k, v) k v, Pari (K, V ) on K-kertoiminen lineaariavaruus eli vektoriavaruus, jos laskutoimitukset toteuttavat seuraavat aksiomit eli ehdot: 1. Yhteenlaskun aksiomit: (a) u + (v + w) = (u + v) + w kaikilla u, v, w V (liitännäisyys). (b) v + w = w + v kaikilla v, w V (vaihdannaisuus). (c) On olemassa neutraalialkio 0 V, jolle 0 + v = v kaikilla v V. (d) Kaikilla v V on olemassa vasta-alkio v V, jolle v + ( v) = Skalaarilla kertomisen aksiomit: (a) (λµ) v = λ (µ v) kaikilla v V ja λ, µ K. (b) 1 v = v kaikilla v V. 3. Osittelulait: 1

2 (a) λ (v + w) = λ v + λ w kaikilla v, w V ja λ K. (b) (λ + µ) v = λ v + µ v kaikilla v V ja λ, µ K. Määritelmän 1 mukaista joukkoa V kutsutaan lineaariavaruudeksi eli vektoriavaruudeksi kunnan K yli tai K-lineaariavaruudeksi tai K-vektoriavaruudeksi ja annettuja ehtoja sanotaan lineaariavaruuden V aksiomeiksi ja joukon V alkioita voidaan kutsua vektoreiksi sekä joukon K alkioita skalaareiksi. Edelleen laskutoimitusta + kutsutaan yhteenlaskuksi ja laskutoimitusta skalaarilla kertomiseksi. Erikoistapauksia: Esimerkki 1. Reaalinen vektoriavaruus, kun K = R. Tällöin yhteenlasku + on kuvaus + : V V V ja reaaliluvulla kertominen on kuvaus : R V V. Esimerkki 2. Kompleksinen vektoriavaruus, kun K = C. Tällöin yhteenlasku + on kuvaus + : V V V ja kompleksiluvulla kertominen on kuvaus Huomautus 1. Identiteetin : C V V. v = w molemmille puolin saa lisätä saman alkion y, jolloin v + y = w + y. Merkintä 1. Yleensä kertolasku jätetään merkitsemättä eli tehdään samaistus: λv := λ v. 2

3 Merkintä 2. λ v := (λ v). Merkintä 3. Asetetaan u v := u + ( v). (1) Esimerkki 3. Joukko R n, n Z + on vektoriavaruus, kun vektoreiden x = (x 1,..., x n ) R n, y = (y 1,..., y n ) R n identtisyys, yhteenlasku ja reaaliluvulla λ kertominen määritellään koordinaateittain: x = y x i = y i i = 1,..., n; x + y = (x 1 + y 1,..., x n + y n ); λ x = (λx 1,..., λx n ). Erityisesti R 1 on vektoriavaruus, joka voidaan samaistaa R:n kanssa. Lähtökohtana on, että reaaliluvut on kunta, jolloin reaaliluvut toteuttavat kunta-aksiomit eli liitännäisyyden, vaihdannaisuuden, etc. Aluksi nähdään, että reaalilukujen assosiatiivisuus-ominaisuus nousee vektoreiden assosiatiivisuudeksi. Osoitetaan Vektoriavaruuden Määritelmän 1 kohta 1a (liitännäisyys) eli kaikilla x, y, z R n. Lasketaan ensin vasen puoli x + (y + z) = (x + y) + z x + (y + z) =(x 1,..., x n ) + ((y 1,..., y n ) + (z 1,..., z n )) = (x 1,..., x n ) + (y 1 + z 1,..., y n + z n ) = (x 1 + (y 1 + z 1 ),..., x n + (y n + z n )) = ((x 1 + y 1 ) + z 1,..., (x n + y n ) + z n ), missä koordinaateissa on käytetty reaalilukujen liitännäisyyttä. Ja sitten oikea puoli (x + y) + z =((x 1,..., x n ) + (y 1,..., y n )) + (z 1,..., z n ) = (x 1 + y 1,..., x n + y n ) + (z 1,..., z n ) = ((x 1 + y 1 ) + z 1,..., (x n + y n ) + z n ). 3

4 Havaitaan, että vasen ja oikea puoli ovat samat kaikilla x, y, z R n. Seuraavaksi osoitetaan, että nolla-alkio on (0,..., 0). Lasketaan siis: x + (0,..., 0) = (x 1,..., x n ) + (0,..., 0) = (x 1 + 0,..., x n + 0) = (x 1,..., x n ) = x, joka pätee kaikilla x R n. Siten 0 = (0,..., 0). Osoitetaan vielä Vektoriavaruuden Määritelmän 1 kohta 2(a) eli (λµ) x = λ (µ x) kaikilla x R n ja λ, µ R. Lasketaan ensin vasen puoli ja sitten oikea puoli (λµ) x = (λµ) (x 1,..., x n ) = (λµx 1,..., λµx n ) (2) λ (µ x) = λ (µx 1,..., µx n ) = (λµx 1,..., λµx n ). (3) R. Havaitaan, että vasen ja oikea puoli ovat samat kaikilla x R n ja λ, µ Esimerkki 4. Olkoon K kunta. Tällöin joukko K n, n Z + on vektoriavaruus, kun vektoreiden x = (x 1,..., x n ) K n, y = (y 1,..., y n ) K n identtisyys, yhteenlasku ja skalaarilla λ K kertominen määritellään koordinaateittain: x = y x i = y i i = 1,..., n; x + y = (x 1 + y 1,..., x n + y n ); λ x = (λx 1,..., λx n ). Erityisesti K 1 on vektoriavaruus, joka voidaan samaistaa K:n kanssa. Esimerkki 5. Joukko M(k, n) = {A A on k n matriisi} on vektoriavaruus, kun se varustetaan tavallisella matriisien yhteenlaskulla ja reaaliluvulla kertomisella. Esimerkki 6. Olkoon F(R, R) = {f f : R R on kuvaus}. 4

