Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Koko: px
Aloita esitys sivulta:

Download "Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0."

Transkriptio

1 Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Jos jono ( v 1, v 2,..., v k ) on vapaa, sanotaa, että vektorit v 1, v 2,..., v k ovat lineaarisesti riippumattomia. Jos jono ei ole vapaa, sanotaan, että se on sidottu. LM1, Kesä /218

2 Esimerkki 19 Merkitään v 1 = (1, 2) ja v 2 = ( 3, 1). Onko jono ( v 1, v 2 ) vapaa vai sidottu? v 1 v 2 LM1, Kesä /218

3 Oletetaan, että c 1 v 1 + c 2 v 2 = 0 joillakin reaaliluvuilla c 1 ja c 2. Tällöin c 1 (1, 2) + c 2 ( 3, 1) = (0, 0) eli komponentteittain: { c1 3c 2 = 0 2c 1 c 2 = 0. Ratkaistaan tästä c 1 ja c 2 : [ ] [ ] r 2 2r r 2 /5 [ ] [ ] r1 + 3r Ainoa ratkaisu on c 1 = 0 ja c 2 = 0. Jono ( v 1, v 2 ) on vapaa. LM1, Kesä /218

4 Esimerkki 20 Merkitään v 1 = (1, 2), v 2 = ( 3, 1) ja v 3 = ( 1, 1). Onko jono ( v 1, v 2, v 3 ) vapaa vai sidottu? v 3 v 1 v 2 LM1, Kesä /218

5 Oletetaan, että c 1 v 1 + c 2 v 2 + c 3 v 3 = 0 joillakin c 1, c 2, c 3 R. Tällöin c 1 (1, 2) + c 2 ( 3, 1) + c 3 ( 1, 1) = (0, 0) eli komponentteittain: { c1 3c 2 c 3 = 0 2c 1 c 2 + c 3 = 0. Ratkaistaan tästä c 1 ja c 2 : [ ] [ ] r 2 2r r 2 /5 [ ] [ ] r1 + 3r / / /5 0 Voidaan valita esimerkiksi c 3 = 5, jolloin c 2 = 3 ja c 1 = 4. Näin 4 v 1 3 v v 3 = 0. Jono ( v 1, v 2, v 3 ) on sidottu. LM1, Kesä /218

6 5 v 3 4 v 1 3 v 2 4 v 1 3 v v 3 = 0 LM1, Kesä /218

7 Esimerkki 21 Merkitään w 1 = (2, 1) ja w 2 = ( 4, 2). Onko jono ( w 1, w 2 ) vapaa vai sidottu? w 1 w 2 Esimerkiksi 2 w 1 + w 2 = 0, joten jono ( w 1, w 2 ) on sidottu. LM1, Kesä /218

8 Vähintään kahdesta vektorista muodostuva vektorijono on sidottu, jos ja vain jos jokin sen vektoreista voidaan ilmaista toisten lineaarikombinaationa: Lause 15 Oletetaan, että v 1,..., v k R n, missä k 2 ja n {1, 2,...}. (a) Jono ( v 1 ) on sidottu, jos ja vain jos v = 0. (b) Jono ( v 1,..., v k ) on sidottu, jos ja vain jos v i span( v 1,..., v i 1, v i+1,..., v k ) jollakin i {1,..., k}. LM1, Kesä /218

9 Perustelu: (a) Tarkastellaan eri mahdollisuudet: Jos v 1 = 0, niin esim. 8 v 1 = 8 0 = 0. Siis jono ( v 1 ) on sidottu. Jos v 1 0, niin t v 1 = 0 t = 0. Siis jono ( v 1 ) on vapaa. Havaitaan, että jono ( v 1 ) on sidottu, jos ja vain jos v 1 = 0. (b) : Oletetaan, että jono ( v 1,..., v k ) on sidottu. Tällöin c 1 v c k v k = 0, missä ainakin yksi kertoimista c i 0. Oletetaan, että esim. c 2 0. Tällöin c 2 v 2 = c 1 v 1 c 3 v 3 c k v k ja v 2 = c 1 v 1 + c 3 c 2 c 2 v c k c 2 v k. Tässä jokainen c i /c 2 R, joten v 2 span( v 1, v 3,..., v k ). LM1, Kesä /218

