Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.

Koko: px
Aloita esitys sivulta:

Download "Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus."

Transkriptio

1 1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä: Lineaarikuvaus, Lineaarinen kuvaus. Huomautus 1. Lineaarikuvauksen argumentin ympäriltä jätetään usein sulut pois eli voidaan käyttää merkintää Lv := L(v). Lemma 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen joss aina, kun v, w V ja α, β K. Merkintä 1. Olkoot V ja W vektoriavaruuksia. Identtinen kuvaus Nollakuvaus (nollafunktio) L(αv + βw) = αlv + βlw (1) Id : V V, Id(v) = v v V. 0 : V W, 0(v) = 0 v V. 1

2 Esimerkki 1. Identtinen kuvaus ja nollakuvaus ovat lineaarisia kuvauksia. Esimerkki 2. Kuvaus L : R 2 R 2, on lineaarinen. Nimittäin, L(x) = 3 x, x R 2, (2) L(x + y) = 3 (x + y) = 3 x + 3 y = Lx + Ly; (3) L(rx) = 3 (r x) = r (3 x) = r Lx, (4) aina, kun x, y R 2 ja r R. Tiedetään, että R 1 on lineaariavaruus kunnan R yli. Tällöin voidaan tehdä samaistus R = R 1 (mieti vastaavaisuutta), jolloin reaaliluvuista R muodostuu lineaariavaruus kunnan R yli. Esimerkki 3. Kuvaus L : R R on lineaarinen jos ja vain jos on olemassa sellainen s R, että L(x) = sx (5) kaikilla x R. Todistus. : Oletetaan, että L on lineaarinen ja olkoon L(1) := s. Tällöin L(x) = L(x 1) = xl(1) = xs. (6) : Oletetaan, että Kotitehtävä: Osoita, että L on lineaarinen. 1.2 Matriisiesitys Merkintä 2. Merkintä L(x) = sx. (7) M h k (K) = {A A = [a ij ], i = 1,..., h; j = 1,..., k; a ij K} tarkoittaa h k-matriisien joukkoa. Siten, jos A M h k (K), niin matriisissa A = [a ij ] on h riviä ja k saraketta ja sen alkiot a ij K. 2

3 Merkintä 3. Tästä lähtien merkintä x viittaa pystyvektoriin x 1 x = (x 1,..., x n ) T =. x n joka voidaan tarvittaessa tulkita n 1-matriisiksi eli Yleisemmin: x 1 x =. Merkintä 4. Olkoon v = {v 1,..., v n } avaruuden V kanta. Koordinaattikuvaus [.] v kuvaa vektorin v kantaesityksen pystyvektoriksi eli matriisin sarakkeeksi seuraavasti n λ 1 [v] v = [ λ i v i ] v =.. (8) Koordinaattikuvaus on lineaarinen bijektio ja siten vektori ja sen koordinaateista muodostettu pystyvektori/sarake voidaan samaistaa. Lemma 2. Olkoon A M m n (R). Määritellään kuvaus asettamalla L A : R n x n R m kaikilla x R n, missä x tulkitaan n 1-matriisiksi. Tällöin kuvaus L A on lineaarinen. λ n v L A (x) = Ax (9) Tarkastellaan aluksi kertolaskua a 11 a a 1n x 1 a 21 a a 2n x 2 Ax =.. = a m1 a m2... a mn x n a 11 x 1 + a 12 x a 1n x n a 21 x 1 + a 22 x a 2n x n. Rm. (10) a m1 x 1 + a m2 x a mn x n 3

4 ja Nähdään, että m n-matriisilla kertominen todellakin indusoi kuvauksen x Ax; R n R m. Todistus. Osoitetaan, että kuvaus L A on lineaarinen. L A (x + y) = A(x + y) = Ax + Ay = L A (x) + L A (y), (11) L A (rx) = A(rx) = rax = rl A (x) (12) kaikilla x, y R n ja r R matriisitulon ominaisuuksien nojalla. Esimerkki 4. Olkoon L(x 1, x 2 ) = (x 1 + x 2, 2x 1 x 2 ) (x 1, x 2 ) R 2, (13) tällöin saadaan lineaarikuvaus L : R 2 R 2. Todistus. Kohta a. Lasketaan V.P. = L(x + y) = L(x 1 + y 1, x 2 + y 2 ) = ((x 1 + y 1 ) + (x 2 + y 2 ), 2(x 1 + y 1 ) (x 2 + y 2 )); O.P. = L(x) + L(y) = (x 1 + x 2, 2x 1 x 2 ) + (y 1 + y 2, 2y 1 y 2 ). Havaitaan, että V.P.=O.P. Kohta b. Kotitehtävä. Esimerkin 4 lineaarikuvausta L(x 1, x 2 ) = (x 1 + x 2, 2x 1 x 2 ) vastaa matriisiyhtälö eli [ ] [ ] [ ] 1 1 x1 x1 + x = x 2 2x 1 x 2 (14) [ ] x1 + x Ax = 2. (15) 2x 1 x 2 Pisteen x = (x [ 1,] x 2 ) kuva lineaarikuvauksessa [ ] L voidaan siis laskea kertomalla matriisi matriisilla A =. x x 2 4

5 1.3 Perustuloksia Lause 1. Olkoot V ja W vektoriavaruuksia sekä L : V W lineaarinen. Tällöin L(0) = 0 (16) ja ( k ) L λ i v i = k λ i L(v i ) (17) kaikilla k Z +, λ 1,..., λ k K ja v 1..., v k V. Lause 2. Olkoot V ja W vektoriavaruuksia kunnan K yli ja T, L : V W lineaarikuvauksia ja S avaruuden V kanta. Tällöin T = L jos ja vain jos T s = Ls kaikilla s S. Muistetaan, että T = L T v = Lv v V. (18) Siten, jos T = L, niin T s = Ls kaikilla s S. : Todistetaan tapaus: dim V = n <. Olkoon S = {s 1,..., s n }, jolloin V = s 1,..., s n. Oletetaan, että T s = Ls kaikilla s S. Nyt ( n ) ( n n n ) T v = T λ i s i = λ i T (s i ) = λ i L(s i ) = L λ i s i = Lv. (19) Lause 3. Olkoot V, W ja U vektoriavaruuksia sekä L : V W ja S : W U lineaarikuvauksia. Tällöin (a) yhdistetty kuvaus S L : V U on lineaarinen; (b) jos L on bijektio, niin L 1 : W V on lineaarinen. 5

6 Todistus. Kohta b: Koska L : V W on bijektio, niin L 1 : W V ja LL 1 = L 1 L = Id. Olkoot w 1, w 2 W, tällöin sellaiset v 1, v 2 V, että w 1 = Lv 1, w 2 = Lv 1. Siispä L 1 (w 1 + w 2 ) = L 1 (Lv 1 + Lv 2 ) = L 1 L(v 1 + v 2 ) = v 1 + v 2 = L 1 w 1 + L 1 w 2 ; L 1 (λw) = L 1 (λlv) = L 1 L(λv) = λv = λl 1 w. 1.4 Ker ja Im Määritelmä 2. Olkoot V ja W vektoriavaruuksia sekä L : V W lineaarinen. Kuvauksen L kernel on joukko ja image on joukko Ker L = {v V Lv = 0} Im L = {w W w = Lv jollakin v V }. Terminologiaa: Kernel eli ydin eli nollan alkukuva; Image eli kuvajoukko eli arvojoukko Esimerkki 5. Lasketaan Esimerkin 4 lineaarikuvauksen L : R 2 R 2 L(x 1, x 2 ) = (x 1 + x 2, 2x 1 x 2 ) (x 1, x 2 ) R 2, (20) kernel ja image. missä Kernel: x Ker L Lx = 0 Ax = 0 (21) A = [ ] 1 1, det A = 3 0. (22) 2 1 6

7 Siten x = A 1 0 = 0, joten Ker L = {0}. (23) Image: Valitaan maaliavaruudesta mielivaltainen alkio y R 2 ja yritetään hakea sille alkukuva x lähtöavaruudesta R 2. Asetetaan yhtälö Lx = y Ax = y x = A 1 y (24) Siten löydettiin lähtöavaruuden alkio x = A 1 y R 2 (y:n alkukuva) eli alkio jolle pätee Lx = y. (25) Havaitaan, että Im L = R 2. (26) Esimerkki 6. Kuvaus L : R 3 R 2, L(x, y, z) = (x, y + z) on lineaarinen. Määrätään sen ydin ja arvojoukko. Nyt (x, y, z) Ker L (27) (0, 0) = L(x, y, z) = (x, y + z) (28) x = 0, z = y R. (29) Siis y on vapaa parametri, jolloin Ker L = {(0, y, y) R 3 : y R} = (0, 1, 1) ; (30) dim Ker L = 1. (31) Olkoon b = (b 1, b 2 ) R 2 ja asetetaan L(x, y, z) = (x, y + z) = (b 1, b 2 ) { x = b 1 y + z = b 2. (32) Valitsemalla x = b 1, y = b 2 ja z = 0 saadaan L(b 1, b 2, 0) = (b 1, b 2 ) eli jokaisella R 2 :n pisteellä on alkukuva. Arvojoukoksi tulee Im L = R 2. (33) 7

8 Lause 4. Olkoot V ja W vektoriavaruuksia, V V ja W W aliavaruuksia ja L : V W lineaarikuvaus. Tällöin ovat aliavaruuksia. Erityisesti ovat aliavaruuksia ja L 1 (W ) V ja L(V ) W (34) Ker L V ja Im L W (35) dim Ker L dim V, dim Im L dim W. (36) Todistetaan, että Ker L on V :n aliavaruus. AA1. Koska L(0) = 0, niin 0 Ker L ja siten Ker L. AA2. Olkoot x 1, x 2 Ker L. Lasketaan L(x 1 + x 2 ) = Lx 1 + Lx 2 = = 0, (37) joten x 1 + x 2 Ker L. AA3. Olkoot k K ja x Ker L. Lasketaan joten k x Ker L. L(k x) = k Lx = k 0 = 0, (38) Lause 5. Olkoot V ja W vektoriavaruuksia sekä L : V W lineaarikuvaus. Tällöin L on injektio jos ja vain jos Ker L = {0}. Todistus. : Olkoon L injektio. Valitaan x Ker L, tällöin Lx = 0 = L0. Siten x = 0 ja edelleen Ker L = {0}. : Olkoon Ker L = {0}. Asetetaan Lx = Ly. Tällöin L(x y) = 0, joten x y Ker L = {0} x y = 0 x = y. 8

9 1.5 Dimensiolause Lause 6 (Dimensiolause). Olkoot V äärellisulotteinen vektoriavaruus, W vektoriavaruus ja L : V W lineaarinen. Tällöin Todistus. Olkoot dim V = dim Ker L + dim Im L. (39) dim V = n, dim Ker L = k, Ker L = v 1,..., v k. Täydennetään lista v 1,..., v k avaruuden V :n kannaksi, jolloin Määrätään kuva-avaruus V = v 1,..., v k, v k+1,..., v n, v k+1,..., v n / Ker L. Im L = L( v 1,..., v n ) = {L(a 1 v a n v n ) a 1,..., a n K} = {a 1 Lv a n Lv n a 1,..., a n K} = {a k+1 Lv k a n Lv n a 1,..., a n K}. Osoitetaan vielä, että {Lv k+1,..., Lv n } on lineaarisesti vapaa. Asetetaan lineaarikombinaatio nollaksi a k+1 Lv k a n Lv n = 0 L(a k+1 v k a n v n ) = 0 a k+1 v k a n v n Ker L a k+1 v k a n v n = b 1 v b k v k b 1 v b k v k + ( a k+1 )v k ( a n )v n = 0. Kantana joukko {v 1,..., v k, v k+1,..., v n } on lineaarisesti vapaa, joten b 1 =... = b k = a k+1 =... = a n = 0. Siten {Lv k+1,..., Lv n } on lineaarisesti vapaa ja kuva-avaruuden dimensioksi saadaan dim Im L = n k. Seuraus 1. Olkoot V ja W vektoriavaruuksia siten, että V on äärellisulotteinen, ja L : V W lineaarinen. Tällöin seuraavat väitteet ovat tosia: (a) Jos L on injektio, niin dim V dim W. 9

10 (b) Jos L on surjektio, niin dim V dim W. (c) Jos L on bijektio, niin dim V = dim W. Todistus. Aluksi k := dim Ker L n := dim V, n k = dim Im L dim W. a) kohta. Nyt Ker L = {0}, joten b) kohta. Nyt Im L = W, joten c) kohta seuraa kohdista a+b. k = 0 n k = n dim W. n k = m := dim W n = m + k m. dim W n dim W. Seuraus 2. Olkoot V ja W äärellisulotteisia vektoriavaruuksia siten, että niiden dimensiot ovat samat, ja olkoon L : V W lineaarinen. Tällöin seuraavat väitteet ovat yhtäpitäviä: (a) L on bijektio. (b) L on injektio. (c) L on surjektio. Esimerkki 7. Kuvaus L : R 3 R 2, L(x, y, z) = (y z, x z), on lineaarinen. Määrätään kuvauksen L ydin: y = z L(x, y, z) = 0 (y z, x z) = (0, 0) x = z z R. Siis Ker L = {(x, y, z) R 3 : x = y = z, z R} = {s(1, 1, 1) : s R} = (1, 1, 1), joten dim Ker L = 1. Erityisesti Ker L {0}, joten L ei ole injektio. Dimensiolauseen nojalla 3 = 1 + dim Im L, joten dim Im L = 2 = dim R 2. Siten Im L = R 2 eli L on surjektio. 10

11 Esimerkki 8. Tarkastellaan derivaattakuvausta D : Pol n (R, R) Pol n (R, R). Koska Dp = p = 0 jos ja vain jos p(x) = c kaikilla x R jollekin c R (eli p on vakiopolynomi), niin Ker D = 1. Näin ollen dim Ker D = 1. Dimensiolauseen nojalla dim P ol n (R, R) = n + 1 = 1 + dim Im D, joten dim Im D = n < dim P ol n (R, R). Näin ollen D ei ole surjektio. 1.6 Kannanvaihtomatriisit Merkintä 5. Olkoon v = {v 1,..., v n } avaruuden V kanta. Koordinaattikuvaus [.] v kuvaa vektorin v kantaesityksen n λ iv i pystyvektoriksi eli matriisin sarakkeeksi seuraavasti n λ 1 [v] v = [ λ i v i ] v =.. (40) Koordinaattikuvaus on lineaarinen bijektio ja siten vektori ja sen koordinaateista muodostettu pystyvektori/sarake voidaan samaistaa. Esimerkki 9. λ n 1 [v 1 ] v = [1 v v v n ] v = 0. 0 v v (41) Olkoot V ja W vektoriavaruuksia kunnan K yli, missä v = {v 1,..., v n } on avaruuden V kanta ja w = {w 1,..., w m } on avaruuden W kanta. Olkoon L : V W lineaarikuvaus, jolle kantavektoreitten v 1,..., v n kuvat kannassa w = {w 1,..., w m } ovat Lv 1 =a 11 w a m1 w m,... Lv n =a 1n w a mn w m eli [Lv 1 ] w = a 11 a 21. a m1 w, [Lv 2 ] w = a 12 a 22. a m2 w,..., [Lv n ] w = a 1n a 2n. a mn w. (42) 11

12 Merkitään a 11 a a 1n a 21 a a 2n [L] v,w = [[Lv 1 ] w, [Lv 2 ] w,..., [Lv n ] w ] =. a m1 a m2... a mn m n, (43) missä sarakkeina ovat kantavektoreitten v 1,..., v n kuvien Lv 1,..., Lv n koordinaattivektorit kannassa w 1,..., w n. Määritelmä 3. Matriisi [L] v,w on lineaarikuvauksen L matriisi kantojen v ja w suhteen. Lause 7. Olkoot V ja W vektoriavaruuksia kunnan K yli, missä v = {v 1,..., v n } on avaruuden V kanta ja w = {w 1,..., w m } on avaruuden W kanta. Olkoon L : V W lineaarikuvaus, jonka matriisi kantojen v ja w suhteen on [L] v,w = [a ij ]. Tällöin [a ij ] on se yksikäsitteinen m n-matriisi, jonka avulla kuvauksen L arvo Lv = m j=1 µ jw j pisteessä v = n λ iv i saadaan matriisikertolaskuna [L] v,w [v] v = [Lv] w (44) eli a a 1n λ 1 µ 1.. =. a m1... a mn λ n Todistus. Lasketaan lineaarikuvauksena Lv =L(λ 1,..., λ n ) = n n L( λ i v i ) = λ i Lv i = λ 1 (a 11 w a m1 w m ) λ n (a 1n w a mn w m ) = v µ m (a 11 λ a 1n λ n )w (a m1 λ a mn λ n )w m = (a 11 λ a 1n λ n,..., a m1 λ a mn λ n ) = (µ 1,..., µ m ) w (45) 12

13 ja matriiseilla a 11 a a 1n λ 1 a 21 a a 2n λ 2 [L] v,w [v] v =.. a m1 a m2... a mn λ n a 11 λ a 1n λ n. a m1 λ a mn λ n w µ 1 =. µ m w v = [Lv] w. = (46) Lineaarikuvausta vastaa yksikäsitteinen matriisi ja matriisin avulla voidaan määritellä lineaarikuvaus. On siis olemassa bijektio kaikkien lineaaristen kuvauksien L : V W ja kaikkien m n-matriisien välillä. Esimerkki 10. Olkoot V = W = R 2, e = {e 1, e 2 } V ja f = {f 1 = e 1 +e 2, f 2 = e 1 e 2 } W. Tarkastellaan lineaarikuvausta L : V W, joka kuvaa kantavektorit e 1, e 2 kuvavektoreiksi [ ] 0 Le 1 = e 1 + e 2 = 0 f 1 + ( 1) f 2 = ; 1 [ ] f (47) 1 Le 2 = e 1 + e 2 = 1 f 1 + f 2 =. 0 Tällöin L:n matriisi kantojen e ja f suhteen on [ ] 0 1 [L] e,f = [[Le 1 ] f, [Le 2 ] f ] =, (48) missä sarakkeina ovat kantavektoreitten e 1, e 2 kuvien Le 1, Le 2 koordinaattivektorit kannassa f 1, f Esimerkkejä Esimerkki 11. Määritellään lineaarikuvaus L : R 3 R 3, asettamalla L(x, y, z) = (z y, x z + y, x) aina, kun (x, y, z) R f

14 1. Määrää Ker L. 2. Onko L injektio? 3. Määrää dim Ker L. 4. Määrää dim Im L (käytä dimensiokaavaa). 5. Onko L surjektio? 6. Onko L bijektio? 7. Määrää Im L. 1. Ker L. Ratkaisu: Asetetaan Lx =0 (49) (z y, x z + y, x) = (0, 0, 0) (50) z y = x z + y = x = 0 x = 0, z = y (51) x = (0, y, y) (52) Ker L = {x R 3 Lx = 0} = (53) {(0, y, y) y R} = (0, 1, 1) R. (54) 2. Injektio? EI, koska 3. Ker L {0}. (55) dim Ker L = 1. (56) 4. Dimensiokaavalla (39): dim V = dim Ker L + dim Im L 3 = 1 + dim Im L. (57) Siten dim Im L = 2. (58) 5. EI ole surjektio, koska dim Im L = 2 ja maaliavaruuden R 3 dimensio=3. 6.EI ole bijektio. 14

15 7. Im L. Lx =(z y, x z + y, x) = (z y)e 1 + (x z + y)e 2 + xe 3 = (z y)e 1 + ( z + y)e 2 + x(e 2 + e 3 ) = (z y)(e 1 e 2 ) + x(e 2 + e 3 ), joten Im L ={Lx x = (x, y, z) R 3 } = {(z y)(e 1 e 2 ) + x(e 2 + e 3 ) x, y, z R} = {t(e 1 e 2 ) + x(e 2 + e 3 ) x, t R} = e 1 e 2, e 2 + e 3 R, missä e 1 e 2 ja e 2 + e 3 ovat lineaarisesti vapaita. Tästäkin voidaan päätellä, että L ei ole surjektio sekä dim Im L = 2. Esimerkki 12. Jatketaan lineaarikuvauksen L : R 3 R 3, L(x, y, z) = (z y, x z +y, x) tarkastelua. Määrää L:n matriisi 1. A 1 = [L] e,e luonnollisen kannan e = E 3 = {e 1, e 2, e 3 } R 3 suhteen. 2. A 2 = [L] f,f kannan f = {f 1 = e 1 +e 2, f 2 = e 2 +e 3, f 3 = e 3 +e 1 } suhteen. 3. A 3 = [L] e,f. 4. A 4 = [L] f,e. 5. Laske determinantit det A 1 ja det A 2. Lasketaan kantavektoreitten e 1, e 2, e 3 kuvat: Le 1 =L(1, 0, 0) = (0, 1, 1) = e 2 + e 3 = f 2 ; Le 2 =L(0, 1, 0) = ( 1, 1, 0) = e 1 + e 2 = f 2 f 3 ; Le 3 =L(0, 0, 1) = (1, 1, 0) = e 1 e 2 = f 2 + f 3. Joista saadaan A 1 = [L] e,e = [[Le 1 ] e, [Le 2 ] e, [Le 3 ] e ] = (59) 15

16 ja A 3 = [L] e,f = [[Le 1 ] f, [Le 2 ] f, [Le 3 ] f ] = Lasketaan kantavektoreitten f 1, f 2, f 3 kuvat: Lf 1 =L(e 1 ) + L(e 2 ) = e 1 + 2e 2 + e 3 = 2f 2 f 3 ; Lf 2 =L(e 2 ) + L(e 3 ) = 0 e e e 3 = 0 f f f 3 ; Lf 3 =L(e 3 ) + L(e 1 ) = e 1 + e 3 = f 3 ; 3 3 (60) Joista saadaan A 2 = [L] f,f = [[Lf 1 ] f, [Lf 2 ] f, [Lf 3 ] f ] = ja Esimerkki A 4 = [L] f,e = [[Lf 1 ] e, [Lf 2 ] e, [Lf 3 ] e ] = (61) (62) Kotitehtävä 34. Olkoon V reaalinen sisätuloavaruus, dim K V = k Z + ja n V annettu. Määritellään kuvaus L : V R, asettamalla aina, kun x V. 1. Osoita, että kuvaus L on lineaarinen. 2. Määrää dim Im L. 3. Määrää dim Ker L. Ratkaisu. Tapaus n {0}. L(x) = n x (63) Lineaarikuvauksen maaliavaruus on R, jolla on vain triviaalit aliavaruudet. Lisäksi dim R = 1. Koska L(n) = n n > 0, Im L {0} (64) 16

17 niin Im L = R, dim Im L = 1. (65) Edelleen dimensiokaavalla (39): dim V = dim Ker L + dim Im L k = dim Ker L + 1. (66) Siten dim Ker L = k 1. (67) Hypertaso onkin Kernel Siispä Ker L eli joukko N := {x V n x = 0} (68) on hypertaso. 17

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

LINEAARIALGEBRA A 2016 TOMI ALASTE EDITED BY T.M. FROM THE NOTES OF

LINEAARIALGEBRA A 2016 TOMI ALASTE EDITED BY T.M. FROM THE NOTES OF LINEAARIALGEBRA 83A 6 EDITED BY T.M. FROM THE NOTES OF TOMI ALASTE SISÄLTÖ Sisältö Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus 3 Lineaarikuvaus 4 Ominaisarvo 34 5 Esimerkkejä 44 . Lineaariavaruus

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus Lineaarikuvaus Ominaisarvo 0-68

pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus Lineaarikuvaus Ominaisarvo 0-68 SISÄLTÖ Sisältö pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus 0-1 2 Sisätuloavaruus 0-20 3 Lineaarikuvaus 0-41 4 Ominaisarvo 0-68 5 Esimerkkejä 0-88 1. Lineaariavaruus eli V 1 Lineaariavaruus

Lisätiedot

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kantavektorien kuvavektorit määräävät lineaarikuvauksen Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin

Lisätiedot

Lineaarialgebra II P

Lineaarialgebra II P Lineaarialgebra II 89P Sisältö Vektoriavaruus Sisätuloavaruus 8 3 Lineaarikuvaus 5 4 Ominaisarvo 5 Luku Vektoriavaruus Määritelmä.. Epätyhjä joukko V on vektoriavaruus, jos seuraavat ehdot ovat voimassa:.

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Lineaarikuvaukset Lineaarikuvaus Olkoot U ja V

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus

Lisätiedot

4. LINEAARIKUVAUKSET

4. LINEAARIKUVAUKSET 86 4 LINEAARIKUVAUKSET 41 Määritelmä ja esimerkkejä Olkoot V ja V vektoriavaruuksia Tarkastellaan kuvausta L : V V Tällöin jokaiseen vektoriin v V liittyy tietty, L:n ja v:n yksikäsitteisesti määräämä

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

Alkeismuunnokset matriisille, sivu 57

Alkeismuunnokset matriisille, sivu 57 Lineaarialgebra (muut ko) p. 1/88 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/310 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden

Lisätiedot

2.8. Kannanvaihto R n :ssä

2.8. Kannanvaihto R n :ssä 28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja 5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

6. OMINAISARVOT JA DIAGONALISOINTI

6. OMINAISARVOT JA DIAGONALISOINTI 0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos

Lisätiedot

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista 29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Matriisialgebra harjoitukset, syksy 2016

Matriisialgebra harjoitukset, syksy 2016 MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 7 Onko kuvaus F : R R, F(x 1,x = (x 1 +x,5x 1, x 1 +6x lineaarinen kuvaus? Jos on, niin määrää sen matriisi luonnollisen kannan suhteen Jos ei ole, niin

Lisätiedot

Esko Turunen Luku 3. Ryhmät

Esko Turunen Luku 3. Ryhmät 3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

1 Avaruuksien ja lineaarikuvausten suora summa

1 Avaruuksien ja lineaarikuvausten suora summa MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3. Lineaariset koodit Topi Törmä Matemaattisten tieteiden laitos 2 / 22 3.1 Lineaarisen koodin määrittely Olkoon F äärellinen kunta.

Lisätiedot

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2016 Harjoitus 3 Ratkaisut palautettava viimeistään maanantaina 29.8.2016 klo 13.15. Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä

Lisätiedot

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162 Tällä viikolla viimeiset luennot ja demot Lineaarialgebra (muut ko) p. 1/162 Lineaarialgebra (muut ko) p. 2/162 Kertausta Vektorin u = (u 1,u 2 ) R 2 pituus u = u 2 1 +u2 2 Vektorien u ja v = (v 1,v 2

Lisätiedot

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä 4. Ryhmät Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoimitukselta oletamme muutamia yksinkertaisia ominaisuuksia: Määritelmä 4.1. Laskutoimituksella varustettu joukko

Lisätiedot

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin

Lisätiedot

2 / :03

2 / :03 file:///c:/users/joonas/desktop/linis II Syksy /Ratkaisuehdotukse / 8 76 3:3 Kysymys Pisteet,, Määritellään positiivisten reaalilukujen joukossa R + = {x R x > } yhteenlasku ja skalaarikertolasku seuraavasti:

Lisätiedot

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on? Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

Lineaariset Lien ryhmät / Ratkaisut 6 D 381 klo

Lineaariset Lien ryhmät / Ratkaisut 6 D 381 klo JYVÄSKYLÄN YLIOPISO MAEMAIIKAN JA ILASOIEEEN LAIOS Lineaariset Lien ryhmät 27.2.2012 / t 6 D 381 klo. 16-18. 1. Matriisiryhmällä U(n) on epätriviaali normaali aliryhmä SU(n), joka on homomorfismin det

Lisätiedot

1 Tensoriavaruuksista..

1 Tensoriavaruuksista.. 1 Tensoriavaruuksista.. Käydään läpi kirjan (1) sivut 126-133. 19.02.2007 Palautetaaieleen viime kerran tärkeä määritelmä: (kirja, Määr. 5.12). Määritelmä 1.1 Olkoon T vektoriavaruus ja Φ : V 1 V 2 V m

Lisätiedot

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

Yleiset lineaarimuunnokset

Yleiset lineaarimuunnokset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Lineaarialgebra. Osa 2. Turun yliopisto. Markku Koppinen

Lineaarialgebra. Osa 2. Turun yliopisto. Markku Koppinen Lineaarialgebra Osa 2 Turun yliopisto Markku Koppinen Sisältö 1 Koordinaattivektorit ja kannan vaihdot 1 11 Koordinaattivektorit 1 12 Kannan vaihdot 2 2 Lineaarikuvaukset 6 21 Kuvauksista 6 22 Lineaarikuvaukset

Lisätiedot

Lineaarista projektiivista geometriaa

Lineaarista projektiivista geometriaa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Iiris Repo Lineaarista projektiivista geometriaa Informaatiotieteiden yksikkö Matematiikka Marraskuu 2012 Tampereen yliopisto Informaatiotieteiden yksikkö REPO,

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Ortogonaalinen ja ortonormaali kanta

Ortogonaalinen ja ortonormaali kanta Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

3.4 Käänteiskuvauslause ja implisiittifunktiolause

3.4 Käänteiskuvauslause ja implisiittifunktiolause 3.4 Käänteiskuvauslause ja implisiittifunktiolause Tässä luvussa käsitellään kahta keskeistä vektorianalyysin lausetta. Esitellään aluksi kyseiset lauseet ja tutustutaan niiden käyttötapoihin. Lause 3.4.1

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

1.1. Määritelmiä ja nimityksiä

1.1. Määritelmiä ja nimityksiä 1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x

Lisätiedot

LINEAARIALGEBRA P. LUENTOMONISTE ja HARJOITUSTEHTÄVÄT

LINEAARIALGEBRA P. LUENTOMONISTE ja HARJOITUSTEHTÄVÄT LINEAARIALGEBRA II 802119P LUENTOMONISTE ja HARJOITUSTEHTÄVÄT syksy 2008 30 V SISÄTULOAVARUUKSISTA 1. Sisätulon määritelmä Tarkastellaan sisätulon määrittelyä varten kompleksilukujen joukkoa C = {x + iy

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun

Lisätiedot

Laskutoimitusten operaattorinormeista

Laskutoimitusten operaattorinormeista Laskutoimitusten operaattorinormeista Rami Luisto 27. tammikuuta 2012 Tiivistelmä Tässä kirjoitelmassa määrittelemme vektoriavaruuksien väliselle lineaarikuvaukselle normin ja laskemme sen eksplisiittisesti

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:

Lisätiedot

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0 Tensorialgebroista Esitysteorian kesäopintopiiri, Turun yliopisto, 2012 Jyrki Lahtonen Olkoon k jokin skalaarikunta. Kerrataan k-algebran käsite: A on k-algebra, jos se on sekä rengas että vektoriavaruus

Lisätiedot

2. REAALIKERTOIMISET VEKTORIAVARUUDET

2. REAALIKERTOIMISET VEKTORIAVARUUDET 30 REAALIKERTOIMISET VEKTORIAVARUUDET 1 Koordinaattiavaruus R n Olkoon n N = {1,, 3, } positiivinen kokonaisluku (luonnollisten lukujen joukko on tällä kurssilla N = {0, 1,, 3, }) Merkitään R n = R n 1

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

3 Skalaari ja vektori

3 Skalaari ja vektori 3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 5.2 BCH-koodin dekoodaus Tarkastellaan t virhettä korjaavaa n-pituista BCH-koodia. Olkoon α primitiivinen n:s ykkösen juuri, c = c(x)

Lisätiedot

1. Lineaarinen yhtälöryhmä ja matriisi

1. Lineaarinen yhtälöryhmä ja matriisi I LINEAARISET YHTÄLÖRYHMÄT 1 Lineaarinen yhtälöryhmä ja matriisi Tällä kurssilla käytämme kirjainta K tarkoittamaan reaalilukuja R, kompleksilukuja C tai rationaalilukuja Q (aluksi K = R) Nämä lukujoukot

Lisätiedot

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218 Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.

Lisätiedot

Lineaarikuvauksista ja niiden geometrisesta tulkinnasta

Lineaarikuvauksista ja niiden geometrisesta tulkinnasta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Katri Syvänen Lineaarikuvauksista ja niiden geometrisesta tulkinnasta Matematiikan ja tilastotieteen laitos Matematiikka Tammikuu 2009 Tampereen yliopisto Matematiikan

Lisätiedot