5 Määritellään kaikilla f, g F(R, R) ja λ R identtisyys, yhteenlasku ja reaaliluvulla kertominen seuraavasti: f = g, jos f(x) = g(x) (4) (f + g)(x) = f(x) + g(x) (5) (λ f)(x) = λf(x) (6) kaikilla x R. Tällöin F(R, R) on vektoriavaruus. Osoitetaan Vektoriavaruuden Määritelmän 1 kohta 1c): Määritellään nollafunktio O asettamalla Tällöin O(x) = 0 x R. (7) (O + f)(x) = O(x) + f(x) = 0 + f(x) = f(x) x R, (8) joten funktioiden identtisyyden nojalla O + f = f. (9) Siten nollafunktio on yhteenlaskun neutraalialkio funktioavaruudessa. Osoitetaan kohta 1d): Määritellään f asettamalla Tällöin (f + ( f))(x) = f(x) + ( f)(x) = joten funktioiden identtisyyden nojalla ( f)(x) = f(x) x R. (10) Siten f on alkion f vasta-alkio funktioavaruudessa. f(x) f(x) = 0 = O(x) x R, (11) f + ( f) = O. (12) 1.2 Laskusääntöjä Lause 1. Olkoon V vektoriavaruus. Tällöin (a) yhteenlaskun neutraalialkio on yksikäsitteinen; 5

6 (b) vektorin vasta-alkio on yksikäsitteinen; (c) kaikilla v, w V on olemassa täsmälleen yksi x V, jolle v + x = w (toisin sanoen yhtälöllä v + x = w on yksikäsitteinen ratkaisu). Koska (V, +) on Abelin ryhmä, niin todistukset löytyvät kurssilta A Algebran perusteet. Lause 2. Olkoon V vektoriavaruus ja 0 V sen nolla-alkio ja 0 K. Kaikilla v, w V ja λ, µ K pätee a] 0 v = λ 0 = 0; b] ( 1) v = v; c] ( v) = v; d] (v + w) = v w; e] λ v = ( λ) v = λ ( v); f] ( λ) ( v) = λ v; g] λ (v w) = λ v λ w; h] (λ µ) v = λ v µ v; i] λ v = 0 jos ja vain jos λ = 0 tai v = 0; j] Jos λ v = λ w ja λ 0, niin v = w; k] Jos λ v = µ v ja v 0, niin λ = µ. Todistetaan kohdan a] tapaus: 0 v = 0. Aluksi 0 v = (0 + 0) v = 0 v + 0 v. (13) 6

7 Lisätään vasta-alkio 0 v yhtälön molemmille puolille, jolloin 0 = 0 v + ( 0 v) = (0 v + 0 v) + ( 0 v) = b] ( 1) v = v. Lasketaan ( 1) v + v: 0 v + (0 v 0 v) = 0 v + 0 = 0 v. (14) ( 1) v + v = ( 1) v + 1 v = ( 1 + 1) v = 0 v = 0. (15) Täten vasta-alkion määritelmän ja yksikäsitteisyyden nojalla ( 1) v = v. e] Osoitetaan tapaus λ v = ( λ) v käyttämällä b]-kohdan tulosta w = ( 1) w. Lasketaan V.P = λ v = ( 1) (λ v) = (( 1)λ) v = ( λ) v = O.P. (16) i] Esitetään ensin väite muodossa: λ v = 0 λ = 0 tai v = 0. :n todistus: Oletuksena on, että λ = 0 tai v = 0. Nyt on osoitettava, että λ v = 0. Katso a]-kohta. :n todistus: Nyt oletuksena on On siis osoitettava, että λ = 0 tai v = 0. Tehdään vastaoletus: λ 0 ja v 0. λ v = 0. (17) Tällöin λ 1 K, joten yhtälö (17) voidaan kertoa puolittain alkiolla λ 1. Saadaan λ 1 (λ v) = λ 1 0 (λ 1 λ) v = 0 1 v = v = 0. (18) 7