10 : Oletetaan, että esimerkiksi v 3 span( v 1, v 2, v 4,..., v k ). Tällöin v 3 = a 1 v 1 + a 2 v 2 + a 4 v a k v k joillakin reaaliluvuilla a 1, a 2, a 4,..., a k. Siten 0 = a 1 v 1 + a 2 v 2 v 3 + a 4 v a k v k. Tässä ainakin vektorin v 3 kerroin 1 0, joten jono ( v 1,..., v k ) on sidottu. LM1, Kesä /218

11 Esimerkki 22 Merkitään v 1 = (1, 1, 0), v 2 = (1, 1, 0), v 3 = (0, 0, 2) ja v 4 = (3, 1, 0). Tällöin esimerkiksi 2 v 1 + v v 3 v 4 = 0, joten jono ( v 1, v 2, v 3, v 4 ) on sidottu. Lisäksi esimerkiksi v 2 = 2 v v 3 + v 4 mutta v 3 a v 1 + b v 2 + c v 4 kaikilla a, b, c R. LM1, Kesä /218

12 Lause 16 Vapaan jonon osajono on vapaa. Huom. Osajono tarkoittaa jonoa, joka saadaan jättämällä alkuperäisestä jonosta pois yksi tai useampia vektoreita. Myös alkuperäinen jono sellaisenaan on yksi osajono. Lauseista 16 ja 15 seuraa, että vapaassa jonossa ( v 1, v 2,..., v k ) ei ole nollavektoria; jokainen vektori esiintyy vain kerran; v i v j kaikilla i j. LM1, Kesä /218

13 Lauseen 16 perustelun idea: Oletetaan, että v 1,..., v 5 R n ja jono ( v 1,..., v 5 ) on vapaa. Osoitetaan, että sen osajono ( v 2, v 4, v 5 ) on vapaa. Tarkastellaan yhtälöä x v 2 + y v 4 + z v 5 = 0: x v 2 + y v 4 + z v 5 = 0 0 v 1 + x v v 3 + y v 4 + z v 5 = 0 Oletuksen mukaan jono ( v 1, v 2, v 3, v 4, v 5 ) on vapaa, joten oikeanpuoleinen yhtälö toteutuu vain, jos kaikki kertoimet ovat nollia. Tästä seuraa, että vasemmanpuoleisen yhtälön ainoa ratkaisu on x = 0, y = 0 ja z = 0. Siis jono ( v 2, v 4, v 5 ) on vapaa. LM1, Kesä /218

14 Jos virittäjäjono on vapaa, niin kaikki aliavaruuden vektorit voidaan esittää tasan yhdellä tavalla virittäjävektorien lineaarikombinaatioina: Lause 17 Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,...}. Jono ( v 1, v 2,..., v k ) on vapaa, jos ja vain jos jokainen aliavaruuden span( v 1, v 2,..., v k ) alkio voidaan kirjoittaa täsmälleen yhdellä tavalla vektorien v 1, v 2,..., v k lineaarikombinaationa. LM1, Kesä /218

15 Perustelu: : Oletetaan, että jono ( v 1, v 2,..., v k ) on vapaa. Oletetaan, että w span( v 1, v 2,..., v k ). Tämä tarkoittaa, että w voidaan kirjoittaa ainakin yhdellä tavalla vektoreiden v 1,..., v k lineaarikombinaationa. Oletetaan nyt, että w = a 1 v a k v k ja w = b 1 v b k v k joillakin a 1,..., a k, b 1,..., b k R. Tällöin a 1 v a k v k = b 1 v b k v k, joten a 1 v a k v k (b 1 v b k v k ) = 0 ja edelleen (a 1 b 1 ) v (a k b k ) v k = 0. Jono ( v 1,..., v k ) on oletuksen mukaan vapaa, joten viimeisestä yhtälöstä seuraa, että a 1 b 1 = 0, a 2 b 2 = 0,..., a k b k = 0. Siten a 1 = b 1,..., a k = b k. Näin ollen vektoria w ei voida kirjoittaa lineaarikombinaationa usealla eri tavalla. LM1, Kesä /218

16 : Oletetaan, että jokainen aliavaruuden span( v 1,..., v k ) alkio voidaan kirjoittaa täsmälleen yhdellä tavalla vektorien v 1,..., v k lineaarikombinaationa. Osoitetaan, että jono ( v 1,..., v k ) on vapaa. Sitä varten oletetaan, että luvut c 1,..., c k R ovat sellaisia, että c 1 v 1 + c 2 v c k v k = 0. Koska vektori 0 on aliavaruuden span( v 1,..., v k ) alkio, se voidaan kirjoittaa vektorien lineaarikombinaationa täsmälleen yhdellä tavalla. Tiedetään, että 0 v v v k = 0, joten täytyy päteä c 1 = 0, c 2 = 0,..., c k = 0. Siten jono ( v 1, v 2,..., v k ) on vapaa. LM1, Kesä /218

17 Homogeeniset yhtälöryhmät Määritelmä Lineaarinen yhtälöryhmä, jonka kaikki vakiot ovat 0, on nimeltään homogeeninen yhtälöryhmä. a 11 x 1 + a 12 x a 1n x n = 0 a 21 x 1 + a 22 x a 2n x n = 0. =. a m1 x 1 + a m2 x a mn x n = 0 Huom. Homogeenisella yhtälöryhmällä on aina ainakin yksi ratkaisu: x 1 = 0, x 2 = 0,..., x n = 0. LM1, Kesä /218

18 Lause 18 Jos homogeenisessa yhtälöryhmässä tuntemattomien määrä n on suurempi kuin yhtälöiden määrä m, niin homogeenisella yhtälöryhmällä on äärettömän monta ratkaisua. Esim. n = 5 ja m = 3: a 11 x 1 + a 12 x 2 + a 13 x 3 + a 14 x 4 + a 15 x 5 = 0 a 21 x 1 + a 22 x 2 + a 23 x 3 + a 34 x 4 + a 25 x 5 = 0 a 31 x 1 + a 32 x 2 + a 33 x 3 + a 34 x 4 + a 35 x 5 = 0 Homogeenisella yhtälöryhmällä on ainakin yksi ratkaisu. Johtavia alkioita enintään yksi joka rivillä; siis enintään m kpl. Vapaita muuttujia on ainakin yksi, koska tuntemattomien määrä n > m; ts. yhtälöryhmän matriisissa on ainakin yksi sarake, jossa ei ole johtavaa alkiota! LM1, Kesä /218

19 Lause 19 Oletetaan, että v 1, v 2,..., v m R n, missä n {1, 2,...}. Jos m > n, niin jono ( v 1, v 2,..., v m ) on sidottu. Huom. Merkitsemällä v k = (v 1k, v 2k,..., v nk ) kaikilla k {1,..., m} saadaan yhtälöä x 1 v 1 + x 2 v x m v m = 0 vastaavaksi matriisiksi v 11 x 1 + v 12 x v 1n x m = 0 v 21 x 1 + v 22 x v 2n x m = 0. =. v n1 x 1 + v n2 x v nm x m = 0. LM1, Kesä /218

20 Huom. Jos homogeenisessa yhtälöryhmässä tuntemattomien määrä n on pienempi tai yhtä suuri kuin yhtälöiden määrä m, ei lausetta 18 voi käyttää. Ratkaisuja voi olla yksi (x 1 = 0,..., x n = 0) tai äärettömän monta. Esim. n = 2 ja m = 4: a 11 x 1 + a 12 x 2 = 0 a 21 x 1 + a 22 x 2 = 0 a 31 x 1 + a 32 x 2 = 0 a 41 x 1 + a 42 x 2 = 0 LM1, Kesä /218

