Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310
|
|
- Kari Reijo Katajakoski
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Lineaarialgebra ja matriisilaskenta II LM2, Kesä /310
2 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja. Toisin sanottuna R n = { (v 1, v 2,..., v n ) v 1, v 2,..., v n R }. Avaruuden R n alkioita kutsutaan vektoreiksi. Jos u 1, u 2,..., u n R, niin ū = (u 1, u 2,..., u n ) on avaruuden R n vektori ja sanotaan, että u 1, u 2,..., u n ovat vektorin ū komponentit. LM2, Kesä /310
3 Kertausta: avaruuden R n vektoreiden yhteenlasku ja skalaarikertolasku Määritelmä Oletetaan, että v = (v 1,..., v n ) R n, w = (w 1,..., w n ) R n ja c R. Vektoreiden v ja w summa on vektori v + w = (v 1 + w 1, v 2 + w 2,..., v n + w n ). Skalaarikertolasku tarkoittaa vektorin kertomista reaaliluvulla. On sovittu, että c v = (cv 1, cv 2,..., cv n ). LM2, Kesä /310
4 Kertausta: yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella todeksi nojautumalla määritelmiin ja aikaisemmin perusteltuihin väitteisiin. LM2, Kesä /310
5 Kertausta: yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Alla esiintyvä vektori 0 = (0, 0,..., 0) on nimeltään nollavektori. Lause 1 Oletetaan, että v, w, ū R n ja a, c R. Tällöin (a) v + w = w + v (b) (ū + v) + w = ū + ( v + w) (c) v + 0 = v (d) v + ( v) = 0 (e) c( v + w) = c v + c w (f) (a + c) v = a v + c v (g) a(c v) = (ac) v (h) 1 v = v (vaihdannaisuus) (osittelulaki) (osittelulaki) (liitännäisyys) LM2, Kesä /310
6 Vektoriavaruus Ottamalla lähtökohdaksi avaruuden R n vektorien yhteenlaskun ja skalaarilla kertomisen ominaisuudet, voidaan määritellä abstraktimpi ja yleisempi vektoriavaruuden käsite. LM2, Kesä /310
7 Vektoriavaruus Määritelmä (eli sopimus) Oletetaan, että joukossa V on määritelty jonkinlainen yhteenlasku ja skalaarikertolasku. Jos seuraavat ehdot pätevät kaikilla v, w, ū V ja a, b R, niin joukkoa V kutsutaan vektoriavaruudeksi ja sen alkioita vektoreiksi. (1) v + w = w + v (vaihdannaisuus). (2) (ū + v) + w = ū + ( v + w) (liitännäisyys). (3) On olemassa ns. nollavektori 0 V, jolle pätee v + 0 = v. (4) Jokaista vektoria v V kohti on olemassa ns. vastavektori v V, jolle pätee v + ( v) = 0. LM2, Kesä /310
8 (5) a( v + w) = a w + a v (osittelulaki). (6) (a + b) v = a v + b v (osittelulaki). (7) (ab) v = a(b v). (8) 1 v = v. Huom. Ehdossa (6) yhtälön vasemmalla puolella on skalaarien a R ja b R summa a + b; kyseessä on siis tavallinen reaalilukujen yhteenlasku. Yhtälön oikealla puolella on vektoreiden a v V ja b v V summa a v + b v; kyseessä on siis joukossa V määritelty vektorien välinen yhteenlasku. Ehdossa (7) yhtälön vasemmalla puolella sulkujen sisällä on skalaarien a R ja b R tulo ab; kyseessä on siis tavallinen reaalilukujen kertolasku. Yhtälön oikealla puolella on vektorin b v V ja skalaarin a R skalaaritulo a(b v); siinä kaikki tulot ovat skalaarituloja. LM2, Kesä /310
9 Huom. Skalaari tarkoittaa tällä kurssilla reaalilukua, sillä tällä kurssilla käsitellään reaalikertoimisia vektoriavaruuksia. Kompleksikertoimisilla vektoriavaruuksilla skalaarit ovat kompleksilukuja. Periaatteessa skalaarit voivat olla minkä tahansa ns. kunnan alkioita. Vektoriavaruuden V nollavektoria voidaan merkitä myös 0 V. Sen ei tarvitse ulkonäöltään muistuttaa avaruuden R n nollavektoria ollenkaan. LM2, Kesä /310
10 Esimerkkejä vektoriavaruuksista Voidaan osoittaa, että seuraavat joukot mainituilla yhteenlaskulla ja skalaarikertolaskulla varustettuina ovat vektoriavaruuksia: Joukko R n varustettuna tavallisella yhteenlaskulla ja skalaarikertolaskulla: v + w = (v 1 + w 1, v 2 + w 2,..., v n + w n ) c v = (cv 1, cv 2,..., cv n ). Joukko R varustettuna tavallisella reaalilukujen yhteenlaskulla ja kertolaskulla. Kaikkien m n -matriisien joukko M m n varustettuna matriisien tavallisella yhteenlaskulla ja skalaarikertolaskulla. LM2, Kesä /310
11 Esimerkkejä vektoriavaruuksista Kaikkien kuvausten R R joukko F, jossa yhteenlasku ja skalaarikertolasku määritellään ns. pisteittäin: Oletetaan, että f, g F ja a R. Kuvausten f : R R ja g : R R summa on kuvaus f + g : R R, jolla x f (x) + g(x). Kuvaus f : R R kerrottuna skalaarilla a on kuvaus af : R R, jolla x af (x). LM2, Kesä /310
12 Esimerkki 2 Kuvausten yhteenlasku Tarkastellaan kuvauksia f : R R, x sin x, ja g : R R, x 0,5x + 1. Niiden summa on kuvaus f + g : R R, jolla x sin x + 0,5x + 1. (x, f(x) + g(x)) (x, g(x)) (x, f(x)) g f + g (x,0) f LM2, Kesä /310
13 Esimerkki 3 Kuvauksen kertominen skalaarilla Tarkastellaan kuvausta f : R R, x sin x. Kuvaus f kerrottuna skalaarilla 2 on kuvaus 2f : R R, jolla x 2 sin x. (x, f(x)) 2f (x,0) f (x, 2f(x)) LM2, Kesä /310
14 Esimerkki 4 Osoitetaan, että kaikkien kuvausten R R joukko F, jossa yhteenlasku ja skalaarikertolasku määritellään pisteittäin, on vektoriavaruus. Oletetaan, että f, g, h F ja a, b R. Tällöin f, g ja h ovat kuvauksia eli funktioita R R. Yhteenlasku ja skalaarikertolasku on määritelty niin, että f + g F ja af F. Käydään läpi vektoriavaruuden määritelmän ehdot: LM2, Kesä /310
15 (1) Osoitetaan, että f + g = g + f. Oletetaan, että x R. Kuvausten yhteenlaskun määritelmän mukaan (f + g)(x) = f (x) + g(x) ja (g + f )(x) = g(x) + f (x). Kuvausten f ja g arvot f (x) ja g(x) ovat reaalilukuja, joten f (x) + g(x) = g(x) + f (x). Näin ollen (f + g)(x) = (g + f )(x). Kuvauksilla f + g : R R ja g + f : R R on siis samat arvot, joten ne ovat sama kuvaus; ts. f + g = g + f. LM2, Kesä /310
16 (2) Osoitetaan, että (f + g) + h = f + (g + h). Oletetaan, että x R. Kuvausten yhteenlaskun määritelmän mukaan ( (f + g) + h ) (x) = (f + g)(x) + h(x) = ( f (x) + g(x) ) + h(x) ja ( f + (g + h) ) (x) = f (x) + (g + h)(x) = f (x) + ( g(x) + h(x) ). Kuvausten f, g ja h arvot f (x), g(x) ja h(x) ovat reaalilukuja, joten ( f (x) + g(x) ) + h(x) = f (x) + ( g(x) + h(x) ). Näin ollen ( (f + g) + h ) (x) = ( f + (g + h) ) (x). Kuvauksilla (f + g) + h : R R ja f + (g + h): R R on siis samat arvot, joten ne ovat sama kuvaus; ts. (f + g) + h = f + (g + h). LM2, Kesä /310
17 (3) Osoitetaan, että nollavektoriksi kelpaa kuvaus f 0 : R R, jolla f 0 (x) = 0 kaikilla x R (eli x 0 kaikilla x R). Osoitetaan siis, että g + f 0 = g. Oletetaan, että x R. Kuvausten yhteenlaskun määritelmän mukaan (g + f 0 )(x) = g(x) + f 0 (x) = g(x) + 0 = g(x). Kuvauksilla g + f 0 : R R ja g : R R on siis samat arvot, joten ne ovat sama kuvaus; ts. g + f 0 = g. LM2, Kesä /310
18 (4) Osoitetaan, että kuvauksen h vastavektoriksi kelpaa kuvaus h : R R, jolla x h(x) kaikilla x R. Osoitetaan siis, että h + ( h) = f 0. Oletetaan, että x R. Kuvausten yhteenlaskun määritelmän mukaan (h + ( h))(x) = h(x) + ( h)(x) = h(x) + ( h(x)) = 0 = f 0 (x). Kuvauksilla h + ( h): R R ja f 0 : R R on siis samat arvot, joten ne ovat sama kuvaus; ts. h + ( h) = f 0. LM2, Kesä /310
19 (5) Osoitetaan, että a(f + g) = af + ag. Oletetaan, että x R. Kuvausten skalaarikertolaskun ja yhteenlaskun määritelmän mukaan ( a(f + g) ) (x) = a ( (f + g)(x) ) = a ( f (x) + g(x) ) ja (af + ag)(x) = (af )(x) + (ag)(x) = af (x) + ag(x). Kuvausten f ja g arvot f (x) ja g(x) ovat reaalilukuja, joten a ( f (x) + g(x) ) = af (x) + ag(x). Näin ollen ( a(f + g) ) (x) = (af + ag)(x). Kuvauksilla a(f + g): R R ja af + ag : R R on siis samat arvot, joten ne ovat sama kuvaus; ts. a(f + g) = af + ag. LM2, Kesä /310
20 (6) Osoitetaan, että (a + b)f = af + bf. Oletetaan, että x R. Kuvausten skalaarikertolaskun ja yhteenlaskun määritelmän mukaan ( (a + b)f ) (x) = (a + b)f (x) ja (af + bf )(x) = (af )(x) + (bf )(x) = af (x) + bf (x). Kuvauksen f arvo f (x) on reaaliluku, joten (a + b)f (x) = af (x) + bf (x). Näin ollen ( (a + b)f ) (x) = (af + bf )(x). Kuvauksilla (a + b)f : R R ja af + bf : R R on siis samat arvot, joten ne ovat sama kuvaus; ts. (a + b)f = af + bf. LM2, Kesä /310
21 (7) Osoitetaan, että (ab)f = a(bf ). Oletetaan, että x R. Kuvausten skalaarikertolaskun määritelmän mukaan ( (ab)f ) (x) = (ab)f (x) ja ( a(bf ) ) (x) = a ( (bf )(x) ) = a ( bf (x) ). Kuvauksen f arvo f (x) on reaaliluku, joten (ab)f (x) = a ( bf (x) ). Näin ollen ( (ab)f ) (x) = ( a(bf ) ) (x). Kuvauksilla (ab)f : R R ja a(bf ): R R on siis samat arvot, joten ne ovat sama kuvaus; ts. (ab)f = a(bf ). LM2, Kesä /310
22 (8) Osoitetaan, että 1f = f. Oletetaan, että x R. Kuvausten skalaarikertolaskun määritelmän mukaan (1f )(x) = 1 f (x) = f (x). Kuvauksilla 1f : R R ja f : R R on siis samat arvot, joten ne ovat sama kuvaus; ts. 1f = f. LM2, Kesä /310
23 Esimerkkejä vektoriavaruuksista Kaikkien reaalikertoimisten polynomien joukko P, jossa yhteenlasku ja skalaarikertolasku määritellään seuraavasti: yhteenlaskussa samanasteisten termien kertoimet lasketaan yhteen; esimerkiksi polynomien p = 3x 2 4x + 7 ja q = 2x 3 + 5x 2 + 4x summa on polynomi p + q = 2x 3 + (3 + 5)x 2 + ( 4 + 4)x + 7 = 2x 3 + 8x skalaarikertolaskussa jokaisen termin kerroin kerrotaan erikseen; esimerkiksi polynomi p = 3x 2 4x + 7 kerrottuna skalaarilla 2 on 2p = 6x 2 + 8x 14. LM2, Kesä /310
24 Vektoriavaruus Huom. Vektoriavaruuden määritelmässä vaaditaan, että yhteenlasku ja skalaarikertolasku on määritelty joukossa V. Tämä tarkoittaa, että jos v, w V ja a R, niin on oltava v + w V ja a v V. Esimerkki 5 Kokonaislukujen joukko Z varustettuna tavallisella yhteenlaskulla ja skalaarikertolaskulla (reaaliluvulla kertominen) ei ole vektoriavaruus. Tämä johtuu siitä, että esimerkiksi 0,5 R ja 3 Z, mutta 0,5 3 = 1,5 Z. Skalaarikertolaskun tulos ei siis välttämättä ole joukossa Z. LM2, Kesä /310
25 Esimerkki 6 Määritellään joukossa R 2 skalaarikertolasku seuraavasti: jos (v 1, v 2 ) R 2 ja a R, niin a (v 1, v 2 ) = (av 1, 0). Osoitetaan, että joukko R 2 varustettuna tavallisella yhteenlaskulla + ja skalaarikertolaskulla ei ole vektoriavaruus. Havaitaan, että esimerkiksi Näin ollen 1 (5, 9) = (5, 0). 1 (5, 9) (5, 9), joten vektoriavaruuden määritelmän ehto (8) ei täyty. LM2, Kesä /310
26 Vektoriavaruuksien ominaisuuksia Huom. Lause tarkoittaa väitettä, joka voidaan perustella todeksi nojautumalla määritelmiin ja aikaisemmin perusteltuihin väitteisiin. Lause 7 Oletetaan, että V on vektoriavaruus. Tällöin (a) nollavektoriksi sopivia vektoreita on täsmälleen yksi; ts. nollavektori 0 v on yksikäsitteinen. (b) jokaisella vektorilla v V on täsmälleen yksi vastavektori. LM2, Kesä /310
27 Lauseen 7 todistus. (a) Oletetaan, että 0, 0 V ja sekä v + 0 = v että v + 0 = v kaikilla v V. Tällöin 0 = = = 0. Tässä käytettiin järjestyksessä seuraavia tietoja: v + 0 = v kaikilla v V, yhteenlaskun vaihdannaisuus, v + 0 = v kaikilla v V. LM2, Kesä /310
28 Lauseen 7 todistus. (b) Oletetaan, että v V. Oletetaan lisäksi, että ū, w V ovat kumpikin vektorin v vastavektori eli v + ū = 0 ja v + w = 0. Tällöin ū = ū + 0 = ū + ( v + w) = (ū + v) + w = ( v + ū) + w = 0 + w = w. Tässä käytettiin järjestyksessä seuraavia tietoja: nollavektorin olemassaolo, v + w = 0, yhteenlaskun liitännäisyys ja vaihdannaisuus, v + ū = 0, nollavektorin olemassaolo. LM2, Kesä /310
29 Vektoriavaruuksien ominaisuuksia Lause 8 Oletetaan, että V on vektoriavaruus ja v V, a R. Tällöin (a) 0 v = 0 (b) a 0 = 0 (c) ( 1) v = v (d) jos a v = 0, niin a = 0 tai v = 0 (tulon nollasääntö). LM2, Kesä /310
30 Lauseen 8 todistus. (b) Oletetaan, että a R. Tällöin a 0 = a( 0 + 0) = a 0 + a 0. Lisäämällä tämän yhtälön molemmille puolille vektori (a 0) saadaan 0 = a 0. Perustellussa tarvittiin vektoriavaruuden määritelmän ehtoja (2), (3), (4) ja (6). LM2, Kesä /310
31 Lauseen 8 todistus. (d) Oletetaan, että a v = 0. Jos a = 0, niin väite pätee. Oletetaan, että a 0. Tällöin on olemassa käänteisluku 1/a ja v = 1 v = ( 1 a a ) v = 1 a (a v) = 1 a 0 = 0. Tässä käytettiin vektoriavaruuden määritelmän ehtoja (8) ja (7) sekä oletusta ja b-kohdan tulosta. LM2, Kesä /310
32 Vektoreiden erotus ja lineaarikombinaatio Määritelmä Oletetaan, että V on vektoriavaruus ja v, w V. Vektoreiden v ja w erotus v w tarkoittaa summaa v + ( w). Määritelmä Oletetaan, että V on vektoriavaruus ja v 1, v 2,..., v k V. Vektoreiden v 1, v 2,..., v k lineaarikombinaatio tarkoittaa summaa a 1 v 1 + a 2 v a k v k, missä kertoimet a 1, a 2,..., a k R. LM2, Kesä /310
33 Aliavaruus Määritelmä Oletetaan, että V on vektoriavaruus. Sen osajoukko W on aliavaruus, jos seuraavat ehdot pätevät kaikilla ū, w W ja a R: (a) ū + w W (b) a w W (c) 0 V W. (W on suljettu yhteenlaskun suhteen). (W on suljettu skalaarikertolaskun suhteen). LM2, Kesä /310
34 Aliavaruus Esimerkki 9 Tarkastellaan n n -matriisien muodostamaa vektoriavaruutta M n n. Olkoon W symmetristen n n -matriisien joukko; ts. W = { C M n n C T = C }. Osoitetaan, että W on vektoriavaruuden M n n aliavaruus. Ensinnäkin W on määritelmänsä mukaan joukon M n n osajoukko. Oletetaan, että A, B W ja c R. Tällöin A T = A ja B T = B. LM2, Kesä /310
35 Käytetään transpoosin laskusääntöjä: (a) Tutkitaan summaa A + B: (A + B) T = A T + B T = A + B, joten A + B W. (b) Tutkitaan skalaarimonikertaa ca: (ca) T = ca T = ca, joten ca W. (c) Nollavektori on n n -nollamatriisi O: O T = O, joten O W. LM2, Kesä /310
36 Aliavaruus Esimerkki 10 Tarkastellaan enintään kolmatta astetta olevien polynomien muodostamaa vektoriavaruutta Merkitään P 3 = { a + bx + cx 2 + dx 3 a, b, c, d R }. W = { a + bx bx 2 + ax 3 a, b R }. Osoitetaan, että W on vektoriavaruuden P 3 aliavaruus. Ensinnäkin W on määritelmänsä mukaan joukon P 3 osajoukko. LM2, Kesä /310
37 Oletetaan, että p, q W ja r R. Tällöin voidaan merkitä p = a + bx bx 2 + ax 3 ja q = c + dx dx 2 + cx 3, missä a, b, c, d R. (a) Lasketaan summa p + q: p + q = = (a + c) + (b + d)x (b + d)x 2 + (a + c)x 3. Siten p + q W, sillä se on oikeaa muotoa. (b) Lasketaan skalaarimonikerta rp: rp = = ra + rbx rbx 2 + rax 3. Siten rp W, sillä se on oikeaa muotoa. (c) Nollavektori on nollapolynomi 0: 0 = 0 + 0x + 0x 2 + 0x 3. Siten 0 W, sillä se on oikeaa muotoa. LM2, Kesä /310