8 Ristiriita vastaoletuksen kanssa. 1.3 Aliavaruus Määritelmä 2. Vektoriavaruuden V epätyhjä osajoukko W on vektoriavaruuden V aliavaruus, jos W on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen, toisin sanoen 1. W V ; 2. jos w 1, w 2 W, niin w 1 + w 2 W ; 3. jos w W ja λ K, niin λw W. Seuraava lause antaa hyvän tavan todeta joukko vektoriavaruudeksi: Osoitetaan joukko jonkin tunnetun vektoriavaruuden aliavaruudeksi. Lause 3. Epätyhjä joukko W V on vektoriavaruuden V aliavaruus jos ja vain jos W varustettuna avaruuden V yhteenlaskulla ja skalaarilla kertomisella on vektoriavaruus. Esimerkki 7. Olkoon V vektoriavaruus ja 0 V sen nolla-alkio. Tällöin osajoukot {0} ja V ovat vektoriavaruuden V aliavaruuksia. Todistetaan, että {0} on aliavaruus. Merkitään hetkeksi W 0 = {0}. AA1. Koska 0 W 0, niin W 0. AA2. Olkoot w 1, w 2 W 0. Tällöin w 1 = w 2 = 0 ja siten w 1 + w 2 = 0 W 0. AA3. Olkoot λ K ja w W 0. Tällöin w = 0 ja siten λ w = λ 0 = 0 W 0. Huomautus 2. Sanotaan, että {0} ja V ovat triviaalit aliavaruudet. Esimerkki 8. Joukko C(R, R) = {f f : R R on jatkuva kuvaus} on vektoriavaruuden F(R, R) aliavaruus. 8

9 AA1. Koska nollakuvaus O : R R on jatkuva, niin O C(R, R) ja siten C(R, R). AA2. Jos f, g C(R, R), niin f + g on jatkuva ja siten f + g C(R, R). AA3. Olkoot λ R ja f C(R, R), tällöin λf on jatkuva, joten λf C(R, R). Esimerkki 9. Olkoon Pol(R, R) = {f F(R, R) f(x) = a 0 + a 1 x a n x n kaikilla x R joillekin n N ja a 0,..., a n R} eli Pol(R, R) on kaikkien polynomien joukko. Tällöin Pol(R, R) on vektoriavaruuksien C(R, R) ja F(R, R) aliavaruus. Esimerkki 10. Olkoot k N ja Pol k (R, R) = {f Pol(R, R) polynomin f aste k}. Saadaan siis ali- Tällöin Pol k (R, R) on avaruuden Pol(R, R) aliavaruus. avaruusketju Pol 0 (R, R) Pol 1 (R, R)... Pol k (R, R) Pol k+1 (R, R) Pol(R, R) C(R, R) F(R, R). Huomautus 3. Olkoon K kunta. Yleensä K-kertoimisten polynomien joukolle käytetään merkintää K[x] = {f(x) f(x) = a 0 + a 1 x a n x n joillekin n N ja a 0,..., a n K}. Kun polynomien yhteen- ja kertolasku määritellään tavanomaisesti, niin saadaan polynomirengas (K[x], +, ), missä nolla- ja ykköspolynomit ovat 0(x) = x + 0 x , 1(x) = x + 0 x Edelleen vakiopolynomille a(x) = a + 0 x + 0 x voidaan käyttää lyhennysmerkintää a. 9

10 1.4 Lineaarikombinaatio ja lineaarinen verho Määritelmä 3. Olkoon V vektoriavaruus kunnan K yli. Vektori v V on vektoreiden v 1,..., v n V (äärellinen) lineaarikombinaatio, jos on olemassa sellaiset luvut λ 1,..., λ n K, että v = n λ i v i. (19) i=1 Esimerkki 11. V = R 3, K = R, v 1 = (1, 1, 0), v 2 = (0, 1, 1), v 3 = (1, 0, 1) ja v = (3, 3, 0). Tällöin v = v 1 + 2v 2 + 2v 3 (20) = 2v 1 + v 2 + v 3. (21) Siten (3, 3, 0) on vektoreiden v 1, v 2 ja v 3 lineaarikombinaatio mutta esitys ei ole yksikäsitteinen. Esimerkki 12. V = C 3, K = C. ( i, i, 2 + i) = 1 ( i, i, i) + 1 (0, 0, 2) (22) = i ( 1, 1, 1) + i (0, 0, 2i). (23) Määritelmä 4. K-vektoriavaruuden V epätyhjän osajoukon S lineaarinen verho S koostuu kaikista joukon S äärellisistä K-lineaarikombinaatioista, toisin sanoen S K = S = {u V u = n λ i v i, i=1 joillekin n N, v 1,..., v n S ja λ 1,..., λ n K}. Esimerkki 13. V = R 2, K = R, e 1 = (1, 0), e 2 = (0, 1). Tällöin e 1, e 2 R = {λ 1 e 1 + λ 2 e 2 = (λ 1, λ 2 ) λ 1, λ 2 R} = R 2. (24) Esimerkki 14. Koska f Pol 1 (R, R) täsmälleen silloin, kun on olemassa sellaiset a 0, a 1 R, että f(x) = a 0 + a 1 x, niin Yleisemmin Pol 1 (R, R) = 1, x R. Pol k (R, R) = 1, x,..., x k R. 10

