Avaruuden R n aliavaruus
|
|
- Juho-Matti Hakala
- 5 vuotta sitten
- Katselukertoja:
Transkriptio
1 Avaruuden R n aliavaruus 1 / 41
2 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41
3 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 3 / 41
4 Aliavaruus Määritelmä 1 Epätyhjä joukko V R n on R n :n (vektori)aliavaruus, jos (a) v, w V v + w V ja (b) λ R, v V λv V. Huomautus 1 Aliavaruus on epätyhjä joukko, joten siellä on vähintään yksi alkio v V. Koska λv V kaikilla λ R, niin 0 = 0 v V. Nolla-alkio kuuluu siis aina aliavaruuteen. Huomautus 2 Joukot V = {0} ja V = R n ovat R n :n triviaalit aliavaruudet. 4 / 41
5 Aliavaruus Esimerkki 3 Joukko V = {(t, 5t) R 2 t R} on R 2 :n aliavaruus. Todistus. Koska (0, 0) = (0, 5 0) V, niin V. Olkoot v, w V. Tällöin on olemassa sellaiset s, t R, että v = (s, 5s) ja w = (t, 5t). Nyt v + w = (s, 5s) + (t, 5t) = (s + t, 5(s + t)) = (h, 5h) V, sillä h = s + t R. Samoin kaikilla λ R, λv = λ(s, 5s) = (λs, 5λs) = (h, 5h) V, missä h = λs R. Siis V on aliavaruus. 5 / 41
6 Aliavaruus Esimerkki 4 Joukko H = {(x, y) R 2 x + y = 1} ei ole R 2 :n aliavaruus, sillä 0 / H, koska Huomaa, että (1, 0) H, mutta 2 (1, 0) / H, sillä Samoin (0, 1) H, mutta (1, 0) + (0, 1) = (1, 1) / H, sillä Esimerkki 5 V 1 on R 2 :n aliavaruus, mutta V 2 ja V 3 eivät ole: 6 / 41
7 Aliavaruus Esimerkki 6 Joukko V = {x R 3 x 1 + 2x 2 + 3x 3 = 0} on R 3 :n aliavaruus. Todistus. Koska = 0, niin 0 V, joten V. Olkoot x, y V. Nyt (x + y) 1 + 2(x + y) 2 + 3(x + y) 3 = x 1 + y 1 + 2x 2 + 2y 2 + 3x 3 + 3y 3 = x 1 + 2x 2 + 3x 3 + y 1 + 2y 2 + 3y 3 = = 0, joten x + y V. Samoin kaikilla λ R (λx) 1 + 2(λx) 2 + 3(λx) 3 = λx 1 + 2λx 2 + 3λx 3 = λ(x 1 + 2x 2 + 3x 3 ) = λ 0 = 0, joten λx V. Siis V on R 3 :n aliavaruus. 7 / 41
8 Aliavaruus Lause 1 Olkoot V, W R n aliavaruuksia. Tällöin V W on R n :n aliavaruus, mutta V W ei yleensä ole R n :n aliavaruus. Todistus. Koska 0 V ja 0 W, niin 0 V W, joten V W. Olkoot v, w V W ja λ R. Nyt v, w V, joten v + w V, ja v, w W joten v + w W. Siis v + w V W. Lisäksi λv V ja λv W, joten λv V W. Näin ollen V W on R n :n aliavaruus. Tapaus V W harjoitustehtävänä 8 / 41
9 Aliavaruus Lause 2 Olkoon V R n aliavaruus. Tällöin kaikilla k N pätee: jos v 1,..., v k V ja λ 1,..., λ k R, niin k i=1 λ iv i V. Todistus. Todistus induktiolla (harjoitustehtävä). 9 / 41
10 Aliavaruus Esimerkissä 6 osoitettiin, että tietyn homogeenisen lineaarisen yhtälön ratkaisut muodostavat aliavaruuden eli tietty origon kautta kulkeva taso on aliavaruus. Tämä yleistetään seuraavan lauseen (a)-kohdassa. Kohdassa (b) osoitetaan, että jos yhtälöllä Ax = b on ratkaisu, niin sen ratkaisujoukko saadaan siirtämällä homogeenisen yhtälöryhmän Ax = 0 ratkaisujoukko vektorin x 0 määräämään kohtaan, missä x 0 on jokin yhtälön Ax = b ratkaisu. 10 / 41
11 Aliavaruus Lause 3 (a) Olkoon A M(k, n). Yhtälöryhmän Ax = 0 ratkaisujoukko R 0 on R n :n aliavaruus. (b) Olkoon b R k ja A M(k, n). Oletetaan, että yhtälöryhmällä Ax = b on jokin ratkaisu x 0. Tällöin yhtälöryhmän Ax = b ratkaisujoukko on R = x 0 + R 0 = {x 0 + y y R 0 }, missä R 0 on yhtälöryhmän Ax = 0 ratkaisujoukko. 11 / 41
12 Aliavaruus Todistus (a) Koska A0 = 0, niin 0 R 0. Olkoot x, y R 0. Tällöin joten x + y R 0. Samoin kaikilla λ R, joten λx R 0. A(x + y) = Ax + Ay = = 0, A(λx) = λax = λ 0 = 0 12 / 41
13 Aliavaruus Todistus. (b) Olkoon z R. Tällöin z = x 0 + y jollakin y R 0. Nyt Az = A(x 0 + y) = Ax 0 + Ay = b + 0 = b, joten z on yhtälön Ax = b ratkaisu. Jos taas z on yhtälön Ax = b ratkaisu, niin joten z x 0 R 0. Nyt z = x 0 + z x 0 R. A(z x 0 ) = Az Ax 0 = b b = 0, 13 / 41
14 Aliavaruus x x 2 x 1 Kuva: Origon kautta kulkeva alempi taso on yhtälöryhmän Ax = 0 ratkaisujoukko (kun ratkaisujoukossa on kaksi vapaata muuttujaa). Ylempi taso on yhtälöryhmän Ax = b ratkaisujoukko. 14 / 41
15 Aliavaruus Lause 4 Epätyhjän joukon S = {v 1,..., v k } R n lineaarinen verho S on R n :n aliavaruus. Se on pienin R n :n aliavaruus, joka sisältää joukon S, toisin sanoen, jos V on R n :n aliavaruus ja S V, niin S V. 15 / 41
16 Aliavaruus Todistus Osoitetaan, ensin, että S on R n :n aliavaruus. Koska S S ja S, niin S. Olkoot v, w S. Tällöin on olemassa λ 1,..., λ k R ja µ 1,..., µ k R, joille v = k i=1 λ iv i ja w = k i=1 µ iv i. Tällöin v + w = k k λ i v i + µ i v i = i=1 i=1 k (λ i + µ i )v i S. i=1 Samoin, jos λ R, niin k λv = λ λ i v i = i=1 k (λλ i )v i S. i=1 Siis S on R n :n aliavaruus. 16 / 41
17 Aliavaruus Todistus. Olkoon V R n :n aliavaruus, jolle S V. Osoitetaan, että S V. Olkoon v S. Tällöin löytyy sellaiset λ 1,..., λ k R, että v = k i=1 λ iv i. Koska v i V kaikilla i = 1,..., k, niin Lauseen 2 nojalla v V.Siis S V. 17 / 41
18 Aliavaruus Huomautus 3 (a) Joukon S lineaarista verhoa S kutsutaan usein S:n virittämäksi aliavaruudeksi. Jos V on aliavaruus ja V = S, niin S virittää V :n. (b) Luonnolliset kantavektorit e 1,..., e n virittävät R n :n, sillä e 1,..., e n = R n. Lisäksi vektorit e 1,..., e n ovat lineaarisesti riippumattomia. 18 / 41
19 19 / 41
20 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio voidaan esittää yksikäsitteisessä muodossa tämän vektorijoukon alkioiden lineaarikombinaationa. 20 / 41
21 Määritelmä 2 Olkoon V R n aliavaruus. Vektorit v 1,..., v k V muodostavat aliavaruuden V kannan, jos (a) v 1,..., v k ovat lineaarisesti riippumattomia ja (b) v 1,..., v k = V. Tällöin sanotaan, että joukko {v 1,..., v k } on V :n kanta. Aliavaruuden V kanta on pienin vektorijoukko, joka virittää V :n eli v 1,..., v k = V pätee. Toisaalta, V :n kanta on suurin mahdollinen lineaarisesti riippumaton V :n osajoukko. 21 / 41
22 Esimerkki 7 (a) Vektori 1 R muodostaa R:n luonnollisen kannan. Myös 2 R on R:n kanta. (b) Luonnolliset kantavektorit e 1,..., e n R n muodostavat R n :n kannan. (c) Aliavaruudella voi olla useita eri kantoja. (d) Jokainen lineaarisesti riippumaton joukko on lineaarisen verhonsa kanta. (e) Triviaalilla vektoriavaruudella {0} ei ole kantaa, sillä sillä ei ole yhtään lineaarisesti riippumatonta osajoukkoa. 22 / 41
23 Esimerkki 8 Joukko S = {(π, e), (10, )} on R 2 :n kanta. Perustelu: Vektorit (π, e) ja (10, ) ovat lineaarisesti riippumattomia, sillä [ ] π 10 det e = π e 0, sillä π > 100 ja 10 e < 30. Koska kahden lineaarisesti riippumattoman R 2 :n vektorin virittämä lineaarinen verho on R 2, niin S = R 2. Täten S on R 2 :n kanta. Esimerkki 9 Joukko S = {(1, 0, 0), (2, 1, 0), (0, 0, 1), (0, 1, 1)} R 3 ei ole R 3 :n kanta, vaikka S = R 3, sillä S ei ole lineaarisesti riippumaton (neljä R 3 :n vektoria). 23 / 41
24 Esimerkki 10 Aikaisemmin todettiin, että V = {x R 3 x 1 + 2x 2 + 3x 3 = 0} on R 3 :n aliavaruus. Etsitään V :lle kanta. Koska x V, jos ja vain jos x 1 = 2x 2 3x 3 on V = {( 2s 3t, s, t) R 3 s, t R}. Siis x V, jos ja vain jos on olemassa sellaiset s, t R, että x = ( 2s 3t, s, t) = ( 2s, s, 0) + ( 3t, 0, t) = s( 2, 1, 0) + t( 3, 0, 1). Näin ollen V = ( 2, 1, 0), ( 3, 0, 1). Osoitetaan vielä, että ( 2, 1, 0) ja ( 3, 0, 1) ovat lineaarisesti riippumattomia. 24 / 41
25 Esimerkki 10 jatkuu Olkoot λ, µ R sellaiset, että λ( 2, 1, 0) + µ( 3, 0, 1) = 0 { λ = 0 µ = 0. 2λ 3µ = 0 λ = 0 µ = 0 Siis vektorit ( 2, 1, 0) ja ( 3, 0, 1) ovat lineaarisesti riippumattomat. Täten joukko {( 2, 1, 0), ( 3, 0, 1)} on V :n kanta. 25 / 41
26 Lause 5 Jos vektorit v 1,..., v k R n ovat lineaarisesti riippumattomia, niin jokainen v v 1,..., v k voidaan esittää yksikäsitteisesti muodossa v = k λ i v i, i=1 missä λ 1,..., λ k R. 26 / 41
27 Todistus. Olkoon v v 1,..., v k. Tällöin on olemassa sellaiset λ 1,..., λ k R, että v = k i=1 λ iv i. Olkoot µ 1,..., µ k R sellaiset, että v = k i=1 µ iv i. Osoitetaan, että λ i = µ i kaikilla i = 1,..., k. Nyt 0 = v v = k k λ i v i µ i v i = i=1 i=1 k (λ i µ i )v i. i=1 Koska v 1,..., v k ovat lineaarisesti riippumattomia, on λ i µ i = 0 kaikilla i = 1,..., k eli λ i = µ i kaikilla i = 1,..., k. 27 / 41
28 Määritelmä 3 Olkoon K = {v 1,..., v k } aliavaruuden V R n kanta. Vektorin v K koordinaatit kannassa K ovat Lauseen 5 antamat yksikäsitteiset kertoimet λ 1,..., λ k, joille v = k i=1 λ iv i. Tällöin merkitään v = (λ 1,..., λ k ) K. Jos K on avaruuden R n luonnollinen kanta, niin alaindeksi K jätetään pois: x = (x 1,..., x n ). 28 / 41
29 Huomautus 4 Kun käytetään koordinaattimerkintää (λ 1,..., λ k ) K, on kannan K alkioiden järjestys kiinnitetty. Jos järjestystä vaihdetaan, myös koordinaattien λ 1,..., λ k järjestys vaihtuu vastaavasti. Koordinaattiesityksen yhteydessä kanta on siis järjestetty jono (v 1,..., v k ) eikä joukko {v 1,..., v k }. Kantavektoreiden permutointi antaa siten uuden kannan. 29 / 41
30 Esimerkki 11 Kuva: Pisteen x koordinaatit kannassa {b 1, b 2} ovat (3, 2). 30 / 41
31 Esimerkki 12 Vektorin (1, 0) R 2 koordinaatit kannassa K = {(π, e), (10, )} 10 ovat π e ja e π 10e, sillä (1, 0) = π e (π, e) e π 10e (10, 1010 ). 10 Siis (1, 0) = ( π e, e π 10e ) K. 1 Olkoon v = ( 10 9 π e, π π 10e ) K. Tällöin v:n koordinaatit luonnollisessa kannassa ovat 0 ja 1, sillä v = π e (π, e) + π π 10e (10, 1010 ) = (0, 1). 31 / 41
32 Lause 6 Aliavaruuden V R n jokaisessa kannassa on sama määrä vektoreita. Erityisesti R n :n jokaisessa kannassa on n vektoria. Todistus. Olkoon K V :n kanta, jossa on k vektoria. Olkoon L V :n jokin toinen kanta, jossa on l vektoria. Koska L V = K ja L on lineaarisesti riippumaton, niin l k. Samoin K V = L ja K on lineaarisesti riippumaton, joten k l. Siis k = l. Koska R n :n luonnollisessa kannassa on n vektoria, on siten R n :n jokaisessa kannassa n vektoria. 32 / 41
33 Määritelmä 4 Jos aliavaruudella V R n on k-alkioinen kanta, niin V :n dimensio eli ulottuvuus on k. Tällöin merkitään dim V = k. Lisäksi sovitaan, että dim{0} = 0. Esimerkki 13 (a) dim R n = n. (b) Olkoon V = {x R 3 x 1 + 2x 2 + 3x 3 = 0}. Aikaisemman esimerkin perusteella K = {( 2, 1, 0), ( 3, 0, 1)} on V :n kanta, joten dim V = / 41
34 Mikä tahansa aliavaruuden V R n lineaarisesti riippumaton vektorijoukko {v 1,..., v k } V voidaan aina laajentaa V :n kannaksi. Lisätään vektorijoukkoon sellaisia vektoreita, että uusi joukko pysyy lineaarisesti riippumattomana. Lopetetaan siinä vaiheessa, kun v 1,..., v l = V, l k. Lause 7 Olkoon V R n aliavaruus ja {v 1,..., v k } V lineaarisesti riippumaton. Tällöin on olemassa sellainen V :n kanta K, että {v 1,..., v k } K. 34 / 41
35 Todistus. Olkoon S = {v 1,..., v k }. Jos S = V, niin S on V :n kanta, joten K = S. Jos S V, niin on olemassa w 1 V \ S, sillä S V. Tällöin S {w 1 } on lineaarisesti riippumaton. Jos S {w 1 } = V, niin S {w 1 } = K on V :n kanta. Jos S {w 1 } V, niin löytyy w 2 V \ S {w 1 }. Tällöin S {w 1 } {w 2 } on lineaarisesti riippumaton. Jos S {w 1 } {w 2 } V, niin jatketaan näin. Valintaprosessi päättyy äärellisen monen askeleen jälkeen, sillä V R n ja jokaisessa R n :n lineaarisesti riippumattomassa joukossa on korkeintaan n alkiota. Täten tuloksena on V :n kanta K = S {w 1,..., w l } jollekin l, jolle k + l n. 35 / 41
36 Seuraus 1 Olkoon V {0} R n :n aliavaruus. Tällöin V :llä on kanta. Todistus. Koska V {0}, on olemassa v V \{0}. Joukko {v} on lineaarisesti riippumaton. Edellisen lauseen perusteella {v} voidaan laajentaa V :n kannaksi. 36 / 41
37 Huomautus 5 a) On osoitettu, että jokaisen vektorijoukon S lineaarinen verho S on aliavaruus. b) Seurauksen 1 nojalla aliavaruudella V {0} on kanta eli aliavaruudesta V löytyy aina vektorijoukko K = {v 1,..., v k } niin, että K = V. 37 / 41
38 Lause 8 Olkoon V R n aliavaruus ja dim V = k > 0. Olkoon K V k-alkioinen joukko. Tällöin seuraavat ovat yhtäpitäviä: (a) K on V :n kanta. (b) K on lineaarisesti riippumaton. (c) K = V. 38 / 41
39 Todistus. Määritelmän perusteella (a) (b). Riittää siis osoittaa, että (b) (c). (b) (c): Lauseen 7 nojalla K voidaan laajentaa V :n kannaksi L K. Lauseen 6 perusteella L:ssä on k alkiota. Täten L = K ja K = V. (c) (b): Jos K on lineaarisesti riippuva, niin k 2, sillä jos K = {v}, niin v 0, sillä V {0}. Täten löytyy v K ja λ 1,..., λ k 1 R, joille v = v i K\{v} λ iv i. Näin V = K = K\{v}, joten jokainen V :n k-alkioinen joukko on lineaarisesti riippuva, mikä on ristiriita, sillä dim V = k. 39 / 41
40 Seuraus 2 Olkoot v 1,..., v n R n. Tällöin det[v 1 v n ] 0 {v 1,..., v n } on R n :n kanta. Todistus. Kun tarkastellaan n kappaletta R n :n vektoreita v 1,..., v n R n, niin det[v 1 v n ] 0 v 1,..., v n lineaarisesti riippumattomia {v 1,..., v n } on R n :n kanta. 40 / 41
41 Esimerkki 14 Joukko {(π, 0, e), (0, 1, 75), (2010, 0, 49)} on R 3 :n kanta, sillä siinä on kolme alkiota ja π det = 49π 2010e 0. e Esimerkki 15 Joukko {(1, 2)} R 2 on lineaarisesti riippumaton, joten se voidaan laajentaa R 2 :n kannaksi. Esimerkiksi K = {(1, 2), (1, 1)} on R 2 :n kanta, sillä siinä on kaksi alkiota ja [ ] 1 1 det = / 41
Kanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
Lisätiedot6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio
6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
LisätiedotKannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
Lisätiedot9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista
29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotLiittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.
Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
Lisätiedot802120P Matriisilaskenta (5 op)
802120P Matriisilaskenta (5 op) Marko Leinonen Matemaattiset tieteet Syksy 2016 1 / 220 Luennoitsija: Marko Leinonen marko.leinonen@oulu.fi MA333 Kurssilla käytetään Noppaa (noppa.oulu.fi) Luentomoniste
Lisätiedot3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h
HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)
Lisätiedot1 Sisätulo- ja normiavaruudet
1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v
LisätiedotMääritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.
1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
Lisätiedot802320A LINEAARIALGEBRA OSA II
802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen
LisätiedotVektorien virittämä aliavaruus
Vektorien virittämä aliavaruus Esimerkki 13 Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w kuuluu vektoreiden v 1 = (3, 2, 1), v 2 = (2, 2, 6) ja v 3 = (3, 4, 5) virittämään
LisätiedotLineaarialgebra I. Oulun yliopisto Matemaattisten tieteiden laitos Esa Järvenpää Kirjoittanut Tuula Ripatti
Lineaarialgebra I Oulun yliopisto Matemaattisten tieteiden laitos 2011 Esa Järvenpää Kirjoittanut Tuula Ripatti 2 1 Lineaarinen yhtälöryhmä 11 Esimerkki (a) Ratkaise yhtälö 5x = 7 Kerrotaan yhtälö puolittain
LisätiedotJAKSO 2 KANTA JA KOORDINAATIT
JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon
LisätiedotLineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
LisätiedotOsoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotVapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotBijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.
Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin
LisätiedotMatriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
Lisätiedot7 Vapaus. 7.1 Vapauden määritelmä
7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden
Lisätiedot2.5. Matriisin avaruudet ja tunnusluvut
2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja
LisätiedotMatikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210 Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2
LisätiedotLineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotLineaarialgebra II P
Lineaarialgebra II 89P Sisältö Vektoriavaruus Sisätuloavaruus 8 3 Lineaarikuvaus 5 4 Ominaisarvo 5 Luku Vektoriavaruus Määritelmä.. Epätyhjä joukko V on vektoriavaruus, jos seuraavat ehdot ovat voimassa:.
Lisätiedot2.8. Kannanvaihto R n :ssä
28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit
Lisätiedotominaisvektorit. Nyt 2 3 6
Esimerkki 2 6 8 Olkoon A = 40 0 6 5. Etsitäänmatriisinominaisarvotja 0 0 2 ominaisvektorit. Nyt 2 0 2 6 8 2 6 8 I A = 40 05 40 0 6 5 = 4 0 6 5 0 0 0 0 2 0 0 2 15 / 172 Täten c A ( )=det( I A) =( ) ( 2)
LisätiedotLineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.
Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 23.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Käytännön asioita Ensimmäiset tehtävät olivat sujuneet hyvin. Kansilehdet on oltava mukana tehtäviä palautettaessa,
LisätiedotOrtogonaaliprojektio äärellisulotteiselle aliavaruudelle
Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka
LisätiedotVektorit, suorat ja tasot
, suorat ja tasot 1 / 22 Koulussa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä (x 1, x 2 ). Jos vektorin
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus
LisätiedotLineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila
Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................
LisätiedotOminaisvektoreiden lineaarinen riippumattomuus
Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotPäättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1
Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:
LisätiedotKantavektorien kuvavektorit määräävät lineaarikuvauksen
Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin
Lisätiedotpdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus Lineaarikuvaus Ominaisarvo 0-68
SISÄLTÖ Sisältö pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus 0-1 2 Sisätuloavaruus 0-20 3 Lineaarikuvaus 0-41 4 Ominaisarvo 0-68 5 Esimerkkejä 0-88 1. Lineaariavaruus eli V 1 Lineaariavaruus
LisätiedotLINEAARIALGEBRA A 2016 TOMI ALASTE EDITED BY T.M. FROM THE NOTES OF
LINEAARIALGEBRA 83A 6 EDITED BY T.M. FROM THE NOTES OF TOMI ALASTE SISÄLTÖ Sisältö Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus 3 Lineaarikuvaus 4 Ominaisarvo 34 5 Esimerkkejä 44 . Lineaariavaruus
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotKuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
LisätiedotLineaarialgebra (muut ko)
Lineaarialgebra (muut ko) p. 1/103 Lineaarialgebra (muut ko) Tero Laihonen Lineaarialgebra (muut ko) p. 2/103 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v
LisätiedotOrtogonaalisen kannan etsiminen
Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,
LisätiedotYleiset lineaarimuunnokset
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos
LisätiedotVastaavasti, jos vektori kerrotaan positiivisella reaaliluvulla λ, niin
1 / 14 Lukiossa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Tarkastellaan aluksi tason vektoreita (R 2 ). Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä
LisätiedotVektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
LisätiedotMatemaattinen Analyysi / kertaus
Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen
LisätiedotVektoreiden virittämä aliavaruus
Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden
LisätiedotKoodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3.5 Reedin-Mullerin koodit Olkoon tässä kappaleessa F = F2 = Z2 ja n = 2 m. Määritellään avaruuteen F n kertolasku koordinaateittain:
Lisätiedot1 Avaruuksien ja lineaarikuvausten suora summa
MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
LisätiedotKoodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3. Lineaariset koodit Topi Törmä Matemaattisten tieteiden laitos 2 / 22 3.1 Lineaarisen koodin määrittely Olkoon F äärellinen kunta.
LisätiedotMS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
LisätiedotKanta ja Kannan-vaihto
ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V
LisätiedotLineaarialgebra ja matriisilaskenta I. LM1, Kesä /218
Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.
Lisätiedotx = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
Lisätiedot2. REAALIKERTOIMISET VEKTORIAVARUUDET
30 REAALIKERTOIMISET VEKTORIAVARUUDET 1 Koordinaattiavaruus R n Olkoon n N = {1,, 3, } positiivinen kokonaisluku (luonnollisten lukujen joukko on tällä kurssilla N = {0, 1,, 3, }) Merkitään R n = R n 1
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
Lisätiedot6. OMINAISARVOT JA DIAGONALISOINTI
0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos
LisätiedotLineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi
Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO Syksy 2017 LINEAARIALGEBRA 1 / 59 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
Lisätiedot3 Skalaari ja vektori
3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,
LisätiedotAlkeismuunnokset matriisille, sivu 57
Lineaarialgebra (muut ko) p. 1/88 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna
LisätiedotLineaarista projektiivista geometriaa
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Iiris Repo Lineaarista projektiivista geometriaa Informaatiotieteiden yksikkö Matematiikka Marraskuu 2012 Tampereen yliopisto Informaatiotieteiden yksikkö REPO,
Lisätiedotx 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili
6 4 2 x 2 x 3 15 10 5 0 5 15 5 3 2 1 1 2 3 2 0 x 2 = 1 2x 1 0 4 x 2 = 3 x 1 x 5 2 5 x 1 10 x 1 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili Sisältö
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot
LisätiedotMat Lineaarinen ohjelmointi
Mat-2.340 Lieaarie ohjelmoiti 20.9.2007 Lueto 2 Lieaarialgebraa ja geometriaa (kirja.5, 2.) S ysteemiaalyysi Tekillie korkeakoulu Lieaarie ohjelmoiti - Syksy 2007 / Lieaarialgebraa Notaatiota Kääteismatriisi
LisätiedotMatemaattinen Analyysi, s2016, L2
Matemaattinen Analyysi, s2016, L2 riippumattomuus, 1 Esimerkkejä esimerkki Dieetti-välipala 1: Opiskelija Ken Obi on dieetillä. Lenkin jälkeen Ken pysähtyy välipalalle. Dieetin mukaan hänen pitäisi saada
Lisätiedot8 KANNAT JA ORTOGONAALISUUS. 8.1 Lineaarinen riippumattomuus. Vaasan yliopiston julkaisuja 151
Vaasan yliopiston julkaisuja 151 8 KANNAT JA ORTOGONAALISUUS KantaOrthogon Sec:LinIndep 8.1 Lineaarinen riippumattomuus Lineaarinen riippumattomuus on oikeastaan jo määritelty, mutta kirjoitamme määritelmät
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä
LisätiedotHY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 25. lokakuuta 2015 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus... 111 16 Aliavaruus... 117 16.1 Vektoreiden
LisätiedotMatriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Antti Rasila 2016 Ominaisarvot ja ominaisvektorit 1/5 Määritelmä Skalaari λ C on matriisin A C n n ominaisarvo ja vektori v C n sitä
Lisätiedot802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III
802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Contents 1 Lineaarikuvaus 2 1.1 Määritelmä............................ 2 1.2 Matriisiesitys/Matrix
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2019 LINEAARIALGEBRA 1 / 60 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
Lisätiedotx = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
Lisätiedot802320A LINEAARIALGEBRA OSA II/PART II
802320A LINEAARIALGEBRA OSA II/PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2019 LINEAARIALGEBRA 1 / 69 Sisätuloavaruus/Inner product space Määritelmä 1 Olkoon V reaalinen vektoriavaruus.
LisätiedotDiofantoksen yhtälön ratkaisut
Diofantoksen yhtälön ratkaisut Matias Mäkelä Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2017 Sisältö Johdanto 2 1 Suurin yhteinen tekijä 2 2 Eukleideen algoritmi 4 3 Diofantoksen yhtälön
Lisätiedot{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja
5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.
Lisätiedot2 Konveksisuus ja ratkaisun olemassaolo
2 Konveksisuus ja ratkaisun olemassaolo Ratkaisun olemassaolon tutkimiseen tarvitaan perustietoja konvekseista joukoista ja lineaarialgebrasta. Niitä tarvitaan myös ratkaisualgoritmin ymmärtämiseen. Tutkitaan
Lisätiedot802320A LINEAARIALGEBRA OSA II/PART II
802320A LINEAARIALGEBRA OSA II/PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 LINEAARIALGEBRA 1 / 67 Sisätuloavaruus/Inner product space Määritelmä 1 Olkoon V reaalinen vektoriavaruus.
Lisätiedot10. Toisen kertaluvun lineaariset differentiaaliyhtälöt
37. Toisen kertaluvun lineaariset differentiaalihtälöt Tarkastelemme muotoa () ( x) + a( x) ( x) + a( x) ( x) = b( x) olevia htälöitä, missä kerroinfunktiot ja oikea puoli ovat välillä I jatkuvia. Edellisen
LisätiedotSeuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117
Seuraava luento ti 31.10 on salissa XXII Lineaarialgebra (muut ko) p. 1/117 Lineaarialgebra (muut ko) p. 2/117 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Lotta Oinonen ja Johanna Rämö 6. joulukuuta 2012 Helsingin yliopisto Matematiikan ja tilastotieteen laitos 2012 Sisältö 1 Avaruus R n 4 1 Avaruuksien R 2 ja R 3 vektorit.....................
Lisätiedot802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I
802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 1 Contents 1 Lineaariavaruus eli Vektoriavaruus 3 1.1 Määritelmä ja esimerkkejä....................
Lisätiedot