Muistutus: Matikkapaja ke Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta yms.
|
|
- Mika Alanen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Lineaarialgebra (muut ko) p. 1/139 Ensi viikon luennot salissa X Muistutus: Matikkapaja ke Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta yms.
2 Lineaarialgebra (muut ko) p. 2/139 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 ) Skalaarilla kertominen (a R): au = (au 1,au 2 ) Kommutatiivisuus Assosiatiivisuus u+v = v+u (u+v)+w = u+(v+w)
3 Lineaarialgebra (muut ko) p. 3/139 Pituus ja sisätulo Vektorin u = (u 1,u 2 ) R 2 pituus u = u 2 1 +u2 2 Vektorien u = (u 1,u 2 ) ja v = (v 1,v 2 ) sisätulo Pituudelle ax = a x (u,v) = u v = u 1 v 1 +u 2 v 2. Muistetaan, että u 2 = (u,u). Ortogonaalisuus: u v (u,v) = 0
4 Lineaarialgebra (muut ko) p. 4/139 Sisätulo Sisätulon ominaisuuksia (s.3) (u,u) 0 (u,u) = 0 u = 0 (u,v) = (v,u) (u+v,w) = (u,w)+(v,w). (au,v) = a(u,v), a R.
5 Lineaarialgebra (muut ko) p. 5/139 Sisätulo Sisätulon ominaisuuksia (s.3) (u,u) 0 (u,u) = 0 u = 0 (u,v) = (v,u) (u+v,w) = (u,w)+(v,w). (au,v) = a(u,v), a R. Myös (u,v+w) = (u,v)+(u,w) ja(u v,w) = (u,w) (v,w).
6 Lineaarialgebra (muut ko) p. 6/139 Avaruusvektorit, s. 4 Avaruusvektorien joukko R 3 = {(x,y,z) x,y,z R}. Vektoreille u = (u 1,u 2,u 3 ) ja v = (v 1,v 2,v 3 ) operaatiot Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2,u 3 +v 3 ) Skalaarilla kertominen (a R): au = (au 1,au 2,au 3 )
7 Lineaarialgebra (muut ko) p. 7/139 Avaruusvektorit Avaruusvektoreille u = (u 1,u 2,u 3 ) ja v = (v 1,v 2,v 3 ) aiemmat tulokset (1.3) (1.7) toimivat myös R 3 :ssa, kun määritellään u = u 2 1 +u2 2 +u2 3 ja (u,v) = u 1 v 1 +u 2 v 2 +u 3 v 3.
8 Lineaarialgebra (muut ko) p. 8/139 Suorat Suoran L standardiesitys L : x x 0 a = y y 0 b = z z 0 c missä P = (x 0,y 0,z 0 ) on jokin L:n piste ja s = (a,b,c) (0,0,0) on suoran suuntavektori P
9 Lineaarialgebra (muut ko) p. 9/139 Suorat Suoran L standardiesitys L : x x 0 a = y y 0 b = z z 0 c missä P = (x 0,y 0,z 0 ) on jokin L:n piste ja s = (a,b,c) (0,0,0) on suoran suuntavektori P s
10 Lineaarialgebra (muut ko) p. 10/139 Parametriesitys Suoran L koordinaattimuotoinen parametriesitys x = x 0 +ta y = y 0 +tb z = z 0 +tc (t R)
11 Lineaarialgebra (muut ko) p. 11/139 Parametriesitys Suoran L koordinaattimuotoinen parametriesitys x = x 0 +ta y = y 0 +tb z = z 0 +tc t = 1 (t R) P ts vektoreina r = r 0 +ts, t R.
12 Lineaarialgebra (muut ko) p. 12/139 Parametriesitys Suoran L koordinaattimuotoinen parametriesitys x = x 0 +ta y = y 0 +tb z = z 0 +tc (t R) P t = 2 ts vektoreina r = r 0 +ts, t R.
13 Lineaarialgebra (muut ko) p. 13/139 Erikoistapaukset (standardiesitys) Tapaus c = 0: L : Tapaus b = c = 0: x x 0 a = y y 0 b, z = z 0 L : y = y 0, z = z 0
14 Lineaarialgebra (muut ko) p. 14/139 Tasot Tason piste P = (x 0,y 0,z 0 ) ja normaalivektori n = (a,b,c) (0,0,0). Tason T koordinaattimuotoinen esitys T : ax+by +cz = d missä d = ax 0 +by 0 +cz 0.
15 Lineaarialgebra (muut ko) p. 15/139 Mitä yhtälöryhmälle saa tehdä? 1) Yhtälön voi kertoa vakiolla 0 2) Yhtälön voi lisätä toiseen vakiolla kerrottuna 3) Yhtälöiden järjestystä voi vaihtaa
16 Lineaarialgebra (muut ko) p. 16/139 n-ulotteinen avaruus, s.9 Vektorien joukko R n = {(x 1,x 2,...,x n ) x 1,x 2,...,x n R}. Vektoreille u = (u 1,u 2,...,u n ) ja v = (v 1,v 2,...,v n ) operaatiot Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2,...,u n +v n ) Skalaarilla kertominen (a R): au = (au 1,au 2,...,au n )
17 Lineaarialgebra (muut ko) p. 17/139 n-ulotteinen avaruus, s.9 Vektoreille u = (u 1,u 2,...,u n ) ja v = (v 1,v 2,...,v n ) aiemmat tulokset (1.3) (1.7) toimivat myös R n :ssa, kun määritellään u = u 2 1 +u u2 n ja (u,v) = u 1 v 1 +u 2 v 2 + +u n v n.
18 Lineaarialgebra (muut ko) p. 18/139 MATRIISIT: Johdanto (k = 20) { 2x+3y = 0 4x+ky = 0 Ratkaisuja 1, kun 2 k 3 4 0, Ratkaisuja, kun 2 k 3 4 = 0 (eli k = 6).
19 Lineaarialgebra (muut ko) p. 18/139 MATRIISIT: Johdanto (k = 7) { 2x+3y = 0 4x+ky = 0 Ratkaisuja 1, kun 2 k 3 4 0, Ratkaisuja, kun 2 k 3 4 = 0 (eli k = 6).
20 Lineaarialgebra (muut ko) p. 18/139 MATRIISIT: Johdanto { 2x+3y = 1 4x+ky = 5 Ratkaisuja 1, kun 2 k 3 4 0,
21 Lineaarialgebra (muut ko) p. 18/139 MATRIISIT: Johdanto { 2x+3y = 1 4x+ky = 5 Ei ratkaisuja, kun 2 k 3 4 = 0, eli k = 6.
22 Lineaarialgebra (muut ko) p. 19/139 MATRIISIT: Johdanto Kertoimista "matriisi" ( k ) ja "determinantti" k = 2 k 3 4
23 Lineaarialgebra (muut ko) p. 20/139 MATRIISIT: Johdanto Kertoimista "matriisi" ( k ) ja "determinantti" k = 2k 3 4 "vakiot"pystyvektorina ( 1 5 )
24 Lineaarialgebra (muut ko) p. 21/139 MATRIISIT: Johdanto Yleistyykö edellinen tarkastelu? Entä kun tuntemattomia ja yhtälöitä eri määrä? Onko yhtälöryhmää, jossa tarkalleen 17 ratkaisua?
25 Lineaarialgebra (muut ko) p. 22/139 Matriiseista Samaa tyyppiä olevat m n-matriisit voidaan laskea yhteen A+B Nollamatriisi O = (0) m n Transponointi A T ( ) T =
26 Lineaarialgebra (muut ko) p. 23/139 Matriisien tulo, s. 13 Matriisien A = (a ij ) m s ja B = (b ij ) s n tulo on AB = (u ij ) m n missä kaikilla i, j. u ij = a i1 b 1j +a i2 b 2j + +a is b sj
27 Lineaarialgebra (muut ko) p. 24/139 Matriisien tulo Matriisitulo ( ) 2 2 ( ) 2 3 =
28 Lineaarialgebra (muut ko) p. 25/139 Matriisien tulo Matriisitulo ( ) 2 2 ( ) 2 3 = ( )
29 Lineaarialgebra (muut ko) p. 26/139 Matriisien tulo Matriisitulo ( ) 2 2 ( ) 2 3 = ( )
30 Lineaarialgebra (muut ko) p. 27/139 Matriisien tulo Yleensä ei KOMMUTOI AB BA
31 Lineaarialgebra (muut ko) p. 28/139 Matriisien tulo Kaikkien m n-matriisien joukko M m n
32 Lineaarialgebra (muut ko) p. 29/139 Laskusääntöjä, s. 18 skalaari r R (AB)C = A(BC) A(B +C) = AB +AC (A+B)C = AC +BC r(ab) = A(rB)
33 Lineaarialgebra (muut ko) p. 30/139 Johdanto yhtälöryhmiin Tutkitaan ratkaisuja 5x + y + t = 1 3x y + 2z t = 2 x + y z = 0
34 Lineaarialgebra (muut ko) p. 31/139 Johdanto yhtälöryhmiin Tutkitaan ratkaisuja 5x 1 + x 2 + x 4 = 1 3x 1 x 2 + 2x 3 x 4 = 2 x 1 + x 2 x 3 = 0
35 Lineaarialgebra (muut ko) p. 32/139 Johdanto yhtälöryhmiin Tutkitaan ratkaisuja 5x 1 + x 2 + x 4 = 1 3x 1 x 2 + 2x 3 x 4 = 2 x 1 + x 2 x 3 = 0 Tästä matriisit , x 1 x 2 x 3 x 4, 1 2 0
36 Lineaarialgebra (muut ko) p. 33/139 Johdanto yhtälöryhmiin, s.16 Tutkitaan ratkaisuja 5x 1 + x 2 + x 4 = 1 3x 1 x 2 + 2x 3 x 4 = 2 x 1 + x 2 x 3 = 0 Tästä matriisit , 1 } 1 1 {{ 0 } kerroinmatriisi x 1 x 2 x 3 x 4, }{{} tuntemattomat }{{} vakiot
37 Lineaarialgebra (muut ko) p. 34/139 Esimerkiksi { 2x + 3y = 1 4x + 5y = 3
38 Lineaarialgebra (muut ko) p. 35/139 Esimerkiksi { 2x 1 + 3x 2 = 1 4x 1 + 5x 2 = 3
39 Lineaarialgebra (muut ko) p. 36/139 Esimerkiksi { 2x 1 + 3x 2 = 1 4x 1 + 5x 2 = 3 A = ( ) x = ( x 1 x 2 ) c = ( 1 3 ) Matriisikielellä Ax = c
40 Lineaarialgebra (muut ko) p. 37/ Lineaariset yhtälöryhmät Monisteessa (2.3) a 11 x 1 + a 12 x a 1n x n = c 1 a 21 x 1 + a 22 x a 2n x n = c 2... a m1 x 1 + a m2 x a mn x n = c m
41 Lineaarialgebra (muut ko) p. 38/139 Matriisien avulla Ax = c, missä A = a 11 a a 1n a 12 a a 2n , a m1 a m2... a mn ja x = x 1 x 2. c = c 1 c 2. x n c m
42 Lineaarialgebra (muut ko) p. 39/139 Homogeenisuus Yhtälöryhmä on homogeeninen, jos Monisteessa (2.5) a 11 x 1 + a 12 x a 1n x n = 0 a 21 x 1 + a 22 x a 2n x n = 0... a m1 x 1 + a m2 x a mn x n = 0 eli matriisimuodossa Ax = 0. Muutoin epähomogeeninen
43 Lineaarialgebra (muut ko) p. 40/139 Esimerkiksi Epähomogeeninen { 2x 1 + 3x 2 = 1 4x 1 + 5x 2 = 3 Homogeeninen { 2x 1 + 3x 2 = 0 4x 1 + 5x 2 = 0
44 Lineaarialgebra (muut ko) p. 41/139 Yhtälöryhmistä Olkoon x 0 yksittäisratkaisu epähomogeeniselle yhtälöryhmälle Ax = c. Silloin sen kaikki ratkaisut ovat muotoa x = x 0 +y missä y on homogeenisen yhtälöryhmän Ax = 0 kaikki ratkaisut.
45 Lineaarialgebra (muut ko) p. 42/139 Tulon transponointi (AB) T = B T A T Matriisi on symmetrinen, jos järjestys! A T = A Identiteettimatriisi I = I n = Neliömatriisille A: AI = IA = A
46 Lineaarialgebra (muut ko) p. 43/139 Matriisin potenssi Kun kokonaisluku k 1 A k = A A A }{{} k Lisäksi A 0 = I
47 Lineaarialgebra (muut ko) p. 44/139 Matriisiyhtälöistä (s. 20) Matriisiyhtälöitä voidaan käsitellä kuten reaalilukuyhtälöitä, kunhan ei käytetä jakolaskua eikä kommutatiivisuutta Ei siis voi yleensä supistaa AB = AC B = C
48 Lineaarialgebra (muut ko) p. 45/139 Käänteismatriisi Määritelmä neliömatriisin A käänteismatriisille eli EI MERKITÄ 1 A vaana 1 Ei aina olemassa, esim A = AB = BA = I AA 1 = A 1 A = I ( ).
49 Lineaarialgebra (muut ko) p. 46/139 Säännöllisyys A on säännöllinen, jos A 1 on olemassa.
50 Lineaarialgebra (muut ko) p. 47/139 Säännöllisyys A on säännöllinen, jos A 1 on olemassa. Jos matriisin A = ( a b c d ) kertoimille ad bc 0, niin A 1 = 1 ad bc ( d b c a )
51 Lineaarialgebra (muut ko) p. 48/139 Laskusääntöjä Olkoot A ja B säännöllisiä matriiseja: (AB) 1 = B 1 A 1 (A T ) 1 = (A 1 ) T
52 Lineaarialgebra (muut ko) p. 49/139 Laskusääntöjä Olkoot A ja B matriiseja, missä pystyrivien avulla B = (b 1 b k ). Silloin kertolasku AB = (Ab 1 Ab k )
53 Lineaarialgebra (muut ko) p. 50/ Matriisien kertominen lohkomuodossa Lohkominen ( A B C D )( 1 0 a b 0 1 c d A B C D ) = ( ( I A O I ) AA +BC AB +BD CA +DC CB +DD ) Esimerkiksi ( I A O I )( A O I B ) = ( O AB I B )
54 Lineaarialgebra (muut ko) p. 51/139 Determinantti Neliömatriisille A: det(a) = a 11 a a 1n a 21 a a 2n a n1 a n2... a nn = kaikki permutaatiot(j 1,j 2,...,j n ) sign(j 1,j 2,...,j n )a 1j1 a 2j2...a njn
55 Lineaarialgebra (muut ko) p. 52/139 2-rivinen determinantti a b c d = ad cb
56 Lineaarialgebra (muut ko) p. 53/139 Perusominaisuuksia, s. 26 1) 2) a ca 1k... a 1n a ca 2k... a 2n a n1... ca nk... a nn det(a T ) = det(a) = c a a 1k... a 1n a a 2k... a 2n a n1... a nk... a nn vastaavasti vaakariville
57 Lineaarialgebra (muut ko) p. 54/139 Perusominaisuuksia, s. 27 3) a a 1k +b 1k... a 1n a a 2k +b 2k... a 2n a n1... a nk +b nk... a nn = a a 1k... a 1n a a 2k... a 2n a n1... a nk... a nn + a b 1k... a 1n a b 2k... a 2n a n1... b nk... a nn vastaavasti vaakariville
58 Lineaarialgebra (muut ko) p. 55/139 Perusominaisuuksia, s. 27 4) Jos pysty- tai vaakarivi on nollarivi, niin det(a) = 0. 5) Jos kaksi samaa pystyriviä (tai kaksi samaa vaakariviä), niin det(a) = 0. 6) Jos kaksi vaakariviä (tai kaksi pystyriviä) vaihdetaan keskenään, niin determinantti muuttuu vastaluvukseen. a 11 a a 1n a 21 a a 2n a n1 a n2... a nn = a 21 a a 2n a 11 a a 1n a n1 a n2... a nn
59 Lineaarialgebra (muut ko) p. 56/139 Perusominaisuuksia, s. 27 7) c + a a 1h... a 1k... a 1n a a 2h... a 2k... a 2n a n1... a nh... a nk... a nn = a a 1h... a 1k +ca 1h... a 1n a a 2h... a 2k +ca 2h... a 2n a n1... a nh... a nk +ca nh... a nn vastaavasti vaakariville
60 Lineaarialgebra (muut ko) p. 57/139 Tulon determinantti det(ab) = det(a) det(b) Jos A on säännöllinen, niin det(a 1 ) = 1 det(a)
61 Lineaarialgebra (muut ko) p. 58/139 Alkion komplementti Matriisin alkion a ij komplementti C ij = ( 1) i+j det(a ij ) missä A ij saatu poistamalla matriisista A vaakarivi i ja pystyrivi j. Deteminantin rivikehitelmät (vaakariville) det(a) = a i1 C i1 + +a in C in
62 Lineaarialgebra (muut ko) p. 59/139 Alkion komplementti Matriisin alkion a ij komplementti C ij = ( 1) i+j det(a ij ) missä A ij saatu poistamalla matriisista A vaakarivi i ja pystyrivi j. Deteminantin rivikehitelmät (vaakariville) ( = ) ( ) ( )
63 Lineaarialgebra (muut ko) p. 60/139 Alkion komplementti Matriisin alkion a ij komplementti C ij = ( 1) i+j det(a ij ) missä A ij saatu poistamalla matriisista A vaakarivi i ja pystyrivi j. Deteminantin rivikehitelmät (vaakariville) det(a) = a i1 C i1 + +a in C in = n a ik C ik k=1 ja pystyriville det(a) = n a kj C kj k=1
64 Lineaarialgebra (muut ko) p. 61/139 Käänteismatriisin kaava Matriisin A liittomatriisi adj(a) = (C ij ) T Jos A on säännöllinen, niin A 1 = 1 det(a) (C ij) T A on säännöllinen det(a) 0
65 Lineaarialgebra (muut ko) p. 62/139 Cramerin sääntö Jos yhtälöryhmän Ax = c kerroinmatriisi A on säännöllinen, niin sillä on yksikäsitteinen ratkaisu x j = det(a j) det(a) missä x = x 1 x 2. x n ja A j saadaan korvaamalla j:s pystyrivi c:llä
66 Lineaarialgebra (muut ko) p. 63/139 Ristitulo, s. 34 Tarkastelussa vain R 3 Olkoon u = (u 1,u 2,u 3 ) R 3 v = (v 1,v 2,v 3 ) R 3 u v = (C 11,C 12,C 13 ).
67 Lineaarialgebra (muut ko) p. 64/139 Ristitulo, s. 34 Tarkastelussa vain R 3 Olkoon u = (u 1,u 2,u 3 ) R 3 u v = v = (v 1,v 2,v 3 ) R 3 u 2 u 3 u 1 u 3 u 1 u 2,, v 2 v 3 v 1 v 3 v 1 v 2. }{{}}{{}}{{} C 11 C 12 C 13
68 Lineaarialgebra (muut ko) p. 65/139 Ristitulo Eli (u,u v) = u 1 C 11 +u 2 C 12 +u 3 C 13 ( ) u 2 u 3 = u 1 v 2 v 3 +u u 1 u 3 2 v 1 v 3 +u 3 u 1 u 2 v 1 v 2 ja samoin (v,u v) = v 1 C 11 +v 2 C 12 +v 3 C 13 ( ) u 2 u 3 = v 1 v 2 v 3 +v u 1 u 3 u 1 u 2 2 +v 3 v 1 v 3 v 1 v 2 Johtavat determinantteihin (kehittämällä 1. vaakarivi) u 1 u 2 u 3 v 1 v 2 v 3 u 1 u 2 u 3 u 1 u 2 u 3 v 1 v 2 v 3 v 1 v 2 v 3
69 Lineaarialgebra (muut ko) p. 66/139 Ristitulo Eli (u,u v) = u 1 C 11 +u 2 C 12 +u 3 C 13 ( ) u 2 u 3 = u 1 v 2 v 3 +u u 1 u 3 2 v 1 v 3 +u 3 u 1 u 2 v 1 v 2 ja samoin (v,u v) = v 1 C 11 +v 2 C 12 +v 3 C 13 ( ) u 2 u 3 = v 1 v 2 v 3 +v u 1 u 3 u 1 u 2 2 +v 3 v 1 v 3 v 1 v 2 Johtavat determinantteihin (kehittämällä 1. vaakarivi) u 1 u 2 u 3 v 1 v 2 v 3 u 1 u 2 u 3 = 0 = u 1 u 2 u 3 v 1 v 2 v 3 v 1 v 2 v 3
70 Lineaarialgebra (muut ko) p. 67/139 Ristitulo Siis u (C 11,C 12,C 13 ) = 0 v (C 11,C 12,C 13 ) = 0
71 Lineaarialgebra (muut ko) p. 68/139 Muistisääntö Ristitulo (vain R 3 :ssa) Vektoreille u = (u 1,u 2,u 3 ) ja v = (v 1,v 2,v 3 ) u v = i j k u 1 u 2 u 3 v 1 v 2 v 3 Jos u ja v eivät nollavektoreita ja α on niiden välinen kulma, niin u v = u v sinα. Vertaa (1.4): (u,v) = u v cosα. u u v ja v u v
72 Lineaarialgebra (muut ko) p. 69/139 Muistisääntö Ristitulo (vain R 3 :ssa) Vektoreille u = (u 1,u 2,u 3 ) ja v = (v 1,v 2,v 3 ) u v = Ei kommutatiivinen i j k u 1 u 2 u 3 v 1 v 2 v 3 u v = v u Ei myöskään assosiatiivinen eli yleensä u (v w) (u v) w.
73 Lineaarialgebra (muut ko) p. 70/139 Skalaarikolmitulo Skalaarikolmitulo vektoreille u = (u 1,u 2,u 3 ), v = (v 1,v 2,v 3 ) ja w = (w 1,w 2,w 3 ): u (v w) = u 1 u 2 u 3 v 1 v 2 v 3 w 1 w 2 w 3 Vektorien määräämän suuntaissärmiön (kts. kuva alla) tilavuus saadaan itseisarvosta u (v w) u w v
74 Lineaarialgebra (muut ko) p. 71/139 Aliavaruus Aliavaruudelle U R n kolme ehtoa: 1) U 2) u,v U u+v U 3) a R, u U au U.
75 Lineaarialgebra (muut ko) p. 72/139 Aliavaruus Aliavaruudelle U R n kolme ehtoa: 1) U 2) u,v U u+v U 3) a R, u U au U.
76 Lineaarialgebra (muut ko) p. 73/139 Aliavaruus Aliavaruudelle U R n kolme ehtoa: 1) U 2) u,v U u+v U 3) a R, u U au U. 0 kuuluu aina aliavaruuteen! U = {x R n Ax = 0} on R n :n aliavaruus Triviaalit aliavaruudet: {0} ja R n.
77 Lineaarialgebra (muut ko) p. 74/139 Ratkaisuavaruus (Lause 4.1.8) Lineaarisen homogeenisen yhtälöryhmän a 11 x 1 + a 12 x a 1n x n = 0 a 21 x 1 + a 22 x a 2n x n = 0... a n1 x 1 + a n2 x a nn x n = 0 ratkaisut x = x 1. x n muodostavat aliavaruuden (ns. ratkaisuavaruuden)
78 Lineaarialgebra (muut ko) p. 75/139 Ratkaisuavaruus (Lause 4.1.8) Lineaarisen homogeenisen yhtälöryhmän Ax = 0 ratkaisut x = x 1. x n muodostavat aliavaruuden (ns. ratkaisuavaruuden)
79 Lineaarialgebra (muut ko) p. 76/139 AliavaruudetR 3 :ssa {0} origon kautta kulkevat suorat origon kautta kulkevat tasot R 3
80 Lineaarialgebra (muut ko) p. 77/139 Viritetty aliavaruus vektorien x 1,x 2,...,x k R n lineaarikombinaatio vektorien virittämä aliavaruus c 1 x 1 +c 2 x c k x k L(x 1,x 2,...,x k ) = {c 1 x 1 +c 2 x c k x k c 1,c 2,...,c k R}
81 Lineaarialgebra (muut ko) p. 78/139 Viritetty aliavaruus vektorien x 1,x 2,...,x k R n lineaarikombinaatio vektorien virittämä aliavaruus c 1 x 1 +c 2 x c k x k L(x 1,x 2,...,x k ) = {c 1 x 1 +c 2 x c k x k c 1,c 2,...,c k R} Esimerkiksi a(1,1)+b(1,0) ja L((1,1),(1,0)) sisältää mm. vektorit (0,0),(1,1),(1,0),(2,1),(0,1),( 2,0),...
82 Lineaarialgebra (muut ko) p. 79/139 Matriisien avulla Pystyrivien lineaarikombinaatio A = (a 1 a 2... a n ) Ac = c 1 a 1 + +c n a n
83 Lineaarialgebra (muut ko) p. 80/139 Matriisien avulla matriisin pystyriveille A = (a 1 a 2... a n ) m n Lause 4.2.8: neliömatriisille L(a 1,a 2,...,a n ) = {Ac c R n } L(a 1,a 2,...,a n ) = R n A on säännöllinen
84 Lineaarialgebra (muut ko) p. 81/139 Matriisien avulla matriisin pystyriveille A = (a 1 a 2... a n ) m n Lause 4.2.8: neliömatriisille L(a 1,a 2,...,a n ) = {Ac c R n } L(a 1,a 2,...,a n ) = R n A on säännöllinen Esimerkiksi L((1,1),(1,0)) = R 2, sillä
85 Lineaarialgebra (muut ko) p. 82/139 Johdanto: Lineaarinen riippumattomuus Olkoot x = (1,1,0) ja y = ( 2, 2,0). Näille lineaarikombinaatioina 0 x+0 y = (0,0,0) 2 x+1 y = (0,0,0) 20 x+10 y = (0,0,0).
86 Lineaarialgebra (muut ko) p. 83/139 Lineaarinen riippumattomuus Lineaarinen riippuvuus c 1 x c m x m = 0 missä jokin c j 0 Lineaarinen riippumattomuus c 1 x c m x m = 0 = c 1 = c 2 =... = c m = 0
87 Lineaarialgebra (muut ko) p. 84/139 Matriisien avulla Lause : Neliömatriisin A = (a 1 a 2... a n ) pystyriveille: Pystyrivit ovat lin. riippumattomia A on säännöllinen
88 Lineaarialgebra (muut ko) p. 85/139 Lineaarinen riippumattomuus Lause sanoo: Vektorit ovat lineaarisesti riippuvia jokin niistä saadaan muiden lineaarikombinaationa x j = c 1 x 1 + +c j 1 x j 1 +c j+1 x j+1 + +c m x m
89 Lineaarialgebra (muut ko) p. 86/139 Lineaarinen riippumattomuus Kaksi vektoria ovat lineaarisesti riippuvia toinen on toisen skalaarimonikerta Varoitus: ei toimi useammalla vektorilla: (1,1,0),(1,0,0),(0,1,0) vaikka t (1,0,0) (0,1,0) s (1,0,0) (1,1,0) r (0,1,0) (1,1,0) kaikilla t,r,s R, niin silti lin. riippuvuus (1,1,0) = (1,0,0)+(0,1,0)
90 Lineaarialgebra (muut ko) p. 87/139 Johdanto: kanta Jokainen vektori lin.kombinaationa? (x,y) = c 1 (2,2)
91 Lineaarialgebra (muut ko) p. 88/139 Johdanto: kanta Jokainen vektori lin.kombinaationa? (x,y) = c 1 (2,2)
92 Lineaarialgebra (muut ko) p. 89/139 Johdanto: kanta Jokainen vektori lin.kombinaationa: (x,y) = c 1 (2,2)+c 2 ( 4,2) = 12 0
93 Lineaarialgebra (muut ko) p. 90/139 Johdanto: kanta Jokainen vektori lin.kombinaationa: (x,y) = c 1 (2,2)+c 2 ( 4, 4)
94 Lineaarialgebra (muut ko) p. 91/139 Johdanto: kanta Jokainen vektori lin.kombinaationa (yksikäsitteisesti): (1, 2) = 1 2 (2,2) 1 2 ( 4,2)+0 (1, 2) (1, 2) = 0 (2,2)+0 ( 4,2)+1 (1, 2)
95 Lineaarialgebra (muut ko) p. 92/139 Kanta Vektorit u 1,...,u k muodostavat aliavaruuden U kannan, jos (i) ovat lineaarisesti riippumattomia, (ii) virittävät koko U:n.
96 Lineaarialgebra (muut ko) p. 93/139 Kanta Vektorit u 1,...,u k muodostavat aliavaruuden U kannan, jos (i) ovat lineaarisesti riippumattomia eli c 1 u 1 + +c m u k = 0 c 1 = = c k = 0, (ii) virittävät koko U:n eli L(u 1,...,u k ) = {c 1 u 1 + +c k u k c 1,...,c k R} = U.
97 Lineaarialgebra (muut ko) p. 94/139 Kannan merkitys Yksikäsitteinen kantaesitys vektorille u U R 4 :n luonnollinen kanta u = c 1 u 1 + +c k u k. {e 1,e 2,e 3,e 4 } = Jos U = R n, niin determinantit käteviä, mutta U R n eivät yleensä sovellu.
98 Lineaarialgebra (muut ko) p. 95/139 Kannan merkitys Yksikäsitteinen kantaesitys vektorille u U R 4 :n luonnollinen kanta u = c 1 u 1 + +c k u k. {e 1,e 2,e 3,e 4 } = {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}. Jos U = R n, niin determinantit käteviä, mutta U R n eivät yleensä sovellu.
99 Lineaarialgebra (muut ko) p. 96/139 Perusominaisuuksia s. 45 1) Jokaisella aliavaruudella U on kanta. 2) Jokaisessa U:n kannassa on sama määrä vektoreita. 3) Lineaarisesti riippumaton U:n joukko {u 1,...,u k } voidaan täydentää U:n kannaksi {u 1,...,u k,u k+1,...u m }. 4) Jos L(u 1,...,u t ) = U, niin tästä saadaan kanta U:lle jättämällä ylimääräiset pois (kunnes lin. riippumaton).
100 Lineaarialgebra (muut ko) p. 97/139 Dimension ominaisuuksia s. 46 Olkoot U,V R n aliavaruuksia: 1) dimu n 2) Jos U V, niin dimu dimv. 3) Jos U V, niin dimu < dimv. 4) Jos u 1,...,u k U ja k < dimu, niin eivät viritä U:ta. 5) Jos u 1,...,u k U ja k > dimu, niin ovat lineaarisesti riippuvia.
101 Lineaarialgebra (muut ko) p. 98/139 Dimension ominaisuuksia s. 46 6) Vektorit u 1,...,u k U muodostavat kannan, jos kaksi seuraavista voimassa: (i) u 1,...,u k ovat lineaarisesti riippumattomia, (ii) U = L(u 1,...,u k ), (ii) k = dimu.
102 Lineaarialgebra (muut ko) p. 99/139 Dimension ominaisuuksia s. 46 7) Olkoon u 1,...,u k kanta U:lle ja vektoreiden v 1,...,v k U kantaesitykset v j = k a ij u i (j = 1,...,k). i=1 Vektorit v 1,...v k muodostavat kannan, jos on säännöllinen. A = (a ij ) k k
103 Lineaarialgebra (muut ko) p. 100/139 Tunnettuja dimensioita Aliavaruuden U R n dimensio dim U = kantavektoreiden lukumäärä Koko avaruudelle dimr n = n. Tasolle (origon kautta) T R 3 dimt = 2. Suoralle (origon kautta) L R 3 diml = 1.
104 Lineaarialgebra (muut ko) p. 101/139 Vaaka- ja pystyriviavaruus Matriisin A = vaakariviavaruus ja pystyriviavaruus V(A) = L((1,3),(0,1),(1,2)) P(A) = L((1,0,1),(3,1,2))
105 Lineaarialgebra (muut ko) p. 102/139 Vaaka- ja pystyriviavaruus Nähtiin dimv(a) = 2 = dimp(a) Pitääkö yleisesti paikkansa kaikille A?
106 Lineaarialgebra (muut ko) p. 103/139 Vaaka- ja pystyriviavaruus P(AB) P(A) V(AB) V(B) jos C ja C ovat säännöllisiä, niin P(AC) = P(A) V(C A) = V(A)
107 Lineaarialgebra (muut ko) p. 104/139 Hajotelma Matriisi A M m n saadaan hajotettua A = }{{} B }{{} C m r r n Esimerkiksi
108 Lineaarialgebra (muut ko) p. 105/139 Hajotelma Matriisi A M m n saadaan hajotettua A = }{{} B }{{} C m r r n Esimerkiksi kanta
109 Lineaarialgebra (muut ko) p. 106/139 Hajotelma Matriisi A M m n saadaan hajotettua A = }{{} B }{{} C m r r n Esimerkiksi kanta = ( )
110 Lineaarialgebra (muut ko) p. 107/139 Hajotelma Matriisi A M m n saadaan hajotettua A = }{{} B }{{} C m r r n Esimerkiksi kanta = ( ) V(A) = V(BC) V(C) Saadaan dimv(a) dimp(a) ja dimv(a) = dimp(a)
111 Lineaarialgebra (muut ko) p. 108/139 Matriisin aste Matriisin aste r(a) = dimv(a) = dimp(a) Lause r(ab) r(a) r(ab) r(b) A säännöllinen r(ab) = r(b) B säännöllinen r(ab) = r(a) A = }{{} B }{{} C m r(a) r(a) n r(a T ) = r(a)
112 Lineaarialgebra (muut ko) p. 109/139 Alideterminantti, s. 56 Matriisin A M m n alideterminantti on determinantti det(b), missä B on neliömatriisi, joka saadaan A:sta pyyhkimällä pois jotkin sen vaaka- ja pystyriveistä. Alideterminantin riviluku on B:n riviluku Lause r(a) = A:n nollasta eroavien alideterminanttien suurin riviluku
113 Lineaarialgebra (muut ko) p. 110/139 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna
114 Lineaarialgebra (muut ko) p. 111/139 Käänteismuunnokset AM1: Kahden vaakarivin vaihto Käänteismuunnos: Vaihdetaan vaakarivit takaisin AM2: Vaakarivin kertominen skalaarilla c 0 Käänteismuunnos: Kerrotaan vaakarivi skalaarilla 1/c AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna Käänteismuunnos: Lisätään vaakarivi toiseen skalaarilla c kerrottuna
115 Lineaarialgebra (muut ko) p. 112/139 Riviekvivalenssi ( ) ( ) ( ) ( )
116 Lineaarialgebra (muut ko) p. 113/139 Riviekvivalenssi ( ) ( ) ( ) ( ) vastaavat alkeismatriisit E 1 = ( ), E 2 = ( ), E 3 = ( ) eli E 3 E 2 E 1 ( ) = ( ).
117 Lineaarialgebra (muut ko) p. 114/139 Redusoitu porrasmuoto Matriisin redusoitu porrasmuoto
118 Lineaarialgebra (muut ko) p. 115/139 Redusoitu porrasmuoto Matriisin redusoitu porrasmuoto aste r(a) =porrasluku ja V(A):n kanta on portaiden vaakarivit.
119 Lineaarialgebra (muut ko) p. 116/139 Redusoitu porrasmuoto Eli aste r(a) = 2 ja vaakariviavaruuden V(A) kanta {(1,1,0,2),(0,0,1,1)}.
120 Lineaarialgebra (muut ko) p. 117/139 Redusoitu porrasmuoto Myös I on redusoitu porrasmuoto Lause A on säännöllinen A I
121 Lineaarialgebra (muut ko) p. 118/139 Käänteismatriisi alkeismuunnoksilla Alkeismuunnoksilla (A I) (I A 1 )
122 Lineaarialgebra (muut ko) p. 119/139 Ratkaisuavaruuden dimensio Yhtälöryhmän (n tuntematonta) Ax = 0 ratkaisuavaruuden dimensio n r(a)
123 Lineaarialgebra (muut ko) p. 120/139 Johdanto: Kannanvaihto Vektori (2,3) = c 1 (1,0)+c 2 (0,1) Luonnollinen kanta E = {(1,0),(0,1)}
124 Lineaarialgebra (muut ko) p. 121/139 Johdanto: Kannanvaihto Vektori (2,3) = 2 (1,0)+3 (0,1) Luonnollinen kanta E = {(1,0),(0,1)}
125 Lineaarialgebra (muut ko) p. 122/139 Johdanto: Kannanvaihto Vektori (2,3) = c 1 ( 1, 1)+c 2 (3,2) Toinen kanta B = {( 1, 1),(3,2)}
126 Lineaarialgebra (muut ko) p. 123/139 Johdanto: Kannanvaihto Vektori (2,3) = ( 5) ( 1, 1)+( 1) (3,2) Toinen kanta B = {( 1, 1),(3,2)}
127 Lineaarialgebra (muut ko) p. 124/139 Johdanto: Kannanvaihto Eli samalla vektorilla x = (2,3) on luonnollisen kannan suhteen (2,3) = 2 (1,0)+3 (0,1) ja kannan B suhteen (2,3) = ( 5) ( 1, 1)+( 1) (3,2) eli X E = ( 2 3 ) ja X B = ( 5 1 )
128 Lineaarialgebra (muut ko) p. 125/139 Koordinaattivektori Kanta B = {b 1,...,b n } avaruudelle R n. Vektorin x R n koordinaattivektori X B = r 1 r 2. r n missä kantaesitys x = r 1 b 1 + +r n b n.
129 Lineaarialgebra (muut ko) p. 126/139 Koordinaattivektori Olkoon x = (1,2,3) R 3 :n luonnollisen kannan suhteen 1 X E = 2 3 Kannan B = {(1,1,1),(1,0,2),( 1,2,1)} suhteen X B = 4/5 4/5 3/5
130 Lineaarialgebra (muut ko) p. 127/139 Kannanvaihdon matriisi Toinen kanta C = {c 1,...,c n }. Kannanvaihdon B C matriisi: c 1 = p 11 b 1 + +p n1 b n. c n = p 1n b 1 + +p nn b n. P B C = p 11 p 1n..... p n1 p nn Muista transponointi!
131 Lineaarialgebra (muut ko) p. 128/139 Kannanvaihdon matriisi X C = P C B X B P B C = (P C B ) 1
132 Lineaarialgebra (muut ko) p. 129/139 Kuvauksista Kuvaus f : A B A B f x y A = määrittelyjoukko B = maalijoukko Yleensä A = R n ja B = R m
133 Lineaarialgebra (muut ko) p. 130/139 Kuvauksista Kuvaus f : A B A B f x u z y Ei ole kuvaus!
134 Lineaarialgebra (muut ko) p. 131/139 Kuvauksista Kuvaus f : A B A f B Im(f) = {f(a) a A} kuvajoukko
135 Lineaarialgebra (muut ko) p. 132/139 Kuvauksista Kuvaus f : A B A f B B B 0 f 1 (B 0 ) = {a A f(a) B 0 } alkukuva
136 Lineaarialgebra (muut ko) p. 133/139 Kuvauksista Kuvaus f : A B A f B f on surjektio, jos Im(f) = B
137 Lineaarialgebra (muut ko) p. 134/139 Kuvauksista Kuvaus f : A B A B f a y b Kuvauksessa voi olla
138 Lineaarialgebra (muut ko) p. 135/139 Kuvauksista Kuvaus f : A B A B f a y b z f on injektio, jos a b f(a) f(b) a,b A Bijektio, jos surjektio ja injektio
139 Lineaarialgebra (muut ko) p. 136/139 Kuvauksista Kuvaus f : A B ja kuvaus g : A B ovat yhtäsuuret, jos f(a) = g(a) a A Merkitään f = g
140 Lineaarialgebra (muut ko) p. 137/139 Kuvauksista Kuvaus f : A B ja g : B C A B C f g x g(f(x)) f(x) Yhdistetty kuvaus g f : A C, (g f)(x) = g(f(x))
141 Lineaarialgebra (muut ko) p. 138/139 Kuvauksista Kuvaus f : A B ja g : B A A B f x y g Käänteiskuvauksia, jos f g = id B ja g f = id A. f 1 olemassa f on bijektio
142 Lineaarialgebra (muut ko) p. 139/139 Lineaarikuvaus Kuvaus f : R n R m on lineaarinen, jos L1: f(x 1 +x 2 ) = f(x 1 )+f(x 2 ) x 1,x 2 R n L2: f(ax) = af(x) x R n,a R. Muista f(0) = 0.
Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210 Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2
LisätiedotSeuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117
Seuraava luento ti 31.10 on salissa XXII Lineaarialgebra (muut ko) p. 1/117 Lineaarialgebra (muut ko) p. 2/117 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v
LisätiedotLineaarialgebra (muut ko)
Lineaarialgebra (muut ko) p. 1/103 Lineaarialgebra (muut ko) Tero Laihonen Lineaarialgebra (muut ko) p. 2/103 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v
LisätiedotMatikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )
LisätiedotEnsi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/159
Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/159 Lineaarialgebra (muut ko) p. 2/159 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 ) Skalaarilla
LisätiedotTällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162
Tällä viikolla viimeiset luennot ja demot Lineaarialgebra (muut ko) p. 1/162 Lineaarialgebra (muut ko) p. 2/162 Kertausta Vektorin u = (u 1,u 2 ) R 2 pituus u = u 2 1 +u2 2 Vektorien u ja v = (v 1,v 2
LisätiedotAlkeismuunnokset matriisille, sivu 57
Lineaarialgebra (muut ko) p. 1/88 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna
LisätiedotEnsi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66
Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/66 Lineaarialgebra (muut ko) p. 2/66 Redusoitu porrasmuoto 1 1 2 4 1 1 4 6 2 2 5 9 1 1 0 2 0 0 1 1 0 0 0 0 Eli aste r(a) = 2 ja vaakariviavaruuden
LisätiedotDemorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104
Lineaarialgebra (muut ko) p. 1/104 Ensi viikolla luennot salissa X Torstaina 7.12. viimeiset demot (12.12. ja 13.12. viimeiset luennot). Torstaina 14.12 on välikoe 2, muista ilmoittautua! Demorastitiedot
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
LisätiedotJohdatus lineaarialgebraan. Juha Honkala 2017
Johdatus lineaarialgebraan Juha Honkala 2017 Sisällysluettelo 1 Lineaariset yhtälöryhmät ja matriisit 11 Lineaariset yhtälöryhmät 12 Matriisit 13 Matriisien alkeismuunnokset ja porrasmatriisit 14 Yhtälöryhmien
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotMatematiikka B2 - TUDI
Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
LisätiedotMatematiikka B2 - Avoin yliopisto
6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
LisätiedotMatriisien tulo. Matriisit ja lineaarinen yhtälöryhmä
Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus
Lisätiedot2.5. Matriisin avaruudet ja tunnusluvut
2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja
Lisätiedot1.1. Määritelmiä ja nimityksiä
1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden
Lisätiedot3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset
32 Idea: Lineaarikuvausten laskutoimitusten avulla määritellään vastaavat matriisien laskutoimitukset Vakiolla kertominen ja summa Olkoon t R ja A, B R n m Silloin ta, A + B R n m ja määritellään ta ta
Lisätiedot3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
LisätiedotLineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /310
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/310 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotAvaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotMääritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.
1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:
LisätiedotOsoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
Lisätiedot3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h
HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)
LisätiedotTalousmatematiikan perusteet: Luento 10. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti
Talousmatematiikan perusteet: Luento 1 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,
LisätiedotInformaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen
Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisit..............................
LisätiedotKäänteismatriisin ominaisuuksia
Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit
Lisätiedot6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio
6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
LisätiedotVille Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007
Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear
LisätiedotLineaarialgebra ja matriisilaskenta I. LM1, Kesä /218
Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.
LisätiedotTalousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi
Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku
LisätiedotKuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
LisätiedotBijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.
Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä
LisätiedotPäättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1
Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotInformaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen
Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................
LisätiedotKäänteismatriisi 1 / 14
1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella
LisätiedotInformaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen
Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................
Lisätiedot1 Matriisit ja lineaariset yhtälöryhmät
1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 4.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Viimeiset harjoitukset on palautettava torstaina 13.6. Laskaripisteensä ja läsnäolonsa voi kukin tarkistaa
LisätiedotMatriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
LisätiedotMatriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?
Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
LisätiedotBM20A0700, Matematiikka KoTiB2
BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin
Lisätiedot3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA =
3 3 Olkoot 9 8 B 7 6 ja A 5 4 [ 3 4 Nyt A + B, AB ja BB eivät ole mielekkäitä (vastaavilla lineaarikuvauksilla menisivät dimensiot solmuun tällaisista yhdistelmistä) Kuitenkin voidaan laskea BA ja 9( )
Lisätiedot2.8. Kannanvaihto R n :ssä
28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit
LisätiedotTalousmatematiikan perusteet: Luento 9. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo
Talousmatematiikan perusteet: Luento 9 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,
LisätiedotLineaarialgebra. Osa 2. Turun yliopisto. Markku Koppinen
Lineaarialgebra Osa 2 Turun yliopisto Markku Koppinen Sisältö 1 Koordinaattivektorit ja kannan vaihdot 1 11 Koordinaattivektorit 1 12 Kannan vaihdot 2 2 Lineaarikuvaukset 6 21 Kuvauksista 6 22 Lineaarikuvaukset
LisätiedotMatriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.
Matriisilaskenta Harjoitusten ratkaisut (Kevät 9). Olkoot ja A = B = 5. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Tapa Käänteismatriisin määritelmän nojalla riittää osoittaa, että AB
LisätiedotOrtogonaalinen ja ortonormaali kanta
Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä
LisätiedotKannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
Lisätiedot4. LINEAARIKUVAUKSET
86 4 LINEAARIKUVAUKSET 41 Määritelmä ja esimerkkejä Olkoot V ja V vektoriavaruuksia Tarkastellaan kuvausta L : V V Tällöin jokaiseen vektoriin v V liittyy tietty, L:n ja v:n yksikäsitteisesti määräämä
Lisätiedot110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3
4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5
Lisätiedot3.1 Lineaarikuvaukset. MS-A0007 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
3 MS-A7 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 925 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita ratkotaan
Lisätiedot9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista
29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n
Lisätiedot1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät
1 1 LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT Muotoa 11 Lineaariset yhtälöryhmät (1) a 1 x 1 + a x + + a n x n b oleva yhtälö on tuntemattomien x 1,, x n lineaarinen yhtälö, jonka kertoimet ovat luvut a 1,,
LisätiedotTalousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi
Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään
Lisätiedot802118P Lineaarialgebra I (4 op)
802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Lineaarikuvaukset Lineaarikuvaus Olkoot U ja V
LisätiedotMS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47
MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus
Lisätiedotominaisvektorit. Nyt 2 3 6
Esimerkki 2 6 8 Olkoon A = 40 0 6 5. Etsitäänmatriisinominaisarvotja 0 0 2 ominaisvektorit. Nyt 2 0 2 6 8 2 6 8 I A = 40 05 40 0 6 5 = 4 0 6 5 0 0 0 0 2 0 0 2 15 / 172 Täten c A ( )=det( I A) =( ) ( 2)
LisätiedotJohdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 5. luento.2.27 Lineaarialgebraa - Miksi? Neuroverkon parametreihin liittyvät kaavat annetaan monesti
LisätiedotLineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
Lisätiedot9 Matriisit. 9.1 Matriisien laskutoimituksia
9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä
LisätiedotLineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg
Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO Syksy 2017 LINEAARIALGEBRA 1 / 59 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus
LisätiedotLiittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.
Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla
LisätiedotDeterminantti. Määritelmä
Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi. Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j). (a) Jos n = 1, niin det(a) = a 11. (b) Muussa tapauksessa n det(a)
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Lotta Oinonen ja Johanna Rämö 6. joulukuuta 2012 Helsingin yliopisto Matematiikan ja tilastotieteen laitos 2012 Sisältö 1 Avaruus R n 4 1 Avaruuksien R 2 ja R 3 vektorit.....................
Lisätiedotx 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili
6 4 2 x 2 x 3 15 10 5 0 5 15 5 3 2 1 1 2 3 2 0 x 2 = 1 2x 1 0 4 x 2 = 3 x 1 x 5 2 5 x 1 10 x 1 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili Sisältö
LisätiedotYhteenlaskun ja skalaarilla kertomisen ominaisuuksia
Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
Lisätiedot5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
LisätiedotInformaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen
Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisin määritelmä.......................
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2019 LINEAARIALGEBRA 1 / 60 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lisätiedot802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III
802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Contents 1 Lineaarikuvaus 2 1.1 Määritelmä............................ 2 1.2 Matriisiesitys/Matrix
LisätiedotLineaarialgebra I. Oulun yliopisto Matemaattisten tieteiden laitos Esa Järvenpää Kirjoittanut Tuula Ripatti
Lineaarialgebra I Oulun yliopisto Matemaattisten tieteiden laitos 2011 Esa Järvenpää Kirjoittanut Tuula Ripatti 2 1 Lineaarinen yhtälöryhmä 11 Esimerkki (a) Ratkaise yhtälö 5x = 7 Kerrotaan yhtälö puolittain
LisätiedotVektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa
Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden
LisätiedotMatriisialgebra harjoitukset, syksy x 1 + x 2 = a 0
MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 22 Virittääkö vektorijoukko S vektoriavaruuden V, kun a V = R 3 ja S = {(1,0, 1,(2,0,4,( 5,0,2,(0,0,1} b V = P 2 (R ja S = {t1,t 2 1,t 2 t} ( ( 1 0 c
Lisätiedot