11 Lause 4. Olkoot V vektoriavaruus kunnan K yli ja S V epätyhjä osajoukko. Tällöin (a) S K on avaruuden V aliavaruus. (b) Jos S W ja W on avaruuden V aliavaruus, niin S K W. 1.5 Lineaarinen vapaus ja riippuvuus Seuraavassa tarkastellaan vektoreiden s 1,..., s n V muodostamia listoja s 1,..., s n, missä n N on listan pituus. Tapaus n = 0 tarkoittaa, että lista on tyhjä eli listassa ei ole alkioita. Määritelmä 5. Olkoon V vektoriavaruus kunnan K yli ja s 1,..., s n V, n N. Tapaus n = 0: Tyhjä lista on lineaarisesti vapaa. Tapaus n 1: Alkiolista s 1,..., s n on lineaarisesti vapaa (kunnan K yli) jos ehdosta seuraa, että n λ i s i = 0, λ 1,..., λ n K, (25) i=1 λ 1 = λ 2 =... = λ n = 0. (26) Muutoin lista s 1,..., s n on lineaarisesti sidottu (kunnan K yli). Lineaarisesti vapaa=lineaarisesti riippumaton vektorit ovat lineaarisesti vapaita eli riippumattomia lineaarisesti sidottu=lineaarisesti riippuva vektorit ovat lineaarisesti sidottuja eli riippuvia 11

12 Lause 5. Olkoot V vektoriavaruus kunnan K yli ja s 1,..., s n V, n Z +. Alkiolista s 1,..., s n on lineaarisesti riippuva (kunnan K yli) jos ja vain jos on olemassa sellaiset luvut λ 1,..., λ n K, että ja ainakin yksi λ i 0, 1 i n. n λ i s i = 0 (27) i=1 Esimerkki 15. Tutkitaan listaa s 1, s 2, missä vektorit ovat identtiset eli s 1 = s 2 = s. Tällöin 1 s 1 + ( 1) s 2 = s s = 0, joten lista s 1, s 2 = s, s on lineaarisesti sidottu. Edelleen kaikki listat, joissa on toisto eli sama alkio esiintyy vähintään kahdesti, ovat lineaarisesti sidottuja. Olkoon s 1,..., s n, n N, lineaarisesti vapaa lista. Tällöin listassa ei esiinny toistoa, joten listassa ja joukossa S = {s 1,..., s n } on sama määrä alkioita. Siten on luonnollista sanoa, että joukko S = {s 1,..., s n } on lineaarisesti vapaa. Tyhjää listaa vastaa tyhjä joukko, jonka takia sovitaan, että on lineaarisesti vapaa. Edelleen, jos listassa s 1,..., s n, n Z + ei ole toistoa ja lista on lineaarisesti sidottu, niin myös vastaavaa joukkoa S = {s 1,..., s n } sanotaan lineaarisesti sidotuksi. Esimerkki 16. Nolla-alkion muodostama lista 0 on lineaarisesti sidottu, koska 1 0 = 0. Siten joukko {0} on lineaarisesti sidottu. 12

13 Esimerkki 17. Olkoon 0 v V. Alkion v muodostama lista v on lineaarisesti vapaa, koska ehdosta λ v = 0 seuraa λ = 0. Niinpä yhden vektorin muodostama joukko {v} on lineaarisesti vapaa, jos v 0. Esimerkki 18. V = R 3, K = R, s 1 = (1, 1, 0), s 2 = (0, 1, 1), s 3 = (1, 0, 1) ja s 4 = (3, 3, 0). Koska 1 s 1 + ( 1) s 2 + ( 1) s 3 = 0; (28) 2 s s s 3 + ( 1) s 4 = 0, (29) niin s 1, s 2, s 3 on lineaarisesti riippuva ja myös s 1, s 2, s 3, s 4 on lineaarisesti riippuva. Esimerkki 19. Joukko {1, 3} on lineaarisesti vapaa kunnan Q yli. Esimerkki 20. Joukko {1, 3} on lineaarisesti sidottu kunnan R yli. Määritelmä 6. Olkoot V vektoriavaruus kunnan K yli ja S V epätyhjä osajoukko. Joukko S on lineaarisesti vapaa (kunnan K yli) jos ja vain jos sen jokainen äärellinen epätyhjä osajoukko on lineaarisesti vapaa, toisin sanoen ehdosta n λ i s i = 0, λ i K, (30) i=1 seuraa, että λ 1 = λ 2 =... = λ n = 0 (31) kaikilla joukon S äärellisillä osajoukoilla {s 1,..., s n }. Muutoin S on lineaarisesti sidottu. Lause 6. Olkoot V vektoriavaruus kunnan K yli ja S V epätyhjä osajoukko. Joukko S on lineaarisesti sidottu (kunnan K yli), jos on olemassa äärellisen monta alkiota s 1,..., s n S ja sellaiset luvut λ 1,..., λ n K, että ja ainakin yksi λ i 0, 1 i n. n λ i s i = 0 (32) i=1 13

