Insinöörimatematiikka D

Koko: px
Aloita esitys sivulta:

Download "Insinöörimatematiikka D"

Transkriptio

1 Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 1 of 18

2 Kertausta Gaussin-Jordanin menetelmä Gaussin-Jordanin menetelmällä (moniste s.7) saadaan rivioperaatioita käyttämällä yhtälöryhmää kuvaava augmentoitu matriisi redusoituun porrasmuotoon: M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 2 of 18

3 Kertausta Gaussin-Jordanin menetelmä Gaussin-Jordanin menetelmällä (moniste s.7) saadaan rivioperaatioita käyttämällä yhtälöryhmää kuvaava augmentoitu matriisi redusoituun porrasmuotoon: Lineaarisen yhtälöryhmän m n-kerroinmatriisin A (ei augmentoitu) aste r(a) = r on portaan aloittavien muuttujien määrä. Nämä muuttujat voidaan esittää muiden muuttujien avulla (n r kpl). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 2 of 18

4 Kertausta Augmentoidun matriisin kerroinmatriisi on 7 13-matriisi, jonka aste r on 6 (x 3,x 4,x 5,x 8,x 9,x 13 ) ja muita muuttujia on 7 (x 1,x 2,x 6,x 7,x 10,x 11,x 12 ). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 3 of 18

5 Kertausta Aiemmin saatiin yhtälöryhmälle x 1 ratkaisuksi (x 1,x 2,x 3,x 4,x 5 ) 4x 4 6x 5 = 2 x 2 +3x 4 = 3 x 3 +x 4 +2x 5 = 7 x 4 (4, 3, 1,1,0) +x 5 (6,0, 2,0,1) +( 2,3,7,0,0). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 4 of 18

6 Kertausta Aiemmin saatiin yhtälöryhmälle x 1 ratkaisuksi (x 1,x 2,x 3,x 4,x 5 ) 4x 4 6x 5 = 2 x 2 +3x 4 = 3 x 3 +x 4 +2x 5 = 7 x 4 (4, 3, 1,1,0) +x 5 (6,0, 2,0,1) +( 2,3,7,0,0). Yleisesti yhtälöryhmän ratkaisut voidaan esittää muodossa x = a 1 c a n r c n r +c, missä c i,c R n ovat vakiovektoreita ja a i R. Vektoria c kutsutaan yksittäis- tai yksityisratkaisuksi. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 4 of 18

7 Kertausta Vektorit Karteesisen potenssin A n = {(a 1,a 2,...,a n ) a i A}. alkioita kutsutaan vektoreiksi (merkintä: a = (a 1,...,a n )). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 5 of 18

8 Kertausta Vektorit Karteesisen potenssin A n = {(a 1,a 2,...,a n ) a i A}. alkioita kutsutaan vektoreiksi (merkintä: a = (a 1,...,a n )). Vektoreiden a = (a 1,...,a n ) ja b = (b 1,...,b n ) yhteenlasku määritellään a+b = (a 1 +b 1,...,a n +b n ). ja skalaarikertolasku määritellään ca = (ca 1,...,ca n ). Nollavektori on 0 = (0,0,...,0) ja vektorin a vastavektori määritellään a = ( a 1,..., a n ). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 5 of 18

9 Kertausta Vektoriavaruuden aksioomat V on vektoriavaruus summan + ja skalaarilla kertomisen suhteen, jos seuraavat aksioomat toteutuvat kaikilla X,Y,Z V ja a,b K: V1 X +(Y +Z) = (X +Y)+Z V2 X +Y = Y +X V3 X +0 = X, missä 0 on nolla-alkio V4 X +( X) = 0, missä X on vasta-alkio V5 a(x +Y) = ax +ay V6 (a+b)x = ax +bx V7 a(bx) = (ab)x V8 1X = X Huomaa: Vektoriavaruuden V alkioille summan ja skalaarilla kertomisen tuloksen tulee edelleen kuulua tähän vektoriavaruuteen. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 6 of 18

10 Kertausta Vektorien lineaarikombinaatiot (K on joko R tai C): L(v 1,...,v k ) = {c 1 v c k v k c 1,...,c k K}. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 7 of 18

11 Kertausta Vektorien lineaarikombinaatiot (K on joko R tai C): L(v 1,...,v k ) = {c 1 v c k v k c 1,...,c k K}. Vaihtoehtoinen merkintä: L(v 1,...,v k ) = v 1,...,v k. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 7 of 18

12 Kertausta Merkitään i = (1,0,0), j = (0,1,0), k = (0,0,1), jolloin (x,y,z) = (x,0,0)+(0,y,0) +(0,0,z) = xi+yj+zk. Siis R 3 = L(i,j,k) = i,j,k. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 8 of 18

13 Kertausta Merkitään i = (1,0,0), j = (0,1,0), k = (0,0,1), jolloin (x,y,z) = (x,0,0)+(0,y,0) +(0,0,z) = xi+yj+zk. Siis R 3 = L(i,j,k) = i,j,k. Merkitään e 1 = (1,0,...,0), e 2 = (0,1,...,0),..., e n = (0,0,...,1). Tällöin (x 1,...,x n ) = x 1 e 1 +x 2 e x n e n ja edelleen saadaan R n = L(e 1,...,e n ). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 8 of 18

14 Kertausta Vektorien generoima joukko Vektorit v 1,..., v k generoivat joukon U = L(v 1,...,v k ) = {c 1 v c k v k c 1,...,c k K} M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 9 of 18

15 Lause v i L(v 1,...,v k ) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 10 of 18

16 Lause v i L(v 1,...,v k ) Jos {v 1,...,v l } {v 1,...,v k }, on L(v 1,...,v l ) L(v 1,...,v k ) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 10 of 18

17 Lause v i L(v 1,...,v k ) Jos {v 1,...,v l } {v 1,...,v k }, on L(v 1,...,v l ) L(v 1,...,v k ) Jos {u 1,...,u l } L(v 1,...,v k ), niin L(u 1,...,u l ) L(v 1,...,v k ) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 10 of 18

18 Lause v i L(v 1,...,v k ) Jos {v 1,...,v l } {v 1,...,v k }, on L(v 1,...,v l ) L(v 1,...,v k ) Jos {u 1,...,u l } L(v 1,...,v k ), niin L(u 1,...,u l ) L(v 1,...,v k ) u L(v 1,...,v k ), tarkalleen silloin kun L(v 1,...,v k ) = L(v 1,...,v k,u) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 10 of 18

19 Lause v i L(v 1,...,v k ) Jos {v 1,...,v l } {v 1,...,v k }, on L(v 1,...,v l ) L(v 1,...,v k ) Jos {u 1,...,u l } L(v 1,...,v k ), niin L(u 1,...,u l ) L(v 1,...,v k ) u L(v 1,...,v k ), tarkalleen silloin kun L(v 1,...,v k ) = L(v 1,...,v k,u) L({v 1,...,v k } {0}) = L(v 1,...,v k ). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 10 of 18

20 Määritelmä Vektoriavaruuden V epätyhjä osajoukko U V on aliavaruus, jos c 1 v 1 +c 2 v 2 U aina kun v 1, v 2 U. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 11 of 18

21 Määritelmä Vektoriavaruuden V epätyhjä osajoukko U V on aliavaruus, jos c 1 v 1 +c 2 v 2 U aina kun v 1, v 2 U. Merkintä: U V. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 11 of 18

22 Määritelmä Vektoriavaruuden V epätyhjä osajoukko U V on aliavaruus, jos c 1 v 1 +c 2 v 2 U aina kun v 1, v 2 U. Merkintä: U V. Huomautus Jokaisella vektoriavaruudella V on ainakin aliavaruudet {0} ja V. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 11 of 18

23 Määritelmä Vektoriavaruuden V epätyhjä osajoukko U V on aliavaruus, jos c 1 v 1 +c 2 v 2 U aina kun v 1, v 2 U. Merkintä: U V. Huomautus Jokaisella vektoriavaruudella V on ainakin aliavaruudet {0} ja V. Koska 0 = 0 v 1 +0 v 2, kuuluu nollavektori 0 jokaiseen aliavaruuteen. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 11 of 18

24 Määritelmä Vektoriavaruuden V epätyhjä osajoukko U V on aliavaruus, jos c 1 v 1 +c 2 v 2 U aina kun v 1, v 2 U. Merkintä: U V. Huomautus Jokaisella vektoriavaruudella V on ainakin aliavaruudet {0} ja V. Koska 0 = 0 v 1 +0 v 2, kuuluu nollavektori 0 jokaiseen aliavaruuteen. Lause Jos v 1,..., v k V, on joukko L(v 1,...,v k ) avaruuden V aliavaruus. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 11 of 18

25 Joukko U 1 = {(a+b,a,0) a,b R} on R 3 :n aliavaruus. Joukko U 2 = {(a+b,a,1) a,b R} ei ole R 3 :n aliavaruus. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 12 of 18

26 Määritelmä Vektoriavaruus V on äärellisesti generoitu, jos on olemassa sellainen äärellinen joukko {v 1,...,v k } V, että V = L(v 1,...,v k ) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 13 of 18

27 Määritelmä Vektoriavaruus V on äärellisesti generoitu, jos on olemassa sellainen äärellinen joukko {v 1,...,v k } V, että V = L(v 1,...,v k ) Vektoriavaruus R n (samoin kuin C n ) on äärellisesti generoitu: R n = L(e 1,...,e n ). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 13 of 18

28 Määritelmä Vektoriavaruus V on äärellisesti generoitu, jos on olemassa sellainen äärellinen joukko {v 1,...,v k } V, että V = L(v 1,...,v k ) Vektoriavaruus R n (samoin kuin C n ) on äärellisesti generoitu: R n = L(e 1,...,e n ). L((1,1)) avaruudessa R 2. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 13 of 18

29 Välillä [α, α + T] määritellyn funktion Fourier-sarjan kerroinjonon A (A n cos( 2πn T x)+b nsin( 2πn T x)) n=1 ( A 0 2,A 1,B 1,A 2,B 2,...) alkioita voidaan pitää Fourier-sarjan määrittämän funktion koordinaatteina. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 14 of 18

30 R 2 = L(i,j) ja R 3 = L(i,j,k). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 15 of 18

31 R 2 = L(i,j) ja R 3 = L(i,j,k). Toisaalta myös (x,y) = xi+yj+0 (i+j) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 15 of 18

32 R 2 = L(i,j) ja R 3 = L(i,j,k). Toisaalta myös (x,y) = xi+yj+0 (i+j) ja (x,y) = 1 2 (x +y)(i+j)+ 1 (x y)(i j), 2 M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 15 of 18

33 R 2 = L(i,j) ja R 3 = L(i,j,k). Toisaalta myös (x,y) = xi+yj+0 (i+j) ja (x,y) = 1 2 (x +y)(i+j)+ 1 (x y)(i j), 2 joten R 2 = L(i,j,i+j) = L(i+j,i j). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 15 of 18

34 R 2 = L(i,j) ja R 3 = L(i,j,k). Toisaalta myös (x,y) = xi+yj+0 (i+j) ja (x,y) = 1 2 (x +y)(i+j)+ 1 (x y)(i j), 2 joten R 2 = L(i,j,i+j) = L(i+j,i j). Huomautus i+j = 1 i+1 j L(i,j) L(i,j) = L(i,j,i+j) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 15 of 18

35 R 2 = L(i,j) ja R 3 = L(i,j,k). Toisaalta myös (x,y) = xi+yj+0 (i+j) ja (x,y) = 1 2 (x +y)(i+j)+ 1 (x y)(i j), 2 joten R 2 = L(i,j,i+j) = L(i+j,i j). Huomautus i+j = 1 i+1 j L(i,j) L(i,j) = L(i,j,i+j) i = 1 j+1 (i+j) L(j,i+j) L(j,i+j) = L(i,j,i+j) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 15 of 18

36 Määritelmä {v 1, v 2,..., v k } on lineaarisesti riippuva (riippuva), jos jokin sen vektoreista voidaan esittää muiden lineaarikombinaationa: v i L(v 1,...,v i 1,v i+1,...,v k ). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 16 of 18