21 Esimerkki 23 Oletetaan, että v 1, v 2, v 3 R n, missä n {1, 2,... }. Oletetaan lisäksi, että jono ( v 1, v 2, v 3 ) on vapaa. Onko jono tällöin vapaa? ( v 1 + v 2 + v 3, 2 v 1 v 2 + v 3, v 3 4 v 1 5 v 2 ) Oletetaan, että c 1, c 2 ja c 3 ovat sellaisia reaalilukuja, että c 1 ( v 1 + v 2 + v 3 ) + c 2 (2 v 1 v 2 + v 3 ) + c 3 ( v 3 4 v 1 5 v 2 ) = 0. Muokataa yhtälöä kertomalla sulut auki: c 1 v 1 + c 1 v 2 + c 1 v 3 + 2c 2 v 1 c 2 v 2 + c 2 v 3 + c 3 v 3 4c 3 v 1 5c 3 v 2 = 0. LM1, Kesä /218

22 Otetaan yhteisiksi tekijöiksi vektorit v 1, v 2 ja v 3 : (c 1 + 2c 2 4c 3 ) v 1 + (c 1 c 2 5c 3 ) v 2 + (c 1 + c 2 + c 3 ) v 3 = 0. Jono ( v 1, v 2, v 3 ) on oletuksen mukaan vapaa, joten saatu yhtälö toteutuu, jos ja vain jos sen kaikki kertoimet ovat nollia. Saadaan homogeeninen yhtälöryhmä c 1 + 2c 2 4c 3 = 0 c 1 c 2 5c 3 = 0 c 1 + c 2 + c 3 = Ainoa ratkaisu on c 1 = 0, c 2 = 0 ja c 3 = 0, joten alkuperäinen jono on vapaa. LM1, Kesä /218

23 Kanta Oletetaan, että v 1,..., v j R n, missä n {1, 2,...}. Merkitään W = span( v 1,..., v j ); ts. W on vektoreiden v 1,..., v j virittämä aliavaruus. Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden W kanta, jos (a) W = span( w 1, w 2,..., w k ) (b) ( w 1, w 2,..., w k ) on vapaa. LM1, Kesä /218

24 Kanta Esimerkki 24 Merkitään ē 1 = (1, 0) ja ē 2 = (0, 1). Osoitetaan, että jono (ē 1, ē 2 ) on avaruuden R 2 kanta. ē 2 ē 1 Huom. Lukion merkinnöillä kysymyksessä on jono (ī, j). Vastaavasti voidaan osoittaa, että jono (ē 1,..., ē n ) on avaruuden R n kanta. Vektorin ē i komponentit ovat nollia lukuunottamatta i:nnettä komponenttia, joka on 1. LM1, Kesä /218

25 Esimerkin 24 ratkaisu Käytetään kannan määritelmää: (a) Oletetaan, että w R 2. Tällöin w = (w 1, w 2 ) joillakin reaaliluvuilla w 1 ja w 2. Havaitaan, että w = w 1 (1, 0) + w 2 (0, 1) = w 1 ī + w 2 j. Näin mikä tahansa avaruuden R 2 vektori voidaan esittää vektoreiden ī ja j lineaarikombinaationa. Siten span(ī, j) = R 2. (b) Oletetaan, että c 1 ī + c 2 j = 0 joillakin c 1, c 2 R. Tällöin c 1 (1, 0) + c 2 (0, 1) = (0, 0) eli (c 1, c 2 ) = (0, 0), mistä seuraa, että c 1 = 0 ja c 2 = 0. Siis jono (ī, j) on vapaa. LM1, Kesä /218

26 Lause 20 Kanta ja koordinaatit Jono ( w 1,..., w k ) on aliavaruuden W kanta, jos ja vain jos jokainen aliavaruuden W vektori voidaan kirjoittaa täsmälleen yhdellä tavalla vektoreiden w 1,..., w k lineaarikombinaationa. Lause 20 mahdollistaa seuraavan määritelmän: Määritelmä Oletetaan, että B = ( w 1,..., w k ) on aliavaruuden W kanta. Oletetaan, että ū W. Vektorin ū koordinaateiksi kannan B suhteen kutsutaan reaalilukuja a 1,..., a k, joilla ū = a 1 w a k w k. LM1, Kesä /218