14 Lause 7. Olkoot V vektoriavaruus kunnan K yli, S V epätyhjä osajoukko ja x V. Tällöin x S K {x} S K = S K ; (33) Jos S on lineaarisesti vapaa kunnan K yli, niin x V \ S K {x} S on lineaarisesti vapaa/k. (34) Todistetaan (34) tapauksessa S = {s 1,..., s n }. : Oletuksena siis, että x / S K. Asetetaan lineaarikombinaatio nollaksi Jos α n+1 0, niin α 1 s α n s n + α n+1 x = 0, α k K. (35) x = β 1 s β n s n, β k K x S K. (36) Ristiriita. Joten α n+1 = 0 ja siten α 1 s α n s n = 0, α k = 0 k. (37) Siten x, s 1,..., s n on lineaarisesti vapaa. : Oletuksena siis, että x, s 1,..., s n on lineaarisesti vapaa. Vastaoletus: x S K. Tällöin x = λ 1 s λ n s n, λ k K, (38) Siten x, s 1,..., s n on lineaarisesti sidottu. Ristiriita oletuksen kanssa, joten vastaoletus väärä. Niinpä x / S K. Esimerkki 21. Joukko {1(x), x, x 2 } Pol 2 (R, R) on lineaarisesti riippumaton (kunnan R yli). Todistus: Olkoot λ 0, λ 1, λ 2 R sellaiset, että kaikilla x R. λ 0 1(x) + λ 1 x + λ 2 x 2 = 0(x) Valitaan x = 0, jolloin saadaan λ = 0, eli λ 0 = 0. Valitaan x = 1 ja x = 1, jolloin saadaan { { λ 1 + λ 2 = 0 λ 1 = 0 λ 1 + λ 2 = 0 λ 2 = 0. Siis λ 0 = λ 1 = λ 2 = 0. 14

15 Esimerkki 22. Joukko {1, x,..., x k } Pol k (R, R) on lineaarisesti riippumaton. Esimerkki 23. Joukko {1, x,..., x k,...} Pol(R, R) on lineaarisesti riippumaton. Esimerkki 24. Joukko {1, sin 2, cos 2 } C(R, R) on lineaarisesti riippuva (kunnan R yli), sillä kaikilla x R. 1 sin 2 x + 1 cos 2 x 1 1 = 0 = 0(x) 1.6 Kanta ja dimensio Määritelmä 7. K-Vektoriavaruuden V epätyhjä osajoukko S on avaruuden V kanta (kunnan K yli), jos (a) S on lineaarisesti riippumaton kunnan K yli, ja (b) S K = V. Lause 8 (Hamelin kantalause). Jokaisella vektoriavaruudella V {0} on olemassa kanta. Todistus, joka perustuu valinta-aksiomiin on aika haastava eikä kuulu tämän kurssin vaatimuksiin. Lause 9. Olkoon V vektoriavaruus kunnan K yli, R, T V, r := #R ja t := #T. Jos R T K ja r > t 1, (39) niin R on lineaarisesti sidottu kunnan K yli. Todistus. Induktio lukumäärän t suhteen. Olkoon t = 1, jolloin r 2. Kirjoitetaan Koska R T K, niin R = {x 1,..., x r }, T = {y 1 }. x 1 =a 1 y 1, a 1 K x 2 =a 2 y 1, a 2 K, 15

16 missä ainakin toinen luvuista a i 0, olkoon a 1 0. Tällöin 1 x 2 a 1 1 a 2 x 1 = 0 (40) joten x 1, x 2 on lineaarisesti sidottu ja siten R on lineaarisesti sidottu. Olkoon s Z +. Induktio-oletus: Kaikilla t s väite pätee. Induktioaskel: Olkoon t = s + 1 = #T, r = #R, r > t ja R = {x 1,..., x r }, T = {y 1,..., y s+1 }. Aluksi huomataan, että r s + 2. Oletuksen R T K nojalla x 1 =a 1,1 y 1 + a 1,2 y a 1,s+1 y s+1, x 2 =a 2,1 y 1 + a 2,2 y a 2,s+1 y s+1,... x r =a r,1 y 1 + a r,2 y a r,s+1 y s+1, missä a i,j K. Jos olisi a 1,1 = a 2,1 =... = a r,1 = 0, niin R y 2,..., y s+1 K, #R = r s + 2 > #{y 2,..., y s+1 } = s, (41) joten induktio-oletuksen nojalla R olisi lineaarisesti sidottu tässä tapauksessa. Tarkastellaan seuraavaksi tapaus, josa ainakin yksi luvuista a 1,1, a 2,1,..., a r,1 on nollasta eroava, olkoon a 1,1 0. Määritellään seuraavaksi uudet vektorit joille pätee: x 1 = 0 ja x k = x k a 1 1,1a k,1 x 1, k = 1,..., r, R := {x 2,..., x r} y 2,..., y s+1 K. (42) Jos joukossa R olisi identtisiä alkioita, niin R olisi sidottu. Muutoin joukkojen lukumäärille pätee #R = r 1 s + 1 > #{y 2,..., y s+1 } = s, (43) joten induktio-oletuksen nojalla R on nytkin lineaarisesti sidottu. Siten b 2 x b r x r = 0, b k K, (44) ja b j 0, jollakin 2 j r. Sijoitetaan x k = x k a 1 1,1a k,1 x 1 takaisin, jolloin saadaan lineaarikombinaatio ( b 2 a 1 1,1a 2,1... b r a 1 1,1a r,1 )x 1 + b 2 x b r x r = 0, (45) missä ainakin yksi kerroin on nollasta eroava, nimittäin b j 0. Niinpä x 1, x 2,..., x r on lineaarisesti sidottu mikä todistaa induktioaskeleen. 16

