5 Ominaisarvot ja ominaisvektorit

Koko: px
Aloita esitys sivulta:

Download "5 Ominaisarvot ja ominaisvektorit"

Transkriptio

1 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A ominaisarvoksi (eigenvalue). Vastaavasti ratkaisut x 0 ovat A:n ominaisarvoa λ vastaavia ominaisvektoreita. Ominaisarvojen joukko = A:n spektri. Ominaisarvoon λ liittyvät ominaisvektorit yhdessä vektorin 0 kanssa muodostavat tähän ominaisarvoon liittyvän A:n ominaisavaruuden. Matriisin ominaisarvojen ja vektorien määräämistä kutsutaan ominaisarvo ongelmaksi (eigenvalue problem). 1

2 Ominaisarvoyhtälö voidaan kirjoittaa muotoon (A λi)x = 0 (2) Tällä yhtälöllä on nollasta poikkeavia ratkaisuja jos ja vain jos a 11 λ a 12 a 1n a 21 a 22 λ a 2n D(λ) = det(a λi) =... a n1 a n2 a nn λ = 0 (3) Yo. yhtälö on matriisin A karakteristinen yhtälö, D(λ) ja karakteristinen determinantti. Kun D(λ) kehitetään, saadaan λ:n suhteen n:nnen asteen polynomi, joka on matriisin A karakteristinen polynomi. n n matriisilla on siis vähintään yksi ominaisarvo ja enintään n erilaista ominaisarvoa. 2

3 Suurille matriiseille ominaisarvot lasketaan yleensä tietokoneella. Ominaisarvot laskettava ensin, sen jälkeen voidaan laskea ominaisvektorit esim. Gaussin eliminoinnilla. Jos x on matriisin A ominaisarvoa λ vastaava ominaisvektori, niin on myös kx k 0. Jos matriisin A ominaisarvo λ on karakteristisen yhtälön M λ :nnen kertaluvun juuri, M λ on λ:n algebrallinen kertaluku. Ominaisarvoon λ liittyvien lineaarisesti riippumattomien ominaisvektorien lukumäärä m λ on λ:n geometrinen kertaluku. Huom. reaalisen matriisin ominaisarvot ja vektorit voivat olla kompleksisia. Esim. 0 1 (4) 1 0 3

4 6 Ortogonaaliset, symmetriset ja vinosymmetriset matriisit Reaalinen neliömatriisi A = [a jk ] on symmetrinen, jos vinosymmetrinen, jos ja ortogonaalinen, jos A T = A (5) A T = A (6) A T = A 1 (7) Jokainen reaalinen neliömatriisi A voidaan esittää symmetrisen matriisin R = 1 2 (A + AT ) ja vinosymmetrisen matriisin S = 1 2 (A AT ) summana. 4

5 6.1 Ortogonaalimuunnokset Ortogonaalimuunnos on muunnos missä A on ortogonaalinen matriisi. y = Ax, (8) Jokaista vektoria x avaruudessa R n vastaa vektori y R n :ssä, jolle muunnos on voimassa. Esimerkki muunnoksesta: Kierto tasossa. Tärkeä ominaisuus: Ortogonaalimuunnos säilyttää vektorien sisätulon a b = a T b (9) ja normin a = a a = a T a (10) 5

6 Lauseen (9) todistus: Olkoon u = Aa ja v = Ab. Tällöin u v = u T v = (Aa) T Ab = a T A T Ab = a T Ib = a T b = a b (11) Reaalinen neliömatriisi on ortogonaalinen jos ja vain jos sen pysty (sarake )vektorit (ja myös vaakavektorit) muodostavat ortonormaalin järjestelmän, eli a j a k = a T 0 j k j a k = (12) 1 j = k Ortogonaalisen matriisin determinantin arvo on +1 tai 1. Ortogonaalisen matriisin ominaisarvot ovat reaalisia tai pareittain kompleksikonjugaatteja ja niiden itseisarvo on 1. 6

7 7 Hermiittiset ja unitaariset matriisit Määritelmä: Ā = [ā jk] on matriisi, joka saadaan matriisista A = [ā jk ] korvaamalla kaikki alkiot kompleksikonjugaateillaan. Vastaavasti konjugoitu transpoosi Neliömatriisi A = [ā jk ] on Hermiittinen, jos ĀT = A, ts. ā kj = a jk. Ā T = [ā kj ] (13) Vinohermiittinen, jos ĀT = A, ts. ā kj = a jk. Unitaarinen, jos ĀT = A 1 Hermiittinen, vinohermiittinen ja unitaarinen matriisi ovat symmetrisen, vinosymmetrisen ja ortogonaalisen matriisin yleistyksiä. 7

8 Hermiittisen matriisin ominaisarvot ovat reaalisia. Vinosymmetrisen matriisin ominaisarvot ovat puhtaasti imaginaarisia tai nollia. Unitaarisen matriisin ominaisarvojen itseisarvo on = 1. Termi x T Ax on muoto ja A sen kerroinmatriisi. Jos x ja A ovat reaalisia, on neliömuoto. x T Ax = n j=1 k=1 n a jk x j x k (14) Jos matriisi A on hermiittinen tai vinohermiittinen, on kyseessä hermiittinen tai vinohermiittinen muoto. Mille tahansa vektorille x hermiittinen muoto on reaalinen ja vinohermiittinen muoto on puhtaasti imaginäärinen tai 0. 8

9 7.1 Unitaaristen matriisien ominaisuuksia Kompleksinen vektoriavaruus C n on avaruus, jonka muodostavat n komponenttiset kompleksiset vektorit ja kompleksilukukertoimet. Kompleksisille vektoreille sisätulo määritellään kaavalla Vektorin normi (pituus) on siis a b = ā T b (15) a = a a = ā T a = ā 1 a ā n a n = a a n 2 Reaalisille vektoreille tämä määritelmä tuottaa tavallisen sisätulon määritelmän. (16) Unitaarinen muunnos, ts. muunnos y = Ax säilyttää sisätulon arvon ja normin. 9

10 Ortonormaalin vektorisysteemin kompleksinen vastine on unitaarinen systeemi: a j a k = ā T 0 jos j k j a k = (17) 1 jos j = k Neliömatriisi on unitaarinen jos ja vain jos sen pystyvektorit (ja vaakavektorit) muodostavat unitaarisen systeemin. Unitaarisen matriisin determinantin itseisarvo on = 1. Todistus: 1 = detaa 1 = det(aāt ) = detadetāt = detadetā = detadeta = deta 2 (18) 10

11 7.2 Ominaisvektorien ominaisuuksia; diagonalisointi n n matriisit  ja A ovat similaarisia, jos  = T 1 AT (19) jollekin ei singulaariselle matriisille T. Tätä muunnosta kutsutaan similaarisuusmuunnokseksi. Jos  ja A ovat similaarisia, niillä on samat ominaisarvot. Jos x on A:n ominaisvektori, y = T 1 x on Â:n samaa ominaisarvoa vastaava ominaisvektori. Olkoot λ 1, λ 2,, λ k n n matriisin keskenään erilaisia ominaisarvoja. Tällöin niitä vastaavat ominaisvektorit x 1,x 2, x k muodostavat lineaarisesti riippumattoman joukon. Edellisestä lauseesta seuraa, että jos A:lla on n keskenään erilaista ominaisarvoa, A:n ominaisvektorit muodostavat C n :n kannan. 11

12 Hermiittisen, vinohermiittisen ja unitaarisen matriisin ominaisvektorit muodostavat C n :n kannan, joka on unitaarinen systeemi. Symmetrisen matriisin ominaisvektorit muodostavat R n :n ortonormaalin kannan. Näin ollen muunnos y = Ax voidaan esittää ominaisvektorien x 1, x n avulla muodossa y = Ax = A(c 1 x c n x n ) = c 1 Ax c n Ax n = c 1 λ 1 x c n λ n x n (20) Jos n n matriisilla A on ominaisvektorien muodostama kanta, D = X 1 AX (21) on diagonaalinen, A:n arvot ovat D:n päälävistäjällä. X on matriisi, jossa A:n ominaisvektorit ovat pystyvektoreina. Pätee myös D m = X 1 A m X (22) 12

13 Tarkastellaan neliömuotoa Q = x T Ax (23) Oletetaan, että matriisi A on reaalinen ja symmetrinen. Tällöin A:lla on n:n ortonormaalin ominaisvektorin kanta. Näiden vektorien muodostama matriisi X on ortogonaalinen ja X 1 = X T. Näin ollen A = XDX 1 = XDX T ja Asettamalla X T x = y, saadaan (X 1 = X T ) jolloin Q tulee muotoon Q = x T XDX T x (24) x = Xy, (25) Q = y T Dy = λ 1 y λ 2 y λ n y 2 n (26) 13

14 Näin ollen on voimassa pääakselilause: Muunnos (25) muuntaa neliöllisen muodon Q = x T Ax = n j=1 n a jk x j x k (27) k=1 pääakselimuotoon (26), missä λ 1,, λ n ovat symmetrisen matriisin A ominaisarvoja ja X on ortogonaalinen matriisi, jonka pystyvektorit ovat vastaavia ominaisvektoreita x 1,,x n. Esim. Muuta pääakselimuotoon neliömuoto Mitä käyrää neliömuoto esittää? Q = 17x x 1 x x 2 2 = 128. (28) 14

15 8 Vektoriavaruudet, Sisätuloavaruudet, Lineaarimuunnokset Ei tyhjä joukko V, jossa on alkiot a,b, on reaalinen vektoriavaruus (reaalinen lineaarinen avaruus) ja sen alkioita kutsutaan vektoreiksi, jos V :ssä on määritelty 1. Vektorien yhteenlasku: Jokaista vektoriparia a ja b vastaa yksikäsitteinen vektori a + b, joka toteuttaa aksiomat: (a) Vaihdannaisuus: a + b = b + a a, b (b) Liitännäisyys: (u + v) + w = u + (v + w) u,v,w (c) On olemassa yksikäsitteinen nollavektori s.e. a V, a +0 = a (d) a V on olemassa yksikäsitteinen vektori a s.e. a + ( a) = 0 15

16 2. Skalaarilla kertominen: Jokaista reaalilukua (skalaaria) c ja vektoria a vastaa yksikäsitteinen V :hen kuuluva vektori ca, jota kutsutaan c:n ja a:n tuloksi, joka toteuttaa seuravat aksiomat: (a) Osittelulaki: Jokaiselle skalaarille c ja vektoreille a ja b V :ssä c(a + b) = ca + cb (29) (b) Osittelulaki: Kaikille skalaareille c ja k ja jokaiselle vektorille a V :ssä (c + k)a = ca + ka (30) (c) Liitännäisyys: Kaikille skalaareille c ja k ja jokaiselle vektorille a V :ssä c(ka) = (ck)a (31) (d) Jokaiselle a avaruudessa V 1a = a (32) 16

17 8.1 Sisätuloavaruudet Reaalinen vektoriavaruus on reaalinen sisätuloavaruus, jos jokaiseen vektoripariin a ja b V :ssä liittyy reaaliluku, jota merkitään (a,b) ja jolla on seuraavat ominaisuudet: 1. Lineaarisuus: Kaikilla skalaareilla q 1 ja q 2 ja kaikilla vektoreilla a, b, c V :ssä on voimassa: 2. Symmetria: Kaikilla a ja b V :ssä (q 1 a + q 2 b,c) = q 1 (a,c) + q 2 (b,c) (33) (a,b) = (b,a) (34) 3. Positiividefiniittisyys: Jokaiselle a:lle V :ssä (a,a) 0 (a,a) = 0 a = 0 (35) 17

18 Vektorit, joiden sisätulo on nolla, ovat ortogonaalisia. Vektorin normi (pituus) määritellään a = (a,a) (36) Vektori, jonka normi = 1 on yksikkövektori Voidaan osoittaa myös Schwarzin epäyhtälö (a, b) a b, (37) kolmioepäyhtälö a + b a + b (38) ja suunnikasyhtälö a + b 2 a b 2 = 2( a 2 + b 2 ) (39) 18

19 8.2 Lineaarimuunnokset Jos jokaista vektoria x vektoriavaruudessa X vastaa yksikäsitteinen vektori y vektoriavaruudessa Y, kyseessä on kuvaus (tai muunnos tai opeaattori) X:stä Y :hyn, merkitään F(x) tai Fx. Vektori y on vektorin x kuva. F on lineaarinen kuvaus, jos kaikilla vektoreilla x ja v X:ssä ja skalaareille c F(v + x) = F(v) + F(x) F(cx) = cf(x) (40) Jos X = R n ja Y = R m, reaalinen m n matriisi A = [a jk ] määrittelee muunnoksen R n :stä R m :ään: y = Ax (41) 19

20 Matriisia A kutsutaan kuvauksen F esitykseksi R n :n ja R m :n kantojen suhteen. Esimerkki standardikannasta: R 3 :n standardikanta = e (1) = i, e (2) = j, e (3) = k i = 0 j = 1 k = 0 (42) Jos A on ei singulaarinen neliömatriisi, voidaan määritellä käänteismuunnos x = A 1 x (43) 20

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

Yleiset lineaarimuunnokset

Yleiset lineaarimuunnokset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:

Lisätiedot

Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen.

Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Pns ratkaisu (Kr. 20.5, Lay 6.5 C-II/KP-II, 20, Kari Eloranta Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Määritelmä Jos A on

Lisätiedot

Polynomimatriisit. Antti Lindberg. Matematiikan pro gradu -tutkielma

Polynomimatriisit. Antti Lindberg. Matematiikan pro gradu -tutkielma Polynomimatriisit Antti Lindberg Matematiikan pro gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kesä 2014 Tiivistelmä: Antti Lindberg, Polynomimatriisit, Matematiikan pro

Lisätiedot

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0 Tensorialgebroista Esitysteorian kesäopintopiiri, Turun yliopisto, 2012 Jyrki Lahtonen Olkoon k jokin skalaarikunta. Kerrataan k-algebran käsite: A on k-algebra, jos se on sekä rengas että vektoriavaruus

Lisätiedot

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät 1 1 LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT Muotoa 11 Lineaariset yhtälöryhmät (1) a 1 x 1 + a x + + a n x n b oleva yhtälö on tuntemattomien x 1,, x n lineaarinen yhtälö, jonka kertoimet ovat luvut a 1,,

Lisätiedot

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen

Lisätiedot

TMA.111 Matemaattinen analyysi c Matti Laaksonen, 2003

TMA.111 Matemaattinen analyysi c Matti Laaksonen, 2003 TMA.111 Matemaattinen analyysi c Matti Laaksonen, 2003 Vaasan Yliopisto, 2003 Teknillinen tiedekunta Matemaattisten tieteiden laitos PL 700 (Wolffintie 34) 65101 VAASA Vaasan yliopisto Matemaattinen analyysi

Lisätiedot

HILBERTIN AVARUUDET 802652S MIKAEL LINDSTRÖM KEVÄÄN 2010 ANALYYSI 3 -LUENTOJEN PERUSTEELLA TOIMITTANEET TOMI ALASTE JA LAURI BERKOVITS

HILBERTIN AVARUUDET 802652S MIKAEL LINDSTRÖM KEVÄÄN 2010 ANALYYSI 3 -LUENTOJEN PERUSTEELLA TOIMITTANEET TOMI ALASTE JA LAURI BERKOVITS HILBRTIN AVARUUDT 802652S MIKAL LINDSTRÖM KVÄÄN 2010 ANALYYSI 3 -LUNTOJN PRUSTLLA TOIMITTANT TOMI ALAST JA LAURI BRKOVITS Sisältö 1 Hilbertin Avaruudet 3 1.1 Normi- ja L p -avaruudet........................

Lisätiedot

Mika Hirvensalo. Insinöörimatematiikka D 2015

Mika Hirvensalo. Insinöörimatematiikka D 2015 Mika Hirvensalo Insinöörimatematiikka D 2015 Sisältö 1 Lineaarialgebran peruskäsitteitä............................................... 5 1.1 Lineaariset yhtälöryhmät..................................................

Lisätiedot

LINEAARIALGEBRA, osat a ja b

LINEAARIALGEBRA, osat a ja b LINEAARIALGEBRA, osat a ja b Martti E. Pesonen Epsilon ry. huhtikuuta 06 LUKIJALLE Lineaarialgebran kursseja edeltäviksi opinnoiksi suositellaan jotain lukion matematiikkaa teoreettiselta kannalta täydentävää

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

Matriisilaskenta. Luentomoniste JOUNI SAMPO

Matriisilaskenta. Luentomoniste JOUNI SAMPO Matriisilaskenta Luentomoniste JOUNI SAMPO Kevät 2014 BM20A1601 Matriisilaskenta (4 op) Viikko 1 Lineaariset yhtälöryhmät ja matriisit, sovellustilanteita lämpöjakauma levyssä interpolaatiopolynomi numeerinen

Lisätiedot

169. 170. 171. 172. 173. 174. 5. Geometriset avaruudet. 5.1. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus

169. 170. 171. 172. 173. 174. 5. Geometriset avaruudet. 5.1. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus 5. Geometriset avaruudet 5.. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus 69. Olkoon {b,b 2 } tason E 2 kanta ja olkoon u = 2b + 3b 2, v = 3b + 2b 2, w = b 2b 2. Määritä vektoreiden 2u v + w ja

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R}, Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,

Lisätiedot

Matriisilaskenta. Ville Tilvis

Matriisilaskenta. Ville Tilvis Matriisilaskenta Ville Tilvis 1 joulukuuta 2013 Sisältö Johdanto 1 1 Matriisit ja vektorit 2 11 Nimityksiä 2 12 Peruslaskutoimitukset 4 2 Lineaariset yhtälöryhmät 10 21 Lineaarinen yhtälö ja yhtälöryhmä

Lisätiedot

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

Insinöörimatematiikka IA

Insinöörimatematiikka IA Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x 8. Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme näiltä kahdella laskutoimituksella varustetuilta

Lisätiedot

Kompleksiluvut ja kvaterniot kiertoina

Kompleksiluvut ja kvaterniot kiertoina Kompleksiluvut ja kvaterniot kiertoina Heikki Polvinen Matematiikan pro gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Syksy 0 Tiivistelmä: Heikki Polvinen, Kompleksiluvut

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

Differentiaaliyhtälöt

Differentiaaliyhtälöt Differentiaaliyhtälöt Differentiaaliyhtälöksi (lyh. DY) sanotaan yhtälöä, jossa on tuntemattomana jokin funktio y(x) ja jossa esiintyy sen derivaattoja y, y, y, y (4),... Esimerkiksi y + y = x, y y + y

Lisätiedot

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori Jarkko Peltomäki Aliryhmän sentralisaattori ja normalisaattori Matematiikan aine Turun yliopisto Syyskuu 2009 Sisältö 1 Johdanto 2 2 Määritelmiä ja perusominaisuuksia 3 2.1 Aliryhmän sentralisaattori ja

Lisätiedot

Lidskiin lause trace-luokan operaattoreille. Joona Lindström

Lidskiin lause trace-luokan operaattoreille. Joona Lindström Lidskiin lause trace-luokan operaattoreille Joona Lindström HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department

Lisätiedot

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos

Lisätiedot

LAUSEKKEET JA NIIDEN MUUNTAMINEN

LAUSEKKEET JA NIIDEN MUUNTAMINEN LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua

Lisätiedot

Vektorit. Vektorin luominen... 192 Vektorin tuominen näyttöön... 195 Vektorin koon ja alkioiden muokkaaminen... 195 Vektorin poistaminen...

Vektorit. Vektorin luominen... 192 Vektorin tuominen näyttöön... 195 Vektorin koon ja alkioiden muokkaaminen... 195 Vektorin poistaminen... 12 Vektorit Vektorin luominen... 192 Vektorin tuominen näyttöön... 195 Vektorin koon ja alkioiden muokkaaminen... 195 Vektorin poistaminen... 196 TI -86 M1 M2 M3 M4 M5 F1 F2 F3 F4 F5 192 Luku 12: Vektorit

Lisätiedot

Kvaterniot. Anna-Kaisa Markkanen. Matematiikan pro gradu -tutkielma

Kvaterniot. Anna-Kaisa Markkanen. Matematiikan pro gradu -tutkielma Kvaterniot Anna-Kaisa Markkanen Matematiikan pro gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kesä 014 Tiivistelmä: A-K. Markkanen, Kvaterniot (engl. Quaternions), matematiikan

Lisätiedot

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että LUKUTEORIA A Harjoitustehtäviä, kevät 2013 1. Olkoot a, b, c Z, p P ja k, n Z +. (a) Osoita, että jos niin Osoita, että jos niin (c) Osoita, että jos niin (d) Osoita, että (e) Osoita, että a bc ja a c,

Lisätiedot

Liite 2. Ryhmien ja kuntien perusteet

Liite 2. Ryhmien ja kuntien perusteet Liite 2. Ryhmien ja kuntien perusteet 1. Ryhmät 1.1 Johdanto Erilaisissa matematiikan probleemoissa törmätään usein muotoa a + x = b tai a x = b oleviin yhtälöihin, joissa tuntematon muuttuja on x. Lukujoukkoja

Lisätiedot

Esipuhe. Sirkka-Liisa Eriksson

Esipuhe. Sirkka-Liisa Eriksson 3 Esipuhe Matematiikka tieteiden kuningatar ja palvelija on lukioihin ja ammattikorkeakouluihin suunnattuun koulukohtaiseen valinnaiseen syventävään kurssiin perustuva kirja. Kirjan tarkoituksena on kerrata

Lisätiedot

Jos havaitaan päivän ylin lämpötila, mittaustuloksissa voi esiintyä seuraavantyyppisiä virheitä:

Jos havaitaan päivän ylin lämpötila, mittaustuloksissa voi esiintyä seuraavantyyppisiä virheitä: Mittausten virheet Jos havaitaan päivän ylin lämpötila, mittaustuloksissa voi esiintyä seuraavantyyppisiä virheitä: 1. Luemme lämpömittarin vain asteen tarkkuudella. Ehkä kyseessä on digitaalimittari,

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut Kompleksiluvut 1/6 Sisältö Kompleksitaso Lukukäsitteen vaiheittainen laajennus johtaa luonnollisista luvuista kokonaislukujen ja rationaalilukujen kautta reaalilukuihin. Jokaisessa vaiheessa ratkeavien

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

2. Polynomien jakamisesta tekijöihin

2. Polynomien jakamisesta tekijöihin Imaginaariluvut mielikuvitustako Koska yhtälön x 2 x 1=0 diskriminantti on negatiivinen, ei yhtälöllä ole reaalilukuratkaisua Tästä taas seuraa, että yhtälöä vastaava paraabeli y=x 2 x 1 ei leikkaa y-akselia

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

Kvanttimekaniikan tulkinta

Kvanttimekaniikan tulkinta Kvanttimekaniikan tulkinta 20.1.2011 1 Klassisen ja kvanttimekaniikan tilastolliset formuloinnit 1.1 Klassinen mekaniikka Klassisen mekaniikan systeemin tilaa kuvaavat kappaleiden koordinaatit ja liikemäärät

Lisätiedot

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Numeerinen integrointi Analyyttisesti derivointi triviaalia, integrointi vaikeaa. Numeerisesti laskettaessa tilanne on päinvastainen. Integrointi on yhteenlaskua, joka on tasoittava operaatio: lähtötietojen

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

Neljän alkion kunta, solitaire-peli ja

Neljän alkion kunta, solitaire-peli ja Neljän alkion kunta, solitaire-peli ja taikaneliöt Kalle Ranto ja Petri Rosendahl Matematiikan laitos, Turun yliopisto Nykyisissä tietoliikennesovelluksissa käytetään paljon tekniikoita, jotka perustuvat

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

Sijoitus integraaliin

Sijoitus integraaliin 1 / 32 Muunnetaan funktion f integraali yli joukon U integraaliksi yli joukon V tekemällä sijoitus x = g(y), missä g : V U on bijektio (ainakin), kun se rajoitetaan funktioksi g : V U. Uudeksi integroitavaksi

Lisätiedot

802360A Inversio-ongelmien peruskurssi (Kevät 2014) Sari Lasanen

802360A Inversio-ongelmien peruskurssi (Kevät 2014) Sari Lasanen 802360A Inversio-ongelmien peruskurssi (Kevät 204) Sari Lasanen 3. maaliskuuta 204 2 Inversio-ongelmien peruskurssi (4 op) Osaamistavoitteet: Kurssin onnistuneen suorittamisen jälkeen opiskelija tunnistaa

Lisätiedot

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet Mikkola/Ärölä 4. harjoituksen ratkaisut Teht. 1 Jacobin determinantin J det F materiaalisen aikaderivaatan laskemiseksi lasketaan

Lisätiedot

Sarjat ja differentiaaliyhtälöt

Sarjat ja differentiaaliyhtälöt Sarjat ja differentiaaliyhtälöt Johdanto Tämä luentomoniste on tarkoitettu korvaamaan luentomuistiinpanoja Sarjat ja differentiaaliyhtälöt-kurssilla. Tämä ei kuitenkaan ole oppikirja, mikä tarkoittaa sitä,

Lisätiedot

Matemaattiset menetelmät II

Matemaattiset menetelmät II Matemaattiset menetelmät II 5. helmikuuta 214 Esipuhe Tämä on 1. versio Matemaattiset menetelmät II-kurssin opetusmonisteesta, joka perustuu Vaasan yliopistossa luennoimaani vastaavan nimiseen kurssiin.

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

1 Euklidiset avaruudet R n

1 Euklidiset avaruudet R n 1 Euklidiset avaruudet R n Tässä osiossa käymme läpi Euklidisten avaruuksien R n perusominaisuuksia. Olkoon n N + positiivinen kokonaisluku. Euklidinen avaruus R n on joukko R n = {(x 1, x 2,..., x n )

Lisätiedot

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. Kaksi järjestettyä paria ovat samat, jos niillä on samat ensimmäiset alkiot ja samat toiset alkiot:

Lisätiedot

Matemaattinen Analyysi, k2011, L2

Matemaattinen Analyysi, k2011, L2 Matemaattinen Analyysi, k2011, L2 Lineaarikombinaatio 1 Esimerkki 1 Olkoon yrityksen A osakkeen arvo 20eja yrityksen B osakkeen arvo 10e. Sijoittaja tarkastelee omaisuutensa rakennetta ryhmittelemällä

Lisätiedot

TAMPEREEN TEKNILLINEN YLIOPISTO Teknis-luonnontieteellinen osasto

TAMPEREEN TEKNILLINEN YLIOPISTO Teknis-luonnontieteellinen osasto TAMPEREEN TEKNILLINEN YLIOPISTO Teknis-luonnontieteellinen osasto Minna Honkiniemi TEKNILLISEN YLIOPISTON PERUSMATEMATIIKAN OPISKELIJOIDEN OPISKELUORIENTAATIOIDEN JA OPINTOMENESTYKSEN TUTKIMINEN ITSEORGANISOITUVIEN

Lisätiedot

(Monisteen Esimerkki 2.6.8) Olkoon R polynomifunktioiden rengas R[x]. Kiinnitetään c R. Merkitään

(Monisteen Esimerkki 2.6.8) Olkoon R polynomifunktioiden rengas R[x]. Kiinnitetään c R. Merkitään Monisteen Esimerkki 2.6.8 Olkoon R polynomifunktioiden rengas R[x]. Kiinnitetään c R. Merkitään I c = {px R pc = 0}. Osoitetaan, että I c on renkaan R ihanne. Ratkaisu: Vakiofunktio 0 R I c joten I c.

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

a b c d + + + + + + + + +

a b c d + + + + + + + + + 28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista

Lisätiedot

Algebra I. Jokke Häsä ja Johanna Rämö. Matematiikan ja tilastotieteen laitos Helsingin yliopisto

Algebra I. Jokke Häsä ja Johanna Rämö. Matematiikan ja tilastotieteen laitos Helsingin yliopisto Algebra I Jokke Häsä ja Johanna Rämö Matematiikan ja tilastotieteen laitos Helsingin yliopisto Kevät 2011 Sisältö 1 Laskutoimitukset 6 1.1 Työkalu: Joukot ja kuvaukset..................... 6 1.1.1 Joukko..............................

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta)

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) Kvanttimekaniikassa yhden hiukkasen systeemin täydellisen kuvauksen antaa tilavektori, joka on

Lisätiedot

27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.

27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÔ ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Hiiri juoksee tasaisella

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2007) 1 Jakaumien tunnusluvut >> Odotusarvo Varianssi Markovin ja Tshebyshevin

Lisätiedot

Avaruuden muunnokset Jukka Liukkonen 24. joulukuuta 2009

Avaruuden muunnokset Jukka Liukkonen 24. joulukuuta 2009 Avaruuden muunnokset Jukka Liukkonen 24. joulukuuta 2009 Sisältö 1 Johdanto 1 2 Vektorilaskennan kertaus 3 2.1 Vektorit koordinaatistossa........................... 7 3 Siirto 9 3.1 Siirto koordinaatistossa.............................

Lisätiedot

OPTIMOINTITEHTÄVIEN RATKAISEMINEN

OPTIMOINTITEHTÄVIEN RATKAISEMINEN OPTIMOINTITEHTÄVIEN RATKAISEMINEN JUHA HAATAJA CSC Optimointitehtävien ratkaiseminen Optimointitehtävien ratkaiseminen Juha Haataja Tieteen tietotekniikan keskus CSC Tämän teoksen tekijänoikeudet kuuluvat

Lisätiedot

Alijärjestelmän mittaus ja muita epätäydellisiä mittauksia

Alijärjestelmän mittaus ja muita epätäydellisiä mittauksia T-79.4001 Tietojenkäsittelyteorian seminaari 0..008 1 Alijärjestelmän mittaus ja muita epätäydellisiä mittauksia Loepp & Wootters, Protecting Information, luvut.4-.5 T-79.4001 Tietojenkäsittelyteorian

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Juho Leppäkangas Fourier-muunnos ja epätarkkuusperiaate

Juho Leppäkangas Fourier-muunnos ja epätarkkuusperiaate Juho Leppäkangas Fourier-muunnos ja epätarkkuusperiaate kandidaatintyö Tarkastajat: Professori Keijo Ruohonen TkT Simo Ali-Löytty TIIVISTELMÄ TAMPEREEN TEKNILLINEN YLIOPISTO Teknis-luonnontieteellinen

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

Kansainväliset matematiikkaolympialaiset 2008

Kansainväliset matematiikkaolympialaiset 2008 Kansainväliset matematiikkaolympialaiset 2008 Tehtävät ja ratkaisuhahmotelmat 1. Teräväkulmaisen kolmion ABC korkeusjanojen leikkauspiste on H. Pisteen H kautta kulkeva ympyrä, jonka keskipiste on sivun

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

Äärellisesti generoitujen Abelin ryhmien peruslause

Äärellisesti generoitujen Abelin ryhmien peruslause Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.

Lisätiedot

Matlab-perusteet. Jukka Jauhiainen. OAMK / Tekniikan yksikkö. Hyvinvointiteknologian koulutusohjelma

Matlab-perusteet. Jukka Jauhiainen. OAMK / Tekniikan yksikkö. Hyvinvointiteknologian koulutusohjelma Matlab-perusteet Jukka Jauhiainen OAMK / Tekniikan yksikkö Hyvinvointiteknologian koulutusohjelma Tämän materiaalin tarkoitus on antaa opiskelijalle lyhyehkö johdanto Matlabohjelmiston perusteisiin. Matlabin

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

Valitse ruudun yläosassa oleva painike Download Scilab.

Valitse ruudun yläosassa oleva painike Download Scilab. Luku 1 Ohjeita ohjelmiston Scilab käyttöön 1.1 Ohjelmiston lataaminen Ohjeet ohjelmiston lataamiseen Windows-koneelle. Mene verkko-osoitteeseen www.scilab.org. Valitse ruudun yläosassa oleva painike Download

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot

Lisätiedot

Muutama huomio momenttimenetelmän käytöstä kehärakenteiden analysoinnissa

Muutama huomio momenttimenetelmän käytöstä kehärakenteiden analysoinnissa Rakenteiden Mekaniikka Vol. 42, Nro 2, 2009, s. 75 82 Muutama huomio momenttimenetelmän käytöstä kehärakenteiden analysoinnissa Reijo Kouhia Tiivistelmä. Momenttimenetelmä on käyttökelpoinen ratkaisutapa

Lisätiedot