27 Lauseen 20 perustelu: : Oletetaan, että jono ( w 1,..., w k ) on aliavaruuden W kanta. Tällöin kannan määritelmän nojalla W = span( w 1,..., w k ) ja jono ( w 1,..., w k ) on vapaa. Lauseesta 17 seuraa, että jokainen aliavaruuden W = span( w 1,..., w k ) vektori voidaan kirjoittaa tasan yhdellä tavalla vektoreiden w 1,..., w k lineaarikombinaationa. : Oletetaan, että jokainen aliavaruuden W vektori voidaan kirjoittaa täsmälleen yhdellä tavalla vektoreiden w 1,..., w k lineaarikombinaationa. Tästä seuraa ensinnäkin, että W = span( w 1,..., w k ). Tämän jälkeen voidaan käyttää lausetta 17, jonka mukaan jono ( w 1,..., w k ) on tällöin vapaa. Näin kannan määritelmän molemmat ehdot täyttyvät. Siis ( w 1,..., w k ) on aliavaruuden W kanta. LM1, Kesä /218

28 Kanta ja koordinaatit Esimerkki 25 Merkitään w 1 = (2, 1), w 2 = (1, 3) ja ū = (8, 3). (a) Osoita lauseen 20 avulla, että ( w 1, w 2 ) on avaruuden R 2 kanta. (b) Määritä vektorin ū koordinaatit avaruuden R 2 ns. luonnollisen kannan E 2 = (ē 1, ē 2 ) suhteen. (c) Määritä vektorin ū koordinaatit kannan B = ( w 1, w 2 ) suhteen. LM1, Kesä /218

29 (a) Oletetaan, että v R 2. Ratkaistaan yhtälö x 1 w 1 + x 2 w 2 = v eli yhtälö x 1 (2, 1) + x 2 (1, 3) = (v 1, v 2 ). Komponenteittain: { 2x1 + x 2 = v 1 x 1 + 3x 2 = v 2. [ ] 2 1 v v 2 [ ] 1 0 (3v1 v 2 )/ (v 1 + 2v 2 )/7 Tasan yksi ratkaisu riippumatta vektorista v R 2. Siis jono ( w 1, w 2 ) on avaruuden R 2 kanta lauseen 20 nojalla. LM1, Kesä /218

30 Kanta ja koordinaatit (b) Vektorin ū = (8, 3) koordinaatit avaruuden R 2 luonnollisen kannan E 2 = (ē 1, ē 2 ) suhteen ovat 8 ja 3, sillä ū = 8(1, 0) + 3(0, 1) = 8ē 1 + 3ē 2. 3ē 2 ē 2 ū = 8ē 1 + 3ē 2 ē 1 8ē 1 LM1, Kesä /218

31 (c) Vektorin ū = (8, 3) koordinaatit avaruuden R 2 kannan B = ( w 1, w 2 ) suhteen saadaan a-kohdan avulla. Sen mukaan x 1 w 1 +x 2 w 2 = ū, jos ja vain jos { x1 = (3u 1 u 2 )/7 = (24 3)/7 = 3 x 2 = (u 1 + 2u 2 )/7 = (8 + 6)/7 = 2. Siis ū = 3 w w 2 eli kysytyt koordinaatit ovat 3 ja 2. LM1, Kesä /218

32 Kanta ja koordinaatit 2 w 2 w 2 ū = 3 w w 2 w 1 3 w 1 LM1, Kesä /218

33 Kanta ja dimensio Lause 21 Aliavaruuden W jokaisessa kannassa on yhtä monta vektoria. Lause 21 mahdollistaa seuraavan määritelmän: Määritelmä Aliavaruuden W kannan vektorien lukumäärä on aliavaruuden W dimensio. Sitä merkitään dim(w ). Jos aliavaruuden dimensio on n, sanotaan, että aliavaruus on n-ulotteinen. LM1, Kesä /218

34 Kanta ja dimensio Esimerkki 26 Esimerkin 24 mukaan vektorit ē 1 = (1, 0) ja ē 2 = (0, 1) muodostavat avaruuden R 2 kannan. Siten dim(r 2 ) = 2. ē 2 ē 1 Esimerkki 27 Merkitään v 1 = (3, 1, 5), v 2 = (2, 1, 3) ja v 3 = (0, 5, 1). Olkoon W = span( v 1, v 2, v 3 ). Määritä aliavaruuden W dimensio. LM1, Kesä /218

35 Esimerkin 27 ratkaisu Oletetaan, että ū R 3. Ratkaistaan yhtälö x 1 v 1 + x 2 v 2 + x 3 v 3 = ū eli yhtälö x 1 (3, 1, 5) + x 2 (2, 1, 3) + x 3 (0, 5, 1) = (u 1, u 2, u 3 ). Komponentteittain 3x 1 + 2x 2 = u 1 x 1 + x 2 5x 3 = u 2 5x 1 + 3x 2 + x 3 = u u u u (u 1 + 3u 2 )/ u (5u 3 + u 2 8u 1 )/5 LM1, Kesä /218

36 Havaitaan, että yhtälöryhmällä on ratkaisu, jos ja vain jos 5u 3 + u 2 8u 1 = 0. Siten W = span( v 1, v 2, v 3 ) = { (x, y, z) 8x + y + 5z = 0 } on origon kautta kulkeva taso, jonka yksi normaali on ( 8, 1, 5). Jos 5u 3 + u 2 8u 1 = 0, niin x 3 on vapaa muuttuja ja voidaan valita x 3 = 0. Siten jokainen tason vektori voidaan ilmaista vektoreiden v 1 ja v 2 lineaarikombinaationa; ts. W = span( v 1, v 2, v 3 ) = span( v 1, v 2 ). Lisäksi v 1 v 2, joten lauseen 15 nojalla jono ( v 1, v 2 ) on vapaa. Näin jono ( v 1, v 2 ) on avaruuden W kanta ja siten dim(w ) = 2. LM1, Kesä /218

37 Lauseen 21 perustelu: Oletetaan, että B = ( v 1,..., v j ) ja C = ( w 1,..., w k ) ovat aliavaruuden W kantoja. Pyritään osoittamaan, että j = k. Tehdään se osoittamalla, että muut vaihtoehdot j < k ja k < j johtavat ristiriitaan. Oletetaan, että j < k. Tarkastellaan yhtälöä x 1 w x k w k = 0. (1) Koska B on W :n kanta, voidaan kaikki kannan C vektorit kirjoittaa kannan B vektorien lineaarikombinaatioina: w 1 = a 11 v 1 + a 12 v a 1j v j w 2 = a 21 v 1 + a 22 v a 2j v j. w k = a k1 v 1 + a k2 v a kj v j LM1, Kesä /218

38 Sijoittamalla nämä yhtälöön 1 saadaan yhtäpitävä yhtälö: x 1 (a 11 v 1 + a 12 v a 1j v j ) + x 2 (a 21 v 1 + a 22 v a 2j v j ) + + x k (a k1 v 1 + a k2 v a kj v j ) = 0 ja edelleen ryhmittelemällä: (x 1 a 11 + x 2 a x k a k1 ) v 1 + (x 1 a 12 + x 2 a x k a k2 ) v (x 1 a 1j + x 2 a 2j + + x k a kj ) v j = 0 LM1, Kesä /218

39 Jono B = ( v 1,..., v j ) on kanta, joten se on vapaa. Siten edellinen yhtälö toteutuu, jos ja vain jos kaikki kertoimet ovat nollia: x 1 a 11 + x 2 a x k a k1 = 0 x 1 a 12 + x 2 a x k a k2 = 0. =. x 1 a 1j + x 2 a 2j + + x k a kj = 0 Kyseessä on homogeeninen yhtälöryhmä, jossa tuntemattomien määrä k on suurempi kuin yhtälöiden määrä j. Lauseen 18 mukaan yhtälöryhmällä on muitakin ratkaisuja kuin x 1 = 0,..., x k = 0. Siis jono C = ( w 1,..., w k ) on sidottu. Ristiriita! Tapaus j > k käsitellään vastaavasti. LM1, Kesä /218