17 Lause 10. Olkoon V {0} vektoriavaruus kunnan K yli. Jos avaruudella V on olemassa äärellinen kanta kunnan K yli, niin kaikissa kannoissa kunnan K yli on sama määrä alkioita. Todistus. Olkoot S 1 ja S 2 kantoja, s 1 := #S 1 ja s 2 := #S 2. Tällöin S 1 on lineaarisesti vapaa ja S 2 on lineaarisesti vapaa sekä S 1 K = S 2 K = V. Jos olisi ja koska S 1 Ristiriita. s 1 > s 2, (46) S 2 K, niin Lauseen 9 nojalla S 1 olisi lineaarisesti sidottu. Määritelmä 8. K-vektoriavaruus V on äärellisulotteinen, jos sillä on olemassa äärellinen kanta (kunnan K yli). Myös {0} on äärellisulotteinen. Muulloin V on ääretönulotteinen. Jos avaruuden V kannassa on n alkiota (kunnan K yli), missä n N, niin avaruuden V dimensio on n. Tällöin käytetään merkintää dim K V = dim V = n. Jos V = {0}, niin dim K V = 0. Muulloin dim K V =. Huomautus 4. Lauseen 10 nojalla vektoriavaruuden V dimensio on hyvin määritelty. Seuraus 1. Jos dim K V = n, jollain n Z +, niin jokainen lineaarisesti riippumaton avaruuden V osajoukko S, jossa on n alkiota, on avaruuden V kanta. Seuraus 2. Jos dim K V = n jollain n N, niin jokainen sellainen avaruuden V osajoukko, jossa on vähintään n + 1 alkiota, on lineaarisesti riippuva kunnan K yli. 17

18 Seuraus 3. Jos V on vektoriavaruus kunnan K yli, W on avaruuden V aliavaruus ja S on avaruuden W kanta, niin on olemassa sellainen avaruuden V kanta T, että S T. Erityisesti dim K W dim K V. (47) Lause 11. Olkoot V äärellisulotteinen vektoriavaruus kunnan K yli ja S = {v 1,..., v n } avaruuden V kanta. Tällöin jokaista vektoria v V kohti on olemassa yksikäsitteiset luvut λ 1,..., λ n K siten, että v = n λ i v i. (48) i=1 Määritelmä 9. Lineaarikombinaatiota (48) sanotaan vektorin v kantaesitykseksi kannan S suhteen ja kertoimet λ i ovat vektorin v koordinaatit kannassa S. Tällöin voidaan kirjoittaa v = (λ 1,..., λ n ) S = (λ 1,..., λ n ), jota sanotaan vektorin v koordinaattiesitykseksi kannassa S. Esimerkki 25. Koska {1, x,..., x n } on avaruuden Pol n (R, R) eräs kanta, niin dim Pol n (R, R) = n + 1. Koska {1, x, x 2,..., x k,...} Pol(R, R) on lineaarisesti riippumaton, niin Tuloksen (47) nojalla saadaan Esimerkki 26. dim Pol(R, R) =. dim Pol(R, R) = dim C(R, R) = dim F(R, R) =. Laske dim S, kun S = {1 + x, 1 + x 2, 1 + 2x 3x 2 } Pol 2 (R, R). Ratkaisu: Tutkitaan, onko joukko S lineaarisesti riippumaton. Nyt a(1 + x) + b(1 + x 2 ) + c( 1 + 2x 3x 2 ) = 0 (a + b c)1 + (a + 2c)x + (b 3c)x 2 = 0 18

19 Koska 1, x, x 2 on lineaarisesti vapaa, niin saadaan a + b c = 0 a + 2c = 0 a + 2c = 0 a + 2c = 0 b 3c = 0 b 3c = 0 a = 2c b = 3c c R. (Ensimmäisessä kohdassa viimeinen yhtälö on vähennetty ensimmäisestä.) Koska yllä olevalla yhtälöryhmällä on epätriviaali ratkaisu, esim. a = 2, b = 3, c = 1, niin S on lineaarisesti riippuva. Tästä nähdään, että polynomi 1 + 2x 3x 2 on lineaarikombinaatio polynomeista 1 + x ja 1 + x 2, joten S = 1 + x, 1 + x 2. Joukko {1 + x, 1 + x 2 } on lineaarisesti riippumaton, sillä a(1 + x) + b(1 + x 2 ) = 0 (a + b)1 + ax + bx 2 = 0 a = 0 ja b = 0. Näin ollen dim S = 2. Esimerkki 27. Reaaliluvut muodostavat ääretönulotteisen vektoriavaruuden rationaalilukujen kunnan yli eli dim Q R =. Todistus on aika haastava eikä kuulu tämän kurssin vaatimuksiin. 19

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I

802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I 802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 1 Contents 1 Lineaariavaruus eli Vektoriavaruus 3 1.1 Määritelmä ja esimerkkejä....................

Lisätiedot

802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I

802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I 802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVT 2019 1 Contents 1 Lineaariavaruus eli Vektoriavaruus 3 1.1 Määritelmä ja esimerkkejä....................

Lisätiedot

Avaruuden R n aliavaruus

Avaruuden R n aliavaruus Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus Lineaarikuvaus Ominaisarvo 0-68

pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus Lineaarikuvaus Ominaisarvo 0-68 SISÄLTÖ Sisältö pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus 0-1 2 Sisätuloavaruus 0-20 3 Lineaarikuvaus 0-41 4 Ominaisarvo 0-68 5 Esimerkkejä 0-88 1. Lineaariavaruus eli V 1 Lineaariavaruus

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

LINEAARIALGEBRA A 2016 TOMI ALASTE EDITED BY T.M. FROM THE NOTES OF

LINEAARIALGEBRA A 2016 TOMI ALASTE EDITED BY T.M. FROM THE NOTES OF LINEAARIALGEBRA 83A 6 EDITED BY T.M. FROM THE NOTES OF TOMI ALASTE SISÄLTÖ Sisältö Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus 3 Lineaarikuvaus 4 Ominaisarvo 34 5 Esimerkkejä 44 . Lineaariavaruus

Lisätiedot

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus. 1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

Kanta ja dimensio 1 / 23

Kanta ja dimensio 1 / 23 1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio 6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.

Lisätiedot

802320A LINEAARIALGEBRA OSA II

802320A LINEAARIALGEBRA OSA II 802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen

Lisätiedot

Lineaarialgebra II P

Lineaarialgebra II P Lineaarialgebra II 89P Sisältö Vektoriavaruus Sisätuloavaruus 8 3 Lineaarikuvaus 5 4 Ominaisarvo 5 Luku Vektoriavaruus Määritelmä.. Epätyhjä joukko V on vektoriavaruus, jos seuraavat ehdot ovat voimassa:.

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon

Lisätiedot

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo. Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat

Lisätiedot

802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita

802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita 802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 25 Lukujoukkoja N = {0, 1, 2,..., GOOGOL 10,...} = {ei-negatiiviset

Lisätiedot

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa. LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Harjoituksia/Exercises 2017 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista 29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

LINEAARIALGEBRA. Harjoituksia/Exercises 2017 Valittuja ratkaisuja/selected solutions

LINEAARIALGEBRA. Harjoituksia/Exercises 2017 Valittuja ratkaisuja/selected solutions LINEAARIALGEBRA Harjoituksia/Exercises 2017 Valittuja ratkaisuja/selected solutions 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n )

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

LINEAARIALGEBRA. Harjoituksia/Exercises 2019 Valittuja ratkaisuja/selected solutions

LINEAARIALGEBRA. Harjoituksia/Exercises 2019 Valittuja ratkaisuja/selected solutions LINEAARIALGEBRA Harjoituksia/Exercises 2019 Valittuja ratkaisuja/selected solutions 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n )

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO Syksy 2017 LINEAARIALGEBRA 1 / 59 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2019 LINEAARIALGEBRA 1 / 60 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III

802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III 802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Contents 1 Lineaarikuvaus 2 1.1 Määritelmä............................ 2 1.2 Matriisiesitys/Matrix

Lisätiedot

JAKSO 2 KANTA JA KOORDINAATIT

JAKSO 2 KANTA JA KOORDINAATIT JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause

Lisätiedot

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden

Lisätiedot

Lineaarialgebra Kerroinrenkaat. Kevät Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto

Lineaarialgebra Kerroinrenkaat. Kevät Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto Lineaarialgebra 2 Kevät 2014 Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto Á Ë Ð Ö Ø Ú ØÓÖ Ø 1. Kerroinrenkaat 1.1. Määritelmä. Yhden laskutoimituksen rakenne(g, + on Abelin ryhmä, jos

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:

Lisätiedot

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi 7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).

Lisätiedot

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja 5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Yleiset lineaarimuunnokset

Yleiset lineaarimuunnokset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

Vektorit, suorat ja tasot

Vektorit, suorat ja tasot , suorat ja tasot 1 / 22 Koulussa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä (x 1, x 2 ). Jos vektorin

Lisätiedot

Vastaavasti, jos vektori kerrotaan positiivisella reaaliluvulla λ, niin

Vastaavasti, jos vektori kerrotaan positiivisella reaaliluvulla λ, niin 1 / 14 Lukiossa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Tarkastellaan aluksi tason vektoreita (R 2 ). Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä

Lisätiedot

ja jäännösluokkien joukkoa

ja jäännösluokkien joukkoa 3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi

Lisätiedot

Kanta ja Kannan-vaihto

Kanta ja Kannan-vaihto ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V

Lisätiedot

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella

Lisätiedot

Miten osoitetaan joukot samoiksi?