37 Määritelmä {v 1, v 2,..., v k } on lineaarisesti riippuva (riippuva), jos jokin sen vektoreista voidaan esittää muiden lineaarikombinaationa: v i L(v 1,...,v i 1,v i+1,...,v k ). Vastakohta: Lineaarisesti riippumaton. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 16 of 18

38 Määritelmä {v 1, v 2,..., v k } on lineaarisesti riippuva (riippuva), jos jokin sen vektoreista voidaan esittää muiden lineaarikombinaationa: v i L(v 1,...,v i 1,v i+1,...,v k ). Vastakohta: Lineaarisesti riippumaton. Joukko {i, j} on lineaarisesti riippumaton. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 16 of 18

39 Määritelmä {v 1, v 2,..., v k } on lineaarisesti riippuva (riippuva), jos jokin sen vektoreista voidaan esittää muiden lineaarikombinaationa: v i L(v 1,...,v i 1,v i+1,...,v k ). Vastakohta: Lineaarisesti riippumaton. Joukko {i, j} on lineaarisesti riippumaton. Joukko {i,j,i+j} on lineaarisesti riippuva. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 16 of 18

40 Määritelmä {v 1, v 2,..., v k } on lineaarisesti riippuva (riippuva), jos jokin sen vektoreista voidaan esittää muiden lineaarikombinaationa: v i L(v 1,...,v i 1,v i+1,...,v k ). Vastakohta: Lineaarisesti riippumaton. Joukko {i, j} on lineaarisesti riippumaton. Joukko {i,j,i+j} on lineaarisesti riippuva. Jokainen vektorijoukko A = {0,v 2,...,v k } joka sisältää nollavektorin, on riippuva. (Aina 0 L(v 2,...,v k ).) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 16 of 18

41 Lause Vektorijoukko {v 1,...,v k } on lineaarisesti riippumaton tarkalleen silloin kun c 1 v c k v k = 0 toteutuu vain ilmeisellä valinnalla jossa kaikki kertoimet ovat nollia: c 1 =... = c k = 0. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 17 of 18

42 Lause Vektorijoukko {v 1,...,v k } on lineaarisesti riippumaton tarkalleen silloin kun c 1 v c k v k = 0 toteutuu vain ilmeisellä valinnalla jossa kaikki kertoimet ovat nollia: c 1 =... = c k = 0. Joukko {i,j,i+j} on lineaarisesti riippuva, koska 1 i+1 j+( 1) (i+j) = 0. Joukko {e 1,e 2,...,e n } on lineaarisesti riippumaton, koska c 1 e 1 + +c n e n = (c 1,...,c n ) = (0,...,0). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 17 of 18

43 Jos vektorijoukossa {v 1,..., v k } ei ole nollavektoria ja vektorissa v i+1 on enemmän alkunollia kuin vektorissa v i, on joukko lineaarisesti riippumaton. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 18 of 18

44 Jos vektorijoukossa {v 1,..., v k } ei ole nollavektoria ja vektorissa v i+1 on enemmän alkunollia kuin vektorissa v i, on joukko lineaarisesti riippumaton. ( 18) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 18 of 18

45 Jos vektorijoukossa {v 1,..., v k } ei ole nollavektoria ja vektorissa v i+1 on enemmän alkunollia kuin vektorissa v i, on joukko lineaarisesti riippumaton. ( 18) Esimerkkejä Tarkastellaan esimerkkejä monisteesta ja muualta. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 2 18 of 18

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Avaruuden R n aliavaruus

Avaruuden R n aliavaruus Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista 29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio 6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Mika Hirvensalo. Insinöörimatematiikka D 2018

Mika Hirvensalo. Insinöörimatematiikka D 2018 Mika Hirvensalo Insinöörimatematiikka D 2018 Sisältö 1 Lineaarialgebran peruskäsitteitä 5 11 Lineaariset yhtälöryhmät 5 111 Gaussin-Jordanin menetelmä 5 112 Ratkaisujoukon systemaattinen esittäminen 8

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 23.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Käytännön asioita Ensimmäiset tehtävät olivat sujuneet hyvin. Kansilehdet on oltava mukana tehtäviä palautettaessa,

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

Kanta ja dimensio 1 / 23

Kanta ja dimensio 1 / 23 1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio

Lisätiedot

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

Mika Hirvensalo. Insinöörimatematiikka D 2015

Mika Hirvensalo. Insinöörimatematiikka D 2015 Mika Hirvensalo Insinöörimatematiikka D 2015 Sisältö 1 Lineaarialgebran peruskäsitteitä............................................... 5 1.1 Lineaariset yhtälöryhmät..................................................

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.

Lisätiedot

JAKSO 2 KANTA JA KOORDINAATIT

JAKSO 2 KANTA JA KOORDINAATIT JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause

Lisätiedot

Mika Hirvensalo. Insinöörimatematiikka D 2019

Mika Hirvensalo. Insinöörimatematiikka D 2019 Mika Hirvensalo Insinöörimatematiikka D 2019 Sisältö 1 Lineaarialgebran peruskäsitteitä 3 11 Lineaariset yhtälöryhmät 3 111 Gaussin-Jordanin menetelmä 3 112 Ratkaisujoukon systemaattinen esittäminen 6

Lisätiedot

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden

Lisätiedot

Seuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117

Seuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117 Seuraava luento ti 31.10 on salissa XXII Lineaarialgebra (muut ko) p. 1/117 Lineaarialgebra (muut ko) p. 2/117 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v

Lisätiedot

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo. Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/310 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210 Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210 Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

Lineaarialgebra (muut ko)

Lineaarialgebra (muut ko) Lineaarialgebra (muut ko) p. 1/103 Lineaarialgebra (muut ko) Tero Laihonen Lineaarialgebra (muut ko) p. 2/103 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 25. lokakuuta 2015 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus... 111 16 Aliavaruus... 117 16.1 Vektoreiden

Lisätiedot

Matriisialgebra harjoitukset, syksy x 1 + x 2 = a 0

Matriisialgebra harjoitukset, syksy x 1 + x 2 = a 0 MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 22 Virittääkö vektorijoukko S vektoriavaruuden V, kun a V = R 3 ja S = {(1,0, 1,(2,0,4,( 5,0,2,(0,0,1} b V = P 2 (R ja S = {t1,t 2 1,t 2 t} ( ( 1 0 c

Lisätiedot

802120P Matriisilaskenta (5 op)

802120P Matriisilaskenta (5 op) 802120P Matriisilaskenta (5 op) Marko Leinonen Matemaattiset tieteet Syksy 2016 1 / 220 Luennoitsija: Marko Leinonen marko.leinonen@oulu.fi MA333 Kurssilla käytetään Noppaa (noppa.oulu.fi) Luentomoniste

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

1. Lineaarinen yhtälöryhmä ja matriisi

1. Lineaarinen yhtälöryhmä ja matriisi I LINEAARISET YHTÄLÖRYHMÄT 1 Lineaarinen yhtälöryhmä ja matriisi Tällä kurssilla käytämme kirjainta K tarkoittamaan reaalilukuja R, kompleksilukuja C tai rationaalilukuja Q (aluksi K = R) Nämä lukujoukot

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81 Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Yleiset lineaarimuunnokset

Yleiset lineaarimuunnokset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

Matemaattinen Analyysi / kertaus

Matemaattinen Analyysi / kertaus Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä

Lisätiedot

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Lotta Oinonen ja Johanna Rämö 6. joulukuuta 2012 Helsingin yliopisto Matematiikan ja tilastotieteen laitos 2012 Sisältö 1 Avaruus R n 4 1 Avaruuksien R 2 ja R 3 vektorit.....................

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa

Lisätiedot

802320A LINEAARIALGEBRA OSA II

802320A LINEAARIALGEBRA OSA II 802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen

Lisätiedot

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa. LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,

Lisätiedot

Vektorien virittämä aliavaruus

Vektorien virittämä aliavaruus Vektorien virittämä aliavaruus Esimerkki 13 Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w kuuluu vektoreiden v 1 = (3, 2, 1), v 2 = (2, 2, 6) ja v 3 = (3, 4, 5) virittämään

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus

Lisätiedot

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin

Lisätiedot

1. Normi ja sisätulo

1. Normi ja sisätulo Kurssimateriaalia K3/P3-kursille syksyllä 3 83 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni Normi ja sisätulo

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Gaussin ja Jordanin eliminointimenetelmä

Gaussin ja Jordanin eliminointimenetelmä 1 / 25 : Se on menetelmä lineaarisen yhtälöryhmän ratkaisemiseksi. Sitä käytetään myöhemmin myös käänteismatriisin määräämisessä. Ideana on tiettyjä rivioperaatioita käyttäen muokata yhtälöryhmää niin,

Lisätiedot

ominaisvektorit. Nyt 2 3 6

ominaisvektorit. Nyt 2 3 6 Esimerkki 2 6 8 Olkoon A = 40 0 6 5. Etsitäänmatriisinominaisarvotja 0 0 2 ominaisvektorit. Nyt 2 0 2 6 8 2 6 8 I A = 40 05 40 0 6 5 = 4 0 6 5 0 0 0 0 2 0 0 2 15 / 172 Täten c A ( )=det( I A) =( ) ( 2)

Lisätiedot

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili 6 4 2 x 2 x 3 15 10 5 0 5 15 5 3 2 1 1 2 3 2 0 x 2 = 1 2x 1 0 4 x 2 = 3 x 1 x 5 2 5 x 1 10 x 1 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili Sisältö

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66 Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/66 Lineaarialgebra (muut ko) p. 2/66 Redusoitu porrasmuoto 1 1 2 4 1 1 4 6 2 2 5 9 1 1 0 2 0 0 1 1 0 0 0 0 Eli aste r(a) = 2 ja vaakariviavaruuden

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218 Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Muistutus: Matikkapaja ke Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta yms.

Muistutus: Matikkapaja ke Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta yms. Lineaarialgebra (muut ko) p. 1/139 Ensi viikon luennot salissa X Muistutus: Matikkapaja ke 14-16 Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta

Lisätiedot

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

Matemaattinen Analyysi, s2016, L2

Matemaattinen Analyysi, s2016, L2 Matemaattinen Analyysi, s2016, L2 riippumattomuus, 1 Esimerkkejä esimerkki Dieetti-välipala 1: Opiskelija Ken Obi on dieetillä. Lenkin jälkeen Ken pysähtyy välipalalle. Dieetin mukaan hänen pitäisi saada

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Lineaarikuvaukset Lineaarikuvaus Olkoot U ja V

Lisätiedot

2. REAALIKERTOIMISET VEKTORIAVARUUDET

2. REAALIKERTOIMISET VEKTORIAVARUUDET 30 REAALIKERTOIMISET VEKTORIAVARUUDET 1 Koordinaattiavaruus R n Olkoon n N = {1,, 3, } positiivinen kokonaisluku (luonnollisten lukujen joukko on tällä kurssilla N = {0, 1,, 3, }) Merkitään R n = R n 1

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma

Lisätiedot

Talousmatematiikan perusteet: Luento 9

Talousmatematiikan perusteet: Luento 9 Talousmatematiikan perusteet: Luento 9 Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo ja pituus Vektorien välinen kulma Motivointi Tähän asti olemme tarkastelleet yhden

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

Suorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö.

Suorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö. Suorat ja tasot, L6 Suora xyz-koordinaatistossa Taso xyz-koordinaatistossa stä stä 1 Näillä kalvoilla käsittelemme kolmen laisia olioita. Suora xyz-avaruudessa. Taso xyz-avaruudessa. Emme nyt ryhdy pohtimaan,

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 27. marraskuuta 2015 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Vektoriavaruuksien R 2 ja R 3 vektorit........................

Lisätiedot

Lineaarialgebra Kerroinrenkaat. Kevät Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto

Lineaarialgebra Kerroinrenkaat. Kevät Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto Lineaarialgebra 2 Kevät 2014 Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto Á Ë Ð Ö Ø Ú ØÓÖ Ø 1. Kerroinrenkaat 1.1. Määritelmä. Yhden laskutoimituksen rakenne(g, + on Abelin ryhmä, jos

Lisätiedot