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218 Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kantavektorien kuvavektorit määräävät lineaarikuvauksen Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:

Lisätiedot

Esimerkki 8. Ratkaise lineaarinen yhtälöryhmä. 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3. 0 13 26 4 8 32 r 3 4r 1. LM1, Kesä 2014 47/68

Esimerkki 8. Ratkaise lineaarinen yhtälöryhmä. 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3. 0 13 26 4 8 32 r 3 4r 1. LM1, Kesä 2014 47/68 Esimerkki 8 Ratkaise lineaarinen yhtälöryhmä 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3 3 4 4 4 8 32 1 3 10 0 13 26 4 8 32 r 3 4r 1 1 3 10 3 4 4 r 2 3r 1 4 8 32 1 3 10 0 13 26 r 2 /13 0 4 8

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden

Lisätiedot

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin

Lisätiedot

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/310 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Lineaariset yhtälöryhmät ja matriisit

Lineaariset yhtälöryhmät ja matriisit Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin

Lisätiedot

Similaarisuus. Määritelmä. Huom.

Similaarisuus. Määritelmä. Huom. Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 25. lokakuuta 2015 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus... 111 16 Aliavaruus... 117 16.1 Vektoreiden

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista 29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

5 Lineaariset yhtälöryhmät

5 Lineaariset yhtälöryhmät 5 Lineaariset yhtälöryhmät Edellisen luvun lopun esimerkissä päädyttiin yhtälöryhmään, jonka ratkaisemisesta riippui, kuuluuko tietty vektori eräiden toisten vektorien virittämään aliavaruuteen Tämäntyyppisiä

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 9 heinäkuuta 2013 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Avaruuksien R 2 ja R 3 vektorit 4 11 Kaksiulotteisen

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 27. marraskuuta 2015 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Vektoriavaruuksien R 2 ja R 3 vektorit........................

Lisätiedot

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)

Lisätiedot

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus. 1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 11. syyskuuta 2016 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Vektoriavaruuksien R 2 ja R 3 vektorit........................

Lisätiedot

Matriisialgebra harjoitukset, syksy x 1 + x 2 = a 0

Matriisialgebra harjoitukset, syksy x 1 + x 2 = a 0 MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 22 Virittääkö vektorijoukko S vektoriavaruuden V, kun a V = R 3 ja S = {(1,0, 1,(2,0,4,( 5,0,2,(0,0,1} b V = P 2 (R ja S = {t1,t 2 1,t 2 t} ( ( 1 0 c

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.

Lisätiedot

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Antti Rasila 2016 Vektoriavaruuden kannan olemassaolo Jos {v 1, v 2,..., v k } on äärellisulotteisen vektoriavaruuden V lineaarisesti riippumaton

Lisätiedot

Ortogonaalinen ja ortonormaali kanta

Ortogonaalinen ja ortonormaali kanta Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä

Lisätiedot

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

Aiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa.

Aiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa. Yhtälöryhmän ratkaisujen lukumäärä, L8 Esimerkki kvadraattinen Haluamme ratkaista n 4x + y z = x + y + z = 5 x + y + z = 4 4 x 4 + y x y z = + z 5 4 = 5 4 Esimerkki kvadraattinen Yhtälöryhmä on kvadraattinen,

Lisätiedot

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 4.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Viimeiset harjoitukset on palautettava torstaina 13.6. Laskaripisteensä ja läsnäolonsa voi kukin tarkistaa

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3. Lineaariset koodit Topi Törmä Matemaattisten tieteiden laitos 2 / 22 3.1 Lineaarisen koodin määrittely Olkoon F äärellinen kunta.

Lisätiedot

Talousmatematiikan perusteet: Luento 8. Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo

Talousmatematiikan perusteet: Luento 8. Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo Talousmatematiikan perusteet: Luento 8 Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo Motivointi Esim. Herkkumatikka maksaa 50 /kg. Paljonko

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Lineaarikuvaukset Lineaarikuvaus Olkoot U ja V

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla: 11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta

Lisätiedot

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1.