Miten osoitetaan joukot samoiksi? Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/310 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

1 Avaruuksien ja lineaarikuvausten suora summa

1 Avaruuksien ja lineaarikuvausten suora summa MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

3 Skalaari ja vektori

3 Skalaari ja vektori 3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,

Lisätiedot

Esko Turunen Luku 3. Ryhmät

Esko Turunen Luku 3. Ryhmät 3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

2. REAALIKERTOIMISET VEKTORIAVARUUDET

2. REAALIKERTOIMISET VEKTORIAVARUUDET 30 REAALIKERTOIMISET VEKTORIAVARUUDET 1 Koordinaattiavaruus R n Olkoon n N = {1,, 3, } positiivinen kokonaisluku (luonnollisten lukujen joukko on tällä kurssilla N = {0, 1,, 3, }) Merkitään R n = R n 1

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

802120P Matriisilaskenta (5 op)

802120P Matriisilaskenta (5 op) 802120P Matriisilaskenta (5 op) Marko Leinonen Matemaattiset tieteet Syksy 2016 1 / 220 Luennoitsija: Marko Leinonen marko.leinonen@oulu.fi MA333 Kurssilla käytetään Noppaa (noppa.oulu.fi) Luentomoniste

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Vektorien virittämä aliavaruus

Vektorien virittämä aliavaruus Vektorien virittämä aliavaruus Esimerkki 13 Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w kuuluu vektoreiden v 1 = (3, 2, 1), v 2 = (2, 2, 6) ja v 3 = (3, 4, 5) virittämään

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

ominaisvektorit. Nyt 2 3 6

ominaisvektorit. Nyt 2 3 6 Esimerkki 2 6 8 Olkoon A = 40 0 6 5. Etsitäänmatriisinominaisarvotja 0 0 2 ominaisvektorit. Nyt 2 0 2 6 8 2 6 8 I A = 40 05 40 0 6 5 = 4 0 6 5 0 0 0 0 2 0 0 2 15 / 172 Täten c A ( )=det( I A) =( ) ( 2)

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

802320A LINEAARIALGEBRA OSA II/PART II

802320A LINEAARIALGEBRA OSA II/PART II 802320A LINEAARIALGEBRA OSA II/PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2019 LINEAARIALGEBRA 1 / 69 Sisätuloavaruus/Inner product space Määritelmä 1 Olkoon V reaalinen vektoriavaruus.

Lisätiedot

802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II

802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II 802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVT 2019 1 Contents 1 Sisätulo- ja normiavaruudet 3 1.1 Sisätuloavaruus/Inner product space..............

Lisätiedot

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili 6 4 2 x 2 x 3 15 10 5 0 5 15 5 3 2 1 1 2 3 2 0 x 2 = 1 2x 1 0 4 x 2 = 3 x 1 x 5 2 5 x 1 10 x 1 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili Sisältö

Lisätiedot

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä 4. Ryhmät Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoimitukselta oletamme muutamia yksinkertaisia ominaisuuksia: Määritelmä 4.1. Laskutoimituksella varustettu joukko

Lisätiedot

802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II

802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II 802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Contents 1 Sisätulo- ja normiavaruudet 2 1.1 Sisätuloavaruus/Inner product space..............

Lisätiedot

1. Normi ja sisätulo

1. Normi ja sisätulo Kurssimateriaalia K3/P3-kursille syksyllä 3 83 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni Normi ja sisätulo

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

1. Lineaarinen yhtälöryhmä ja matriisi

1. Lineaarinen yhtälöryhmä ja matriisi I LINEAARISET YHTÄLÖRYHMÄT 1 Lineaarinen yhtälöryhmä ja matriisi Tällä kurssilla käytämme kirjainta K tarkoittamaan reaalilukuja R, kompleksilukuja C tai rationaalilukuja Q (aluksi K = R) Nämä lukujoukot

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

802320A LINEAARIALGEBRA OSA II/PART II

802320A LINEAARIALGEBRA OSA II/PART II 802320A LINEAARIALGEBRA OSA II/PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 LINEAARIALGEBRA 1 / 67 Sisätuloavaruus/Inner product space Määritelmä 1 Olkoon V reaalinen vektoriavaruus.

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kantavektorien kuvavektorit määräävät lineaarikuvauksen Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

Käänteismatriisi 1 / 14

Käänteismatriisi 1 / 14 1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Lineaarialgebra I. Oulun yliopisto Matemaattisten tieteiden laitos Esa Järvenpää Kirjoittanut Tuula Ripatti

Lineaarialgebra I. Oulun yliopisto Matemaattisten tieteiden laitos Esa Järvenpää Kirjoittanut Tuula Ripatti Lineaarialgebra I Oulun yliopisto Matemaattisten tieteiden laitos 2011 Esa Järvenpää Kirjoittanut Tuula Ripatti 2 1 Lineaarinen yhtälöryhmä 11 Esimerkki (a) Ratkaise yhtälö 5x = 7 Kerrotaan yhtälö puolittain

Lisätiedot

Matriisialgebra harjoitukset, syksy x 1 + x 2 = a 0

Matriisialgebra harjoitukset, syksy x 1 + x 2 = a 0 MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 22 Virittääkö vektorijoukko S vektoriavaruuden V, kun a V = R 3 ja S = {(1,0, 1,(2,0,4,( 5,0,2,(0,0,1} b V = P 2 (R ja S = {t1,t 2 1,t 2 t} ( ( 1 0 c

Lisätiedot

Ennakkotehtävän ratkaisu

Ennakkotehtävän ratkaisu Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot