Kuvaus. Määritelmä. LM2, Kesä /160

Koko: px
Aloita esitys sivulta:

Download "Kuvaus. Määritelmä. LM2, Kesä /160"

Transkriptio

1 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä f : X Y tarkoittaa, että f on kuvaus joukosta X joukkoon Y. Tässä X on kuvauksen f lähtö (eli määrittelyjoukko) ja Y on kuvauksen f maali. LM2, Kesä /160

2 Oletetaan, että x X. Sitä yksikäsitteistä joukon Y alkiota, jonka kuvaus f liittää alkioon x, merkitään f (x) ja kutsutaan alkion x kuva-alkioksi. X f Y x f(x) LM2, Kesä /160

3 Määritelmä Lineaarikuvaus Oletetaan, että V ja W ovat vektoriavaruuksia. Kuvaus L: V W on lineaarikuvaus, jos seuraavat ehdot pätevät kaikilla ū, v V ja c R: (a) L(ū + v) = L(ū) + L( v) (b) L(c v) = cl( v). Jos kuvaus L on lineaarikuvaus, voidaan myös sanoa, että L on lineaarinen. V L W ū v c v ū + v L(ū) L( v) L(c v) = cl( v) L(ū + v) = L(ū) + L( v) LM2, Kesä /160

4 Esimerkki 18 Tarkastellaan kuvausta f : R R, f (x) = 3x. Osoitetaan, että f on lineaarikuvaus. Lineaarikuvaus f(u + v) = f(u) + f(v) f(v) Oletetaan, että u, v R ja c R. Tällöin f(u) f (u + v) = 3(u + v) = 3u + 3v 2u u v u + v = f (u) + f (v) ja f (cv) = 3(cv) = c(3v) = cf (v). f( 2u) = 2f(u) LM2, Kesä /160

5 Esimerkki 19 Kuvaus, joka ei ole lineaarinen Tarkastellaan kuvausta g : R R, g(x) = x 3 2x + 1. Osoitetaan, että g ei ole lineaarikuvaus. Valitaan esimerkiksi u = 1 ja v = 2. Tällöin f (u + v) = f (1) = 0 mutta f (u) + f (v) = f ( 1) + f (2) = = 7. Siis f ( 1 + 2) f ( 1) + f (2), joten f ei ole lineaarikuvaus. LM2, Kesä /160

6 Lineaarikuvaus Esimerkki 20 Merkitään enintään ensimmäistä astetta olevien polynomien joukkoa P 1 = { a 1 x + a 0 a 1, a 0 R }. Osoitetaan, että kuvaus L: R 2 P 1, jolle L(a, b) = ax + b, on lineaarikuvaus. Oletetaan, että (a, b), (c, d) R 2 ja r R. Tällöin L((a, b) + (c, d)) = L(a + c, b + d) = (a + c)x + (b + d) = ax + b + cx + d = L(a, b) + L(c, d) ja L(r(a, b)) = L(ra, rb) = rax + rb = r(ax + b) = rl(a, b). LM2, Kesä /160

7 Matriisi määrää lineaarikuvauksen Lause 21 Oletetaan, että A on m n -matriisi. Matriisin A määräämä kuvaus L A : R n R m, L A ( v) = A v on lineaarikuvaus. (Tässä avaruuden R n alkiot tulkitaan sarakevektoreiksi eli n 1-matriiseiksi.) Todistus. Oletetaan, että v, w R n ja c R. Nyt matriisien laskutoimitusten ominaisuuksien perusteella L A ( v + w) = A( v + w) = A v + A w = L A ( v) + L A ( w) ja L A (c v) = A(c v) = ca v = cl A ( v). Siten L A on lineaarinen. LM2, Kesä /160

8 Esimerkki 22 Matriisi määrää lineaarikuvauksen Tarkastellaan kuvausta L: R 2 R 2, joka peilaa jokaisen pisteen vaaka-akselin suhteen: (1,2) (x 1, x 2 ) (1, 2) (x 1, x 2 ) Jos (x 1, x 2 ) R 2, niin L(x 1, x 2 ) = (x 1, x 2 ). LM2, Kesä /160

9 Tulkitsemalla avaruuden R 2 alkiot 2 1 -matriiseina saadaan [ ] [ ] [ ] [ ] [ ] [ ] x1 x x1 L = = x x 2 x 1 + x = x 2 Siis kuvaus L on matriisin A = [ ] määräämä kuvaus, jolla L( v) = A v kaikilla v R 2. Näin ollen L on lineaarinen lauseen 21 nojalla. LM2, Kesä /160