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 2 Ratkaisut palautettava viimeistään maanantaina 25.5.2015 klo 16.15. Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja

Lisätiedot

3 Skalaari ja vektori

3 Skalaari ja vektori 3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

Aiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa.

Aiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa. Yhtälöryhmän ratkaisujen lukumäärä, L26 Esimerkki 1 kvadraattinen 1 Haluamme ratkaista n 4x + y z = 2 x + 2y + z = 5 2x + 2y + 2z = 4 4 1 1 1 2 1 2 2 2 x 4 1 2 + y x y z 1 2 2 = + z 2 5 4 1 1 2 = 2 5 4

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1

Lisätiedot

Matemaattinen Analyysi, k2011, L2

Matemaattinen Analyysi, k2011, L2 Matemaattinen Analyysi, k2011, L2 Lineaarikombinaatio 1 Esimerkki 1 Olkoon yrityksen A osakkeen arvo 20eja yrityksen B osakkeen arvo 10e. Sijoittaja tarkastelee omaisuutensa rakennetta ryhmittelemällä

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R

Lisätiedot

2. REAALIKERTOIMISET VEKTORIAVARUUDET

2. REAALIKERTOIMISET VEKTORIAVARUUDET 30 REAALIKERTOIMISET VEKTORIAVARUUDET 1 Koordinaattiavaruus R n Olkoon n N = {1,, 3, } positiivinen kokonaisluku (luonnollisten lukujen joukko on tällä kurssilla N = {0, 1,, 3, }) Merkitään R n = R n 1

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

2.8. Kannanvaihto R n :ssä

2.8. Kannanvaihto R n :ssä 28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

2 / :03

2 / :03 file:///c:/users/joonas/desktop/linis II Syksy /Ratkaisuehdotukse / 8 76 3:3 Kysymys Pisteet,, Määritellään positiivisten reaalilukujen joukossa R + = {x R x > } yhteenlasku ja skalaarikertolasku seuraavasti:

Lisätiedot

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt 37. Toisen kertaluvun lineaariset differentiaalihtälöt Tarkastelemme muotoa () ( x) + a( x) ( x) + a( x) ( x) = b( x) olevia htälöitä, missä kerroinfunktiot ja oikea puoli ovat välillä I jatkuvia. Edellisen

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

1 Avaruuksien ja lineaarikuvausten suora summa

1 Avaruuksien ja lineaarikuvausten suora summa MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon

Lisätiedot

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 5, Syksy 2015

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 5, Syksy 2015 BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 5, Syksy 205 Päivityksiä: 4.0.205 klo 5:0. Tehtävässä 3b vektorin x lauseke korjattu. 5.0.205 klo 3:20. Tehtävässä 8d viittaus väärään tehtävään

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

Determinantti. Määritelmä

Determinantti. Määritelmä Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi. Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j). (a) Jos n = 1, niin det(a) = a 11. (b) Muussa tapauksessa n det(a)

Lisätiedot

Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R }

Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R } 7 Kompleksiluvut Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. 7.1 Kompleksilukujen määritelmä Määritelmä 7.1.1. Kompleksilukujen joukko

Lisätiedot

TASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö.

TASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö. TSON YHTÄLÖT VEKTORIT, M4 Jokainen seuraavista määrää avaruuden tason yksikäsitteisesti: - kolme tason pistettä, jotka eivät ole samalla suoralla, - yksi piste ja pisteen ulkopuolinen suora, - yksi piste

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Käänteismatriisin ominaisuuksia

Käänteismatriisin ominaisuuksia Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3.3 Lineaarisen koodin dekoodaus Oletetaan, että lähetettäessä kanavaan sana c saadaan sana r = c + e, missä e on häiriön aiheuttama

Lisätiedot

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko, Tehtävä 1 : 1 a) Olkoon G heikosti yhtenäinen suunnattu verkko, jossa on yhteensä n solmua. Määritelmän nojalla verkko G S on yhtenäinen, jolloin verkoksi T voidaan valita jokin verkon G S virittävä alipuu.

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot