Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310"

Transkriptio

1 Lineaarialgebra ja matriisilaskenta II LM2, Kesä /310

2 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja. Toisin sanottuna R n = { (v 1, v 2,..., v n ) v 1, v 2,..., v n R }. Avaruuden R n alkioita kutsutaan vektoreiksi. Jos u 1, u 2,..., u n R, niin ū = (u 1, u 2,..., u n ) on avaruuden R n vektori ja sanotaan, että u 1, u 2,..., u n ovat vektorin ū komponentit. LM2, Kesä /310

3 Kertausta: avaruuden R n vektoreiden yhteenlasku ja skalaarikertolasku Määritelmä Oletetaan, että v = (v 1,..., v n ) R n, w = (w 1,..., w n ) R n ja c R. Vektoreiden v ja w summa on vektori v + w = (v 1 + w 1, v 2 + w 2,..., v n + w n ). Skalaarikertolasku tarkoittaa vektorin kertomista reaaliluvulla. On sovittu, että c v = (cv 1, cv 2,..., cv n ). LM2, Kesä /310

4 Kertausta: yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella todeksi nojautumalla määritelmiin ja aikaisemmin perusteltuihin väitteisiin. LM2, Kesä /310

5 Kertausta: yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Alla esiintyvä vektori 0 = (0, 0,..., 0) on nimeltään nollavektori. Lause 1 Oletetaan, että v, w, ū R n ja a, c R. Tällöin (a) v + w = w + v (b) (ū + v) + w = ū + ( v + w) (c) v + 0 = v (d) v + ( v) = 0 (e) c( v + w) = c v + c w (f) (a + c) v = a v + c v (g) a(c v) = (ac) v (h) 1 v = v (vaihdannaisuus) (osittelulaki) (osittelulaki) (liitännäisyys) LM2, Kesä /310

6 Vektoriavaruus Ottamalla lähtökohdaksi avaruuden R n vektorien yhteenlaskun ja skalaarilla kertomisen ominaisuudet, voidaan määritellä abstraktimpi ja yleisempi vektoriavaruuden käsite. LM2, Kesä /310

7 Vektoriavaruus Määritelmä (eli sopimus) Oletetaan, että joukossa V on määritelty jonkinlainen yhteenlasku ja skalaarikertolasku. Jos seuraavat ehdot pätevät kaikilla v, w, ū V ja a, b R, niin joukkoa V kutsutaan vektoriavaruudeksi ja sen alkioita vektoreiksi. (1) v + w = w + v (vaihdannaisuus). (2) (ū + v) + w = ū + ( v + w) (liitännäisyys). (3) On olemassa ns. nollavektori 0 V, jolle pätee v + 0 = v. (4) Jokaista vektoria v V kohti on olemassa ns. vastavektori v V, jolle pätee v + ( v) = 0. LM2, Kesä /310

8 (5) a( v + w) = a w + a v (osittelulaki). (6) (a + b) v = a v + b v (osittelulaki). (7) (ab) v = a(b v). (8) 1 v = v. Huom. Ehdossa (6) yhtälön vasemmalla puolella on skalaarien a R ja b R summa a + b; kyseessä on siis tavallinen reaalilukujen yhteenlasku. Yhtälön oikealla puolella on vektoreiden a v V ja b v V summa a v + b v; kyseessä on siis joukossa V määritelty vektorien välinen yhteenlasku. Ehdossa (7) yhtälön vasemmalla puolella sulkujen sisällä on skalaarien a R ja b R tulo ab; kyseessä on siis tavallinen reaalilukujen kertolasku. Yhtälön oikealla puolella on vektorin b v V ja skalaarin a R skalaaritulo a(b v); siinä kaikki tulot ovat skalaarituloja. LM2, Kesä /310

9 Huom. Skalaari tarkoittaa tällä kurssilla reaalilukua, sillä tällä kurssilla käsitellään reaalikertoimisia vektoriavaruuksia. Kompleksikertoimisilla vektoriavaruuksilla skalaarit ovat kompleksilukuja. Periaatteessa skalaarit voivat olla minkä tahansa ns. kunnan alkioita. Vektoriavaruuden V nollavektoria voidaan merkitä myös 0 V. Sen ei tarvitse ulkonäöltään muistuttaa avaruuden R n nollavektoria ollenkaan. LM2, Kesä /310

10 Esimerkkejä vektoriavaruuksista Voidaan osoittaa, että seuraavat joukot mainituilla yhteenlaskulla ja skalaarikertolaskulla varustettuina ovat vektoriavaruuksia: Joukko R n varustettuna tavallisella yhteenlaskulla ja skalaarikertolaskulla: v + w = (v 1 + w 1, v 2 + w 2,..., v n + w n ) c v = (cv 1, cv 2,..., cv n ). Joukko R varustettuna tavallisella reaalilukujen yhteenlaskulla ja kertolaskulla. Kaikkien m n -matriisien joukko M m n varustettuna matriisien tavallisella yhteenlaskulla ja skalaarikertolaskulla. LM2, Kesä /310

11 Esimerkkejä vektoriavaruuksista Kaikkien kuvausten R R joukko F, jossa yhteenlasku ja skalaarikertolasku määritellään ns. pisteittäin: Oletetaan, että f, g F ja a R. Kuvausten f : R R ja g : R R summa on kuvaus f + g : R R, jolla x f (x) + g(x). Kuvaus f : R R kerrottuna skalaarilla a on kuvaus af : R R, jolla x af (x). LM2, Kesä /310

12 Esimerkki 2 Kuvausten yhteenlasku Tarkastellaan kuvauksia f : R R, x sin x, ja g : R R, x 0,5x + 1. Niiden summa on kuvaus f + g : R R, jolla x sin x + 0,5x + 1. (x, f(x) + g(x)) (x, g(x)) (x, f(x)) g f + g (x,0) f LM2, Kesä /310

13 Esimerkki 3 Kuvauksen kertominen skalaarilla Tarkastellaan kuvausta f : R R, x sin x. Kuvaus f kerrottuna skalaarilla 2 on kuvaus 2f : R R, jolla x 2 sin x. (x, f(x)) 2f (x,0) f (x, 2f(x)) LM2, Kesä /310

14 Esimerkki 4 Osoitetaan, että kaikkien kuvausten R R joukko F, jossa yhteenlasku ja skalaarikertolasku määritellään pisteittäin, on vektoriavaruus. Oletetaan, että f, g, h F ja a, b R. Tällöin f, g ja h ovat kuvauksia eli funktioita R R. Yhteenlasku ja skalaarikertolasku on määritelty niin, että f + g F ja af F. Käydään läpi vektoriavaruuden määritelmän ehdot: LM2, Kesä /310

15 (1) Osoitetaan, että f + g = g + f. Oletetaan, että x R. Kuvausten yhteenlaskun määritelmän mukaan (f + g)(x) = f (x) + g(x) ja (g + f )(x) = g(x) + f (x). Kuvausten f ja g arvot f (x) ja g(x) ovat reaalilukuja, joten f (x) + g(x) = g(x) + f (x). Näin ollen (f + g)(x) = (g + f )(x). Kuvauksilla f + g : R R ja g + f : R R on siis samat arvot, joten ne ovat sama kuvaus; ts. f + g = g + f. LM2, Kesä /310

16 (2) Osoitetaan, että (f + g) + h = f + (g + h). Oletetaan, että x R. Kuvausten yhteenlaskun määritelmän mukaan ( (f + g) + h ) (x) = (f + g)(x) + h(x) = ( f (x) + g(x) ) + h(x) ja ( f + (g + h) ) (x) = f (x) + (g + h)(x) = f (x) + ( g(x) + h(x) ). Kuvausten f, g ja h arvot f (x), g(x) ja h(x) ovat reaalilukuja, joten ( f (x) + g(x) ) + h(x) = f (x) + ( g(x) + h(x) ). Näin ollen ( (f + g) + h ) (x) = ( f + (g + h) ) (x). Kuvauksilla (f + g) + h : R R ja f + (g + h): R R on siis samat arvot, joten ne ovat sama kuvaus; ts. (f + g) + h = f + (g + h). LM2, Kesä /310

17 (3) Osoitetaan, että nollavektoriksi kelpaa kuvaus f 0 : R R, jolla f 0 (x) = 0 kaikilla x R (eli x 0 kaikilla x R). Osoitetaan siis, että g + f 0 = g. Oletetaan, että x R. Kuvausten yhteenlaskun määritelmän mukaan (g + f 0 )(x) = g(x) + f 0 (x) = g(x) + 0 = g(x). Kuvauksilla g + f 0 : R R ja g : R R on siis samat arvot, joten ne ovat sama kuvaus; ts. g + f 0 = g. LM2, Kesä /310

18 (4) Osoitetaan, että kuvauksen h vastavektoriksi kelpaa kuvaus h : R R, jolla x h(x) kaikilla x R. Osoitetaan siis, että h + ( h) = f 0. Oletetaan, että x R. Kuvausten yhteenlaskun määritelmän mukaan (h + ( h))(x) = h(x) + ( h)(x) = h(x) + ( h(x)) = 0 = f 0 (x). Kuvauksilla h + ( h): R R ja f 0 : R R on siis samat arvot, joten ne ovat sama kuvaus; ts. h + ( h) = f 0. LM2, Kesä /310

19 (5) Osoitetaan, että a(f + g) = af + ag. Oletetaan, että x R. Kuvausten skalaarikertolaskun ja yhteenlaskun määritelmän mukaan ( a(f + g) ) (x) = a ( (f + g)(x) ) = a ( f (x) + g(x) ) ja (af + ag)(x) = (af )(x) + (ag)(x) = af (x) + ag(x). Kuvausten f ja g arvot f (x) ja g(x) ovat reaalilukuja, joten a ( f (x) + g(x) ) = af (x) + ag(x). Näin ollen ( a(f + g) ) (x) = (af + ag)(x). Kuvauksilla a(f + g): R R ja af + ag : R R on siis samat arvot, joten ne ovat sama kuvaus; ts. a(f + g) = af + ag. LM2, Kesä /310

20 (6) Osoitetaan, että (a + b)f = af + bf. Oletetaan, että x R. Kuvausten skalaarikertolaskun ja yhteenlaskun määritelmän mukaan ( (a + b)f ) (x) = (a + b)f (x) ja (af + bf )(x) = (af )(x) + (bf )(x) = af (x) + bf (x). Kuvauksen f arvo f (x) on reaaliluku, joten (a + b)f (x) = af (x) + bf (x). Näin ollen ( (a + b)f ) (x) = (af + bf )(x). Kuvauksilla (a + b)f : R R ja af + bf : R R on siis samat arvot, joten ne ovat sama kuvaus; ts. (a + b)f = af + bf. LM2, Kesä /310

21 (7) Osoitetaan, että (ab)f = a(bf ). Oletetaan, että x R. Kuvausten skalaarikertolaskun määritelmän mukaan ( (ab)f ) (x) = (ab)f (x) ja ( a(bf ) ) (x) = a ( (bf )(x) ) = a ( bf (x) ). Kuvauksen f arvo f (x) on reaaliluku, joten (ab)f (x) = a ( bf (x) ). Näin ollen ( (ab)f ) (x) = ( a(bf ) ) (x). Kuvauksilla (ab)f : R R ja a(bf ): R R on siis samat arvot, joten ne ovat sama kuvaus; ts. (ab)f = a(bf ). LM2, Kesä /310

22 (8) Osoitetaan, että 1f = f. Oletetaan, että x R. Kuvausten skalaarikertolaskun määritelmän mukaan (1f )(x) = 1 f (x) = f (x). Kuvauksilla 1f : R R ja f : R R on siis samat arvot, joten ne ovat sama kuvaus; ts. 1f = f. LM2, Kesä /310

23 Esimerkkejä vektoriavaruuksista Kaikkien reaalikertoimisten polynomien joukko P, jossa yhteenlasku ja skalaarikertolasku määritellään seuraavasti: yhteenlaskussa samanasteisten termien kertoimet lasketaan yhteen; esimerkiksi polynomien p = 3x 2 4x + 7 ja q = 2x 3 + 5x 2 + 4x summa on polynomi p + q = 2x 3 + (3 + 5)x 2 + ( 4 + 4)x + 7 = 2x 3 + 8x skalaarikertolaskussa jokaisen termin kerroin kerrotaan erikseen; esimerkiksi polynomi p = 3x 2 4x + 7 kerrottuna skalaarilla 2 on 2p = 6x 2 + 8x 14. LM2, Kesä /310

24 Vektoriavaruus Huom. Vektoriavaruuden määritelmässä vaaditaan, että yhteenlasku ja skalaarikertolasku on määritelty joukossa V. Tämä tarkoittaa, että jos v, w V ja a R, niin on oltava v + w V ja a v V. Esimerkki 5 Kokonaislukujen joukko Z varustettuna tavallisella yhteenlaskulla ja skalaarikertolaskulla (reaaliluvulla kertominen) ei ole vektoriavaruus. Tämä johtuu siitä, että esimerkiksi 0,5 R ja 3 Z, mutta 0,5 3 = 1,5 Z. Skalaarikertolaskun tulos ei siis välttämättä ole joukossa Z. LM2, Kesä /310

25 Esimerkki 6 Määritellään joukossa R 2 skalaarikertolasku seuraavasti: jos (v 1, v 2 ) R 2 ja a R, niin a (v 1, v 2 ) = (av 1, 0). Osoitetaan, että joukko R 2 varustettuna tavallisella yhteenlaskulla + ja skalaarikertolaskulla ei ole vektoriavaruus. Havaitaan, että esimerkiksi Näin ollen 1 (5, 9) = (5, 0). 1 (5, 9) (5, 9), joten vektoriavaruuden määritelmän ehto (8) ei täyty. LM2, Kesä /310

26 Vektoriavaruuksien ominaisuuksia Huom. Lause tarkoittaa väitettä, joka voidaan perustella todeksi nojautumalla määritelmiin ja aikaisemmin perusteltuihin väitteisiin. Lause 7 Oletetaan, että V on vektoriavaruus. Tällöin (a) nollavektoriksi sopivia vektoreita on täsmälleen yksi; ts. nollavektori 0 v on yksikäsitteinen. (b) jokaisella vektorilla v V on täsmälleen yksi vastavektori. LM2, Kesä /310

27 Lauseen 7 todistus. (a) Oletetaan, että 0, 0 V ja sekä v + 0 = v että v + 0 = v kaikilla v V. Tällöin 0 = = = 0. Tässä käytettiin järjestyksessä seuraavia tietoja: v + 0 = v kaikilla v V, yhteenlaskun vaihdannaisuus, v + 0 = v kaikilla v V. LM2, Kesä /310

28 Lauseen 7 todistus. (b) Oletetaan, että v V. Oletetaan lisäksi, että ū, w V ovat kumpikin vektorin v vastavektori eli v + ū = 0 ja v + w = 0. Tällöin ū = ū + 0 = ū + ( v + w) = (ū + v) + w = ( v + ū) + w = 0 + w = w. Tässä käytettiin järjestyksessä seuraavia tietoja: nollavektorin olemassaolo, v + w = 0, yhteenlaskun liitännäisyys ja vaihdannaisuus, v + ū = 0, nollavektorin olemassaolo. LM2, Kesä /310

29 Vektoriavaruuksien ominaisuuksia Lause 8 Oletetaan, että V on vektoriavaruus ja v V, a R. Tällöin (a) 0 v = 0 (b) a 0 = 0 (c) ( 1) v = v (d) jos a v = 0, niin a = 0 tai v = 0 (tulon nollasääntö). LM2, Kesä /310

30 Lauseen 8 todistus. (b) Oletetaan, että a R. Tällöin a 0 = a( 0 + 0) = a 0 + a 0. Lisäämällä tämän yhtälön molemmille puolille vektori (a 0) saadaan 0 = a 0. Perustellussa tarvittiin vektoriavaruuden määritelmän ehtoja (2), (3), (4) ja (6). LM2, Kesä /310

31 Lauseen 8 todistus. (d) Oletetaan, että a v = 0. Jos a = 0, niin väite pätee. Oletetaan, että a 0. Tällöin on olemassa käänteisluku 1/a ja v = 1 v = ( 1 a a ) v = 1 a (a v) = 1 a 0 = 0. Tässä käytettiin vektoriavaruuden määritelmän ehtoja (8) ja (7) sekä oletusta ja b-kohdan tulosta. LM2, Kesä /310

32 Vektoreiden erotus ja lineaarikombinaatio Määritelmä Oletetaan, että V on vektoriavaruus ja v, w V. Vektoreiden v ja w erotus v w tarkoittaa summaa v + ( w). Määritelmä Oletetaan, että V on vektoriavaruus ja v 1, v 2,..., v k V. Vektoreiden v 1, v 2,..., v k lineaarikombinaatio tarkoittaa summaa a 1 v 1 + a 2 v a k v k, missä kertoimet a 1, a 2,..., a k R. LM2, Kesä /310

33 Aliavaruus Määritelmä Oletetaan, että V on vektoriavaruus. Sen osajoukko W on aliavaruus, jos seuraavat ehdot pätevät kaikilla ū, w W ja a R: (a) ū + w W (b) a w W (c) 0 V W. (W on suljettu yhteenlaskun suhteen). (W on suljettu skalaarikertolaskun suhteen). LM2, Kesä /310

34 Aliavaruus Esimerkki 9 Tarkastellaan n n -matriisien muodostamaa vektoriavaruutta M n n. Olkoon W symmetristen n n -matriisien joukko; ts. W = { C M n n C T = C }. Osoitetaan, että W on vektoriavaruuden M n n aliavaruus. Ensinnäkin W on määritelmänsä mukaan joukon M n n osajoukko. Oletetaan, että A, B W ja c R. Tällöin A T = A ja B T = B. LM2, Kesä /310

35 Käytetään transpoosin laskusääntöjä: (a) Tutkitaan summaa A + B: (A + B) T = A T + B T = A + B, joten A + B W. (b) Tutkitaan skalaarimonikertaa ca: (ca) T = ca T = ca, joten ca W. (c) Nollavektori on n n -nollamatriisi O: O T = O, joten O W. LM2, Kesä /310

36 Aliavaruus Esimerkki 10 Tarkastellaan enintään kolmatta astetta olevien polynomien muodostamaa vektoriavaruutta Merkitään P 3 = { a + bx + cx 2 + dx 3 a, b, c, d R }. W = { a + bx bx 2 + ax 3 a, b R }. Osoitetaan, että W on vektoriavaruuden P 3 aliavaruus. Ensinnäkin W on määritelmänsä mukaan joukon P 3 osajoukko. LM2, Kesä /310

37 Oletetaan, että p, q W ja r R. Tällöin voidaan merkitä p = a + bx bx 2 + ax 3 ja q = c + dx dx 2 + cx 3, missä a, b, c, d R. (a) Lasketaan summa p + q: p + q = = (a + c) + (b + d)x (b + d)x 2 + (a + c)x 3. Siten p + q W, sillä se on oikeaa muotoa. (b) Lasketaan skalaarimonikerta rp: rp = = ra + rbx rbx 2 + rax 3. Siten rp W, sillä se on oikeaa muotoa. (c) Nollavektori on nollapolynomi 0: 0 = 0 + 0x + 0x 2 + 0x 3. Siten 0 W, sillä se on oikeaa muotoa. LM2, Kesä /310

38 Esimerkki 11 Merkitään W = { [ ] } a a b a, b R. Onko W vektoriavaruuden M 2 2 aliavaruus? Havaitaan, että nollavektori eli nollamatriisi [ ] 0 0 O = W, 0 0 joten aliavaruuden määritelmän ehto (c) ei täyty. Siis W ei ole vektoriavaruuden M 2 2 aliavaruus. LM2, Kesä /310

39 Esimerkki 12 Merkitään W = { A M 2 2 det(a) = 0 }. Onko W vektoriavaruuden M 2 2 aliavaruus? Valitaan esimerkiksi A = [ ] ja B = [ ] Tällöin det(a) = 0 ja det(b) = 0, joten A, B W. Kuitenkin A + B = [ ] ja siten det(a + B) = 2 0. Näin A + B W. Siis W ei ole vektoriavaruuden M 2 2 aliavaruus. LM2, Kesä /310

40 Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että V on vektoriavaruus ja v 1,..., v k V. Näiden vektoreiden virittämä aliavaruus span( v 1,..., v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden joukkoa; ts. span( v 1,..., v k ) = { a 1 v a k v k a 1,..., a k R }. Lause 13 Jos v 1,..., v k V, niin span( v 1,..., v k ) on vektoriavaruuden V aliavaruus. Lisäksi span( v 1,..., v k ) on pienin aliavaruus, joka sisältää vektorit v 1,..., v k. LM2, Kesä /310

41 Lauseen 13 todistus. Oletetaan, että ū, w span( v 1,..., v k ) ja c R. Tällöin ū = a 1 v a k v k ja w = b 1 v b k v k joillakin a 1,..., a k, b 1,..., b k R. (a) Lasketaan summa ū + w: ū + w = = (a 1 + b 1 ) v (a k + b k ) v k, joten ū + w span( v 1,..., v k ). LM2, Kesä /310

42 (b) Lasketaan skalaarimonikerta cū: joten cū span( v 1,..., v k ). cū = = ca 1 v ca k v k, (c) Nollavektori voidaan lauseen 8 a-kohdan nojalla kirjoittaa muodossa 0 = 0 v v k, joten 0 span( v 1,..., v k ). Siis span( v 1,..., v k ) on vektoriavaruuden V aliavaruus. LM2, Kesä /310

43 Vektorit v 1,..., v k kuuluvat aliavaruuteen V, sillä v 1 = 1 v v v k v 2 = 0 v v v k. v k = 0 v v v k LM2, Kesä /310

44 Osoitetaan, että span( v 1,..., v k ) on pienin aliavaruus, joka sisältää vektorit v 1,..., v k. Oletetaan, että W on vektoriavaruuden V jokin sellainen aliavaruus, että v 1,..., v k W. Koska W on aliavaruus, se sisältää kaikkien vektoriensa summat ja skalaarimonikerrat. Siis a 1 v a k v k W kaikilla a 1,..., a k R. Näin ollen span( v 1,..., v k ) W. LM2, Kesä /310

45 Vektoreiden virittämä aliavaruus Esimerkki 14 Osoitetaan, että joukko W = { (r, s, r) r, s R } on vektoriavaruuden R 3 aliavaruus. Havaitaan, että W = { (r, s, r) r, s R } = { r(1, 0, 1) + s(0, 1, 0) r, s R } = span ( (1, 0, 1), (0, 1, 0) ). Siis W on vektoreiden (1, 0, 1) ja (0, 1, 0) virittämä vektoriavaruuden R 3 aliavaruus. LM2, Kesä /310

46 Vektoreiden virittämä aliavaruus Esimerkki 15 Merkitään W = { [ ] } a b a, b, c R. 0 c Osoitetaan, että W on 2 2 -matriisien muodostaman vektoriavaruuden M 2 2 aliavaruus. LM2, Kesä /310

47 Havaitaan, että W = = { [ ] } a b a, b, c R 0 c { a [ ] b 0 0 ([ ] 1 0 = span, 0 0 [ ] c 0 0 [ ] 0 1, 0 0 [ ] } 0 0 a, b, c R 0 1 [ ]) Siis W on vektoreiden (matriisien) [ ] 1 0, 0 0 [ ] ja [ ] virittämä vektoriavaruuden M 2 2 aliavaruus. LM2, Kesä /310

48 Esimerkki 16 Merkitään Vektoreiden virittämä aliavaruus A = [ ] 1 1, B = 1 0 Määritetään span(a, B, I). [ ] ja I = [ ] Jokainen vektoreiden (matriisien) A, B ja I lineaarikombinaatio on muotoa [ ] x + z x + y xa + yb + zi = =, x + y z missä x, y, z R. Havaitaan, että tällainen lineaarikombinaatio on symmetrinen matriisi. Siten span(a, B, I) { C M 2 2 C T = C }. LM2, Kesä /310

49 Osoitetaan, että jokainen symmetrinen matriisi voidaan kirjoittaa vektoreiden A, B ja I lineaarikombinaationa: Oletetaan, että C on symmetrinen matriisi. Tällöin [ ] d e C =, e f missä d, e, f R. Ratkaisemalla yhtälö xa + yb + zi = C eli yhtälöä [ ] [ ] x + z x + y d e = x + y z e f vastaava yhtälöryhmä havaitaan, että ratkaisu on aina olemassa (x = d f, y = e d + f ja z = f ). Siis jokainen symmetrinen matriisi on vektoreiden A, B ja I lineaarikombinaatio. Näin span(a, B, I) = { C M 2 2 C T = C }. LM2, Kesä /310

50 Aliavaruus Jokainen aliavaruus on itsekin pieni vektoriavaruus: Lause 17 Oletetaan, että V on vektoriavaruus, jolla on aliavaruus W. Tällöin myös aliavaruus W on vektoriavaruus. Todistus. Vektoriavaruuden yhteenlaskua ja skalaarikertolaskua koskevat ehdot (1) (2) ja (5) (8) pysyvät voimassa, vaikka rajoitutaan tarkastelemaan alkuperäisen vektoriavaruuden V osajoukkoa W. Ehdot (3) ja (4) seuraavat aliavaruuden määritelmän ehdoista (c) ja (b), sillä v = ( 1) v. Aliavaruuden määritelmän ehdot (a) ja (b) takaavat, että yhteenlasku ja skalaarikertolasku ovat joukon W laskutoimituksia. LM2, Kesä /310

51 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä f : X Y tarkoittaa, että f on kuvaus joukosta X joukkoon Y. Tässä X on kuvauksen f lähtö (eli määrittelyjoukko) ja Y on kuvauksen f maali. LM2, Kesä /310

52 Oletetaan, että x X. Sitä yksikäsitteistä joukon Y alkiota, jonka kuvaus f liittää alkioon x, merkitään f (x) ja kutsutaan alkion x kuva-alkioksi. X f Y x f(x) LM2, Kesä /310

53 Määritelmä Lineaarikuvaus Oletetaan, että V ja W ovat vektoriavaruuksia. Kuvaus L: V W on lineaarikuvaus, jos seuraavat ehdot pätevät kaikilla ū, v V ja c R: (a) L(ū + v) = L(ū) + L( v) (b) L(c v) = cl( v). Jos kuvaus L on lineaarikuvaus, voidaan myös sanoa, että L on lineaarinen. V L W ū v c v ū + v L(ū) L( v) L(c v) = cl( v) L(ū + v) = L(ū) + L( v) LM2, Kesä /310

54 Esimerkki 18 Tarkastellaan kuvausta f : R R, f (x) = 3x. Osoitetaan, että f on lineaarikuvaus. Lineaarikuvaus f(u + v) = f(u) + f(v) f(v) Oletetaan, että u, v R ja c R. Tällöin f(u) f (u + v) = 3(u + v) = 3u + 3v 2u u v u + v = f (u) + f (v) ja f (cv) = 3(cv) = c(3v) = cf (v). f( 2u) = 2f(u) LM2, Kesä /310

55 Esimerkki 19 Kuvaus, joka ei ole lineaarinen Tarkastellaan kuvausta g : R R, g(x) = x 3 2x + 1. Osoitetaan, että g ei ole lineaarikuvaus. Valitaan esimerkiksi u = 1 ja v = 2. Tällöin f (u + v) = f (1) = 0 mutta f (u) + f (v) = f ( 1) + f (2) = = 7. Siis f ( 1 + 2) f ( 1) + f (2), joten f ei ole lineaarikuvaus. LM2, Kesä /310

56 Lineaarikuvaus Esimerkki 20 Merkitään enintään ensimmäistä astetta olevien polynomien joukkoa P 1 = { a 1 x + a 0 a 1, a 0 R }. Osoitetaan, että kuvaus L: R 2 P 1, jolle L(a, b) = ax + b, on lineaarikuvaus. Oletetaan, että (a, b), (c, d) R 2 ja r R. Tällöin L((a, b) + (c, d)) = L(a + c, b + d) = (a + c)x + (b + d) = ax + b + cx + d = L(a, b) + L(c, d) ja L(r(a, b)) = L(ra, rb) = rax + rb = r(ax + b) = rl(a, b). LM2, Kesä /310

57 Matriisi määrää lineaarikuvauksen Lause 21 Oletetaan, että A on m n -matriisi. Matriisin A määräämä kuvaus L A : R n R m, L A ( v) = A v on lineaarikuvaus. (Tässä avaruuden R n alkiot tulkitaan sarakevektoreiksi eli n 1-matriiseiksi.) Todistus. Oletetaan, että v, w R n ja c R. Nyt matriisien laskutoimitusten ominaisuuksien perusteella L A ( v + w) = A( v + w) = A v + A w = L A ( v) + L A ( w) ja L A (c v) = A(c v) = ca v = cl A ( v). Siten L A on lineaarinen. LM2, Kesä /310

58 Esimerkki 22 Matriisi määrää lineaarikuvauksen Tarkastellaan kuvausta L: R 2 R 2, joka peilaa jokaisen pisteen vaaka-akselin suhteen: (1,2) (x 1, x 2 ) (1, 2) (x 1, x 2 ) Jos (x 1, x 2 ) R 2, niin L(x 1, x 2 ) = (x 1, x 2 ). LM2, Kesä /310

59 Tulkitsemalla avaruuden R 2 alkiot 2 1 -matriiseina saadaan [ ] [ ] [ ] [ ] [ ] [ ] x1 x x1 L = = x x 2 x 1 + x = x 2 Siis kuvaus L on matriisin A = [ ] määräämä kuvaus, jolla L( v) = A v kaikilla v R 2. Näin ollen L on lineaarinen lauseen 21 nojalla. LM2, Kesä /310

60 L L(1, 2) = (1,2) (x 1, x 2 ) L(x 1, x 2 ) = (x 1, x 2 ) (1, 2) LM2, Kesä /310

61 Esimerkki 23 Matriisi määrää lineaarikuvauksen Tutkitaan, millaisen lineaarikuvauksen antavat matriisit [ ] [ ] [ ] A =, B = ja C = Matriisista A saadaan kuvaus L A : R 2 R 2, L A ( v) = A v. Avaruuden R 2 vektori (x 1, x 2 ) kuvautuu vektoriksi (2x 1, x 2 ): L [ ] x1 x 2 [ ] [ ] [ ] 2 0 x1 2x1 = = 0 1 x 2 x 2 Tästä nähdään, että kuvaus L A venyttää vektoreita vaaka-akselin suunnassa. LM2, Kesä /310

62 L A LM2, Kesä /310

63 Matriisista B saadaan kuvaus L B : R 2 R 2, L B ( v) = B v. Avaruuden R 2 vektori (x 1, x 2 ) kuvautuu vektoriksi ( x 1, x 2 ): L [ ] x1 x 2 [ ] [ ] [ ] 1 0 x1 x1 = = 0 1 x 2 x 2 Tästä nähdään, että kuvaus L B peilaa vektorit pystyakselin suhteen. L B LM2, Kesä /310

64 Matriisista C saadaan kuvaus L C : R 2 R 2, L C ( v) = C v. Avaruuden R 2 vektori (x 1, x 2 ) kuvautuu vektoriksi ( x 2, x 1 ): L [ ] x1 x 2 [ ] [ ] [ ] 0 1 x1 x2 = = 1 0 x 2 x 1 Kuvaus L C kiertää vektoreita origon ympäri 90 vastapäivään eli positiiviseen kiertosuuntaan. L C LM2, Kesä /310

65 Voidaan osoittaa, että matriisin [ ] cos ϕ sin ϕ sin ϕ cos ϕ määräämä lineaarikuvaus kiertää vektoreita origon ympäri kulman ϕ verran (positiiviseen kiertosuuntaan, jos ϕ > 0, ja negatiiviseen kiertosuuntaan, jos ϕ < 0). Matriiisi C = [ ] on tällainen kiertomatriisi, jossa kulma ϕ = 90. LM2, Kesä /310

66 Lause 24 Lineaarikuvauksen ominaisuuksia Oletetaan, että L: V W on lineaarikuvaus. Tällöin L( 0 V ) = 0 W. Todistus. Kuvauksen L lineaarisuuden nojalla L( 0 V ) = L( 0 V + 0 V ) = L( 0 V ) + L( 0 V ). Lisätään tämän yhtälön molemmille puolille avaruuden W vektori L( 0 V ), jolloin saadaan L( 0 V ) L( 0 V ) = L( 0 V ) + L( 0 V ) L( 0 V ). Näin ollen 0 W = L( 0 V ). LM2, Kesä /310

67 Määritelmä Yhdistetty kuvaus Oletetaan, että f : X Y ja g : Y Z ovat kuvauksia. Yhdistetty kuvaus g f tarkoittaa kuvausta X Z, jolla (g f )(x) = g(f (x)) eli x g(f (x)). X f Y g Z y g(y) x f(x) g(f(x)) g f LM2, Kesä /310

68 Lineaarikuvausten ominaisuuksia Lause 25 Oletetaan, että L: U V ja T : V W ovat lineaarikuvauksia. Tällöin yhdistetty kuvaus T L: U W on lineaarinen. Todistus. Oletetaan, että ū 1, ū 2 U ja a R. Tarkistetaan lineaarikuvauksen määritelmän ehdot: (a) Yhdistetyn kuvauksen määritelmän, kuvauksen L lineaarisuuden ja kuvauksen T lineaarisuuden avulla saadaan (T L)(ū 1 + ū 2 ) = T (L(ū 1 + ū 2 )) = T (L(ū 1 ) + L(ū 2 )) = T (L(ū 1 )) + T (L(ū 2 )) = (T L)(ū 1 ) + (T L)(ū 2 ) LM2, Kesä /310

69 (b) Yhdistetyn kuvauksen määritelmän, kuvauksen L lineaarisuuden ja kuvauksen T lineaarisuuden avulla saadaan (T L)(aū 1 ) = T (L(aū 1 )) = T (al(ū 1 )) = at (L(ū 1 ))) = a(t L)(ū 1 ) LM2, Kesä /310

70 Matriisien määräämien lineaarikuvausten yhdistäminen Matriisien määräämillä lineaarikuvauksilla kuvausten yhdistäminen vastaa matriisien kertomista keskenään: Lause 26 Oletetaan, että A on m n -matriisi ja B on n p -matriisi. Tällöin L A L B = L AB eli tulomatriisin AB määräämä kuvaus L AB : R p R m on sama kuvaus kuin yhdistetty kuvaus L A L B : R p R m. LM2, Kesä /310

71 Lauseen 26 todistus. Oletetaan, että v R p. Tällöin matriisien laskusääntöjen mukaan L AB ( v) = (AB) v = A(B v) = L A (B v) = L A (L B ( v)) = (L A L B )( v). Siis L AB : R p R m ja L A L B : R p R m ovat sama kuvaus. LM2, Kesä /310

72 Määritelmä Osajoukon kuva Oletetaan, että X ja Y ovat joukkoja ja f : X Y on kuvaus. Osajoukon A X kuva kuvauksessa f on joukko Huom. f [A] = { y Y y = f (a) jollakin a A }. Kuva voidaan kirjoittaa lyhyesti myös muodossa X f Y fa = { f (a) a A }. Joukko on itsensä osajoukko: X X. A f A LM2, Kesä /310

73 Aliavaruuden kuva Esimerkki 27 Tarkastellaan esimerkin 22 lineaarikuvausta L: R 2 R 2, joka peilaa jokaisen pisteen vaaka-akselin suhteen: (1,2) (x 1, x 2 ) (1, 2) (x 1, x 2 ) LM2, Kesä /310

74 Osoitettiin, että kuvaus L on matriisin [ ] 1 0 A = 0 1 määräämä lineaarikuvaus, jolla L( v) = A v kaikilla v R 2. Olkoon w = (3, 1) ja W = span( w). Tällöin W on vektorin w virittämä aliavaruus; tarkemmin sanottuna origon kautta kulkeva suora: W = span( w) LM2, Kesä /310

75 Aliavaruuden W kuva on L[W ] = { ū R 2 ū = L( v) jollakin v W } = { ū R 2 ū = L( v) jollakin v span( w) } = { ū R 2 ū = L(t w) jollakin t R } = { L(t w) t R } = { tl( w) t R } = { t(3, 1) t R } = span ( (3, 1) ) L[W] = span ( (3, 1) ) LM2, Kesä /310

76 L W = span ( (3,1) ) L[W] = span ( (3, 1) ) LM2, Kesä /310

77 Lineaarikuvauksen ominaisuuksia Lineaarikuvauksesssa aliavaruudet kuvautuvat aliavaruuksiksi. Lause 28 Oletetaan, että L: V V on lineaarikuvaus. Jos W on avaruuden V aliavaruus, niin kuva L[W ] on avaruuden V aliavaruus. LM2, Kesä /310

78 Lauseen 28 todistus. Oletetaan, että W on avaruuden V aliavaruus. Osoitetaan, että kuva L[W ] on avaruuden V aliavaruus. Oletetaan, että u, w L[W ] ja a R. Tällöin on olemassa sellaiset u, w W, että L(u) = u ja L(w) = w. (a) Tutkitaan summaa u + w käyttäen hyväksi kuvauksen L lineaarisuutta: u + w = L(u) + L(w) = L(u + w), missä u + w W, koska W on aliavaruus ja u, w W. Siis u + w L[W ]. LM2, Kesä /310

79 (b) Tutkitaan skalaarimonikertaa au käyttäen hyväksi kuvauksen L lineaarisuutta: au = al(u) = L(au), missä au W, koska W on aliavaruus ja u W. Siis au L[W ]. (c) Koska W on aliavaruus, niin 0 V W. Koska L on lineaarikuvaus, niin L( 0 V ) = 0 V lauseen 24 nojalla. Siten 0 V L[W ]. LM2, Kesä /310

80 Lineaarikuvauksen ydin Määritelmä Oletetaan, että L: V W on lineaarikuvaus. Sen ydin on joukko Ker L = { v V L( v) = 0 W }. Huom. Ydin on aina joukko (ei koskaan pelkkä yksittäinen alkio). Ytimessä ovat ne vektorit, jotka kuvautuvat nollavektoriksi. Ydin ei ole koskaan tyhjä joukko, sillä nollavektori on aina ytimessä (lause 24). Ytimessä on siis ainakin yksi alkio, mahdollisesti useita alkioita. LM2, Kesä /310

81 Esimerkki 29 Lineaarikuvauksen ydin Tarkastellaan kuvausta L: R 2 R 2, joka projisoi jokaisen pisteen vaaka-akselille: (1,2) (1,0) (x 1,0) (x 1, x 2 ) Jos (x 1, x 2 ) R 2, niin L(x 1, x 2 ) = (x 1, 0). LM2, Kesä /310

82 Tulkitsemalla avaruuden R 2 alkiot 2 1 -matriiseina saadaan [ ] [ ] [ ] [ ] [ ] [ ] x1 x x1 L = = x x 0 2 = x 2 x 2 Siis kuvaus L on matriisin A = [ ] määräämä kuvaus, jolla L( v) = A v kaikilla v R 2. Näin ollen L on lineaarinen lauseen 21 nojalla. Määritetään lineaarikuvauksen L ydin. LM2, Kesä /310

83 Lineaarikuvauksen L: R 2 R 2 ydin on Ker L = { v R 2 L( v) = 0 } = { (v 1, v 2 ) R 2 (v 1, 0) = (0, 0) } = { (v 1, v 2 ) R 2 v 1 = 0 } = { (0, v 2 ) v 2 R } = { v 2 (0, 1) v 2 R } = span ( (0, 1) ). LM2, Kesä /310

84 Lineaarikuvauksen L ydin on siis vektorin j = (0, 1) virittämä aliavaruus, joka on origon kautta kulkeva, vektorin j suuntainen suora: L Ker L LM2, Kesä /310

85 Lineaarikuvauksen ydin Esimerkki 30 Määritetään esimerkin 20 lineaarikuvauksen L: R 2 P 1, (a, b) ax + b, ydin. Huom. Ker L = { v R 2 L( v) = 0 } = { (v 1, v 2 ) R 2 v 1 x + v 2 = 0x + 0 } = { (v 1, v 2 ) R 2 v 1 = 0 ja v 2 = 0 } = { (0, 0) } = { 0}. Vektoriavaruuden P 1 nollavektori on nollapolynomi, jonka kaikki kertoimet ovat nollia. Sitä voidaan merkitä lyhyesti 0 tai kuten edellä 0x + 0. LM2, Kesä /310

86 Lause 31 Lineaarikuvauksen ydin Oletetaan, että L: V V on lineaarikuvaus. Tällöin ydin Ker L on avaruuden V aliavaruus. Todistus. Ker L on määritelmänsä mukaan vektoriavaruuden V osajoukko. Oletetaan, että w, ū Ker L ja c R. Tällöin L( w) = 0 V ja L(ū) = 0 V. Tarkistetaan aliavaruuden määritelmän ehdot: (a) Kuvauksen L lineaarisuuden nojalla L( w + ū) = L( w) + L(ū) = 0 V + 0 V = 0 V, joten w + ū Ker L. (b) Vastaavasti L(c w) = cl( w) = c 0 V = 0 V ja siten c w Ker L. (c) Lauseen 24 nojalla L( 0 V ) = 0 V, joten 0 V Ker L. LM2, Kesä /310

87 Injektio Määritelmä Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on injektio, jos kaikilla a, b X yhtälöstä f (a) = f (b) seuraa, että a = b. Huom. Voidaan päätellä, että kuvaus on injektio, jos ja vain jos kaikilla lähdön alkioilla on eri kuva-alkiot. Injektiivisen kuvauksen tapauksessa maalin kullekin alkiolle kuvautuu korkeintaan yksi lähdön alkio. LM2, Kesä /310

88 Kuvaus g ei ole injektio: X g Y a b g(a) = g(b) LM2, Kesä /310

89 Injektio Kuvaus h on injektio: X h Y a = b h(a) = h(b) LM2, Kesä /310

90 Lineaarikuvauksen injektiivisyys Lause 32 Lineaarikuvaus L: V V on injektio, jos ja vain jos Ker L = { 0 V }. LM2, Kesä /310

91 Todistus. : Oletetaan, että L on injektio. Tiedetään, että L( 0 V ) = 0 V, joten 0 V Ker L. Injektiivisyyden nojalla mikään muu alkio ei voi kuvautua neutraalialkiolle, joten ytimessä on vain yksi alkio, 0 V. : Oletetaan, että Ker L = { 0 V }. Oletetaan lisäksi, että alkioille v, w V pätee L( v) = L( w). Lisäämällä yhtälön molemmille puolille vektori L( w) saadaan L( v) L( w) = 0 V. Koska L on lineaarikuvaus, seuraa tästä, että L( v w) = 0 V. Siis v w Ker L. Koska Ker L = { 0 V }, täytyy päteä v w = 0 V. Kun tämän yhtälön molemmille puolille lisätään vektori w, saadaan v = w. On siis osoitettu, että f on injektio. LM2, Kesä /310

92 Esimerkki 33 Lineaarikuvauksen injektiivisyys Esimerkin 29 lineaarikuvauksen L: R 2 R 2, (x 1, x 2 ) (x 1, 0) ydin on vektorin j = (0, 1) virittämä aliavaruus, joka on origon kautta kulkeva, vektorin j suuntainen suora: L Ker L Ker L { 0}, joten L ei ole injektio lauseen 32 nojalla. LM2, Kesä /310

93 Lineaarikuvauksen injektiivisyys Esimerkki 34 Esimerkin 30 lineaarikuvauksen L: R 2 P 1, (a, b) ax + b, ydin on Ker L = { 0}, missä 0 tarkoittaa nollavektoria 0 = (0, 0) R 2. Näin ollen L on injektio lauseen 32 nojalla. LM2, Kesä /310

94 Lineaarikuvauksen kuva Määritelmä Oletetaan, että L: V V on lineaarikuvaus. Lineaarikuvauksen L kuva on joukko Im L = { L( v) v V }. Huom. Lineaarikuvauksen kuva on erityistapaus aiemmin määritellystä osajoukon kuvan käsitteestä. Aiemman määritelmän merkinnöillä Im L = L[V ]. LM2, Kesä /310

95 Esimerkki 35 Lineaarikuvauksen kuva Tarkastellaan esimerkin 29 lineaarikuvausta L: R 2 R 2, (x 1, x 2 ) (x 1, 0), joka projisoi jokaisen pisteen vaaka-akselille: (1,2) (1,0) (x 1,0) (x 1, x 2 ) Määritetään lineaarikuvauksen L kuva. LM2, Kesä /310

96 Lineaarikuvauksen L: R 2 R 2 kuva on Im L = { L( v) v R 2 } = { (v 1, 0) R 2 (v 1, v 2 ) R 2 } = { (v 1, 0) R 2 v 1 R } = { v 1 (1, 0) v 1 R } = span ( (1, 0) ). LM2, Kesä /310

97 Lineaarikuvauksen L kuva on siis vektorin ī = (1, 0) virittämä aliavaruus, joka on origon kautta kulkeva, vektorin ī suuntainen suora: L Im L LM2, Kesä /310

98 Lineaarikuvauksen kuva Esimerkki 36 Määritetään esimerkin 20 lineaarikuvauksen L: R 2 P 1, (a, b) ax + b, kuva. Im L = { L( v) v R 2 } = { v 1 x + v 2 (v 1, v 2 ) R 2 } = { v 1 x + v 2 v 1, v 2 R } = P 1. LM2, Kesä /310

99 Lineaarikuvauksen kuva Lause 37 Oletetaan, että L: V V on lineaarikuvaus. Tällöin kuva Im L on avaruuden V aliavaruus. Todistus. Tämä seuraa lauseesta 28, jonka mukaan lineaarikuvauksessa aliavaruuden kuva on aina aliavaruus. Nimittäin V on itsensä aliavaruus ja Im L = L[V ]. LM2, Kesä /310

100 Surjektio Määritelmä Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on surjektio, jos jokaisella y Y on olemassa ainakin yksi sellainen x X, että f (x) = y. Huom. Voidaan päätellä, että kuvaus on surjektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu ainakin yksi lähdön alkio. Lineaarikuvaus L: V V on surjektio, jos ja vain jos Im L = V. LM2, Kesä /310

101 Kuvaus g ei ole surjektio: X g Y y g(x) kaikilla x X LM2, Kesä /310

102 Surjektio Kuvaus h on surjektio: X h Y LM2, Kesä /310

103 Esimerkki 38 Lineaarikuvauksen surjektiivisuus Esimerkin 35 lineaarikuvauksen L: R 2 R 2, (x 1, x 2 ) (x 1, 0) kuva on vektorin ī = (1, 0) virittämä aliavaruus, joka on origon kautta kulkeva, vektorin ī suuntainen suora: L Im L Im L R 2, joten L ei ole surjektio. LM2, Kesä /310

104 Lineaarikuvauksen surjektiivisuus Esimerkki 39 Esimerkin 36 lineaarikuvauksen L: R 2 P 1, (a, b) ax + b, kuva on Im L = P 1, joten L on surjektio. LM2, Kesä /310

105 Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. X f Y LM2, Kesä /310

106 Isomorfismi Määritelmä Lineaarikuvausta, joka on bijektio, kutsutaan isomorfismiksi. Jos on olemassa isomorfismi L: V W, niin sanotaan, että vektoriavaruudet V ja W ovat isomorfiset. Tällöin merkitään V = W. LM2, Kesä /310

107 Isomorfismi Esimerkki 40 Avaruudet R 2 ja P 1 ovat isomorfisia. Isomorfismiksi kelpaa esimerkiksi kuvaus L: R 2 P 1, L(a, b) = ax + b. Nimittäin: L on lineaarikuvaus (esimerkki 20); L on bijektio, sillä L on injektio, sillä sen ydin Ker L = { 0} (esimerkki 30); L on surjektio, sillä sen kuva Im L = P 1 (esimerkki 36). Huomataan, että avaruudet todellakin muistuttavat toisiaan. Sekä alkiossa (a, b) että alkiossa ax + b näkyvät reaaliluvut a ja b. Kaikki oleellinen tieto alkiosta sisältyy näihin reaalilukuihin. LM2, Kesä /310

108 Lisäksi nämä reaaliluvut käyttäytyvät samalla tavoin yhteenlaskussa ja skalaarikertolaskussa: Vektoriavaruus summa R 2 (a, b) + (c, d) = (a + c, b + d) P 1 (ax + b) + (cx + d) = (a + c)x + (b + d) Vektoriavaruus R 2 P 1 skalaarimonikerta r(a, b) = (ra, rb) r(ax + b) = rax + rb LM2, Kesä /310

109 Isomorfisuus Lause 41 Oletetaan, että V, W ja U ovat vektoriavaruuksia. Tällöin (a) V = V (b) jos V = W, niin W = V (c) jos V = W ja W = U, niin V = U. LM2, Kesä /310

110 Käänteiskuvaus Määritelmä Oletetaan, että f : X Y on kuvaus. Jos on olemassa sellainen kuvaus g : Y X, että g f = id X ja f g = id Y, niin sanotaan, että kuvaus g on kuvauksen f käänteiskuvaus. Huom. Tässä id X tarkoittaa avaruuden X identtistä kuvausta: id X : X X, jolla id X (x) = x kaikilla x X. Vastaavasti id Y tarkoittaa avaruuden Y identtistä kuvausta, jolla y y kaikilla y Y. Kuvauksen f käänteiskuvausta merkitään f 1. LM2, Kesä /310

111 Huom. Voidaan osoittaa, että jokaisella kuvauksella on enintään yksi käänteiskuvaus. Sen vuoksi merkintä f 1 on yksikäsitteinen ja siten mielekäs. LM2, Kesä /310

112 Bijektiot ja käänteiskuvaukset Lause 42 Oletetaan, että f : X Y on kuvaus. Kuvauksella f on käänteiskuvaus, jos ja vain jos kuvaus f on bijektio. Todistus. : Oletetaan, että kuvauksella f on käänteiskuvaus f 1 : Y X. Osoitetaan, että f on bijektio: Oletetaan, että a, b X ja f (a) = f (b). Tällöin a = id(a) = (f 1 f )(a) = f 1 (f (a)) = f 1 (f (b)) Siis f on injektio. = (f 1 f )(b) = id(b) = b. LM2, Kesä /310

113 Oletetaan, että y Y. Tällöin f 1 (y) X ja Siis f on surjektio. f (f 1 (y)) = (f f 1 )(y) = id(y) = y. : Oletetaan, että f on bijektio. Määritellään kuvaus g : Y X seuraavasti: Jos y Y, niin kuvauksen f bijektiivisyyden nojalla on olemassa tasan yksi a X, jolla f (a) = y. Määritellään g(y) = a. Siis g(y) = a f (a) = y. LM2, Kesä /310

114 Osoitetaan, että g on kuvauksen f käänteiskuvaus: Oletetaan, että x X. Merkitään f (x) = c. Tällöin (g f )(x) = g(f (x)) = g(c) = x = id X (x). Oletetaan, että y Y. Merkitään g(y) = a. Tällöin (f g)(y) = f (g(y)) = f (a) = y = id Y (y). Siis g f = id X ja f g = id Y, joten kuvaus g on kuvauksen f käänteiskuvaus. LM2, Kesä /310

115 Isomorfisuus Lauseen 41 todistus. Käsitellään vain b-kohta tarkasti (esimerkin vuoksi). (a) V = V, sillä isomorfismiksi kelpaa ns. identtinen kuvaus id: V V, jolla id( v) = v kaikilla v V. (b) Oletetaan, että V = W. Tällöin on olemassa isomorfismi L: V W. Koska L on bijektio, on sillä olemassa käänteiskuvaus L 1 : W V, joka sekin on bijektio. Osoitetaan, että L 1 on lineaarinen: LM2, Kesä /310

116 (b) jatkuu... Oletetaan, että w 1, w 2 W ja c R. Koska L on bijektio, niin on olemassa tasan yhdet sellaiset v 1, v 2 V, että L( v 1 ) = w 1 ja L( v 2 ) = w 2. Huomaa, että tällöin v 1 = L 1 ( w 1 ) ja v 2 = L 1 ( w 2 ). Siten ja L 1 ( w 1 + w 2 ) = L 1 (L( v 1 ) + L( v 2 )) = L 1 (L( v 1 + v 2 )) = id( v 1 + v 2 ) = v 1 + v 2 = L 1 ( w 1 ) + L 1 ( w 2 ) L 1 (c w 1 ) = L 1 (cl( v 1 )) = L 1 (L(c v 1 )) = id(c v 1 ) = c v 1 = cl 1 ( w 1 ). LM2, Kesä /310

117 (c) Oletetaan, että V = W ja W = U. Tällöin on olemassa isomorfismit L: V W ja T : W U. Lineaarikuvauksista yhdistetty kuvaus on lineaarinen (lause 25), joten kuvaus T L: V U on lineaarinen. Lisäksi T L on bijektio. Se voidaan osoittaa esimerkiksi näyttämällä, että yhdistetyn kuvauksen T L käänteiskuvaukseksi kelpaa L 1 T 1 : U V. LM2, Kesä /310

118 Kertausta: vapaus Määritelmä Oletetaan, että V on vektoriavaruus ja v 1, v 2,..., v k V. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Jos jono ( v 1, v 2,..., v k ) on vapaa, sanotaa, että vektorit v 1, v 2,..., v k ovat lineaarisesti riippumattomia. Jos jono ei ole vapaa, sanotaan, että se on sidottu. LM2, Kesä /310

119 Vähintään kahdesta vektorista muodostuva vektorijono on sidottu, jos ja vain jos jokin sen vektoreista voidaan ilmaista toisten lineaarikombinaationa: Lause 43 Oletetaan, että V on vektoriavaruus ja v 1,..., v k V. (a) Jono ( v 1 ) on sidottu, jos ja vain jos v = 0. (b) Jono ( v 1,..., v k ) on sidottu, jos ja vain jos v i span( v 1,..., v i 1, v i+1,..., v k ) jollakin i {1,..., k}. LM2, Kesä /310

120 Kertausta: kanta Määritelmä Oletetaan, että V on vektoriavaruus ja v 1, v 2,..., v k V. Vektorijono ( v 1, v 2,..., v k ) on vektoriavaruuden V kanta, jos (a) V = span( v 1, v 2,..., v k ) (b) ( v 1, v 2,..., v k ) on vapaa. LM2, Kesä /310

121 Lause 44 Kertausta: kanta ja koordinaatit Jono ( v 1, v 2,..., v k ) on vektoriavaruuden V kanta, jos ja vain jos jokainen avaruuden V vektori voidaan kirjoittaa täsmälleen yhdellä tavalla vektoreiden v 1,..., v k lineaarikombinaationa. Lause 44 mahdollistaa seuraavan määritelmän: Määritelmä Oletetaan, että B = ( v 1,..., v k ) on vektoriavaruuden V kanta. Oletetaan, että w V. Vektorin w koordinaateiksi kannan B suhteen kutsutaan reaalilukuja a 1,..., a k, joilla w = a 1 v a k v k. LM2, Kesä /310

122 Kertausta: kanta ja dimensio Lause 45 Vektoriavaruuden V jokaisessa kannassa on yhtä monta vektoria. LM2, Kesä /310

123 Kertausta: kanta ja dimensio Lause 45 mahdollistaa seuraavan määritelmän: Määritelmä Vektoriavaruus V on äärellisulotteinen, jos sillä on äärellisen monesta vektorista koostuva kanta tai jos V = { 0}. Vektoriavaruuden V { 0} dimensio dim(v ) on kannan vektoreiden lukumäärä. Vektoriavaruuden { 0} dimensio on nolla eli dim({ 0}) = 0. Jos vektoriavaruuden dimensio on n, sanotaan, että vektoriavaruus on n-ulotteinen. Jos vektoriavaruus V ei ole äärellisulotteinen, sanotaan, että V on ääretönulotteinen ja sen dimensio on ääretön. LM2, Kesä /310

124 Ytimen ja kuvan dimensiot Lause 46 Oletetaan, että V ja W ovat vektoriavaruuksia ja L: V W on lineaarikuvaus. Oletetaan lisäksi, että lähtö V on äärellisulotteinen. Tällöin dim(v ) = dim(ker L) + dim(im L). LM2, Kesä /310

125 Esimerkki 47 Ytimen ja kuvan dimensiot Esimerkin 29 lineaarikuvauksen L: R 2 R 2, (x 1, x 2 ) (x 1, 0) ydin on vektorin j = (0, 1) virittämä aliavaruus, joka on origon kautta kulkeva, vektorin j suuntainen suora: L Ker L Siis dim(ker L) = 1. LM2, Kesä /310

126 Lineaarikuvauksen L kuva on vektorin ī = (1, 0) virittämä aliavaruus, joka on origon kautta kulkeva, vektorin ī suuntainen suora (ks. esimerkki 35): L Im L Todellakin Siis dim(im L) = 1. dim(ker L) + dim(im L) = = 2 = dim(r 2 ). LM2, Kesä /310

127 Ytimen ja kuvan dimensiot Lauseen 46 todistus. Olkoon dim(v ) = n ja olkoon ( v 1,..., v k ) aliavaruuden Ker L kanta, jolloin dim(ker L) = k. Koska jono ( v 1,..., v k ) on vapaa, voidaan se täydentää vektoriavaruuden V kannaksi ( v 1,..., v k, v k+1,..., v n ). Osoitetaan, että (L( v k+1 ),..., L( v n )) on aliavaruuden Im L kanta, jolloin dim(im L) = n k. Tämä todistaa väitteen. LM2, Kesä /310

128 Osoitetaan ensin, että span(l( v k+1 ),..., L( v n )) = Im L. Oletetaan, että w Im L. Tällöin on olemassa v V, jolla L( v) = w. Lisäksi ( v 1,..., v k, v k+1,..., v n ) on vektoriavaruuden V kanta, joten v = a 1 v a k v k + a k+1 v k a n v n joillakin a 1,..., a n R. Käyttämällä kuvauksen L lineaarisuutta sekä tietoa, että v 1,..., v k Ker L, saadaan w = L( v) = L(a 1 v a k v k + a k+1 v k a n v n ) = a 1 L( v 1 ) + + a k L( v k ) + a k+1 L( v k+1 ) + + a n L( v n ) = a k+1 L( v k+1 ) + + a n L( v n ) = a k+1 L( v k+1 ) + + a n L( v n ). LM2, Kesä /310

129 Osoitetaan sitten, että jono (L( v k+1 ),..., L( v n )) on vapaa. Oletetaan, että c k+1 L( v k+1 ) + + c n L( v n ) = 0 joillakin c k+1,..., c n R. Kuvauksen L lineaarisuuden vuoksi L(c k+1 v k c n v n ) = 0, joten c k+1 v k c n v n Ker L. LM2, Kesä /310

130 Koska c k+1 v k c n v n Ker L, niin on olemassa luvut b 1,..., b k R, joille pätee Tästä saadaan yhtälö c k+1 v k c n v n = b 1 v b k v k. b 1 v 1 b k v k + c k+1 v k c n v n = 0. Jono ( v 1,..., v k, v k+1,..., v n ) on vektoriavaruuden V kanta ja siten vapaa. Edellisestä yhtälöstä seuraa siis, että b 1 = 0,..., b k = 0, c k+1 = 0,..., c n = 0 ; erityisesti c k+1 = 0,..., c n = 0. LM2, Kesä /310

131 Lineaarikuvauksen injektiivisyys ja surjektiivisuus Lause 48 Oletetaan, että V ja W ovat äärellisulotteisia vektoriavaruuksia, joilla dim(v ) = dim(w ). Oletetaan, että L: V W on lineaarikuvaus. Tälllöin L on injektio, jos ja vain jos L on surjektio. Huom. Lauseen oletuksissa vaaditaan, että lähdön ja maalin dimensio on sama! LM2, Kesä /310

132 Lauseen 48 todistuksen idea. Todistuksen perustana on lauseen 46 tulos dim(v ) = dim(ker L) + dim(im L). : Oletetaan, että L on injektio. Tällöin Ker L = { 0}, joten dim(ker L) = 0. Siten dim(im L) = dim(v ) = dim(w ). Tiedetään lisäksi, että Im L on vektoriavaruuden W aliavaruus. Tästä seuraa, että Im L = W. Siis L on surjektio. : Oletetaan, että L on surjektio. Tällöin Im L = W, joten dim(im L) = dim(w ) = dim(v ). Tästä seuraa, että dim(ker L) = 0. Siten Ker L = { 0}. Siis L on injektio. LM2, Kesä /310

133 Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 49 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin on olemassa täsmälleen yksi sellainen lineaarikuvaus L: V W, että L( v 1 ) = w 1, L( v 2 ) = w 2,..., L( v n ) = w n. LM2, Kesä /310

134 Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lauseen 49 todistus. Jos v V, niin on olemassa yksikäsitteiset a 1,..., a n R, joilla v = a 1 v 1 + a 2 v a n v n. Määritellään kuvaus L: V W asettamalla L( v) = a 1 w 1 + a 2 w a n w n. Osoitetaan, että L täyttää lauseessa asetetut vaatimukset. Esimerkiksi v 2 = 0 v v v v n, joten L( v 2 ) = 0 w w w w n = w 2. Näin voidaan osoittaa, että L( v i ) = w i kaikilla i {1,..., n}. LM2, Kesä /310

135 Osoitetaan, että L on lineaarikuvaus. Oletetaan, että x, ȳ V ja t R. Tällöin x = b 1 v b n v n ja ȳ = c 1 v c n v n joillakin b 1,..., b n, c 1,..., c n R. Tällöin L( x + ȳ) = L ( (b 1 v b n v n ) + (c 1 v c n v n ) ) = L ( (b 1 + c 1 ) v (b n + c n ) v n ) = (b 1 + c 1 ) w (b n + c n ) w n = (b 1 w b n w n ) + (c 1 w c n w n ) = L(b 1 v b n v n ) + L(c 1 v c n v n ) = L( x) + L(ȳ) LM2, Kesä /310

136 ja L(t x) = L ( t(b 1 v b n v n ) ) = L(tb 1 v tb n v n ) = tb 1 w tb n w n = t(b 1 w b n w n ) = tl(b 1 v b n v n ) = tl( x). Siis L on yksi lauseen vaatimukset täyttävä lineaarikuvaus. Onko olemassa muita lineaarikuvauksia, jotka myös täyttävät lauseen ehdot? LM2, Kesä /310

137 Osoitetaan, että lauseen 49 vaatimukset täyttäviä lineaarikuvauksia on enintään yksi (edellä määritelty L). Oletetaan, että L, T : V W ovat lineaarikuvauksia, joilla L( v 1 ) = w 1, L( v 2 ) = w 2,..., L( v n ) = w n ja T ( v 1 ) = w 1, T ( v 2 ) = w 2,..., T ( v n ) = w n. Oletetaan, että v V. Tällöin v = a 1 v a n v n joillakin a 1,..., a n R, sillä ( v 1,..., v n ) on avaruuden V kanta. Kuvausten L ja T lineaarisuutta käyttäen saadaan L( v) = L(a 1 v a n v n ) = a 1 L( v 1 ) + + a n L( v n ) = a 1 w a n w n = a 1 T ( v 1 ) + + a n T ( v n ) = T (a 1 v a n v n ) = T ( v). Kuvauksilla L: V W ja T : V W on samat arvot, joten ne ovat sama kuvaus. LM2, Kesä /310

138 Isomorfisuus Lause 50 Oletetaan, että V ja W ovat äärellisulotteisia vektoriavaruuksia. Vektoriavaruudet V ja W ovat isomorfiset, jos ja vain jos dim(v ) = dim(w ). LM2, Kesä /310

139 Isomorfisuus Lauseen 50 todistus. : Oletetaan, että V = W. Tällöin on olemassa isomorfismi L: V W. Koska L on injektio, niin Ker L = { 0} ja siten dim(im L) = dim(v ) dim(ker L) = dim(v ) 0 = dim(v ). Koska L on surjektio, niin Im L = W. Siten dim(v ) = dim(im L) = dim(w ). LM2, Kesä /310

140 : Oletetaan, että dim(v ) = dim(w ) = n. Olkoon ( v 1,..., v n ) vektoriavaruuden V kanta ja olkoon ( w 1,..., w n ) vektoriavaruuden W kanta. Olkoon L: V W se lineaarikuvaus, jolla L( v 1 ) = w 1, L( v 2 ) = w 2,..., L( v n ) = w n. Lauseen 49 mukaan tällaisia lineaarikuvauksia on tasan yksi. Osoitetaan, että L on injektio. LM2, Kesä /310

141 Oletetaan, että v Ker L. Tällöin L( v) = 0. Kirjoitetaan v kantavektorien lineaarikombinaationa v = a 1 v a n v n, jolloin saadaan 0 = L( v) = L(a 1 v a n v n ) = a 1 L( v 1 ) + + a n L( v n ) = a 1 w a n w n. Jono ( w 1,..., w n ) on kanta ja siten vapaa, joten tästä yhtälöstä seuraa, että a 1 = 0, a 2 = 0,..., a n = 0. Siis v = a 1 v a n v n = 0 v v n = 0. Tämä osoittaa, että Ker L = { 0}. Siis L on injektio. LM2, Kesä /310

142 Oletuksen mukaan dim(v ) = dim(w ). Lisäksi lineaarikuvaus L: V W on injektio, joten L on lauseen 48 mukaan surjektio. Siis L on lineaarikuvaus ja bijektio, eli isomorfismi. Näin ollen V = W. LM2, Kesä /310

143 Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos: Lause 51 Oletetaan, että T : R n R m on lineaarikuvaus. Tällöin on olemassa täsmälleen yksi matriisi A M m n, jolla T ( v) = A v kaikilla v R n. LM2, Kesä /310

144 Ennen lauseen 51 perustelua tutkitaan hiukan matriistuloa A v: a 11 a 12 a 1n v 1 a 21 a 22 a 2n v 2 A v =... a m1 a m2 a mn v n a 11 v 1 + a 12 v a 1n v n a 21 v 1 + a 22 v a 2n v n =. a m1 v 1 + a m2 v a mn v n = v 1 a 11 a 21. a m1 + v 2 a 12 a 22. a m2 + + v n a 1n a 2n.. a mn LM2, Kesä /310

145 Lineaarikuvauksen R n R m matriisi Tulo A v on siis matriisin A sarakkeiden lineaarikombinaatio, jossa kertoimina ovat vektorin v komponentit. Lauseen 51 todistus. Muodostetaan matriisi A seuraavasti: Katsotaan, miten avaruuden R n luonnollisen kannan (ē 1, ē 2,..., ē n ) vektorit kuvautuvat lineaarikuvauksessa T eli määritetään T (ē 1 ), T (ē 2 ),..., T (ē n ). Laitetaan kuvavektorit T (ē 1 ), T (ē 2 ),..., T (ē n ) matriisin A sarakkeiksi tässä järjestyksessä. LM2, Kesä /310

146 Matriisin A sarakkeet ovat siis T (ē 1 ), T (ē 2 ),..., T (ē n ) R m ja tällöin voidaan merkitä lyhyesti [ ] A = T (ē 1 ) T (ē 2 )... T (ē n ). Huomaa, että matriisin jokaisessa sarakkeessa on m alkiota ja sarakkeita on n kappaletta, joten A todella on m n -matriisi. Osoitetaan, että matriisin A määräämä lineaarikuvaus L A : R n R m on sama kuin T : R n R m. Koska kantavektorien kuvavektorit määräävät lineaarikuvauksen (lause 49), niin riittää osoittaa, että kantavektorit ē 1, ē 2,..., ē n kuvautuvat samalla tavalla kuvauksissa L A ja T. LM2, Kesä /310

147 Matriisin A määräämässä kuvauksessa L A esimerkiksi a 11 a 12 a 13 a 1n a 21 L A (ē 2 ) = Aē 2 = a a a 2n. a m1 a m2 a m3 a mn a 12 a 22 =. = T (ē 2), a m2 sillä tulo Aē 2 on matriisin A sarakkeiden lineaarikombinaatio, jossa kertoimina ovat vektorin ē 2 komponentit; matriisin A sarakkeet ovat kuvavektorit T (ē 1 ),..., T (ē n ). LM2, Kesä /310

148 Näin voidaan osoittaa, että L A (ē i ) = T (ē i ) kaikilla i {1,..., n}. Lineaarikuvaukset L A ja T ovat siten lauseen 49 nojalla sama kuvaus, eli T ( v) = A v kaikilla v R n. Osoitetaan vielä, ettei muita sopivia m n -matriiseja ole. Oletetaan, että A, B M m n ovat sellaisia, että T ( v) = A v ja T ( v) = B v kaikilla v R n. Tällöin A v = B v kaikilla v R n. LM2, Kesä /310

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kantavektorien kuvavektorit määräävät lineaarikuvauksen Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:

Lisätiedot

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 25. lokakuuta 2015 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus... 111 16 Aliavaruus... 117 16.1 Vektoreiden

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:

Lisätiedot

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa. LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218 Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus. 1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:

Lisätiedot

4. LINEAARIKUVAUKSET

4. LINEAARIKUVAUKSET 86 4 LINEAARIKUVAUKSET 41 Määritelmä ja esimerkkejä Olkoot V ja V vektoriavaruuksia Tarkastellaan kuvausta L : V V Tällöin jokaiseen vektoriin v V liittyy tietty, L:n ja v:n yksikäsitteisesti määräämä

Lisätiedot

Vektorien virittämä aliavaruus

Vektorien virittämä aliavaruus Vektorien virittämä aliavaruus Esimerkki 13 Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w kuuluu vektoreiden v 1 = (3, 2, 1), v 2 = (2, 2, 6) ja v 3 = (3, 4, 5) virittämään

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista 29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Lotta Oinonen ja Johanna Rämö 6. joulukuuta 2012 Helsingin yliopisto Matematiikan ja tilastotieteen laitos 2012 Sisältö 1 Avaruus R n 4 1 Avaruuksien R 2 ja R 3 vektorit.....................

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

5.6 Yhdistetty kuvaus

5.6 Yhdistetty kuvaus 5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty

Lisätiedot

2 / :03

2 / :03 file:///c:/users/joonas/desktop/linis II Syksy /Ratkaisuehdotukse / 8 76 3:3 Kysymys Pisteet,, Määritellään positiivisten reaalilukujen joukossa R + = {x R x > } yhteenlasku ja skalaarikertolasku seuraavasti:

Lisätiedot

JAKSO 2 KANTA JA KOORDINAATIT

JAKSO 2 KANTA JA KOORDINAATIT JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

Esko Turunen Luku 3. Ryhmät

Esko Turunen Luku 3. Ryhmät 3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,

Lisätiedot

Ortogonaalinen ja ortonormaali kanta

Ortogonaalinen ja ortonormaali kanta Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Matemaattinen Analyysi / kertaus

Matemaattinen Analyysi / kertaus Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan

Lisätiedot

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä) Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

9 Matriisit. 9.1 Matriisien laskutoimituksia

9 Matriisit. 9.1 Matriisien laskutoimituksia 9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä

Lisätiedot

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66 Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/66 Lineaarialgebra (muut ko) p. 2/66 Redusoitu porrasmuoto 1 1 2 4 1 1 4 6 2 2 5 9 1 1 0 2 0 0 1 1 0 0 0 0 Eli aste r(a) = 2 ja vaakariviavaruuden

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä 4. Ryhmät Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoimitukselta oletamme muutamia yksinkertaisia ominaisuuksia: Määritelmä 4.1. Laskutoimituksella varustettu joukko

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210 Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210 Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus

Lisätiedot

Lineaarialgebra II P

Lineaarialgebra II P Lineaarialgebra II 89P Sisältö Vektoriavaruus Sisätuloavaruus 8 3 Lineaarikuvaus 5 4 Ominaisarvo 5 Luku Vektoriavaruus Määritelmä.. Epätyhjä joukko V on vektoriavaruus, jos seuraavat ehdot ovat voimassa:.

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä

Lisätiedot

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2016 Harjoitus 3 Ratkaisut palautettava viimeistään maanantaina 29.8.2016 klo 13.15. Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 23.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Käytännön asioita Ensimmäiset tehtävät olivat sujuneet hyvin. Kansilehdet on oltava mukana tehtäviä palautettaessa,

Lisätiedot

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja 5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.

Lisätiedot

1 Avaruuksien ja lineaarikuvausten suora summa

1 Avaruuksien ja lineaarikuvausten suora summa MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon

Lisätiedot

Laskutoimitusten operaattorinormeista

Laskutoimitusten operaattorinormeista Laskutoimitusten operaattorinormeista Rami Luisto 27. tammikuuta 2012 Tiivistelmä Tässä kirjoitelmassa määrittelemme vektoriavaruuksien väliselle lineaarikuvaukselle normin ja laskemme sen eksplisiittisesti

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Lineaarikuvaukset Lineaarikuvaus Olkoot U ja V

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Lineaarialgebra (muut ko)

Lineaarialgebra (muut ko) Lineaarialgebra (muut ko) p. 1/103 Lineaarialgebra (muut ko) Tero Laihonen Lineaarialgebra (muut ko) p. 2/103 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v

Lisätiedot

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita?

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita? Matematiikkaa kaikille, kesä 2017 Avoin yliopisto Luentojen 2,4 ja 6 tehtäviä Päivittyy kurssin aikana 1. Olkoon A = {0, 1, 2}, B = {1, 2, 3} ja C = {2, 3, 4}. Luettele joukkojen A B, A B, A B ja (A B)

Lisätiedot

Yleiset lineaarimuunnokset

Yleiset lineaarimuunnokset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Muistutus: Matikkapaja ke Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta yms.

Muistutus: Matikkapaja ke Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta yms. Lineaarialgebra (muut ko) p. 1/139 Ensi viikon luennot salissa X Muistutus: Matikkapaja ke 14-16 Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta

Lisätiedot

Alkeismuunnokset matriisille, sivu 57

Alkeismuunnokset matriisille, sivu 57 Lineaarialgebra (muut ko) p. 1/88 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

Similaarisuus. Määritelmä. Huom.

Similaarisuus. Määritelmä. Huom. Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP

Lisätiedot

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x 8. Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme näiltä kahdella laskutoimituksella varustetuilta

Lisätiedot

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen

Lisätiedot

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin

Lisätiedot

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on

Lisätiedot

Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei.

Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei. 5.5 Surjektio Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei. Määritelmä 5.5.1. Kuvaus f : X æ Y on surjektio, jos jokaisella

Lisätiedot

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)

Lisätiedot

Lineaarikuvauksista ja niiden geometrisesta tulkinnasta

Lineaarikuvauksista ja niiden geometrisesta tulkinnasta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Katri Syvänen Lineaarikuvauksista ja niiden geometrisesta tulkinnasta Matematiikan ja tilastotieteen laitos Matematiikka Tammikuu 2009 Tampereen yliopisto Matematiikan

Lisätiedot

Lineaarista projektiivista geometriaa

Lineaarista projektiivista geometriaa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Iiris Repo Lineaarista projektiivista geometriaa Informaatiotieteiden yksikkö Matematiikka Marraskuu 2012 Tampereen yliopisto Informaatiotieteiden yksikkö REPO,

Lisätiedot

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/159

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/159 Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/159 Lineaarialgebra (muut ko) p. 2/159 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 ) Skalaarilla

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Seuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117

Seuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117 Seuraava luento ti 31.10 on salissa XXII Lineaarialgebra (muut ko) p. 1/117 Lineaarialgebra (muut ko) p. 2/117 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v

Lisätiedot

Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n.

Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n. Matriisipotenssi Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: Määritelmä Oletetaan, että A on n n -matriisi (siis neliömatriisi) ja k

Lisätiedot

6. OMINAISARVOT JA DIAGONALISOINTI

6. OMINAISARVOT JA DIAGONALISOINTI 0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.

Lisätiedot

Algebra I, Harjoitus 6, , Ratkaisut

Algebra I, Harjoitus 6, , Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut (MV 6 sivua 1. Olkoot M ja M multiplikatiivisia monoideja. Kuvaus f : M M on monoidihomomorfismi jos 1 f(ab = f(af(b

Lisätiedot

pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus Lineaarikuvaus Ominaisarvo 0-68

pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus Lineaarikuvaus Ominaisarvo 0-68 SISÄLTÖ Sisältö pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus 0-1 2 Sisätuloavaruus 0-20 3 Lineaarikuvaus 0-41 4 Ominaisarvo 0-68 5 Esimerkkejä 0-88 1. Lineaariavaruus eli V 1 Lineaariavaruus

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 27. marraskuuta 2015 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Vektoriavaruuksien R 2 ja R 3 vektorit........................

Lisätiedot

2. REAALIKERTOIMISET VEKTORIAVARUUDET

2. REAALIKERTOIMISET VEKTORIAVARUUDET 30 REAALIKERTOIMISET VEKTORIAVARUUDET 1 Koordinaattiavaruus R n Olkoon n N = {1,, 3, } positiivinen kokonaisluku (luonnollisten lukujen joukko on tällä kurssilla N = {0, 1,, 3, }) Merkitään R n = R n 1

Lisätiedot

Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104

Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104 Lineaarialgebra (muut ko) p. 1/104 Ensi viikolla luennot salissa X Torstaina 7.12. viimeiset demot (12.12. ja 13.12. viimeiset luennot). Torstaina 14.12 on välikoe 2, muista ilmoittautua! Demorastitiedot

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa I Jokke Häsä, Lotta Oinonen, Johanna Rämö 9 heinäkuuta 2013 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 1 Avaruuksien R 2 ja R 3 vektorit 4 11 Kaksiulotteisen

Lisätiedot