38 Esimerkki 11 Merkitään W = { [ ] } a a b a, b R. Onko W vektoriavaruuden M 2 2 aliavaruus? Havaitaan, että nollavektori eli nollamatriisi [ ] 0 0 O = W, 0 0 joten aliavaruuden määritelmän ehto (c) ei täyty. Siis W ei ole vektoriavaruuden M 2 2 aliavaruus. LM2, Kesä /310
39 Esimerkki 12 Merkitään W = { A M 2 2 det(a) = 0 }. Onko W vektoriavaruuden M 2 2 aliavaruus? Valitaan esimerkiksi A = [ ] ja B = [ ] Tällöin det(a) = 0 ja det(b) = 0, joten A, B W. Kuitenkin A + B = [ ] ja siten det(a + B) = 2 0. Näin A + B W. Siis W ei ole vektoriavaruuden M 2 2 aliavaruus. LM2, Kesä /310
40 Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että V on vektoriavaruus ja v 1,..., v k V. Näiden vektoreiden virittämä aliavaruus span( v 1,..., v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden joukkoa; ts. span( v 1,..., v k ) = { a 1 v a k v k a 1,..., a k R }. Lause 13 Jos v 1,..., v k V, niin span( v 1,..., v k ) on vektoriavaruuden V aliavaruus. Lisäksi span( v 1,..., v k ) on pienin aliavaruus, joka sisältää vektorit v 1,..., v k. LM2, Kesä /310
41 Lauseen 13 todistus. Oletetaan, että ū, w span( v 1,..., v k ) ja c R. Tällöin ū = a 1 v a k v k ja w = b 1 v b k v k joillakin a 1,..., a k, b 1,..., b k R. (a) Lasketaan summa ū + w: ū + w = = (a 1 + b 1 ) v (a k + b k ) v k, joten ū + w span( v 1,..., v k ). LM2, Kesä /310
42 (b) Lasketaan skalaarimonikerta cū: joten cū span( v 1,..., v k ). cū = = ca 1 v ca k v k, (c) Nollavektori voidaan lauseen 8 a-kohdan nojalla kirjoittaa muodossa 0 = 0 v v k, joten 0 span( v 1,..., v k ). Siis span( v 1,..., v k ) on vektoriavaruuden V aliavaruus. LM2, Kesä /310
43 Vektorit v 1,..., v k kuuluvat aliavaruuteen V, sillä v 1 = 1 v v v k v 2 = 0 v v v k. v k = 0 v v v k LM2, Kesä /310
44 Osoitetaan, että span( v 1,..., v k ) on pienin aliavaruus, joka sisältää vektorit v 1,..., v k. Oletetaan, että W on vektoriavaruuden V jokin sellainen aliavaruus, että v 1,..., v k W. Koska W on aliavaruus, se sisältää kaikkien vektoriensa summat ja skalaarimonikerrat. Siis a 1 v a k v k W kaikilla a 1,..., a k R. Näin ollen span( v 1,..., v k ) W. LM2, Kesä /310
45 Vektoreiden virittämä aliavaruus Esimerkki 14 Osoitetaan, että joukko W = { (r, s, r) r, s R } on vektoriavaruuden R 3 aliavaruus. Havaitaan, että W = { (r, s, r) r, s R } = { r(1, 0, 1) + s(0, 1, 0) r, s R } = span ( (1, 0, 1), (0, 1, 0) ). Siis W on vektoreiden (1, 0, 1) ja (0, 1, 0) virittämä vektoriavaruuden R 3 aliavaruus. LM2, Kesä /310
46 Vektoreiden virittämä aliavaruus Esimerkki 15 Merkitään W = { [ ] } a b a, b, c R. 0 c Osoitetaan, että W on 2 2 -matriisien muodostaman vektoriavaruuden M 2 2 aliavaruus. LM2, Kesä /310
47 Havaitaan, että W = = { [ ] } a b a, b, c R 0 c { a [ ] b 0 0 ([ ] 1 0 = span, 0 0 [ ] c 0 0 [ ] 0 1, 0 0 [ ] } 0 0 a, b, c R 0 1 [ ]) Siis W on vektoreiden (matriisien) [ ] 1 0, 0 0 [ ] ja [ ] virittämä vektoriavaruuden M 2 2 aliavaruus. LM2, Kesä /310
48 Esimerkki 16 Merkitään Vektoreiden virittämä aliavaruus A = [ ] 1 1, B = 1 0 Määritetään span(a, B, I). [ ] ja I = [ ] Jokainen vektoreiden (matriisien) A, B ja I lineaarikombinaatio on muotoa [ ] x + z x + y xa + yb + zi = =, x + y z missä x, y, z R. Havaitaan, että tällainen lineaarikombinaatio on symmetrinen matriisi. Siten span(a, B, I) { C M 2 2 C T = C }. LM2, Kesä /310
49 Osoitetaan, että jokainen symmetrinen matriisi voidaan kirjoittaa vektoreiden A, B ja I lineaarikombinaationa: Oletetaan, että C on symmetrinen matriisi. Tällöin [ ] d e C =, e f missä d, e, f R. Ratkaisemalla yhtälö xa + yb + zi = C eli yhtälöä [ ] [ ] x + z x + y d e = x + y z e f vastaava yhtälöryhmä havaitaan, että ratkaisu on aina olemassa (x = d f, y = e d + f ja z = f ). Siis jokainen symmetrinen matriisi on vektoreiden A, B ja I lineaarikombinaatio. Näin span(a, B, I) = { C M 2 2 C T = C }. LM2, Kesä /310
50 Aliavaruus Jokainen aliavaruus on itsekin pieni vektoriavaruus: Lause 17 Oletetaan, että V on vektoriavaruus, jolla on aliavaruus W. Tällöin myös aliavaruus W on vektoriavaruus. Todistus. Vektoriavaruuden yhteenlaskua ja skalaarikertolaskua koskevat ehdot (1) (2) ja (5) (8) pysyvät voimassa, vaikka rajoitutaan tarkastelemaan alkuperäisen vektoriavaruuden V osajoukkoa W. Ehdot (3) ja (4) seuraavat aliavaruuden määritelmän ehdoista (c) ja (b), sillä v = ( 1) v. Aliavaruuden määritelmän ehdot (a) ja (b) takaavat, että yhteenlasku ja skalaarikertolasku ovat joukon W laskutoimituksia. LM2, Kesä /310
51 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä f : X Y tarkoittaa, että f on kuvaus joukosta X joukkoon Y. Tässä X on kuvauksen f lähtö (eli määrittelyjoukko) ja Y on kuvauksen f maali. LM2, Kesä /310
52 Oletetaan, että x X. Sitä yksikäsitteistä joukon Y alkiota, jonka kuvaus f liittää alkioon x, merkitään f (x) ja kutsutaan alkion x kuva-alkioksi. X f Y x f(x) LM2, Kesä /310
53 Määritelmä Lineaarikuvaus Oletetaan, että V ja W ovat vektoriavaruuksia. Kuvaus L: V W on lineaarikuvaus, jos seuraavat ehdot pätevät kaikilla ū, v V ja c R: (a) L(ū + v) = L(ū) + L( v) (b) L(c v) = cl( v). Jos kuvaus L on lineaarikuvaus, voidaan myös sanoa, että L on lineaarinen. V L W ū v c v ū + v L(ū) L( v) L(c v) = cl( v) L(ū + v) = L(ū) + L( v) LM2, Kesä /310
54 Esimerkki 18 Tarkastellaan kuvausta f : R R, f (x) = 3x. Osoitetaan, että f on lineaarikuvaus. Lineaarikuvaus f(u + v) = f(u) + f(v) f(v) Oletetaan, että u, v R ja c R. Tällöin f(u) f (u + v) = 3(u + v) = 3u + 3v 2u u v u + v = f (u) + f (v) ja f (cv) = 3(cv) = c(3v) = cf (v). f( 2u) = 2f(u) LM2, Kesä /310
55 Esimerkki 19 Kuvaus, joka ei ole lineaarinen Tarkastellaan kuvausta g : R R, g(x) = x 3 2x + 1. Osoitetaan, että g ei ole lineaarikuvaus. Valitaan esimerkiksi u = 1 ja v = 2. Tällöin f (u + v) = f (1) = 0 mutta f (u) + f (v) = f ( 1) + f (2) = = 7. Siis f ( 1 + 2) f ( 1) + f (2), joten f ei ole lineaarikuvaus. LM2, Kesä /310
56 Lineaarikuvaus Esimerkki 20 Merkitään enintään ensimmäistä astetta olevien polynomien joukkoa P 1 = { a 1 x + a 0 a 1, a 0 R }. Osoitetaan, että kuvaus L: R 2 P 1, jolle L(a, b) = ax + b, on lineaarikuvaus. Oletetaan, että (a, b), (c, d) R 2 ja r R. Tällöin L((a, b) + (c, d)) = L(a + c, b + d) = (a + c)x + (b + d) = ax + b + cx + d = L(a, b) + L(c, d) ja L(r(a, b)) = L(ra, rb) = rax + rb = r(ax + b) = rl(a, b). LM2, Kesä /310
57 Matriisi määrää lineaarikuvauksen Lause 21 Oletetaan, että A on m n -matriisi. Matriisin A määräämä kuvaus L A : R n R m, L A ( v) = A v on lineaarikuvaus. (Tässä avaruuden R n alkiot tulkitaan sarakevektoreiksi eli n 1-matriiseiksi.) Todistus. Oletetaan, että v, w R n ja c R. Nyt matriisien laskutoimitusten ominaisuuksien perusteella L A ( v + w) = A( v + w) = A v + A w = L A ( v) + L A ( w) ja L A (c v) = A(c v) = ca v = cl A ( v). Siten L A on lineaarinen. LM2, Kesä /310
58 Esimerkki 22 Matriisi määrää lineaarikuvauksen Tarkastellaan kuvausta L: R 2 R 2, joka peilaa jokaisen pisteen vaaka-akselin suhteen: (1,2) (x 1, x 2 ) (1, 2) (x 1, x 2 ) Jos (x 1, x 2 ) R 2, niin L(x 1, x 2 ) = (x 1, x 2 ). LM2, Kesä /310
59 Tulkitsemalla avaruuden R 2 alkiot 2 1 -matriiseina saadaan [ ] [ ] [ ] [ ] [ ] [ ] x1 x x1 L = = x x 2 x 1 + x = x 2 Siis kuvaus L on matriisin A = [ ] määräämä kuvaus, jolla L( v) = A v kaikilla v R 2. Näin ollen L on lineaarinen lauseen 21 nojalla. LM2, Kesä /310
60 L L(1, 2) = (1,2) (x 1, x 2 ) L(x 1, x 2 ) = (x 1, x 2 ) (1, 2) LM2, Kesä /310
61 Esimerkki 23 Matriisi määrää lineaarikuvauksen Tutkitaan, millaisen lineaarikuvauksen antavat matriisit [ ] [ ] [ ] A =, B = ja C = Matriisista A saadaan kuvaus L A : R 2 R 2, L A ( v) = A v. Avaruuden R 2 vektori (x 1, x 2 ) kuvautuu vektoriksi (2x 1, x 2 ): L [ ] x1 x 2 [ ] [ ] [ ] 2 0 x1 2x1 = = 0 1 x 2 x 2 Tästä nähdään, että kuvaus L A venyttää vektoreita vaaka-akselin suunnassa. LM2, Kesä /310
62 L A LM2, Kesä /310
63 Matriisista B saadaan kuvaus L B : R 2 R 2, L B ( v) = B v. Avaruuden R 2 vektori (x 1, x 2 ) kuvautuu vektoriksi ( x 1, x 2 ): L [ ] x1 x 2 [ ] [ ] [ ] 1 0 x1 x1 = = 0 1 x 2 x 2 Tästä nähdään, että kuvaus L B peilaa vektorit pystyakselin suhteen. L B LM2, Kesä /310
64 Matriisista C saadaan kuvaus L C : R 2 R 2, L C ( v) = C v. Avaruuden R 2 vektori (x 1, x 2 ) kuvautuu vektoriksi ( x 2, x 1 ): L [ ] x1 x 2 [ ] [ ] [ ] 0 1 x1 x2 = = 1 0 x 2 x 1 Kuvaus L C kiertää vektoreita origon ympäri 90 vastapäivään eli positiiviseen kiertosuuntaan. L C LM2, Kesä /310
65 Voidaan osoittaa, että matriisin [ ] cos ϕ sin ϕ sin ϕ cos ϕ määräämä lineaarikuvaus kiertää vektoreita origon ympäri kulman ϕ verran (positiiviseen kiertosuuntaan, jos ϕ > 0, ja negatiiviseen kiertosuuntaan, jos ϕ < 0). Matriiisi C = [ ] on tällainen kiertomatriisi, jossa kulma ϕ = 90. LM2, Kesä /310
66 Lause 24 Lineaarikuvauksen ominaisuuksia Oletetaan, että L: V W on lineaarikuvaus. Tällöin L( 0 V ) = 0 W. Todistus. Kuvauksen L lineaarisuuden nojalla L( 0 V ) = L( 0 V + 0 V ) = L( 0 V ) + L( 0 V ). Lisätään tämän yhtälön molemmille puolille avaruuden W vektori L( 0 V ), jolloin saadaan L( 0 V ) L( 0 V ) = L( 0 V ) + L( 0 V ) L( 0 V ). Näin ollen 0 W = L( 0 V ). LM2, Kesä /310
67 Määritelmä Yhdistetty kuvaus Oletetaan, että f : X Y ja g : Y Z ovat kuvauksia. Yhdistetty kuvaus g f tarkoittaa kuvausta X Z, jolla (g f )(x) = g(f (x)) eli x g(f (x)). X f Y g Z y g(y) x f(x) g(f(x)) g f LM2, Kesä /310
68 Lineaarikuvausten ominaisuuksia Lause 25 Oletetaan, että L: U V ja T : V W ovat lineaarikuvauksia. Tällöin yhdistetty kuvaus T L: U W on lineaarinen. Todistus. Oletetaan, että ū 1, ū 2 U ja a R. Tarkistetaan lineaarikuvauksen määritelmän ehdot: (a) Yhdistetyn kuvauksen määritelmän, kuvauksen L lineaarisuuden ja kuvauksen T lineaarisuuden avulla saadaan (T L)(ū 1 + ū 2 ) = T (L(ū 1 + ū 2 )) = T (L(ū 1 ) + L(ū 2 )) = T (L(ū 1 )) + T (L(ū 2 )) = (T L)(ū 1 ) + (T L)(ū 2 ) LM2, Kesä /310
69 (b) Yhdistetyn kuvauksen määritelmän, kuvauksen L lineaarisuuden ja kuvauksen T lineaarisuuden avulla saadaan (T L)(aū 1 ) = T (L(aū 1 )) = T (al(ū 1 )) = at (L(ū 1 ))) = a(t L)(ū 1 ) LM2, Kesä /310
70 Matriisien määräämien lineaarikuvausten yhdistäminen Matriisien määräämillä lineaarikuvauksilla kuvausten yhdistäminen vastaa matriisien kertomista keskenään: Lause 26 Oletetaan, että A on m n -matriisi ja B on n p -matriisi. Tällöin L A L B = L AB eli tulomatriisin AB määräämä kuvaus L AB : R p R m on sama kuvaus kuin yhdistetty kuvaus L A L B : R p R m. LM2, Kesä /310
71 Lauseen 26 todistus. Oletetaan, että v R p. Tällöin matriisien laskusääntöjen mukaan L AB ( v) = (AB) v = A(B v) = L A (B v) = L A (L B ( v)) = (L A L B )( v). Siis L AB : R p R m ja L A L B : R p R m ovat sama kuvaus. LM2, Kesä /310
72 Määritelmä Osajoukon kuva Oletetaan, että X ja Y ovat joukkoja ja f : X Y on kuvaus. Osajoukon A X kuva kuvauksessa f on joukko Huom. f [A] = { y Y y = f (a) jollakin a A }. Kuva voidaan kirjoittaa lyhyesti myös muodossa X f Y fa = { f (a) a A }. Joukko on itsensä osajoukko: X X. A f A LM2, Kesä /310
73 Aliavaruuden kuva Esimerkki 27 Tarkastellaan esimerkin 22 lineaarikuvausta L: R 2 R 2, joka peilaa jokaisen pisteen vaaka-akselin suhteen: (1,2) (x 1, x 2 ) (1, 2) (x 1, x 2 ) LM2, Kesä /310
74 Osoitettiin, että kuvaus L on matriisin [ ] 1 0 A = 0 1 määräämä lineaarikuvaus, jolla L( v) = A v kaikilla v R 2. Olkoon w = (3, 1) ja W = span( w). Tällöin W on vektorin w virittämä aliavaruus; tarkemmin sanottuna origon kautta kulkeva suora: W = span( w) LM2, Kesä /310
75 Aliavaruuden W kuva on L[W ] = { ū R 2 ū = L( v) jollakin v W } = { ū R 2 ū = L( v) jollakin v span( w) } = { ū R 2 ū = L(t w) jollakin t R } = { L(t w) t R } = { tl( w) t R } = { t(3, 1) t R } = span ( (3, 1) ) L[W] = span ( (3, 1) ) LM2, Kesä /310
76 L W = span ( (3,1) ) L[W] = span ( (3, 1) ) LM2, Kesä /310
77 Lineaarikuvauksen ominaisuuksia Lineaarikuvauksesssa aliavaruudet kuvautuvat aliavaruuksiksi. Lause 28 Oletetaan, että L: V V on lineaarikuvaus. Jos W on avaruuden V aliavaruus, niin kuva L[W ] on avaruuden V aliavaruus. LM2, Kesä /310
78 Lauseen 28 todistus. Oletetaan, että W on avaruuden V aliavaruus. Osoitetaan, että kuva L[W ] on avaruuden V aliavaruus. Oletetaan, että u, w L[W ] ja a R. Tällöin on olemassa sellaiset u, w W, että L(u) = u ja L(w) = w. (a) Tutkitaan summaa u + w käyttäen hyväksi kuvauksen L lineaarisuutta: u + w = L(u) + L(w) = L(u + w), missä u + w W, koska W on aliavaruus ja u, w W. Siis u + w L[W ]. LM2, Kesä /310
79 (b) Tutkitaan skalaarimonikertaa au käyttäen hyväksi kuvauksen L lineaarisuutta: au = al(u) = L(au), missä au W, koska W on aliavaruus ja u W. Siis au L[W ]. (c) Koska W on aliavaruus, niin 0 V W. Koska L on lineaarikuvaus, niin L( 0 V ) = 0 V lauseen 24 nojalla. Siten 0 V L[W ]. LM2, Kesä /310
80 Lineaarikuvauksen ydin Määritelmä Oletetaan, että L: V W on lineaarikuvaus. Sen ydin on joukko Ker L = { v V L( v) = 0 W }. Huom. Ydin on aina joukko (ei koskaan pelkkä yksittäinen alkio). Ytimessä ovat ne vektorit, jotka kuvautuvat nollavektoriksi. Ydin ei ole koskaan tyhjä joukko, sillä nollavektori on aina ytimessä (lause 24). Ytimessä on siis ainakin yksi alkio, mahdollisesti useita alkioita. LM2, Kesä /310
81 Esimerkki 29 Lineaarikuvauksen ydin Tarkastellaan kuvausta L: R 2 R 2, joka projisoi jokaisen pisteen vaaka-akselille: (1,2) (1,0) (x 1,0) (x 1, x 2 ) Jos (x 1, x 2 ) R 2, niin L(x 1, x 2 ) = (x 1, 0). LM2, Kesä /310
82 Tulkitsemalla avaruuden R 2 alkiot 2 1 -matriiseina saadaan [ ] [ ] [ ] [ ] [ ] [ ] x1 x x1 L = = x x 0 2 = x 2 x 2 Siis kuvaus L on matriisin A = [ ] määräämä kuvaus, jolla L( v) = A v kaikilla v R 2. Näin ollen L on lineaarinen lauseen 21 nojalla. Määritetään lineaarikuvauksen L ydin. LM2, Kesä /310
83 Lineaarikuvauksen L: R 2 R 2 ydin on Ker L = { v R 2 L( v) = 0 } = { (v 1, v 2 ) R 2 (v 1, 0) = (0, 0) } = { (v 1, v 2 ) R 2 v 1 = 0 } = { (0, v 2 ) v 2 R } = { v 2 (0, 1) v 2 R } = span ( (0, 1) ). LM2, Kesä /310
84 Lineaarikuvauksen L ydin on siis vektorin j = (0, 1) virittämä aliavaruus, joka on origon kautta kulkeva, vektorin j suuntainen suora: L Ker L LM2, Kesä /310
85 Lineaarikuvauksen ydin Esimerkki 30 Määritetään esimerkin 20 lineaarikuvauksen L: R 2 P 1, (a, b) ax + b, ydin. Huom. Ker L = { v R 2 L( v) = 0 } = { (v 1, v 2 ) R 2 v 1 x + v 2 = 0x + 0 } = { (v 1, v 2 ) R 2 v 1 = 0 ja v 2 = 0 } = { (0, 0) } = { 0}. Vektoriavaruuden P 1 nollavektori on nollapolynomi, jonka kaikki kertoimet ovat nollia. Sitä voidaan merkitä lyhyesti 0 tai kuten edellä 0x + 0. LM2, Kesä /310
86 Lause 31 Lineaarikuvauksen ydin Oletetaan, että L: V V on lineaarikuvaus. Tällöin ydin Ker L on avaruuden V aliavaruus. Todistus. Ker L on määritelmänsä mukaan vektoriavaruuden V osajoukko. Oletetaan, että w, ū Ker L ja c R. Tällöin L( w) = 0 V ja L(ū) = 0 V. Tarkistetaan aliavaruuden määritelmän ehdot: (a) Kuvauksen L lineaarisuuden nojalla L( w + ū) = L( w) + L(ū) = 0 V + 0 V = 0 V, joten w + ū Ker L. (b) Vastaavasti L(c w) = cl( w) = c 0 V = 0 V ja siten c w Ker L. (c) Lauseen 24 nojalla L( 0 V ) = 0 V, joten 0 V Ker L. LM2, Kesä /310
87 Injektio Määritelmä Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on injektio, jos kaikilla a, b X yhtälöstä f (a) = f (b) seuraa, että a = b. Huom. Voidaan päätellä, että kuvaus on injektio, jos ja vain jos kaikilla lähdön alkioilla on eri kuva-alkiot. Injektiivisen kuvauksen tapauksessa maalin kullekin alkiolle kuvautuu korkeintaan yksi lähdön alkio. LM2, Kesä /310
88 Kuvaus g ei ole injektio: X g Y a b g(a) = g(b) LM2, Kesä /310
89 Injektio Kuvaus h on injektio: X h Y a = b h(a) = h(b) LM2, Kesä /310
90 Lineaarikuvauksen injektiivisyys Lause 32 Lineaarikuvaus L: V V on injektio, jos ja vain jos Ker L = { 0 V }. LM2, Kesä /310
91 Todistus. : Oletetaan, että L on injektio. Tiedetään, että L( 0 V ) = 0 V, joten 0 V Ker L. Injektiivisyyden nojalla mikään muu alkio ei voi kuvautua neutraalialkiolle, joten ytimessä on vain yksi alkio, 0 V. : Oletetaan, että Ker L = { 0 V }. Oletetaan lisäksi, että alkioille v, w V pätee L( v) = L( w). Lisäämällä yhtälön molemmille puolille vektori L( w) saadaan L( v) L( w) = 0 V. Koska L on lineaarikuvaus, seuraa tästä, että L( v w) = 0 V. Siis v w Ker L. Koska Ker L = { 0 V }, täytyy päteä v w = 0 V. Kun tämän yhtälön molemmille puolille lisätään vektori w, saadaan v = w. On siis osoitettu, että f on injektio. LM2, Kesä /310
92 Esimerkki 33 Lineaarikuvauksen injektiivisyys Esimerkin 29 lineaarikuvauksen L: R 2 R 2, (x 1, x 2 ) (x 1, 0) ydin on vektorin j = (0, 1) virittämä aliavaruus, joka on origon kautta kulkeva, vektorin j suuntainen suora: L Ker L Ker L { 0}, joten L ei ole injektio lauseen 32 nojalla. LM2, Kesä /310
93 Lineaarikuvauksen injektiivisyys Esimerkki 34 Esimerkin 30 lineaarikuvauksen L: R 2 P 1, (a, b) ax + b, ydin on Ker L = { 0}, missä 0 tarkoittaa nollavektoria 0 = (0, 0) R 2. Näin ollen L on injektio lauseen 32 nojalla. LM2, Kesä /310
94 Lineaarikuvauksen kuva Määritelmä Oletetaan, että L: V V on lineaarikuvaus. Lineaarikuvauksen L kuva on joukko Im L = { L( v) v V }. Huom. Lineaarikuvauksen kuva on erityistapaus aiemmin määritellystä osajoukon kuvan käsitteestä. Aiemman määritelmän merkinnöillä Im L = L[V ]. LM2, Kesä /310
95 Esimerkki 35 Lineaarikuvauksen kuva Tarkastellaan esimerkin 29 lineaarikuvausta L: R 2 R 2, (x 1, x 2 ) (x 1, 0), joka projisoi jokaisen pisteen vaaka-akselille: (1,2) (1,0) (x 1,0) (x 1, x 2 ) Määritetään lineaarikuvauksen L kuva. LM2, Kesä /310
96 Lineaarikuvauksen L: R 2 R 2 kuva on Im L = { L( v) v R 2 } = { (v 1, 0) R 2 (v 1, v 2 ) R 2 } = { (v 1, 0) R 2 v 1 R } = { v 1 (1, 0) v 1 R } = span ( (1, 0) ). LM2, Kesä /310
97 Lineaarikuvauksen L kuva on siis vektorin ī = (1, 0) virittämä aliavaruus, joka on origon kautta kulkeva, vektorin ī suuntainen suora: L Im L LM2, Kesä /310
98 Lineaarikuvauksen kuva Esimerkki 36 Määritetään esimerkin 20 lineaarikuvauksen L: R 2 P 1, (a, b) ax + b, kuva. Im L = { L( v) v R 2 } = { v 1 x + v 2 (v 1, v 2 ) R 2 } = { v 1 x + v 2 v 1, v 2 R } = P 1. LM2, Kesä /310
99 Lineaarikuvauksen kuva Lause 37 Oletetaan, että L: V V on lineaarikuvaus. Tällöin kuva Im L on avaruuden V aliavaruus. Todistus. Tämä seuraa lauseesta 28, jonka mukaan lineaarikuvauksessa aliavaruuden kuva on aina aliavaruus. Nimittäin V on itsensä aliavaruus ja Im L = L[V ]. LM2, Kesä /310
100 Surjektio Määritelmä Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on surjektio, jos jokaisella y Y on olemassa ainakin yksi sellainen x X, että f (x) = y. Huom. Voidaan päätellä, että kuvaus on surjektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu ainakin yksi lähdön alkio. Lineaarikuvaus L: V V on surjektio, jos ja vain jos Im L = V. LM2, Kesä /310
101 Kuvaus g ei ole surjektio: X g Y y g(x) kaikilla x X LM2, Kesä /310
102 Surjektio Kuvaus h on surjektio: X h Y LM2, Kesä /310
103 Esimerkki 38 Lineaarikuvauksen surjektiivisuus Esimerkin 35 lineaarikuvauksen L: R 2 R 2, (x 1, x 2 ) (x 1, 0) kuva on vektorin ī = (1, 0) virittämä aliavaruus, joka on origon kautta kulkeva, vektorin ī suuntainen suora: L Im L Im L R 2, joten L ei ole surjektio. LM2, Kesä /310
104 Lineaarikuvauksen surjektiivisuus Esimerkki 39 Esimerkin 36 lineaarikuvauksen L: R 2 P 1, (a, b) ax + b, kuva on Im L = P 1, joten L on surjektio. LM2, Kesä /310
105 Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. X f Y LM2, Kesä /310
106 Isomorfismi Määritelmä Lineaarikuvausta, joka on bijektio, kutsutaan isomorfismiksi. Jos on olemassa isomorfismi L: V W, niin sanotaan, että vektoriavaruudet V ja W ovat isomorfiset. Tällöin merkitään V = W. LM2, Kesä /310
107 Isomorfismi Esimerkki 40 Avaruudet R 2 ja P 1 ovat isomorfisia. Isomorfismiksi kelpaa esimerkiksi kuvaus L: R 2 P 1, L(a, b) = ax + b. Nimittäin: L on lineaarikuvaus (esimerkki 20); L on bijektio, sillä L on injektio, sillä sen ydin Ker L = { 0} (esimerkki 30); L on surjektio, sillä sen kuva Im L = P 1 (esimerkki 36). Huomataan, että avaruudet todellakin muistuttavat toisiaan. Sekä alkiossa (a, b) että alkiossa ax + b näkyvät reaaliluvut a ja b. Kaikki oleellinen tieto alkiosta sisältyy näihin reaalilukuihin. LM2, Kesä /310
108 Lisäksi nämä reaaliluvut käyttäytyvät samalla tavoin yhteenlaskussa ja skalaarikertolaskussa: Vektoriavaruus summa R 2 (a, b) + (c, d) = (a + c, b + d) P 1 (ax + b) + (cx + d) = (a + c)x + (b + d) Vektoriavaruus R 2 P 1 skalaarimonikerta r(a, b) = (ra, rb) r(ax + b) = rax + rb LM2, Kesä /310
109 Isomorfisuus Lause 41 Oletetaan, että V, W ja U ovat vektoriavaruuksia. Tällöin (a) V = V (b) jos V = W, niin W = V (c) jos V = W ja W = U, niin V = U. LM2, Kesä /310
110 Käänteiskuvaus Määritelmä Oletetaan, että f : X Y on kuvaus. Jos on olemassa sellainen kuvaus g : Y X, että g f = id X ja f g = id Y, niin sanotaan, että kuvaus g on kuvauksen f käänteiskuvaus. Huom. Tässä id X tarkoittaa avaruuden X identtistä kuvausta: id X : X X, jolla id X (x) = x kaikilla x X. Vastaavasti id Y tarkoittaa avaruuden Y identtistä kuvausta, jolla y y kaikilla y Y. Kuvauksen f käänteiskuvausta merkitään f 1. LM2, Kesä /310
111 Huom. Voidaan osoittaa, että jokaisella kuvauksella on enintään yksi käänteiskuvaus. Sen vuoksi merkintä f 1 on yksikäsitteinen ja siten mielekäs. LM2, Kesä /310
112 Bijektiot ja käänteiskuvaukset Lause 42 Oletetaan, että f : X Y on kuvaus. Kuvauksella f on käänteiskuvaus, jos ja vain jos kuvaus f on bijektio. Todistus. : Oletetaan, että kuvauksella f on käänteiskuvaus f 1 : Y X. Osoitetaan, että f on bijektio: Oletetaan, että a, b X ja f (a) = f (b). Tällöin a = id(a) = (f 1 f )(a) = f 1 (f (a)) = f 1 (f (b)) Siis f on injektio. = (f 1 f )(b) = id(b) = b. LM2, Kesä /310
113 Oletetaan, että y Y. Tällöin f 1 (y) X ja Siis f on surjektio. f (f 1 (y)) = (f f 1 )(y) = id(y) = y. : Oletetaan, että f on bijektio. Määritellään kuvaus g : Y X seuraavasti: Jos y Y, niin kuvauksen f bijektiivisyyden nojalla on olemassa tasan yksi a X, jolla f (a) = y. Määritellään g(y) = a. Siis g(y) = a f (a) = y. LM2, Kesä /310
114 Osoitetaan, että g on kuvauksen f käänteiskuvaus: Oletetaan, että x X. Merkitään f (x) = c. Tällöin (g f )(x) = g(f (x)) = g(c) = x = id X (x). Oletetaan, että y Y. Merkitään g(y) = a. Tällöin (f g)(y) = f (g(y)) = f (a) = y = id Y (y). Siis g f = id X ja f g = id Y, joten kuvaus g on kuvauksen f käänteiskuvaus. LM2, Kesä /310
115 Isomorfisuus Lauseen 41 todistus. Käsitellään vain b-kohta tarkasti (esimerkin vuoksi). (a) V = V, sillä isomorfismiksi kelpaa ns. identtinen kuvaus id: V V, jolla id( v) = v kaikilla v V. (b) Oletetaan, että V = W. Tällöin on olemassa isomorfismi L: V W. Koska L on bijektio, on sillä olemassa käänteiskuvaus L 1 : W V, joka sekin on bijektio. Osoitetaan, että L 1 on lineaarinen: LM2, Kesä /310
116 (b) jatkuu... Oletetaan, että w 1, w 2 W ja c R. Koska L on bijektio, niin on olemassa tasan yhdet sellaiset v 1, v 2 V, että L( v 1 ) = w 1 ja L( v 2 ) = w 2. Huomaa, että tällöin v 1 = L 1 ( w 1 ) ja v 2 = L 1 ( w 2 ). Siten ja L 1 ( w 1 + w 2 ) = L 1 (L( v 1 ) + L( v 2 )) = L 1 (L( v 1 + v 2 )) = id( v 1 + v 2 ) = v 1 + v 2 = L 1 ( w 1 ) + L 1 ( w 2 ) L 1 (c w 1 ) = L 1 (cl( v 1 )) = L 1 (L(c v 1 )) = id(c v 1 ) = c v 1 = cl 1 ( w 1 ). LM2, Kesä /310
117 (c) Oletetaan, että V = W ja W = U. Tällöin on olemassa isomorfismit L: V W ja T : W U. Lineaarikuvauksista yhdistetty kuvaus on lineaarinen (lause 25), joten kuvaus T L: V U on lineaarinen. Lisäksi T L on bijektio. Se voidaan osoittaa esimerkiksi näyttämällä, että yhdistetyn kuvauksen T L käänteiskuvaukseksi kelpaa L 1 T 1 : U V. LM2, Kesä /310
118 Kertausta: vapaus Määritelmä Oletetaan, että V on vektoriavaruus ja v 1, v 2,..., v k V. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Jos jono ( v 1, v 2,..., v k ) on vapaa, sanotaa, että vektorit v 1, v 2,..., v k ovat lineaarisesti riippumattomia. Jos jono ei ole vapaa, sanotaan, että se on sidottu. LM2, Kesä /310
119 Vähintään kahdesta vektorista muodostuva vektorijono on sidottu, jos ja vain jos jokin sen vektoreista voidaan ilmaista toisten lineaarikombinaationa: Lause 43 Oletetaan, että V on vektoriavaruus ja v 1,..., v k V. (a) Jono ( v 1 ) on sidottu, jos ja vain jos v = 0. (b) Jono ( v 1,..., v k ) on sidottu, jos ja vain jos v i span( v 1,..., v i 1, v i+1,..., v k ) jollakin i {1,..., k}. LM2, Kesä /310
120 Kertausta: kanta Määritelmä Oletetaan, että V on vektoriavaruus ja v 1, v 2,..., v k V. Vektorijono ( v 1, v 2,..., v k ) on vektoriavaruuden V kanta, jos (a) V = span( v 1, v 2,..., v k ) (b) ( v 1, v 2,..., v k ) on vapaa. LM2, Kesä /310
121 Lause 44 Kertausta: kanta ja koordinaatit Jono ( v 1, v 2,..., v k ) on vektoriavaruuden V kanta, jos ja vain jos jokainen avaruuden V vektori voidaan kirjoittaa täsmälleen yhdellä tavalla vektoreiden v 1,..., v k lineaarikombinaationa. Lause 44 mahdollistaa seuraavan määritelmän: Määritelmä Oletetaan, että B = ( v 1,..., v k ) on vektoriavaruuden V kanta. Oletetaan, että w V. Vektorin w koordinaateiksi kannan B suhteen kutsutaan reaalilukuja a 1,..., a k, joilla w = a 1 v a k v k. LM2, Kesä /310
122 Kertausta: kanta ja dimensio Lause 45 Vektoriavaruuden V jokaisessa kannassa on yhtä monta vektoria. LM2, Kesä /310
123 Kertausta: kanta ja dimensio Lause 45 mahdollistaa seuraavan määritelmän: Määritelmä Vektoriavaruus V on äärellisulotteinen, jos sillä on äärellisen monesta vektorista koostuva kanta tai jos V = { 0}. Vektoriavaruuden V { 0} dimensio dim(v ) on kannan vektoreiden lukumäärä. Vektoriavaruuden { 0} dimensio on nolla eli dim({ 0}) = 0. Jos vektoriavaruuden dimensio on n, sanotaan, että vektoriavaruus on n-ulotteinen. Jos vektoriavaruus V ei ole äärellisulotteinen, sanotaan, että V on ääretönulotteinen ja sen dimensio on ääretön. LM2, Kesä /310
124 Ytimen ja kuvan dimensiot Lause 46 Oletetaan, että V ja W ovat vektoriavaruuksia ja L: V W on lineaarikuvaus. Oletetaan lisäksi, että lähtö V on äärellisulotteinen. Tällöin dim(v ) = dim(ker L) + dim(im L). LM2, Kesä /310
125 Esimerkki 47 Ytimen ja kuvan dimensiot Esimerkin 29 lineaarikuvauksen L: R 2 R 2, (x 1, x 2 ) (x 1, 0) ydin on vektorin j = (0, 1) virittämä aliavaruus, joka on origon kautta kulkeva, vektorin j suuntainen suora: L Ker L Siis dim(ker L) = 1. LM2, Kesä /310
126 Lineaarikuvauksen L kuva on vektorin ī = (1, 0) virittämä aliavaruus, joka on origon kautta kulkeva, vektorin ī suuntainen suora (ks. esimerkki 35): L Im L Todellakin Siis dim(im L) = 1. dim(ker L) + dim(im L) = = 2 = dim(r 2 ). LM2, Kesä /310
127 Ytimen ja kuvan dimensiot Lauseen 46 todistus. Olkoon dim(v ) = n ja olkoon ( v 1,..., v k ) aliavaruuden Ker L kanta, jolloin dim(ker L) = k. Koska jono ( v 1,..., v k ) on vapaa, voidaan se täydentää vektoriavaruuden V kannaksi ( v 1,..., v k, v k+1,..., v n ). Osoitetaan, että (L( v k+1 ),..., L( v n )) on aliavaruuden Im L kanta, jolloin dim(im L) = n k. Tämä todistaa väitteen. LM2, Kesä /310
128 Osoitetaan ensin, että span(l( v k+1 ),..., L( v n )) = Im L. Oletetaan, että w Im L. Tällöin on olemassa v V, jolla L( v) = w. Lisäksi ( v 1,..., v k, v k+1,..., v n ) on vektoriavaruuden V kanta, joten v = a 1 v a k v k + a k+1 v k a n v n joillakin a 1,..., a n R. Käyttämällä kuvauksen L lineaarisuutta sekä tietoa, että v 1,..., v k Ker L, saadaan w = L( v) = L(a 1 v a k v k + a k+1 v k a n v n ) = a 1 L( v 1 ) + + a k L( v k ) + a k+1 L( v k+1 ) + + a n L( v n ) = a k+1 L( v k+1 ) + + a n L( v n ) = a k+1 L( v k+1 ) + + a n L( v n ). LM2, Kesä /310
129 Osoitetaan sitten, että jono (L( v k+1 ),..., L( v n )) on vapaa. Oletetaan, että c k+1 L( v k+1 ) + + c n L( v n ) = 0 joillakin c k+1,..., c n R. Kuvauksen L lineaarisuuden vuoksi L(c k+1 v k c n v n ) = 0, joten c k+1 v k c n v n Ker L. LM2, Kesä /310
130 Koska c k+1 v k c n v n Ker L, niin on olemassa luvut b 1,..., b k R, joille pätee Tästä saadaan yhtälö c k+1 v k c n v n = b 1 v b k v k. b 1 v 1 b k v k + c k+1 v k c n v n = 0. Jono ( v 1,..., v k, v k+1,..., v n ) on vektoriavaruuden V kanta ja siten vapaa. Edellisestä yhtälöstä seuraa siis, että b 1 = 0,..., b k = 0, c k+1 = 0,..., c n = 0 ; erityisesti c k+1 = 0,..., c n = 0. LM2, Kesä /310
131 Lineaarikuvauksen injektiivisyys ja surjektiivisuus Lause 48 Oletetaan, että V ja W ovat äärellisulotteisia vektoriavaruuksia, joilla dim(v ) = dim(w ). Oletetaan, että L: V W on lineaarikuvaus. Tälllöin L on injektio, jos ja vain jos L on surjektio. Huom. Lauseen oletuksissa vaaditaan, että lähdön ja maalin dimensio on sama! LM2, Kesä /310
132 Lauseen 48 todistuksen idea. Todistuksen perustana on lauseen 46 tulos dim(v ) = dim(ker L) + dim(im L). : Oletetaan, että L on injektio. Tällöin Ker L = { 0}, joten dim(ker L) = 0. Siten dim(im L) = dim(v ) = dim(w ). Tiedetään lisäksi, että Im L on vektoriavaruuden W aliavaruus. Tästä seuraa, että Im L = W. Siis L on surjektio. : Oletetaan, että L on surjektio. Tällöin Im L = W, joten dim(im L) = dim(w ) = dim(v ). Tästä seuraa, että dim(ker L) = 0. Siten Ker L = { 0}. Siis L on injektio. LM2, Kesä /310
133 Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 49 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin on olemassa täsmälleen yksi sellainen lineaarikuvaus L: V W, että L( v 1 ) = w 1, L( v 2 ) = w 2,..., L( v n ) = w n. LM2, Kesä /310
134 Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lauseen 49 todistus. Jos v V, niin on olemassa yksikäsitteiset a 1,..., a n R, joilla v = a 1 v 1 + a 2 v a n v n. Määritellään kuvaus L: V W asettamalla L( v) = a 1 w 1 + a 2 w a n w n. Osoitetaan, että L täyttää lauseessa asetetut vaatimukset. Esimerkiksi v 2 = 0 v v v v n, joten L( v 2 ) = 0 w w w w n = w 2. Näin voidaan osoittaa, että L( v i ) = w i kaikilla i {1,..., n}. LM2, Kesä /310
135 Osoitetaan, että L on lineaarikuvaus. Oletetaan, että x, ȳ V ja t R. Tällöin x = b 1 v b n v n ja ȳ = c 1 v c n v n joillakin b 1,..., b n, c 1,..., c n R. Tällöin L( x + ȳ) = L ( (b 1 v b n v n ) + (c 1 v c n v n ) ) = L ( (b 1 + c 1 ) v (b n + c n ) v n ) = (b 1 + c 1 ) w (b n + c n ) w n = (b 1 w b n w n ) + (c 1 w c n w n ) = L(b 1 v b n v n ) + L(c 1 v c n v n ) = L( x) + L(ȳ) LM2, Kesä /310
136 ja L(t x) = L ( t(b 1 v b n v n ) ) = L(tb 1 v tb n v n ) = tb 1 w tb n w n = t(b 1 w b n w n ) = tl(b 1 v b n v n ) = tl( x). Siis L on yksi lauseen vaatimukset täyttävä lineaarikuvaus. Onko olemassa muita lineaarikuvauksia, jotka myös täyttävät lauseen ehdot? LM2, Kesä /310
137 Osoitetaan, että lauseen 49 vaatimukset täyttäviä lineaarikuvauksia on enintään yksi (edellä määritelty L). Oletetaan, että L, T : V W ovat lineaarikuvauksia, joilla L( v 1 ) = w 1, L( v 2 ) = w 2,..., L( v n ) = w n ja T ( v 1 ) = w 1, T ( v 2 ) = w 2,..., T ( v n ) = w n. Oletetaan, että v V. Tällöin v = a 1 v a n v n joillakin a 1,..., a n R, sillä ( v 1,..., v n ) on avaruuden V kanta. Kuvausten L ja T lineaarisuutta käyttäen saadaan L( v) = L(a 1 v a n v n ) = a 1 L( v 1 ) + + a n L( v n ) = a 1 w a n w n = a 1 T ( v 1 ) + + a n T ( v n ) = T (a 1 v a n v n ) = T ( v). Kuvauksilla L: V W ja T : V W on samat arvot, joten ne ovat sama kuvaus. LM2, Kesä /310
138 Isomorfisuus Lause 50 Oletetaan, että V ja W ovat äärellisulotteisia vektoriavaruuksia. Vektoriavaruudet V ja W ovat isomorfiset, jos ja vain jos dim(v ) = dim(w ). LM2, Kesä /310
139 Isomorfisuus Lauseen 50 todistus. : Oletetaan, että V = W. Tällöin on olemassa isomorfismi L: V W. Koska L on injektio, niin Ker L = { 0} ja siten dim(im L) = dim(v ) dim(ker L) = dim(v ) 0 = dim(v ). Koska L on surjektio, niin Im L = W. Siten dim(v ) = dim(im L) = dim(w ). LM2, Kesä /310
140 : Oletetaan, että dim(v ) = dim(w ) = n. Olkoon ( v 1,..., v n ) vektoriavaruuden V kanta ja olkoon ( w 1,..., w n ) vektoriavaruuden W kanta. Olkoon L: V W se lineaarikuvaus, jolla L( v 1 ) = w 1, L( v 2 ) = w 2,..., L( v n ) = w n. Lauseen 49 mukaan tällaisia lineaarikuvauksia on tasan yksi. Osoitetaan, että L on injektio. LM2, Kesä /310
141 Oletetaan, että v Ker L. Tällöin L( v) = 0. Kirjoitetaan v kantavektorien lineaarikombinaationa v = a 1 v a n v n, jolloin saadaan 0 = L( v) = L(a 1 v a n v n ) = a 1 L( v 1 ) + + a n L( v n ) = a 1 w a n w n. Jono ( w 1,..., w n ) on kanta ja siten vapaa, joten tästä yhtälöstä seuraa, että a 1 = 0, a 2 = 0,..., a n = 0. Siis v = a 1 v a n v n = 0 v v n = 0. Tämä osoittaa, että Ker L = { 0}. Siis L on injektio. LM2, Kesä /310
142 Oletuksen mukaan dim(v ) = dim(w ). Lisäksi lineaarikuvaus L: V W on injektio, joten L on lauseen 48 mukaan surjektio. Siis L on lineaarikuvaus ja bijektio, eli isomorfismi. Näin ollen V = W. LM2, Kesä /310
143 Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos: Lause 51 Oletetaan, että T : R n R m on lineaarikuvaus. Tällöin on olemassa täsmälleen yksi matriisi A M m n, jolla T ( v) = A v kaikilla v R n. LM2, Kesä /310
144 Ennen lauseen 51 perustelua tutkitaan hiukan matriistuloa A v: a 11 a 12 a 1n v 1 a 21 a 22 a 2n v 2 A v =... a m1 a m2 a mn v n a 11 v 1 + a 12 v a 1n v n a 21 v 1 + a 22 v a 2n v n =. a m1 v 1 + a m2 v a mn v n = v 1 a 11 a 21. a m1 + v 2 a 12 a 22. a m2 + + v n a 1n a 2n.. a mn LM2, Kesä /310
145 Lineaarikuvauksen R n R m matriisi Tulo A v on siis matriisin A sarakkeiden lineaarikombinaatio, jossa kertoimina ovat vektorin v komponentit. Lauseen 51 todistus. Muodostetaan matriisi A seuraavasti: Katsotaan, miten avaruuden R n luonnollisen kannan (ē 1, ē 2,..., ē n ) vektorit kuvautuvat lineaarikuvauksessa T eli määritetään T (ē 1 ), T (ē 2 ),..., T (ē n ). Laitetaan kuvavektorit T (ē 1 ), T (ē 2 ),..., T (ē n ) matriisin A sarakkeiksi tässä järjestyksessä. LM2, Kesä /310
146 Matriisin A sarakkeet ovat siis T (ē 1 ), T (ē 2 ),..., T (ē n ) R m ja tällöin voidaan merkitä lyhyesti [ ] A = T (ē 1 ) T (ē 2 )... T (ē n ). Huomaa, että matriisin jokaisessa sarakkeessa on m alkiota ja sarakkeita on n kappaletta, joten A todella on m n -matriisi. Osoitetaan, että matriisin A määräämä lineaarikuvaus L A : R n R m on sama kuin T : R n R m. Koska kantavektorien kuvavektorit määräävät lineaarikuvauksen (lause 49), niin riittää osoittaa, että kantavektorit ē 1, ē 2,..., ē n kuvautuvat samalla tavalla kuvauksissa L A ja T. LM2, Kesä /310
147 Matriisin A määräämässä kuvauksessa L A esimerkiksi a 11 a 12 a 13 a 1n a 21 L A (ē 2 ) = Aē 2 = a a a 2n. a m1 a m2 a m3 a mn a 12 a 22 =. = T (ē 2), a m2 sillä tulo Aē 2 on matriisin A sarakkeiden lineaarikombinaatio, jossa kertoimina ovat vektorin ē 2 komponentit; matriisin A sarakkeet ovat kuvavektorit T (ē 1 ),..., T (ē n ). LM2, Kesä /310
148 Näin voidaan osoittaa, että L A (ē i ) = T (ē i ) kaikilla i {1,..., n}. Lineaarikuvaukset L A ja T ovat siten lauseen 49 nojalla sama kuvaus, eli T ( v) = A v kaikilla v R n. Osoitetaan vielä, ettei muita sopivia m n -matriiseja ole. Oletetaan, että A, B M m n ovat sellaisia, että T ( v) = A v ja T ( v) = B v kaikilla v R n. Tällöin A v = B v kaikilla v R n. LM2, Kesä /310
Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.
Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
LisätiedotKuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
LisätiedotKantavektorien kuvavektorit määräävät lineaarikuvauksen
Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin
LisätiedotLineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotVapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................
LisätiedotHY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 25. lokakuuta 2015 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus... 111 16 Aliavaruus... 117 16.1 Vektoreiden
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden
LisätiedotYhteenlaskun ja skalaarilla kertomisen ominaisuuksia
Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
LisätiedotKannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
LisätiedotOsoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
LisätiedotOrtogonaalisen kannan etsiminen
Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,
LisätiedotLineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon
LisätiedotLineaarialgebra ja matriisilaskenta I. LM1, Kesä /218
Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
LisätiedotMääritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.
1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:
Lisätiedot4. LINEAARIKUVAUKSET
86 4 LINEAARIKUVAUKSET 41 Määritelmä ja esimerkkejä Olkoot V ja V vektoriavaruuksia Tarkastellaan kuvausta L : V V Tällöin jokaiseen vektoriin v V liittyy tietty, L:n ja v:n yksikäsitteisesti määräämä
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotVektorien virittämä aliavaruus
Vektorien virittämä aliavaruus Esimerkki 13 Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w kuuluu vektoreiden v 1 = (3, 2, 1), v 2 = (2, 2, 6) ja v 3 = (3, 4, 5) virittämään
Lisätiedot7 Vapaus. 7.1 Vapauden määritelmä
7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan
LisätiedotMatriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
Lisätiedot9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista
29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Lotta Oinonen ja Johanna Rämö 6. joulukuuta 2012 Helsingin yliopisto Matematiikan ja tilastotieteen laitos 2012 Sisältö 1 Avaruus R n 4 1 Avaruuksien R 2 ja R 3 vektorit.....................
Lisätiedot5.6 Yhdistetty kuvaus
5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty
Lisätiedot2 / :03
file:///c:/users/joonas/desktop/linis II Syksy /Ratkaisuehdotukse / 8 76 3:3 Kysymys Pisteet,, Määritellään positiivisten reaalilukujen joukossa R + = {x R x > } yhteenlasku ja skalaarikertolasku seuraavasti:
LisätiedotJAKSO 2 KANTA JA KOORDINAATIT
JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
LisätiedotOminaisvektoreiden lineaarinen riippumattomuus
Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin
LisätiedotEsko Turunen Luku 3. Ryhmät
3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus
LisätiedotOrtogonaalinen ja ortonormaali kanta
Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä
LisätiedotVektoreiden virittämä aliavaruus
Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden
LisätiedotOminaisarvo ja ominaisvektori
Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
Lisätiedotx = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
LisätiedotAvaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotPäättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1
Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon
Lisätiedot6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio
6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.
LisätiedotLineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.
Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat
LisätiedotLineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)
Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
Lisätiedot(1.1) Ae j = a k,j e k.
Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotMatemaattinen Analyysi / kertaus
Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan
Lisätiedot3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
LisätiedotLiittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.
Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla
LisätiedotLineaarialgebra b, kevät 2019
Lineaarialgebra b, kevät 2019 Harjoitusta 4 Maplella with(linearalgebra); (1) Tehtävä 1. Lineaarisia funktioita? a) Asetelma on kelvollinen: lähtö- ja maalijoukko on R-kertoiminen lineaariavaruus ja L
LisätiedotOminaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
Lisätiedot9 Matriisit. 9.1 Matriisien laskutoimituksia
9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä
Lisätiedotjonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä
4. Ryhmät Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoimitukselta oletamme muutamia yksinkertaisia ominaisuuksia: Määritelmä 4.1. Laskutoimituksella varustettu joukko
LisätiedotEnsi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66
Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/66 Lineaarialgebra (muut ko) p. 2/66 Redusoitu porrasmuoto 1 1 2 4 1 1 4 6 2 2 5 9 1 1 0 2 0 0 1 1 0 0 0 0 Eli aste r(a) = 2 ja vaakariviavaruuden
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
LisätiedotSisätuloavaruudet. 4. lokakuuta 2006
Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä
Lisätiedotx = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus
LisätiedotMatikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210 Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2
LisätiedotLineaarialgebra II P
Lineaarialgebra II 89P Sisältö Vektoriavaruus Sisätuloavaruus 8 3 Lineaarikuvaus 5 4 Ominaisarvo 5 Luku Vektoriavaruus Määritelmä.. Epätyhjä joukko V on vektoriavaruus, jos seuraavat ehdot ovat voimassa:.
LisätiedotTehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2016 Harjoitus 3 Ratkaisut palautettava viimeistään maanantaina 29.8.2016 klo 13.15. Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä
LisätiedotVektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotLineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi
Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja
Lisätiedot{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja
5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 23.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Käytännön asioita Ensimmäiset tehtävät olivat sujuneet hyvin. Kansilehdet on oltava mukana tehtäviä palautettaessa,
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Lineaarikuvaukset Lineaarikuvaus Olkoot U ja V
Lisätiedot1 Avaruuksien ja lineaarikuvausten suora summa
MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
LisätiedotLaskutoimitusten operaattorinormeista
Laskutoimitusten operaattorinormeista Rami Luisto 27. tammikuuta 2012 Tiivistelmä Tässä kirjoitelmassa määrittelemme vektoriavaruuksien väliselle lineaarikuvaukselle normin ja laskemme sen eksplisiittisesti
LisätiedotOnko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita?
Matematiikkaa kaikille, kesä 2017 Avoin yliopisto Luentojen 2,4 ja 6 tehtäviä Päivittyy kurssin aikana 1. Olkoon A = {0, 1, 2}, B = {1, 2, 3} ja C = {2, 3, 4}. Luettele joukkojen A B, A B, A B ja (A B)
LisätiedotYleiset lineaarimuunnokset
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos
LisätiedotLineaarialgebra (muut ko)
Lineaarialgebra (muut ko) p. 1/103 Lineaarialgebra (muut ko) Tero Laihonen Lineaarialgebra (muut ko) p. 2/103 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v
LisätiedotAlkeismuunnokset matriisille, sivu 57
Lineaarialgebra (muut ko) p. 1/88 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna
Lisätiedotrenkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x
8. Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme näiltä kahdella laskutoimituksella varustetuilta
Lisätiedot802320A LINEAARIALGEBRA OSA II
802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen
LisätiedotMuistutus: Matikkapaja ke Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta yms.
Lineaarialgebra (muut ko) p. 1/139 Ensi viikon luennot salissa X Muistutus: Matikkapaja ke 14-16 Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta
Lisätiedot1 Sisätulo- ja normiavaruudet
1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v
LisätiedotSimilaarisuus. Määritelmä. Huom.
Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP
LisätiedotKuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara
Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen
LisätiedotLineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila
Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin
LisätiedotSurjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei.
5.5 Surjektio Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei. Määritelmä 5.5.1. Kuvaus f : X æ Y on surjektio, jos jokaisella
LisätiedotLineaarista projektiivista geometriaa
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Iiris Repo Lineaarista projektiivista geometriaa Informaatiotieteiden yksikkö Matematiikka Marraskuu 2012 Tampereen yliopisto Informaatiotieteiden yksikkö REPO,
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO Syksy 2017 LINEAARIALGEBRA 1 / 59 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
Lisätiedot3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h
HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)
LisätiedotKurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.
HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on
LisätiedotLineaarikuvauksista ja niiden geometrisesta tulkinnasta
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Katri Syvänen Lineaarikuvauksista ja niiden geometrisesta tulkinnasta Matematiikan ja tilastotieteen laitos Matematiikka Tammikuu 2009 Tampereen yliopisto Matematiikan
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2019 LINEAARIALGEBRA 1 / 60 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
Lisätiedot1 Kannat ja kannanvaihto
1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:
Lisätiedot