802320A LINEAARIALGEBRA OSA III

Koko: px
Aloita esitys sivulta:

Download "802320A LINEAARIALGEBRA OSA III"

Transkriptio

1 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56

2 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos LINEAARIALGEBRA 2 / 56

3 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); LINEAARIALGEBRA 2 / 56

4 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) LINEAARIALGEBRA 2 / 56

5 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. LINEAARIALGEBRA 2 / 56

6 Määritelmä Termejä: Lineaarikuvaus, Lineaarinen kuvaus. LINEAARIALGEBRA 3 / 56

7 Määritelmä Termejä: Lineaarikuvaus, Lineaarinen kuvaus. Huomautus 1 Lineaarikuvauksen argumentin ympäriltä jätetään usein sulut pois eli voidaan käyttää merkintää Lv := L(v). Lemma 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen joss LINEAARIALGEBRA 3 / 56

8 Määritelmä Termejä: Lineaarikuvaus, Lineaarinen kuvaus. Huomautus 1 Lineaarikuvauksen argumentin ympäriltä jätetään usein sulut pois eli voidaan käyttää merkintää Lv := L(v). Lemma 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen joss aina, kun v, w V ja α, β K. L(αv + βw) = αlv + βlw (1) LINEAARIALGEBRA 3 / 56

9 Määritelmä Merkintä 1 Olkoot V ja W vektoriavaruuksia. Identtinen kuvaus Nollakuvaus (nollafunktio) Id : V V, Id(v) = v v V. 0 : V W, 0(v) = 0 v V. LINEAARIALGEBRA 4 / 56

10 Määritelmä Merkintä 1 Olkoot V ja W vektoriavaruuksia. Identtinen kuvaus Nollakuvaus (nollafunktio) Id : V V, Id(v) = v v V. 0 : V W, 0(v) = 0 v V. Esimerkki 1 Identtinen kuvaus ja nollakuvaus ovat lineaarisia kuvauksia. LINEAARIALGEBRA 4 / 56

11 Määritelmä Esimerkki 2 Kuvaus L : R 2 R 2, L(x) = 3 x, x R 2, (2) on lineaarinen. LINEAARIALGEBRA 5 / 56

12 Määritelmä Esimerkki 2 Kuvaus L : R 2 R 2, L(x) = 3 x, x R 2, (2) on lineaarinen. Nimittäin, L(x + y) = 3 (x + y) = 3 x + 3 y = Lx + Ly; (3) L(rx) = 3 (r x) = r (3 x) = r Lx, (4) aina, kun x, y R 2 ja r R. LINEAARIALGEBRA 5 / 56

13 Määritelmä Tiedetään, että R 1 on lineaariavaruus kunnan R yli. Tällöin voidaan tehdä samaistus R = R 1 (mieti vastaavaisuutta), jolloin reaaliluvuista R muodostuu lineaariavaruus kunnan R yli. LINEAARIALGEBRA 6 / 56

14 Määritelmä Tiedetään, että R 1 on lineaariavaruus kunnan R yli. Tällöin voidaan tehdä samaistus R = R 1 (mieti vastaavaisuutta), jolloin reaaliluvuista R muodostuu lineaariavaruus kunnan R yli. Esimerkki 3 Kuvaus L : R R on lineaarinen jos ja vain jos on olemassa sellainen s R, että L(x) = sx (5) kaikilla x R. LINEAARIALGEBRA 6 / 56

15 Määritelmä Todistus. : Oletetaan, että L on lineaarinen ja olkoon L(1) := s. Tällöin L(x) = L(x 1) = xl(1) = xs. (6) LINEAARIALGEBRA 7 / 56

16 Määritelmä Todistus. : Oletetaan, että L on lineaarinen ja olkoon L(1) := s. Tällöin L(x) = L(x 1) = xl(1) = xs. (6) : Oletetaan, että Kotitehtävä: Osoita, että L on lineaarinen. L(x) = sx. (7) LINEAARIALGEBRA 7 / 56

17 Matriisiesitys Merkintä 2 Merkintä M h k (K) = {A A = [a ij ], i = 1,..., h; j = 1,..., k; a ij K} tarkoittaa h k-matriisien joukkoa. Siten, jos A M h k (K), niin matriisissa A = [a ij ] on h riviä ja k saraketta ja sen alkiot a ij K. LINEAARIALGEBRA 8 / 56

18 Matriisiesitys Merkintä 3 Tästä lähtien merkintä x viittaa pystyvektoriin x 1 x n x = (x 1,..., x n ) T =. joka voidaan tarvittaessa tulkita n 1-matriisiksi eli x 1 x =. x n LINEAARIALGEBRA 9 / 56

19 Matriisiesitys Yleisemmin: Merkintä 4 Olkoon v = {v 1,..., v n } avaruuden V kanta. Koordinaattikuvaus [.] v kuvaa vektorin v kantaesityksen pystyvektoriksi eli matriisin sarakkeeksi seuraavasti λ n 1 [v] v = [ λ i v i ] v =.. (8) i=1 Koordinaattikuvaus on lineaarinen bijektio ja siten vektori ja sen koordinaateista muodostettu pystyvektori/sarake voidaan samaistaa. λ n v LINEAARIALGEBRA 10 / 56

20 Matriisiesitys Lemma 2 Olkoon A M m n (R). Määritellään kuvaus L A : R n R m asettamalla kaikilla x R n, missä x tulkitaan n 1-matriisiksi. L A (x) = Ax (9) LINEAARIALGEBRA 11 / 56

21 Matriisiesitys Lemma 2 Olkoon A M m n (R). Määritellään kuvaus L A : R n R m asettamalla L A (x) = Ax (9) kaikilla x R n, missä x tulkitaan n 1-matriisiksi. Tällöin kuvaus L A on lineaarinen. LINEAARIALGEBRA 11 / 56

22 Matriisiesitys Tarkastellaan aluksi kertolaskua a 11 a a 1n x 1 a 21 a a 2n x 2 Ax =.. = a m1 a m2... a mn x n a 11 x 1 + a 12 x a 1n x n a 21 x 1 + a 22 x a 2n x n. Rm. (10) a m1 x 1 + a m2 x a mn x n Nähdään, että m n-matriisilla kertominen todellakin indusoi kuvauksen x Ax; R n R m. LINEAARIALGEBRA 12 / 56

23 Matriisiesitys Todistus. Osoitetaan, että kuvaus L A on lineaarinen. L A (x + y) = A(x + y) = Ax + Ay = L A (x) + L A (y), (11) ja L A (rx) = A(rx) = rax = rl A (x) (12) kaikilla x, y R n ja r R matriisitulon ominaisuuksien nojalla. LINEAARIALGEBRA 13 / 56

24 Matriisiesitys Esimerkki 4 Olkoon L(x 1, x 2 ) = (x 1 + x 2, 2x 1 x 2 ) (x 1, x 2 ) R 2, (13) tällöin saadaan lineaarikuvaus L : R 2 R 2. Todistus. Kohta a. Lasketaan V.P. = L(x + y) = L(x 1 + y 1, x 2 + y 2 ) = ((x 1 + y 1 ) + (x 2 + y 2 ), 2(x 1 + y 1 ) (x 2 + y 2 )); O.P. = L(x) + L(y) = (x 1 + x 2, 2x 1 x 2 ) + (y 1 + y 2, 2y 1 y 2 ). Havaitaan, että V.P.=O.P. Kohta b. Kotitehtävä. LINEAARIALGEBRA 14 / 56

25 Matriisiesitys Esimerkin 4 lineaarikuvausta L(x 1, x 2 ) = (x 1 + x 2, 2x 1 x 2 ) vastaa matriisiyhtälö [ ] [ ] [ ] 1 1 x1 x1 + x = x 2 2x 1 x 2 (14) eli [ ] x1 + x Ax = 2. (15) 2x 1 x 2 LINEAARIALGEBRA 15 / 56

26 Matriisiesitys Esimerkin 4 lineaarikuvausta L(x 1, x 2 ) = (x 1 + x 2, 2x 1 x 2 ) vastaa matriisiyhtälö [ ] [ ] [ ] 1 1 x1 x1 + x = x 2 2x 1 x 2 (14) eli [ ] x1 + x Ax = 2. (15) 2x 1 x 2 Pisteen x = (x 1, x 2 ) [ kuva ] lineaarikuvauksessa [ L ] voidaan siis laskea x1 1 1 kertomalla matriisi matriisilla A =. 2 1 x 2 LINEAARIALGEBRA 15 / 56

27 Perustuloksia Lause 1 Olkoot V ja W vektoriavaruuksia sekä L : V W lineaarinen. Tällöin L(0) = 0 (16) ja ( k ) k L λ i v i = λ i L(v i ) (17) i=1 i=1 kaikilla k Z +, λ 1,..., λ k K ja v 1..., v k V. LINEAARIALGEBRA 16 / 56

28 Perustuloksia Lause 2 Olkoot V ja W vektoriavaruuksia kunnan K yli ja T, L : V W lineaarikuvauksia ja S avaruuden V kanta. LINEAARIALGEBRA 17 / 56

29 Perustuloksia Lause 2 Olkoot V ja W vektoriavaruuksia kunnan K yli ja T, L : V W lineaarikuvauksia ja S avaruuden V kanta. Tällöin T = L jos ja vain jos LINEAARIALGEBRA 17 / 56

30 Perustuloksia Lause 2 Olkoot V ja W vektoriavaruuksia kunnan K yli ja T, L : V W lineaarikuvauksia ja S avaruuden V kanta. Tällöin T = L jos ja vain jos Ts = Ls kaikilla s S. LINEAARIALGEBRA 17 / 56

31 Perustuloksia Muistetaan, että T = L Tv = Lv v V. (18) Siten, jos T = L, niin Ts = Ls kaikilla s S. : Todistetaan tapaus: dim V = n <. Olkoon S = {s 1,..., s n }, jolloin V = s 1,..., s n. Oletetaan, että Ts = Ls kaikilla s S. Nyt ( n ) ( n n n ) Tv = T λ i s i = λ i T (s i ) = λ i L(s i ) = L λ i s i = Lv. i=1 i=1 i=1 i=1 (19) LINEAARIALGEBRA 18 / 56

32 Perustuloksia Lause 3 Olkoot V, W ja U vektoriavaruuksia sekä L : V W ja S : W U lineaarikuvauksia. Tällöin (a) yhdistetty kuvaus S L : V U on lineaarinen; (b) jos L on bijektio, niin L 1 : W V on lineaarinen. LINEAARIALGEBRA 19 / 56

33 Perustuloksia Todistus. Kohta b: Koska L : V W on bijektio, niin L 1 : W V ja LL 1 = L 1 L = Id. Olkoot w 1, w 2 W, tällöin sellaiset v 1, v 2 V, että w 1 = Lv 1, w 2 = Lv 1. Siispä L 1 (w 1 + w 2 ) = L 1 (Lv 1 + Lv 2 ) = L 1 L(v 1 + v 2 ) = v 1 + v 2 = L 1 w 1 + L 1 w 2 ; L 1 (λw) = L 1 (λlv) = L 1 L(λv) = λv = λl 1 w. LINEAARIALGEBRA 20 / 56

34 Ker ja Im Määritelmä 2 Olkoot V ja W vektoriavaruuksia sekä L : V Kuvauksen L kernel on joukko W lineaarinen. Ker L = {v V Lv = 0} ja image on joukko Im L = {w W w = Lv jollakin v V }. LINEAARIALGEBRA 21 / 56

35 Ker ja Im Määritelmä 2 Olkoot V ja W vektoriavaruuksia sekä L : V Kuvauksen L kernel on joukko W lineaarinen. Ker L = {v V Lv = 0} ja image on joukko Im L = {w W w = Lv jollakin v V }. Terminologiaa: Kernel eli ydin eli nollan alkukuva; Image eli kuvajoukko eli arvojoukko LINEAARIALGEBRA 21 / 56

36 Ker ja Im Esimerkki 5 Lasketaan Esimerkin 4 lineaarikuvauksen L : R 2 R 2 kernel ja image. L(x 1, x 2 ) = (x 1 + x 2, 2x 1 x 2 ) (x 1, x 2 ) R 2, (20) LINEAARIALGEBRA 22 / 56

37 Ker ja Im Esimerkki 5 Lasketaan Esimerkin 4 lineaarikuvauksen L : R 2 R 2 kernel ja image. Kernel: missä L(x 1, x 2 ) = (x 1 + x 2, 2x 1 x 2 ) (x 1, x 2 ) R 2, (20) x Ker L Lx = 0 Ax = 0 (21) A = Siten x = A 1 0 = 0, joten [ ] 1 1, det A = 3 0. (22) 2 1 Ker L = {0}. (23) LINEAARIALGEBRA 22 / 56

38 Ker ja Im Image: Valitaan maaliavaruudesta mielivaltainen alkio y R 2 ja yritetään hakea sille alkukuva x lähtöavaruudesta R 2. Asetetaan yhtälö Lx = y Ax = y x = A 1 y (24) Siten löydettiin lähtöavaruuden alkio x = A 1 y R 2 (y:n alkukuva) eli alkio jolle pätee Lx = y. (25) Havaitaan, että Im L = R 2. (26) LINEAARIALGEBRA 23 / 56

39 Ker ja Im Esimerkki 6 Kuvaus L : R 3 R 2, L(x, y, z) = (x, y + z) on lineaarinen. Määrätään sen ydin ja arvojoukko. Nyt (x, y, z) Ker L (27) (0, 0) = L(x, y, z) = (x, y + z) (28) x = 0, z = y R. (29) Siis y on vapaa parametri, jolloin Ker L = {(0, y, y) R 3 : y R} = (0, 1, 1) ; (30) dim Ker L = 1. (31) LINEAARIALGEBRA 24 / 56

40 Ker ja Im Olkoon b = (b 1, b 2 ) R 2 ja asetetaan L(x, y, z) = (x, y + z) = (b 1, b 2 ) { x = b 1 y + z = b 2. (32) Valitsemalla x = b 1, y = b 2 ja z = 0 saadaan L(b 1, b 2, 0) = (b 1, b 2 ) eli jokaisella R 2 :n pisteellä on alkukuva. Arvojoukoksi tulee Im L = R 2. (33) LINEAARIALGEBRA 25 / 56

41 Ker ja Im Lause 4 Olkoot V ja W vektoriavaruuksia, V V ja W W aliavaruuksia ja L : V W lineaarikuvaus. LINEAARIALGEBRA 26 / 56

42 Ker ja Im Lause 4 Olkoot V ja W vektoriavaruuksia, V V ja W W aliavaruuksia ja L : V W lineaarikuvaus. Tällöin ovat aliavaruuksia. L 1 (W ) V ja L(V ) W (34) LINEAARIALGEBRA 26 / 56

43 Ker ja Im Lause 4 Olkoot V ja W vektoriavaruuksia, V V ja W W aliavaruuksia ja L : V W lineaarikuvaus. Tällöin ovat aliavaruuksia. Erityisesti ovat aliavaruuksia ja L 1 (W ) V ja L(V ) W (34) Ker L V ja Im L W (35) LINEAARIALGEBRA 26 / 56

44 Ker ja Im Lause 4 Olkoot V ja W vektoriavaruuksia, V V ja W W aliavaruuksia ja L : V W lineaarikuvaus. Tällöin ovat aliavaruuksia. Erityisesti ovat aliavaruuksia ja L 1 (W ) V ja L(V ) W (34) Ker L V ja Im L W (35) dim Ker L dim V, dim Im L dim W. (36) LINEAARIALGEBRA 26 / 56

45 Ker ja Im Todistetaan, että Ker L on V :n aliavaruus. AA1. Koska L(0) = 0, niin 0 Ker L ja siten Ker L. AA2. Olkoot x 1, x 2 Ker L. Lasketaan L(x 1 + x 2 ) = Lx 1 + Lx 2 = = 0, (37) joten x 1 + x 2 Ker L. AA3. Olkoot k K ja x Ker L. Lasketaan joten k x Ker L. L(k x) = k Lx = k 0 = 0, (38) LINEAARIALGEBRA 27 / 56

46 Ker ja Im Lause 5 Olkoot V ja W vektoriavaruuksia sekä L : V W lineaarikuvaus. Tällöin L on injektio jos ja vain jos Ker L = {0}. Todistus. : Olkoon L injektio. Valitaan x Ker L, tällöin Siten x = 0 ja edelleen Ker L = {0}. Lx = 0 = L0. LINEAARIALGEBRA 28 / 56

47 Ker ja Im Lause 5 Olkoot V ja W vektoriavaruuksia sekä L : V W lineaarikuvaus. Tällöin L on injektio jos ja vain jos Ker L = {0}. Todistus. : Olkoon L injektio. Valitaan x Ker L, tällöin Lx = 0 = L0. Siten x = 0 ja edelleen Ker L = {0}. : Olkoon Ker L = {0}. Asetetaan Lx = Ly. Tällöin L(x y) = 0, joten x y Ker L = {0} x y = 0 x = y. LINEAARIALGEBRA 28 / 56

48 Dimensiolause Lause 6 (Dimensiolause) Olkoot V äärellisulotteinen vektoriavaruus, W vektoriavaruus ja L : V W lineaarinen. Tällöin dim V = dim Ker L + dim Im L. (39) LINEAARIALGEBRA 29 / 56

49 Dimensiolause Todistus. Olkoot dim V = n, dim Ker L = k, Ker L = v 1,..., v k. Täydennetään lista v 1,..., v k avaruuden V :n kannaksi, jolloin V = v 1,..., v k, v k+1,..., v n, v k+1,..., v n / Ker L. Määrätään kuva-avaruus Im L = L( v 1,..., v n ) = {L(a 1 v a n v n ) a 1,..., a n K} = {a 1 Lv a n Lv n a 1,..., a n K} = {a k+1 Lv k a n Lv n a 1,..., a n K}. LINEAARIALGEBRA 30 / 56

50 Dimensiolause Osoitetaan vielä, että {Lv k+1,..., Lv n } on lineaarisesti vapaa. Asetetaan lineaarikombinaatio nollaksi a k+1 Lv k a n Lv n = 0 L(a k+1 v k a n v n ) = 0 a k+1 v k a n v n Ker L a k+1 v k a n v n = b 1 v b k v k b 1 v b k v k + ( a k+1 )v k ( a n )v n = 0. Kantana joukko {v 1,..., v k, v k+1,..., v n } on lineaarisesti vapaa, joten b 1 =... = b k = a k+1 =... = a n = 0. Siten {Lv k+1,..., Lv n } on lineaarisesti vapaa ja kuva-avaruuden dimensioksi saadaan dim Im L = n k. LINEAARIALGEBRA 31 / 56

51 Dimensiolause Seuraus 1 Olkoot V ja W vektoriavaruuksia siten, että V on äärellisulotteinen, ja L : V W lineaarinen. Tällöin seuraavat väitteet ovat tosia: (a) Jos L on injektio, niin dim V dim W. (b) Jos L on surjektio, niin dim V dim W. (c) Jos L on bijektio, niin dim V = dim W. LINEAARIALGEBRA 32 / 56

52 Dimensiolause Todistus. Aluksi k := dim Ker L n := dim V, n k = dim Im L dim W. a) kohta. Nyt Ker L = {0}, joten k = 0 n k = n dim W. b) kohta. Nyt Im L = W, joten n k = m := dim W n = m + k m. c) kohta seuraa kohdista a+b. dim W n dim W. LINEAARIALGEBRA 33 / 56

53 Dimensiolause Seuraus 2 Olkoot V ja W äärellisulotteisia vektoriavaruuksia siten, että niiden dimensiot ovat samat, ja olkoon L : V W lineaarinen. Tällöin seuraavat väitteet ovat yhtäpitäviä: (a) L on bijektio. (b) L on injektio. (c) L on surjektio. LINEAARIALGEBRA 34 / 56

54 Dimensiolause Esimerkki 7 Kuvaus L : R 3 R 2, L(x, y, z) = (y z, x z), on lineaarinen. Määrätään kuvauksen L ydin: y = z L(x, y, z) = 0 (y z, x z) = (0, 0) x = z z R. Siis Ker L = {(x, y, z) R 3 : x = y = z, z R} = {s(1, 1, 1) : s R} = (1, 1, 1), joten dim Ker L = 1. Erityisesti Ker L {0}, joten L ei ole injektio. Dimensiolauseen nojalla 3 = 1 + dim Im L, joten dim Im L = 2 = dim R 2. Siten Im L = R 2 eli L on surjektio. LINEAARIALGEBRA 35 / 56

55 Dimensiolause Esimerkki 8 Tarkastellaan derivaattakuvausta D : Pol n (R, R) Pol n (R, R). Koska Dp = p = 0 jos ja vain jos p(x) = c kaikilla x R jollekin c R (eli p on vakiopolynomi), niin Ker D = 1. Näin ollen dim Ker D = 1. Dimensiolauseen nojalla dim Pol n (R, R) = n + 1 = 1 + dim Im D, joten dim Im D = n < dim Pol n (R, R). Näin ollen D ei ole surjektio. LINEAARIALGEBRA 36 / 56

56 Kannanvaihtomatriisit Merkintä 5 Olkoon v = {v 1,..., v n } avaruuden V kanta. Koordinaattikuvaus [.] v kuvaa vektorin v kantaesityksen n i=1 λ iv i pystyvektoriksi eli matriisin sarakkeeksi seuraavasti λ n 1 [v] v = [ λ i v i ] v =.. (40) i=1 Koordinaattikuvaus on lineaarinen bijektio ja siten vektori ja sen koordinaateista muodostettu pystyvektori/sarake voidaan samaistaa. λ n v LINEAARIALGEBRA 37 / 56

57 Kannanvaihtomatriisit Esimerkki [v 1 ] v = [1 v v v n ] v =. 0 v (41) LINEAARIALGEBRA 38 / 56

58 Kannanvaihtomatriisit Olkoot V ja W vektoriavaruuksia kunnan K yli, missä v = {v 1,..., v n } on avaruuden V kanta ja w = {w 1,..., w m } on avaruuden W kanta. Olkoon L : V W lineaarikuvaus, jolle kantavektoreitten v 1,..., v n kuvat kannassa w = {w 1,..., w m } ovat Lv 1 =a 11 w a m1 w m,... Lv n =a 1n w a mn w m eli [Lv 1 ] w = a 11 a 21., [Lv 2 ] w = a 12 a 22.,..., [Lv n ] w = a 1n a 2n a m1 a w m2 a w mn w.. (42) LINEAARIALGEBRA 39 / 56

59 Kannanvaihtomatriisit Merkitään a 11 a a 1n a 21 a a 2n [L] v,w = [[Lv 1 ] w, [Lv 2 ] w,..., [Lv n ] w ] =. a m1 a m2... a mn m n missä sarakkeina ovat kantavektoreitten v 1,..., v n kuvien Lv 1,..., Lv n koordinaattivektorit kannassa w 1,..., w n. Määritelmä 3 Matriisi [L] v,w on lineaarikuvauksen L matriisi kantojen v ja w suhteen., (43) LINEAARIALGEBRA 40 / 56

60 Kannanvaihtomatriisit Lause 7 Olkoot V ja W vektoriavaruuksia kunnan K yli, missä v = {v 1,..., v n } on avaruuden V kanta ja w = {w 1,..., w m } on avaruuden W kanta. Olkoon L : V W lineaarikuvaus, jonka matriisi kantojen v ja w suhteen on [L] v,w = [a ij ]. Tällöin [a ij ] on se yksikäsitteinen m n-matriisi, jonka avulla kuvauksen L arvo Lv = m j=1 µ jw j pisteessä v = n i=1 λ iv i saadaan matriisikertolaskuna [L] v,w [v] v = [Lv] w (44) eli a a 1n λ 1 µ 1.. =. a m1... a mn λ n µ m v w (45) LINEAARIALGEBRA 41 / 56

61 Kannanvaihtomatriisit Todistus. Lasketaan lineaarikuvauksena Lv =L(λ 1,..., λ n ) = n n L( λ i v i ) = λ i Lv i = i=1 i=1 λ 1 (a 11 w a m1 w m ) λ n (a 1n w a mn w m ) = (a 11 λ a 1n λ n )w (a m1 λ a mn λ n )w m = (a 11 λ a 1n λ n,..., a m1 λ a mn λ n ) = (µ 1,..., µ m ) ja LINEAARIALGEBRA 42 / 56

62 Kannanvaihtomatriisit matriiseilla a 11 a a 1n λ 1 a 21 a a 2n λ 2 [L] v,w [v] v =.. a m1 a m2... a mn λ n a 11 λ a 1n λ n. a m1 λ a mn λ n w µ 1 =. µ m w v = [Lv] w. = (46) LINEAARIALGEBRA 43 / 56

63 Kannanvaihtomatriisit Lineaarikuvausta vastaa yksikäsitteinen matriisi ja matriisin avulla voidaan määritellä lineaarikuvaus. On siis olemassa bijektio kaikkien lineaaristen kuvauksien L : V W ja kaikkien m n-matriisien välillä. LINEAARIALGEBRA 44 / 56

64 Kannanvaihtomatriisit Esimerkki 10 Olkoot V = W = R 2, e = {e 1, e 2 } V ja f = {f 1 = e 1 + e 2, f 2 = e 1 e 2 } W. Tarkastellaan lineaarikuvausta L : V W, joka kuvaa kantavektorit e 1, e 2 kuvavektoreiksi [ ] 0 Le 1 = e 1 + e 2 = 0 f 1 + ( 1) f 2 = ; 1 [ ] f 1 Le 2 = e 1 + e 2 = 1 f 1 + f 2 =. 0 f (47) Tällöin L:n matriisi kantojen e ja f suhteen on [ ] 0 1 [L] e,f = [[Le 1 ] f, [Le 2 ] f ] =, (48) LINEAARIALGEBRA 45 / 56

65 Kannanvaihtomatriisit missä sarakkeina ovat kantavektoreitten e 1, e 2 kuvien Le 1, Le 2 koordinaattivektorit kannassa f 1, f 2. LINEAARIALGEBRA 46 / 56

66 Esimerkkejä Esimerkki 11 Määritellään lineaarikuvaus L : R 3 R 3, asettamalla L(x, y, z) = (z y, x z + y, x) aina, kun (x, y, z) R 3. 1 Määrää Ker L. 2 Onko L injektio? 3 Määrää dim Ker L. 4 Määrää dim Im L (käytä dimensiokaavaa). 5 Onko L surjektio? 6 Onko L bijektio? 7 Määrää Im L. LINEAARIALGEBRA 47 / 56

67 Esimerkkejä 1. Ker L. Ratkaisu: Asetetaan Lx =0 (49) (z y, x z + y, x) = (0, 0, 0) (50) z y = x z + y = x = 0 x = 0, z = y (51) x = (0, y, y) (52) Ker L = {x R 3 Lx = 0} = (53) {(0, y, y) y R} = (0, 1, 1) R. (54) LINEAARIALGEBRA 48 / 56

68 Esimerkkejä 1. Ker L. Ratkaisu: Asetetaan Lx =0 (49) (z y, x z + y, x) = (0, 0, 0) (50) z y = x z + y = x = 0 x = 0, z = y (51) x = (0, y, y) (52) Ker L = {x R 3 Lx = 0} = (53) {(0, y, y) y R} = (0, 1, 1) R. (54) 2. Injektio? EI, koska Ker L {0}. (55) LINEAARIALGEBRA 48 / 56

69 Esimerkkejä 3. dim Ker L = 1. (56) LINEAARIALGEBRA 49 / 56

70 Esimerkkejä Dimensiokaavalla (39): dim Ker L = 1. (56) dim V = dim Ker L + dim Im L 3 = 1 + dim Im L. (57) Siten dim Im L = 2. (58) LINEAARIALGEBRA 49 / 56

71 Esimerkkejä Dimensiokaavalla (39): dim Ker L = 1. (56) dim V = dim Ker L + dim Im L 3 = 1 + dim Im L. (57) Siten dim Im L = 2. (58) 5. EI ole surjektio, koska dim Im L = 2 ja maaliavaruuden R 3 dimensio=3. LINEAARIALGEBRA 49 / 56

72 Esimerkkejä Dimensiokaavalla (39): dim Ker L = 1. (56) dim V = dim Ker L + dim Im L 3 = 1 + dim Im L. (57) Siten dim Im L = 2. (58) 5. EI ole surjektio, koska dim Im L = 2 ja maaliavaruuden R 3 dimensio=3. 6.EI ole bijektio. LINEAARIALGEBRA 49 / 56

73 Esimerkkejä 7. Im L. Lx =(z y, x z + y, x) = (z y)e 1 + (x z + y)e 2 + xe 3 = (z y)e 1 + ( z + y)e 2 + x(e 2 + e 3 ) = (z y)(e 1 e 2 ) + x(e 2 + e 3 ), joten Im L ={Lx x = (x, y, z) R 3 } = {(z y)(e 1 e 2 ) + x(e 2 + e 3 ) x, y, z R} = {t(e 1 e 2 ) + x(e 2 + e 3 ) x, t R} = e 1 e 2, e 2 + e 3 R, missä e 1 e 2 ja e 2 + e 3 ovat lineaarisesti vapaita. Tästäkin voidaan päätellä, että L ei ole surjektio sekä dim Im L = 2. LINEAARIALGEBRA 50 / 56

74 Esimerkkejä Esimerkki 12 Jatketaan lineaarikuvauksen L : R 3 R 3, L(x, y, z) = (z y, x z + y, x) tarkastelua. Määrää L:n matriisi 1 A 1 = [L] e,e luonnollisen kannan e = E 3 = {e 1, e 2, e 3 } R 3 suhteen. 2 A 2 = [L] f,f kannan f = {f 1 = e 1 + e 2, f 2 = e 2 + e 3, f 3 = e 3 + e 1 } suhteen. 3 A 3 = [L] e,f. 4 A 4 = [L] f,e. 5 Laske determinantit det A 1 ja det A 2. LINEAARIALGEBRA 51 / 56

75 Esimerkkejä Lasketaan kantavektoreitten e 1, e 2, e 3 kuvat: Le 1 =L(1, 0, 0) = (0, 1, 1) = e 2 + e 3 = f 2 ; Le 2 =L(0, 1, 0) = ( 1, 1, 0) = e 1 + e 2 = f 2 f 3 ; Le 3 =L(0, 0, 1) = (1, 1, 0) = e 1 e 2 = f 2 + f 3. Joista saadaan A 1 = [L] e,e = [[Le 1 ] e, [Le 2 ] e, [Le 3 ] e ] = (59) ja A 3 = [L] e,f = [[Le 1 ] f, [Le 2 ] f, [Le 3 ] f ] = (60) LINEAARIALGEBRA 52 / 56

76 Esimerkkejä Lasketaan kantavektoreitten f 1, f 2, f 3 kuvat: Lf 1 =L(e 1 ) + L(e 2 ) = e 1 + 2e 2 + e 3 = 2f 2 f 3 ; Lf 2 =L(e 2 ) + L(e 3 ) = 0 e e e 3 = 0 f f f 3 ; Lf 3 =L(e 3 ) + L(e 1 ) = e 1 + e 3 = f 3 ; Joista saadaan A 2 = [L] f,f = [[Lf 1 ] f, [Lf 2 ] f, [Lf 3 ] f ] = (61) ja A 4 = [L] f,e = [[Lf 1 ] e, [Lf 2 ] e, [Lf 3 ] e ] = (62) LINEAARIALGEBRA 53 / 56

77 Esimerkkejä Esimerkki 13 Kotitehtävä 34. Olkoon V reaalinen sisätuloavaruus, dim K V = k Z + ja n V annettu. Määritellään kuvaus L : V R, asettamalla aina, kun x V. 1 Osoita, että kuvaus L on lineaarinen. 2 Määrää dim Im L. 3 Määrää dim Ker L. L(x) = n x (63) Ratkaisu. Tapaus n {0}. Lineaarikuvauksen maaliavaruus on R, jolla on vain triviaalit aliavaruudet. Lisäksi dim R = 1. LINEAARIALGEBRA 54 / 56

78 Esimerkkejä Koska L(n) = n n > 0, Im L {0} (64) niin Im L = R, dim Im L = 1. (65) Edelleen dimensiokaavalla (39): dim V = dim Ker L + dim Im L k = dim Ker L + 1. (66) Siten dim Ker L = k 1. (67) LINEAARIALGEBRA 55 / 56

79 Esimerkkejä Hypertaso onkin Kernel Siispä Ker L eli joukko N := {x V n x = 0} (68) on hypertaso. LINEAARIALGEBRA 56 / 56

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus Lineaarikuvaus Ominaisarvo 0-68

pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus Lineaarikuvaus Ominaisarvo 0-68 SISÄLTÖ Sisältö pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus 0-1 2 Sisätuloavaruus 0-20 3 Lineaarikuvaus 0-41 4 Ominaisarvo 0-68 5 Esimerkkejä 0-88 1. Lineaariavaruus eli V 1 Lineaariavaruus

Lisätiedot

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kantavektorien kuvavektorit määräävät lineaarikuvauksen Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin

Lisätiedot

Lineaarialgebra II P

Lineaarialgebra II P Lineaarialgebra II 89P Sisältö Vektoriavaruus Sisätuloavaruus 8 3 Lineaarikuvaus 5 4 Ominaisarvo 5 Luku Vektoriavaruus Määritelmä.. Epätyhjä joukko V on vektoriavaruus, jos seuraavat ehdot ovat voimassa:.

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Lineaarikuvaukset Lineaarikuvaus Olkoot U ja V

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot

4. LINEAARIKUVAUKSET

4. LINEAARIKUVAUKSET 86 4 LINEAARIKUVAUKSET 41 Määritelmä ja esimerkkejä Olkoot V ja V vektoriavaruuksia Tarkastellaan kuvausta L : V V Tällöin jokaiseen vektoriin v V liittyy tietty, L:n ja v:n yksikäsitteisesti määräämä

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

2.8. Kannanvaihto R n :ssä

2.8. Kannanvaihto R n :ssä 28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

6. OMINAISARVOT JA DIAGONALISOINTI

6. OMINAISARVOT JA DIAGONALISOINTI 0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2016 Harjoitus 3 Ratkaisut palautettava viimeistään maanantaina 29.8.2016 klo 13.15. Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä

Lisätiedot

Esko Turunen Luku 3. Ryhmät

Esko Turunen Luku 3. Ryhmät 3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3. Lineaariset koodit Topi Törmä Matemaattisten tieteiden laitos 2 / 22 3.1 Lineaarisen koodin määrittely Olkoon F äärellinen kunta.

Lisätiedot

1 Avaruuksien ja lineaarikuvausten suora summa

1 Avaruuksien ja lineaarikuvausten suora summa MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon

Lisätiedot

Matriisialgebra harjoitukset, syksy 2016

Matriisialgebra harjoitukset, syksy 2016 MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 7 Onko kuvaus F : R R, F(x 1,x = (x 1 +x,5x 1, x 1 +6x lineaarinen kuvaus? Jos on, niin määrää sen matriisi luonnollisen kannan suhteen Jos ei ole, niin

Lisätiedot

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162 Tällä viikolla viimeiset luennot ja demot Lineaarialgebra (muut ko) p. 1/162 Lineaarialgebra (muut ko) p. 2/162 Kertausta Vektorin u = (u 1,u 2 ) R 2 pituus u = u 2 1 +u2 2 Vektorien u ja v = (v 1,v 2

Lisätiedot

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä 4. Ryhmät Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoimitukselta oletamme muutamia yksinkertaisia ominaisuuksia: Määritelmä 4.1. Laskutoimituksella varustettu joukko

Lisätiedot

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on? Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi

Lisätiedot

2 / :03

2 / :03 file:///c:/users/joonas/desktop/linis II Syksy /Ratkaisuehdotukse / 8 76 3:3 Kysymys Pisteet,, Määritellään positiivisten reaalilukujen joukossa R + = {x R x > } yhteenlasku ja skalaarikertolasku seuraavasti:

Lisätiedot

Yleiset lineaarimuunnokset

Yleiset lineaarimuunnokset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)

Lisätiedot

Lineaariset Lien ryhmät / Ratkaisut 6 D 381 klo

Lineaariset Lien ryhmät / Ratkaisut 6 D 381 klo JYVÄSKYLÄN YLIOPISO MAEMAIIKAN JA ILASOIEEEN LAIOS Lineaariset Lien ryhmät 27.2.2012 / t 6 D 381 klo. 16-18. 1. Matriisiryhmällä U(n) on epätriviaali normaali aliryhmä SU(n), joka on homomorfismin det

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun

Lisätiedot

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

Lineaarista projektiivista geometriaa

Lineaarista projektiivista geometriaa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Iiris Repo Lineaarista projektiivista geometriaa Informaatiotieteiden yksikkö Matematiikka Marraskuu 2012 Tampereen yliopisto Informaatiotieteiden yksikkö REPO,

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Lineaarialgebra. Osa 2. Turun yliopisto. Markku Koppinen

Lineaarialgebra. Osa 2. Turun yliopisto. Markku Koppinen Lineaarialgebra Osa 2 Turun yliopisto Markku Koppinen Sisältö 1 Koordinaattivektorit ja kannan vaihdot 1 11 Koordinaattivektorit 1 12 Kannan vaihdot 2 2 Lineaarikuvaukset 6 21 Kuvauksista 6 22 Lineaarikuvaukset

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Ortogonaalinen ja ortonormaali kanta

Ortogonaalinen ja ortonormaali kanta Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Laskutoimitusten operaattorinormeista

Laskutoimitusten operaattorinormeista Laskutoimitusten operaattorinormeista Rami Luisto 27. tammikuuta 2012 Tiivistelmä Tässä kirjoitelmassa määrittelemme vektoriavaruuksien väliselle lineaarikuvaukselle normin ja laskemme sen eksplisiittisesti

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

3 Skalaari ja vektori

3 Skalaari ja vektori 3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

3.4 Käänteiskuvauslause ja implisiittifunktiolause

3.4 Käänteiskuvauslause ja implisiittifunktiolause 3.4 Käänteiskuvauslause ja implisiittifunktiolause Tässä luvussa käsitellään kahta keskeistä vektorianalyysin lausetta. Esitellään aluksi kyseiset lauseet ja tutustutaan niiden käyttötapoihin. Lause 3.4.1

Lisätiedot

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218 Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.

Lisätiedot

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0 Tensorialgebroista Esitysteorian kesäopintopiiri, Turun yliopisto, 2012 Jyrki Lahtonen Olkoon k jokin skalaarikunta. Kerrataan k-algebran käsite: A on k-algebra, jos se on sekä rengas että vektoriavaruus

Lisätiedot

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin

Lisätiedot

1.1. Määritelmiä ja nimityksiä

1.1. Määritelmiä ja nimityksiä 1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 5.2 BCH-koodin dekoodaus Tarkastellaan t virhettä korjaavaa n-pituista BCH-koodia. Olkoon α primitiivinen n:s ykkösen juuri, c = c(x)

Lisätiedot

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Antti Rasila 2016 Vektoriavaruuden kannan olemassaolo Jos {v 1, v 2,..., v k } on äärellisulotteisen vektoriavaruuden V lineaarisesti riippumaton

Lisätiedot

Lineaarikuvauksista ja niiden geometrisesta tulkinnasta

Lineaarikuvauksista ja niiden geometrisesta tulkinnasta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Katri Syvänen Lineaarikuvauksista ja niiden geometrisesta tulkinnasta Matematiikan ja tilastotieteen laitos Matematiikka Tammikuu 2009 Tampereen yliopisto Matematiikan

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät 1 1 LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT Muotoa 11 Lineaariset yhtälöryhmät (1) a 1 x 1 + a x + + a n x n b oleva yhtälö on tuntemattomien x 1,, x n lineaarinen yhtälö, jonka kertoimet ovat luvut a 1,,

Lisätiedot

1. Lineaarinen yhtälöryhmä ja matriisi

1. Lineaarinen yhtälöryhmä ja matriisi I LINEAARISET YHTÄLÖRYHMÄT 1 Lineaarinen yhtälöryhmä ja matriisi Tällä kurssilla käytämme kirjainta K tarkoittamaan reaalilukuja R, kompleksilukuja C tai rationaalilukuja Q (aluksi K = R) Nämä lukujoukot

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely

Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely f ( n) JYVÄSKYLÄN YLIOPISTO Funktionaalianalyysi Sekalaisia harjoituksia MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Jatkuu... Mathematicians are like Frenchmen: whatever you say to them they translate into

Lisätiedot

ja jäännösluokkien joukkoa

ja jäännösluokkien joukkoa 3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1.

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 2 Ratkaisut palautettava viimeistään maanantaina 25.5.2015 klo 16.15. Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Lineaarialgebra I. Oulun yliopisto Matemaattisten tieteiden laitos Esa Järvenpää Kirjoittanut Tuula Ripatti

Lineaarialgebra I. Oulun yliopisto Matemaattisten tieteiden laitos Esa Järvenpää Kirjoittanut Tuula Ripatti Lineaarialgebra I Oulun yliopisto Matemaattisten tieteiden laitos 2011 Esa Järvenpää Kirjoittanut Tuula Ripatti 2 1 Lineaarinen yhtälöryhmä 11 Esimerkki (a) Ratkaise yhtälö 5x = 7 Kerrotaan yhtälö puolittain

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

Similaarisuus. Määritelmä. Huom.

Similaarisuus. Määritelmä. Huom. Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP

Lisätiedot

Lineaariset kongruenssiyhtälöryhmät

Lineaariset kongruenssiyhtälöryhmät Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................

Lisätiedot

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan 4. Äärellisten kuntien yleisiä ominaisuuksia 4.1. Laajenuskunnat. Tarkastellaan aluksi yleistä kuntaparia F ja K, missä F on kunnan K alikunta. Tällöin sanotaan, että kunta K on kunnan F laajennuskunta

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja 5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

ja F =

ja F = MATRIISIALGEBRA Harjoitustehtäviä syksy 2016 Tehtävissä 1 ja 2a käytetään seuraavia matriiseja: ( ) 6 2 3 A =,B = 7 1 2 2 3,C = 4 4 2 5 3,E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1.

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Inversio-ongelmien laskennallinen peruskurssi Luento 2 Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +

Lisätiedot

LUKU 10. Yhdensuuntaissiirto

LUKU 10. Yhdensuuntaissiirto LUKU hdensuuntaissiirto Olkoot (M, N) suunnistettu pinta, p M ja v p R 3 p annettu vektori pisteessä p (vektorin v p ei tarvitse olla pinnan M tangenttivektori). Tällöin vektori (v p N(p)) N(p) on vektorin

Lisätiedot

3.1 Lineaarikuvaukset. MS-A0007 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

3.1 Lineaarikuvaukset. MS-A0007 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset 3 MS-A7 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 925 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita ratkotaan

Lisätiedot