10 L L(1, 2) = (1,2) (x 1, x 2 ) L(x 1, x 2 ) = (x 1, x 2 ) (1, 2) LM2, Kesä /160

11 Esimerkki 23 Matriisi määrää lineaarikuvauksen Tutkitaan, millaisen lineaarikuvauksen antavat matriisit [ ] [ ] [ ] A =, B = ja C = Matriisista A saadaan kuvaus L A : R 2 R 2, L A ( v) = A v. Avaruuden R 2 vektori (x 1, x 2 ) kuvautuu vektoriksi (2x 1, x 2 ): L [ ] x1 x 2 [ ] [ ] [ ] 2 0 x1 2x1 = = 0 1 x 2 x 2 Tästä nähdään, että kuvaus L A venyttää vektoreita vaaka-akselin suunnassa. LM2, Kesä /160

12 L A LM2, Kesä /160

13 Matriisista B saadaan kuvaus L B : R 2 R 2, L B ( v) = B v. Avaruuden R 2 vektori (x 1, x 2 ) kuvautuu vektoriksi ( x 1, x 2 ): L [ ] x1 x 2 [ ] [ ] [ ] 1 0 x1 x1 = = 0 1 x 2 x 2 Tästä nähdään, että kuvaus L B peilaa vektorit pystyakselin suhteen. L B LM2, Kesä /160

14 Matriisista C saadaan kuvaus L C : R 2 R 2, L C ( v) = C v. Avaruuden R 2 vektori (x 1, x 2 ) kuvautuu vektoriksi ( x 2, x 1 ): L [ ] x1 x 2 [ ] [ ] [ ] 0 1 x1 x2 = = 1 0 x 2 x 1 Kuvaus L C kiertää vektoreita origon ympäri 90 vastapäivään eli positiiviseen kiertosuuntaan. L C LM2, Kesä /160

15 Voidaan osoittaa, että matriisin [ ] cos ϕ sin ϕ sin ϕ cos ϕ määräämä lineaarikuvaus kiertää vektoreita origon ympäri kulman ϕ verran (positiiviseen kiertosuuntaan, jos ϕ > 0, ja negatiiviseen kiertosuuntaan, jos ϕ < 0). Matriiisi C = [ ] on tällainen kiertomatriisi, jossa kulma ϕ = 90. LM2, Kesä /160

16 Lause 24 Lineaarikuvauksen ominaisuuksia Oletetaan, että L: V W on lineaarikuvaus. Tällöin L( 0 V ) = 0 W. Todistus. Kuvauksen L lineaarisuuden nojalla L( 0 V ) = L( 0 V + 0 V ) = L( 0 V ) + L( 0 V ). Lisätään tämän yhtälön molemmille puolille avaruuden W vektori L( 0 V ), jolloin saadaan L( 0 V ) L( 0 V ) = L( 0 V ) + L( 0 V ) L( 0 V ). Näin ollen 0 W = L( 0 V ). LM2, Kesä /160

17 Määritelmä Yhdistetty kuvaus Oletetaan, että f : X Y ja g : Y Z ovat kuvauksia. Yhdistetty kuvaus g f tarkoittaa kuvausta X Z, jolla (g f )(x) = g(f (x)) eli x g(f (x)). X f Y g Z y g(y) x f(x) g(f(x)) g f LM2, Kesä /160

18 Lineaarikuvausten ominaisuuksia Lause 25 Oletetaan, että L: U V ja T : V W ovat lineaarikuvauksia. Tällöin yhdistetty kuvaus T L: U W on lineaarinen. Todistus. Oletetaan, että ū 1, ū 2 U ja a R. Tarkistetaan lineaarikuvauksen määritelmän ehdot: (a) Yhdistetyn kuvauksen määritelmän, kuvauksen L lineaarisuuden ja kuvauksen T lineaarisuuden avulla saadaan (T L)(ū 1 + ū 2 ) = T (L(ū 1 + ū 2 )) = T (L(ū 1 ) + L(ū 2 )) = T (L(ū 1 )) + T (L(ū 2 )) = (T L)(ū 1 ) + (T L)(ū 2 ) LM2, Kesä /160

19 (b) Yhdistetyn kuvauksen määritelmän, kuvauksen L lineaarisuuden ja kuvauksen T lineaarisuuden avulla saadaan (T L)(aū 1 ) = T (L(aū 1 )) = T (al(ū 1 )) = at (L(ū 1 ))) = a(t L)(ū 1 ) LM2, Kesä /160

20 Matriisien määräämien lineaarikuvausten yhdistäminen Matriisien määräämillä lineaarikuvauksilla kuvausten yhdistäminen vastaa matriisien kertomista keskenään: Lause 26 Oletetaan, että A on m n -matriisi ja B on n p -matriisi. Tällöin L A L B = L AB eli tulomatriisin AB määräämä kuvaus L AB : R p R m on sama kuvaus kuin yhdistetty kuvaus L A L B : R p R m. LM2, Kesä /160

21 Lauseen 26 todistus. Oletetaan, että v R p. Tällöin matriisien laskusääntöjen mukaan L AB ( v) = (AB) v = A(B v) = L A (B v) = L A (L B ( v)) = (L A L B )( v). Siis L AB : R p R m ja L A L B : R p R m ovat sama kuvaus. LM2, Kesä /160

22 Määritelmä Osajoukon kuva Oletetaan, että X ja Y ovat joukkoja ja f : X Y on kuvaus. Osajoukon A X kuva kuvauksessa f on joukko Huom. f [A] = { y Y y = f (a) jollakin a A }. Kuva voidaan kirjoittaa lyhyesti myös muodossa X f Y fa = { f (a) a A }. Joukko on itsensä osajoukko: X X. A f A LM2, Kesä /160

23 Aliavaruuden kuva Esimerkki 27 Tarkastellaan esimerkin 22 lineaarikuvausta L: R 2 R 2, joka peilaa jokaisen pisteen vaaka-akselin suhteen: (1,2) (x 1, x 2 ) (1, 2) (x 1, x 2 ) LM2, Kesä /160

24 Osoitettiin, että kuvaus L on matriisin [ ] 1 0 A = 0 1 määräämä lineaarikuvaus, jolla L( v) = A v kaikilla v R 2. Olkoon w = (3, 1) ja W = span( w). Tällöin W on vektorin w virittämä aliavaruus; tarkemmin sanottuna origon kautta kulkeva suora: W = span( w) LM2, Kesä /160

25 Aliavaruuden W kuva on L[W ] = { ū R 2 ū = L( v) jollakin v W } = { ū R 2 ū = L( v) jollakin v span( w) } = { ū R 2 ū = L(t w) jollakin t R } = { L(t w) t R } = { tl( w) t R } = { t(3, 1) t R } = span ( (3, 1) ) L[W] = span ( (3, 1) ) LM2, Kesä /160

26 L W = span ( (3,1) ) L[W] = span ( (3, 1) ) LM2, Kesä /160

27 Lineaarikuvauksen ominaisuuksia Lineaarikuvauksesssa aliavaruudet kuvautuvat aliavaruuksiksi. Lause 28 Oletetaan, että L: V V on lineaarikuvaus. Jos W on avaruuden V aliavaruus, niin kuva L[W ] on avaruuden V aliavaruus. LM2, Kesä /160

28 Lauseen 28 todistus. Oletetaan, että W on avaruuden V aliavaruus. Osoitetaan, että kuva L[W ] on avaruuden V aliavaruus. Oletetaan, että u, w L[W ] ja a R. Tällöin on olemassa sellaiset u, w W, että L(u) = u ja L(w) = w. (a) Tutkitaan summaa u + w käyttäen hyväksi kuvauksen L lineaarisuutta: u + w = L(u) + L(w) = L(u + w), missä u + w W, koska W on aliavaruus ja u, w W. Siis u + w L[W ]. LM2, Kesä /160

29 (b) Tutkitaan skalaarimonikertaa au käyttäen hyväksi kuvauksen L lineaarisuutta: au = al(u) = L(au), missä au W, koska W on aliavaruus ja u W. Siis au L[W ]. (c) Koska W on aliavaruus, niin 0 V W. Koska L on lineaarikuvaus, niin L( 0 V ) = 0 V lauseen 24 nojalla. Siten 0 V L[W ]. LM2, Kesä /160

30 Lineaarikuvauksen ydin Määritelmä Oletetaan, että L: V W on lineaarikuvaus. Sen ydin on joukko Ker L = { v V L( v) = 0 W }. Huom. Ydin on aina joukko (ei koskaan pelkkä yksittäinen alkio). Ytimessä ovat ne vektorit, jotka kuvautuvat nollavektoriksi. Ydin ei ole koskaan tyhjä joukko, sillä nollavektori on aina ytimessä (lause 24). Ytimessä on siis ainakin yksi alkio, mahdollisesti useita alkioita. LM2, Kesä /160

31 Esimerkki 29 Lineaarikuvauksen ydin Tarkastellaan kuvausta L: R 2 R 2, joka projisoi jokaisen pisteen vaaka-akselille: (1,2) (1,0) (x 1,0) (x 1, x 2 ) Jos (x 1, x 2 ) R 2, niin L(x 1, x 2 ) = (x 1, 0). LM2, Kesä /160

32 Tulkitsemalla avaruuden R 2 alkiot 2 1 -matriiseina saadaan [ ] [ ] [ ] [ ] [ ] [ ] x1 x x1 L = = x x 0 2 = x 2 x 2 Siis kuvaus L on matriisin A = [ ] määräämä kuvaus, jolla L( v) = A v kaikilla v R 2. Näin ollen L on lineaarinen lauseen 21 nojalla. Määritetään lineaarikuvauksen L ydin. LM2, Kesä /160

33 Lineaarikuvauksen L: R 2 R 2 ydin on Ker L = { v R 2 L( v) = 0 } = { (v 1, v 2 ) R 2 (v 1, 0) = (0, 0) } = { (v 1, v 2 ) R 2 v 1 = 0 } = { (0, v 2 ) v 2 R } = { v 2 (0, 1) v 2 R } = span ( (0, 1) ). LM2, Kesä /160

34 Lineaarikuvauksen L ydin on siis vektorin j = (0, 1) virittämä aliavaruus, joka on origon kautta kulkeva, vektorin j suuntainen suora: L Ker L LM2, Kesä /160

35 Lineaarikuvauksen ydin Esimerkki 30 Määritetään esimerkin 20 lineaarikuvauksen L: R 2 P 1, (a, b) ax + b, ydin. Huom. Ker L = { v R 2 L( v) = 0 } = { (v 1, v 2 ) R 2 v 1 x + v 2 = 0x + 0 } = { (v 1, v 2 ) R 2 v 1 = 0 ja v 2 = 0 } = { (0, 0) } = { 0}. Vektoriavaruuden P 1 nollavektori on nollapolynomi, jonka kaikki kertoimet ovat nollia. Sitä voidaan merkitä lyhyesti 0 tai kuten edellä 0x + 0. LM2, Kesä /160

36 Lause 31 Lineaarikuvauksen ydin Oletetaan, että L: V V on lineaarikuvaus. Tällöin ydin Ker L on avaruuden V aliavaruus. Todistus. Ker L on määritelmänsä mukaan vektoriavaruuden V osajoukko. Oletetaan, että w, ū Ker L ja c R. Tällöin L( w) = 0 V ja L(ū) = 0 V. Tarkistetaan aliavaruuden määritelmän ehdot: (a) Kuvauksen L lineaarisuuden nojalla L( w + ū) = L( w) + L(ū) = 0 V + 0 V = 0 V, joten w + ū Ker L. (b) Vastaavasti L(c w) = cl( w) = c 0 V = 0 V ja siten c w Ker L. (c) Lauseen 24 nojalla L( 0 V ) = 0 V, joten 0 V Ker L. LM2, Kesä /160

37 Injektio Määritelmä Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on injektio, jos kaikilla a, b X yhtälöstä f (a) = f (b) seuraa, että a = b. Huom. Voidaan päätellä, että kuvaus on injektio, jos ja vain jos kaikilla lähdön alkioilla on eri kuva-alkiot. Injektiivisen kuvauksen tapauksessa maalin kullekin alkiolle kuvautuu korkeintaan yksi lähdön alkio. LM2, Kesä /160

38 Kuvaus g ei ole injektio: X g Y a b g(a) = g(b) LM2, Kesä /160

39 Injektio Kuvaus h on injektio: X h Y a = b h(a) = h(b) LM2, Kesä /160

40 Lineaarikuvauksen injektiivisyys Lause 32 Lineaarikuvaus L: V V on injektio, jos ja vain jos Ker L = { 0 V }. LM2, Kesä /160

41 Todistus. : Oletetaan, että L on injektio. Tiedetään, että L( 0 V ) = 0 V, joten 0 V Ker L. Injektiivisyyden nojalla mikään muu alkio ei voi kuvautua neutraalialkiolle, joten ytimessä on vain yksi alkio, 0 V. : Oletetaan, että Ker L = { 0 V }. Oletetaan lisäksi, että alkioille v, w V pätee L( v) = L( w). Lisäämällä yhtälön molemmille puolille vektori L( w) saadaan L( v) L( w) = 0 V. Koska L on lineaarikuvaus, seuraa tästä, että L( v w) = 0 V. Siis v w Ker L. Koska Ker L = { 0 V }, täytyy päteä v w = 0 V. Kun tämän yhtälön molemmille puolille lisätään vektori w, saadaan v = w. On siis osoitettu, että f on injektio. LM2, Kesä /160

42 Esimerkki 33 Lineaarikuvauksen injektiivisyys Esimerkin 29 lineaarikuvauksen L: R 2 R 2, (x 1, x 2 ) (x 1, 0) ydin on vektorin j = (0, 1) virittämä aliavaruus, joka on origon kautta kulkeva, vektorin j suuntainen suora: L Ker L Ker L { 0}, joten L ei ole injektio lauseen 32 nojalla. LM2, Kesä /160

43 Lineaarikuvauksen injektiivisyys Esimerkki 34 Esimerkin 30 lineaarikuvauksen L: R 2 P 1, (a, b) ax + b, ydin on Ker L = { 0}, missä 0 tarkoittaa nollavektoria 0 = (0, 0) R 2. Näin ollen L on injektio lauseen 32 nojalla. LM2, Kesä /160

44 Lineaarikuvauksen kuva Määritelmä Oletetaan, että L: V V on lineaarikuvaus. Lineaarikuvauksen L kuva on joukko Im L = { L( v) v V }. Huom. Lineaarikuvauksen kuva on erityistapaus aiemmin määritellystä osajoukon kuvan käsitteestä. Aiemman määritelmän merkinnöillä Im L = L[V ]. LM2, Kesä /160

45 Esimerkki 35 Lineaarikuvauksen kuva Tarkastellaan esimerkin 29 lineaarikuvausta L: R 2 R 2, (x 1, x 2 ) (x 1, 0), joka projisoi jokaisen pisteen vaaka-akselille: (1,2) (1,0) (x 1,0) (x 1, x 2 ) Määritetään lineaarikuvauksen L kuva. LM2, Kesä /160

46 Lineaarikuvauksen L: R 2 R 2 kuva on Im L = { L( v) v R 2 } = { (v 1, 0) R 2 (v 1, v 2 ) R 2 } = { (v 1, 0) R 2 v 1 R } = { v 1 (1, 0) v 1 R } = span ( (1, 0) ). LM2, Kesä /160

47 Lineaarikuvauksen L kuva on siis vektorin ī = (1, 0) virittämä aliavaruus, joka on origon kautta kulkeva, vektorin ī suuntainen suora: L Im L LM2, Kesä /160

48 Lineaarikuvauksen kuva Esimerkki 36 Määritetään esimerkin 20 lineaarikuvauksen L: R 2 P 1, (a, b) ax + b, kuva. Im L = { L( v) v R 2 } = { v 1 x + v 2 (v 1, v 2 ) R 2 } = { v 1 x + v 2 v 1, v 2 R } = P 1. LM2, Kesä /160

49 Lineaarikuvauksen kuva Lause 37 Oletetaan, että L: V V on lineaarikuvaus. Tällöin kuva Im L on avaruuden V aliavaruus. Todistus. Tämä seuraa lauseesta 28, jonka mukaan lineaarikuvauksessa aliavaruuden kuva on aina aliavaruus. Nimittäin V on itsensä aliavaruus ja Im L = L[V ]. LM2, Kesä /160

50 Surjektio Määritelmä Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on surjektio, jos jokaisella y Y on olemassa ainakin yksi sellainen x X, että f (x) = y. Huom. Voidaan päätellä, että kuvaus on surjektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu ainakin yksi lähdön alkio. Lineaarikuvaus L: V V on surjektio, jos ja vain jos Im L = V. LM2, Kesä /160

51 Kuvaus g ei ole surjektio: X g Y y g(x) kaikilla x X LM2, Kesä /160

52 Surjektio Kuvaus h on surjektio: X h Y LM2, Kesä /160

53 Esimerkki 38 Lineaarikuvauksen surjektiivisuus Esimerkin 35 lineaarikuvauksen L: R 2 R 2, (x 1, x 2 ) (x 1, 0) kuva on vektorin ī = (1, 0) virittämä aliavaruus, joka on origon kautta kulkeva, vektorin ī suuntainen suora: L Im L Im L R 2, joten L ei ole surjektio. LM2, Kesä /160

54 Lineaarikuvauksen surjektiivisuus Esimerkki 39 Esimerkin 36 lineaarikuvauksen L: R 2 P 1, (a, b) ax + b, kuva on Im L = P 1, joten L on surjektio. LM2, Kesä /160

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/310 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kantavektorien kuvavektorit määräävät lineaarikuvauksen Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa. LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,

Lisätiedot

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus. 1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

5.6 Yhdistetty kuvaus

5.6 Yhdistetty kuvaus 5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty

Lisätiedot

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden

Lisätiedot

2 / :03

2 / :03 file:///c:/users/joonas/desktop/linis II Syksy /Ratkaisuehdotukse / 8 76 3:3 Kysymys Pisteet,, Määritellään positiivisten reaalilukujen joukossa R + = {x R x > } yhteenlasku ja skalaarikertolasku seuraavasti:

Lisätiedot

4. LINEAARIKUVAUKSET

4. LINEAARIKUVAUKSET 86 4 LINEAARIKUVAUKSET 41 Määritelmä ja esimerkkejä Olkoot V ja V vektoriavaruuksia Tarkastellaan kuvausta L : V V Tällöin jokaiseen vektoriin v V liittyy tietty, L:n ja v:n yksikäsitteisesti määräämä

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.

Lisätiedot

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset 31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan

Lisätiedot

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2016 Harjoitus 3 Ratkaisut palautettava viimeistään maanantaina 29.8.2016 klo 13.15. Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella

Lisätiedot

Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei.

Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei. 5.5 Surjektio Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei. Määritelmä 5.5.1. Kuvaus f : X æ Y on surjektio, jos jokaisella

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista 29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Vektorien virittämä aliavaruus

Vektorien virittämä aliavaruus Vektorien virittämä aliavaruus Esimerkki 13 Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w kuuluu vektoreiden v 1 = (3, 2, 1), v 2 = (2, 2, 6) ja v 3 = (3, 4, 5) virittämään

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

JAKSO 2 KANTA JA KOORDINAATIT

JAKSO 2 KANTA JA KOORDINAATIT JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause

Lisätiedot

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66 Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/66 Lineaarialgebra (muut ko) p. 2/66 Redusoitu porrasmuoto 1 1 2 4 1 1 4 6 2 2 5 9 1 1 0 2 0 0 1 1 0 0 0 0 Eli aste r(a) = 2 ja vaakariviavaruuden

Lisätiedot

Avaruuden R n aliavaruus

Avaruuden R n aliavaruus Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

Sanomme, että kuvaus f : X Y on injektio, jos. x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2.

Sanomme, että kuvaus f : X Y on injektio, jos. x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2. Sanomme, että kuvaus f : X Y on injektio, jos x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2. Siis kuvaus on injektio, jos eri alkiot kuvautuvat eri alkioille eli maalijoukon jokainen alkio

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47 MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö

Lisätiedot

1 Avaruuksien ja lineaarikuvausten suora summa

1 Avaruuksien ja lineaarikuvausten suora summa MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v. Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

Matemaattinen Analyysi / kertaus

Matemaattinen Analyysi / kertaus Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Lotta Oinonen ja Johanna Rämö 6. joulukuuta 2012 Helsingin yliopisto Matematiikan ja tilastotieteen laitos 2012 Sisältö 1 Avaruus R n 4 1 Avaruuksien R 2 ja R 3 vektorit.....................

Lisätiedot

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio 6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.

Lisätiedot

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo. Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus

Lisätiedot

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x 8. Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme näiltä kahdella laskutoimituksella varustetuilta

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon

Lisätiedot

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218 Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Lineaarialgebra b, kevät 2019

Lineaarialgebra b, kevät 2019 Lineaarialgebra b, kevät 2019 Harjoitusta 4 Maplella with(linearalgebra); (1) Tehtävä 1. Lineaarisia funktioita? a) Asetelma on kelvollinen: lähtö- ja maalijoukko on R-kertoiminen lineaariavaruus ja L

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 / MS-A3/A5 Matriisilaskenta, II/27 MS-A3/A5 Matriisilaskenta Laskuharjoitus 3 / 3. 7..27 Tehtävä (L): Etsi kaikki yhtälön Ax = b ratkaisut, kun 3 5 4 A = 3 2 4 ja b = 6 8 7 4. Ratkaisu : Koetetaan ratkaista

Lisätiedot

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä) Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä

Lisätiedot

802320A LINEAARIALGEBRA OSA II

802320A LINEAARIALGEBRA OSA II 802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

Funktioista. Esimerkki 1

Funktioista. Esimerkki 1 Funktio eli kuvaus on matematiikan keskeisimpiä käsitteitä. Seuraavaksi tarkastellaan funktioita ja todistetaan niiden ominaisuuksia. Määritelmä 1 Olkoot A ja B. Kuvaus eli funktio f : A B on sääntö, joka

Lisätiedot

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa

Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2018 Harjoitus 2 Ratkaisuehdotukset Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa määritelty kuvaus B(0, 1) := x R 2 : x

Lisätiedot

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Lineaarikuvaukset Lineaarikuvaus Olkoot U ja V

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Algebra I, Harjoitus 6, , Ratkaisut

Algebra I, Harjoitus 6, , Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut (MV 6 sivua 1. Olkoot M ja M multiplikatiivisia monoideja. Kuvaus f : M M on monoidihomomorfismi jos 1 f(ab = f(af(b

Lisätiedot

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja 5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.

Lisätiedot

Matriisialgebra harjoitukset, syksy 2016

Matriisialgebra harjoitukset, syksy 2016 MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 7 Onko kuvaus F : R R, F(x 1,x = (x 1 +x,5x 1, x 1 +6x lineaarinen kuvaus? Jos on, niin määrää sen matriisi luonnollisen kannan suhteen Jos ei ole, niin

Lisätiedot

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita?

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita? Matematiikkaa kaikille, kesä 2017 Avoin yliopisto Luentojen 2,4 ja 6 tehtäviä Päivittyy kurssin aikana 1. Olkoon A = {0, 1, 2}, B = {1, 2, 3} ja C = {2, 3, 4}. Luettele joukkojen A B, A B, A B ja (A B)

Lisätiedot

Lineaarikuvauksista ja niiden geometrisesta tulkinnasta

Lineaarikuvauksista ja niiden geometrisesta tulkinnasta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Katri Syvänen Lineaarikuvauksista ja niiden geometrisesta tulkinnasta Matematiikan ja tilastotieteen laitos Matematiikka Tammikuu 2009 Tampereen yliopisto Matematiikan

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset 32 Idea: Lineaarikuvausten laskutoimitusten avulla määritellään vastaavat matriisien laskutoimitukset Vakiolla kertominen ja summa Olkoon t R ja A, B R n m Silloin ta, A + B R n m ja määritellään ta ta

Lisätiedot

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)

Lisätiedot

Kanta ja dimensio 1 / 23

Kanta ja dimensio 1 / 23 1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 25. lokakuuta 2015 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus... 111 16 Aliavaruus... 117 16.1 Vektoreiden

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Esko Turunen Luku 3. Ryhmät

Esko Turunen Luku 3. Ryhmät 3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

6. OMINAISARVOT JA DIAGONALISOINTI

6. OMINAISARVOT JA DIAGONALISOINTI 0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

Lineaarista projektiivista geometriaa

Lineaarista projektiivista geometriaa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Iiris Repo Lineaarista projektiivista geometriaa Informaatiotieteiden yksikkö Matematiikka Marraskuu 2012 Tampereen yliopisto Informaatiotieteiden yksikkö REPO,

Lisätiedot

9 Matriisit. 9.1 Matriisien laskutoimituksia

9 Matriisit. 9.1 Matriisien laskutoimituksia 9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä

Lisätiedot

Alkeismuunnokset matriisille, sivu 57

Alkeismuunnokset matriisille, sivu 57 Lineaarialgebra (muut ko) p. 1/88 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna

Lisätiedot

Laskutoimitusten operaattorinormeista

Laskutoimitusten operaattorinormeista Laskutoimitusten operaattorinormeista Rami Luisto 27. tammikuuta 2012 Tiivistelmä Tässä kirjoitelmassa määrittelemme vektoriavaruuksien väliselle lineaarikuvaukselle normin ja laskemme sen eksplisiittisesti

Lisätiedot