Esimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt

Koko: px
Aloita esitys sivulta:

Download "Esimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt"

Transkriptio

1 Esimerkki 4.4. Määrää matriisin A = ominaisarvot ja -vektorit. Ratk. Nyt det(a λi ) = λ λ 1 λ 1 3 λ 1 = 1 3 λ λ λ 1 λ = 1 4 λ 1 = (1 λ)( 1)1+1 4 λ λ 6 3 λ = (1 λ)[(4 λ)(3 λ) 6] = (1 λ)(λ 2 7λ + 6). Esimerkki jatkoa Ominaisarvoille λ on det(a λi ) =, eli 1 λ = tai λ 2 7λ + 6 =. Matriisin A ominaisarvot ovat λ 1,2 = 1 ja λ 3 = 6.

2 Esimerkki jatkoa 2 A = Ominaisvektorit: Ominaisarvoa 6 vastaaville ominaisvektoreille x = (x 1, x 2, x 3 ) T : A x = 6 x. A x 6I x =, eli (A 6I ) x = x x 2 = x 3. Esimerkki jatkoa 3 Gauss:

3 Esimerkki Yhtälöryhmänä: { x 1 + 3x 2 + x 3 = 2x 2 + x 3 =, eli x 1 = x 2 ja x 3 = 2x 2. Ominaisarvoon 6 liittyvät ominaisvektorit: x 1 x 2 1 x = x 2 = x 2 = x 2 1, x 2. x 3 2x 2 2 Usein merkitään x = t( 1, 1, 2) T, t. Esimerkki... Ominaisarvoa 1 vastaaville ominaisvektoreille x = (x 1, x 2, x 3 ) T : A x = 1 x (A I ) x = x x 2 = x 3.

4 Esimerkki... Gauss: Vastaava yhtälöryhmä: x 1 2x 2 + x 3 =, eli x 1 = 2x 2 x 3 Ominaisarvoon 1 liittyvät ominaisvektorit: x 1 2x 2 x 3 2x 2 x 3 x = x 2 = x 3 x 2 x 3 = x 2 + x 3, 2 1 = x x 3 x 2 tai x 3 1 x = t(2, 1, ) T + s( 1,, 1) T, t tai s Karakteristinen polynomi ja yhtälö Olkoon A n n-matriisi. Silloin det(a λi ) on n-asteinen polynomi, det(a λi ) = ( 1) n λ n + a n 1 λ n a 1 λ + a = p A (λ). =matriisin A karakteristinen polynomi. Yhtälö det(a λi ) = on A:n karakteristinen yhtälö.

5 Matriisilla aina ominaisarvoja Algebran peruslause: n-asteisella polynomilla on n nollakohtaa (kompleksista tai reaalista), joista jotkut voivat olla useampikertaisia. Siis polynomilla p A (λ) on nollakohtia eli yhtälöllä det(a λi ) = on ratkaisuja. Matriisilla on aina ominaisarvoja. Lauseen 4.1. mukaan A:n ominaisarvot ovat karakterisen polynomin -kohdat. Esimerkki 4.4. jatkoa Edellä: A = Karakteristinen polynomi: det(a λi ) = (1 λ)(λ 2 7λ+6) = λ 3 +8λ 2 13λ+6 = p A (λ) Karakteristinen yhtälö: det(a λi ) =, eli λ 3 + 8λ 2 13λ + 6 =

6 Yksikkömatriisin ominaisarvot I :llä on n-kertainen ominaisarvo λ = 1, sillä yhtälön ainoa ratkaisu on λ = 1. det(i λi ) = (1 λ) n = Reaalinen matriisi ja ominaisarvon liittoluku Huom. Jos reaalisella matriisilla A on ei-reaalinen ominaisarvo λ ja x on sitä vastaava ominaisvektori, niin λ:n liittoluku λ on myös ominaisarvo ja x:n liittovektori x sitä vastaava ominaisvektori (osoita!). Perustelu....

7 Käänteismatriisin ominaisarvot A n n matriisi ja λ 1, λ 2,..., λ n kaikki A:n ominaisarvot. det(a λ i I ) = aina kun i = 1, 2,..., n Nyt A 1 on olemassa det A det(a I ) λ i kaikilla i = 1, 2,..., n. Jos A 1 on olemassa, ja λ on A:n ominaisarvo, niin silloin A x = λ x, jollakin x. Edelläolevan perusteella λ, joten silloin A 1 A x = A 1 λ x eli x = λa 1 x. Siis A 1 x = 1 λ x eli 1 λ on matriisin A 1 ominaisarvo ja x sitä vastaava ominaisvektori. Jatkoa On todistettu tulos: Lause 4.2. Matriisilla A on käänteismatriisi A 1 A:n jokainen ominaisarvo λ 1,..., λ n. A 1 :n ominaisarvot ovat 1 λ 1,..., 1 λ n.

8 Transponoidun matriisin ominaisarvot Lause 4.3. A:n ja A T :n ominaisarvot ovat samat. Todistus. λ on A:n ominaisarvo det(a λi ) = det(a λi ) T = det(a T λi ) = λ on A T :n ominaisarvo. Transponoidun matriisin ominaisvektorit Huom. Jos x on A:n λ:aan liittyvä ominaisvektori, niin x ei välttämättä ole A T :n λ:aan liittyvä ominaisvektori. Esimerkiksi matriisin A = ( ) ominaisarvoa λ = 1 vastaavat ominaisvektorit ovat x = t(, ( 1) T, ) t C, t, mutta A T 1 1 = :n ominaisarvoa λ = 1 vastaavat ominaisvektorit 1 ovat x = t(1, ) T, t C, t.

9 A n :n ominaisarvot A n n matriisi, λ matriisin A ominaisarvo ja x matriisin A ominaisarvoon λ liittyvä ominaisvektori. Silloin siis A x = λ x. 1) Nyt on Vastaavasti Yleisesti on siis A 2 x = Aλ x = λa x = λ 2 x A 3 x = AA 2 x = λ 2 A x = λ 3 x. A k x = λ k x ca:n ominaisarvot A n n matriisi, λ matriisin A ominaisarvo ja x matriisin A ominaisarvoon λ liittyvä ominaisvektori. A x = λ x. 2) Selvästi on c A x = c λ x 3) Edelläolevia tuloksia käyttäen on helppo nähdä, että (c m A m + c m 1 A m c 1 A + c I ) x = c m A m x + c m 1 A m 1 x + + c 1 A x + c I x = c m λ m x + c m 1 λ m 1 x + + c 1 λ x + c x = (c m λ m + c m 1 λ m c 1 λ + c ) x.

10 Jatkoa On todistettu seuraava tulos: Lause 4.4. Jos λ on A:n ominaisarvo ja x λ:aa vastaava ominaisvektori, niin 1) λ k on A k :n ominaisarvo ja x sitä vastaava ominaisvektori, 2) cλ on ca:n ominaisarvo ja x sitä vastaava ominaisvektori, 3) c m λ m + c m 1 λ m c 1 λ + c on (c m A m + c m 1 A m c 1 A + c I ):n ominaisarvo ja x sitä vastaava ominaisvektori. Yläkolmiomatriisin ominaisarvot Esimerkki 4.5. Määrää matriisin A = ominaisarvot. Ratk.... Koska yläkolmio- ja alakolmiomatriisin determinantti on lävistäjäalkioiden tulo, niin: Lause 4.5. Yläkolmiomatriisin (vast. alakolmiomatriisin) ominaisarvot ovat samat kuin lävistäjäalkiot.

11 Eri ominaisarvojen ominaisvektorit Lause 4.6. Jos A:lla on erisuuret ominaisarvot λ 1,..., λ r, niin niitä vastaavat ominaisvektorit x 1,..., x r ovat vapaita. Tod. Vastaoletus: Olkoon k r pienin sellainen kokonaisluku, että vektorijoukko { x 1,..., x k } sidottu. Olkoon Silloin on myös a i x i =. A( a i x i ) = a i A x i =. eli a i λ i x i =. Jatkoa Koska niin eli Siis λ k a i x i = λ k =, a i λ k x i a i λ i x i = = a i (λ k λ i ) x i =. k 1 (a i (λ k λ i ) x i ) + a k (λ k λ k ) x k =.

12 Jatkoa 2 Silloin on k 1 a i (λ k λ i ) x i = ja koska vektorijoukko {x 1, x 2,..., x k 1 } on vapaa, on oltava a 1 = a 2 = = a k 1 =. Sijoitetaan yhtälöön jolloin saadaan eli a k =. a i x i =, a k x k =, Siis vektorijoukko { x 1,..., x k } on vapaa, mikä on ristiriidassa oletuksen kanssa. Vapaat ominaisvektorit Huom. Vaikka A:n ominaisarvot λ 1,..., λ n eivät olisi erisuuria, niin A:lla voi kuitenkin olla n vapaata ominaisvektoria Esimerkki 2.4. : A = Ominaisarvot Vastaavat ominaisvektorit λ 1,2 = 1 λ 3 = 6 x = t(2, 1, ) T + s( 1,, 1) T t( 1, 1, 2) T Kaksi erisuurta ominaisarvoa 1 ja 6 3 vapaata ominaisvektoria: (2, 1, ) T, ( 1,, 1) T ja ( 1, 1, 2) T.

13 4.2 Matriisin diagonalisointi n n-matriisit A ja B ovat similaariset: On olemassa sellainen matriisi T (similariteettimuunnosmatriisi), että B = T 1 AT. Silloin det(b λi ) = det(t 1 AT T 1 λit ) = det[t 1 (A λi )T ] = det T 1 det(a λi ) det T = det(a λi ) Jos x on B:n ominaisarvoa λ vastaava ominaisvektori, niin A(T x) = T (T 1 AT ) x = T (B x) = T (λ x) = λ(t x) eli T x on A:n λ:aa vastaava ominaisvektori. Ominaisarvot ja -vektorit On todistettu: Lause 4.7. Jos A ja B ovat similaariset (B = T 1 AT ), niin niiden karakteristiset polynomit ovat samat, ominaisarvot ovat samat ja jos x on B:n ominaisvektori niin T x on A:n vastaava ominaisvektori. A:n similaarisuutta B:n kanssa voidaan käyttää hyväksi esim. seuraavasti: B = T 1 AT B 2 = (T 1 AT )(T 1 AT ) = T 1 ATT 1 AT = T 1 A 2 T B 3 = B 2 B = (T 1 A 2 T )(T 1 AT ) = T 1 A 3 T B k = T 1 A k T, k = 1, 2,.... TB k = A k T A k = TB k T 1, k = 1, 2,....

14 A k = TB k T 1 Jos B on diagonaalimatriisi (lävistäjämatriisi). Jos T löydetään helposti. A K helppo laskea A:n ominaisarvot ja ominaisvektorit helposti Diagonalisoituva matriisi A on diagonalisoituva: A on similaarinen diagonaalimatriisin B kanssa.

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Similaarisuus. Määritelmä. Huom.

Similaarisuus. Määritelmä. Huom. Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP

Lisätiedot

Milloin A diagonalisoituva?

Milloin A diagonalisoituva? Milloin A diagonalisoituva? ) Oletus: A on diagonalisoituva eli D = TAT, jollakin D = diag(λ, λ 2,..., λ n ). A:n ja D:n ominaisarvot ovat samat λ, λ 2,..., λ n ovat myös A:n ominaisarvot... D e i = D

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä

Lisätiedot

Matriisialgebra harjoitukset, syksy 2016

Matriisialgebra harjoitukset, syksy 2016 Matriisialgebra harjoitukset, syksy 6 MATRIISIALGEBRA, s. 6, Ratkaisuja/ M.Hamina & M. Peltola 8. Olkoon 4 A 6. 4 Tutki, onko A diagonalisoituva. Jos on, niin määrää matriisi D T AT ja siihen liittyvä

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on? Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

6 MATRIISIN DIAGONALISOINTI

6 MATRIISIN DIAGONALISOINTI 6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Matematiikka B2 - TUDI

Matematiikka B2 - TUDI Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28 Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

OMINAISARVOISTA JA OMINAISVEKTOREISTA

OMINAISARVOISTA JA OMINAISVEKTOREISTA 1 OMINAISARVOISTA JA OMINAISVEKTOREISTA Olkoon x = (x 1,..., x n ) avaruuden R n piste (l. vektori). Vektori x samaistetaan n 1-matriisin (x 1 x 2... x n ) T kanssa, ts. voidaan yhtä hyvin kirjoittaa x1

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

MATRIISIN HESSENBERGIN MUOTO. Niko Holopainen

MATRIISIN HESSENBERGIN MUOTO. Niko Holopainen MATRIISIN HESSENBERGIN MUOTO Niko Holopainen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Syksy 2013 Tiivistelmä: Niko Holopainen, Matriisin Hessenbergin muoto Matematiikan

Lisätiedot

6. OMINAISARVOT JA DIAGONALISOINTI

6. OMINAISARVOT JA DIAGONALISOINTI 0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

2, E = Määrää 3A, B 2A ja E + F. 2. Laske (mikäli mahdollista) AB, BA, A 2, BC, CB ja F = 1 0 0

2, E = Määrää 3A, B 2A ja E + F. 2. Laske (mikäli mahdollista) AB, BA, A 2, BC, CB ja F = 1 0 0 MATRIISIALGEBRA Harjoitustehtäviä syksy 2012 Tehtävissä 1-2 käytetään seuraavia matriiseja: A = 1 2 ( ) 0 5 1 2 4, B =, C = 1 2, E = 1 0 0 0 1 0 ja F = 1 0 0 0 1 0. 3 7 2 4 3 3 1 3 4 2 2 3 0 1. Määrää

Lisätiedot

ja F =

ja F = MATRIISIALGEBRA Harjoitustehtäviä syksy 2016 Tehtävissä 1 ja 2a käytetään seuraavia matriiseja: ( ) 6 2 3 A =,B = 7 1 2 2 3,C = 4 4 2 5 3,E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1.

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:

Lisätiedot

Alkeismuunnokset matriisille, sivu 57

Alkeismuunnokset matriisille, sivu 57 Lineaarialgebra (muut ko) p. 1/88 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna

Lisätiedot

2.8. Kannanvaihto R n :ssä

2.8. Kannanvaihto R n :ssä 28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit

Lisätiedot

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa

Lisätiedot

Lineaarialgebra, kertausta aiheita

Lineaarialgebra, kertausta aiheita Lineaarialgebra, kertausta aiheita Matriisitulo käänteismatriisi determinantin kehittäminen determinantin ominaisuudet adjungaatti ja Cramerin kaavat yhtälöryhmän eri esitystavat Gauss-Jordan -algoritmi

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1

Lisätiedot

1.1. Määritelmiä ja nimityksiä

1.1. Määritelmiä ja nimityksiä 1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä

Lisätiedot

5 Differentiaaliyhtälöryhmät

5 Differentiaaliyhtälöryhmät 5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

tyyppi metalli puu lasi työ I II III metalli puu lasi työ

tyyppi metalli puu lasi työ I II III metalli puu lasi työ MATRIISIALGEBRA Harjoitustehtäviä syksy 29 ( 7 1 1 4 1 1. Olkoot, B = 1 5 2 5 3 Määrää 2A, B 2A, A T, ( 2A) T, (A T ) T. ), C = ( 1 ) 4 4 ja E = 7. 3 2. Olkoot A, B, C ja E kuten edellisessä tehtävässä.

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin

Lisätiedot

Ositetuista matriiseista

Ositetuista matriiseista TAMPEREEN YLIOPISTO Pro gradu -tutkielma Anja Kuronen Ositetuista matriiseista Matematiikan ja tilastotieteen laitos Matematiikka Joulukuu 2010 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Matriisihajotelmat. MS-A0007 Matriisilaskenta. 5.1 Diagonalisointi. 5.1 Diagonalisointi

Matriisihajotelmat. MS-A0007 Matriisilaskenta. 5.1 Diagonalisointi. 5.1 Diagonalisointi MS-A0007 Matriisilaskenta 5. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 25.11.2015 Laskentaongelmissa käsiteltävät matriisit ovat tyypillisesti valtavia.

Lisätiedot

Matriisinormeista. Sanni Carlson. Matematiikan pro gradu

Matriisinormeista. Sanni Carlson. Matematiikan pro gradu Matriisinormeista Sanni Carlson Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2015 Tiivistelmä: Sanni Carlson, Matriisinormeista (engl On matrix norms), matematiikan

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

Neliömuodoista, matriisin ominaisarvoista ja avaruuden kierroista

Neliömuodoista, matriisin ominaisarvoista ja avaruuden kierroista Neliömuodoista matriisin ominaisarvoista ja avaruuden kierroista Marko Moisio 1 Neliömuodoista ja matriisin ominaisarvoista Tarkastellaan toisen asteen tasokäyrän määräävää yhtälöä a + by 2 + 2cxy = d

Lisätiedot

i=1 Tarkastellaan ensin inversio-ongelman injektiivisyys: Kun vaaditaan, että 0 = M x x 2

i=1 Tarkastellaan ensin inversio-ongelman injektiivisyys: Kun vaaditaan, että 0 = M x x 2 Lemma 1. Olkoon V R n lineaarinen aliavaruus. Lineaarisen kuvauksen F : V R m kuvajoukko F (V R m on lineaarinen aliavaruus, joka koostuu lineaarisen kuvauksen F matriisin M pystyvektorien {M i : i 1,...

Lisätiedot

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C = BMA58 Funktiot, lineaarialgebra ja vektorit Harjoitus 6, Syksy 5. Olkoon [ 6 6 A =, B = 4 [ 3 4, C = 4 3 [ 5 Määritä matriisien A ja C ominaisarvot ja ominaisvektorit. Näytä lisäksi että matriisilla B

Lisätiedot

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162 Tällä viikolla viimeiset luennot ja demot Lineaarialgebra (muut ko) p. 1/162 Lineaarialgebra (muut ko) p. 2/162 Kertausta Vektorin u = (u 1,u 2 ) R 2 pituus u = u 2 1 +u2 2 Vektorien u ja v = (v 1,v 2

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

Determinantit. Kaksirivinen determinantti. Aiheet. Kaksirivinen determinantti. Kaksirivinen determinantti. Kolmirivinen determinantti

Determinantit. Kaksirivinen determinantti. Aiheet. Kaksirivinen determinantti. Kaksirivinen determinantti. Kolmirivinen determinantti Determinantit 1 2 2-matriisin ( A = on det(a) = a 11 a 12 a 21 a 22 a 11 a 12 a 21 a 22 ) = a 11a 22 a 12 a 21. 1 2 2-matriisin on det(a) = Esim. Jos A = ( a 11 a 12 a 21 a 22 A = a 11 a 12 a 21 a 22 )

Lisätiedot

Käänteismatriisin ominaisuuksia

Käänteismatriisin ominaisuuksia Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit

Lisätiedot

Esimerkki 19. Esimerkissä 16 miniminormiratkaisu on (ˆx 1, ˆx 2 ) = (1, 0).

Esimerkki 19. Esimerkissä 16 miniminormiratkaisu on (ˆx 1, ˆx 2 ) = (1, 0). Esimerkki 9 Esimerkissä 6 miniminormiratkaisu on (ˆx, ˆx (, 0 Seuraavaksi näytetään, että miniminormiratkaisuun siirtyminen poistaa likimääräisongelman epäyksikäsitteisyyden (mutta lisääntyvän ratkaisun

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Keijo Ruotsalainen Division of Mathematics Kurssitiedot Luennot alkavat ke 11.1.2012 Ke 12-14 L3 To 14-16 L6 Kurssin viimeinen luento To 22.3 2012 Kurssin suorittaminen välikokein:

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 4.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Viimeiset harjoitukset on palautettava torstaina 13.6. Laskaripisteensä ja läsnäolonsa voi kukin tarkistaa

Lisätiedot

LINEAARIALGEBRA P. LUENTOMONISTE ja HARJOITUSTEHTÄVÄT

LINEAARIALGEBRA P. LUENTOMONISTE ja HARJOITUSTEHTÄVÄT LINEAARIALGEBRA II 802119P LUENTOMONISTE ja HARJOITUSTEHTÄVÄT syksy 2008 30 V SISÄTULOAVARUUKSISTA 1. Sisätulon määritelmä Tarkastellaan sisätulon määrittelyä varten kompleksilukujen joukkoa C = {x + iy

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 13: ti klo 13:00-15:30 ja to 1.4.

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 13: ti klo 13:00-15:30 ja to 1.4. DI matematiikan opettajaksi: Täydennyskurssi, kevät Luentorunkoa ja harjoituksia viikolle 3: ti 33 klo 3:-5:3 ja to 4 klo 9:5-: Käydään läpi differentiaaliyhtälöitä Määritelmä Olkoon A R n n (MatLab:ssa

Lisätiedot

Matriisialgebra harjoitukset, syksy x 1 + x 2 = a 0

Matriisialgebra harjoitukset, syksy x 1 + x 2 = a 0 MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 22 Virittääkö vektorijoukko S vektoriavaruuden V, kun a V = R 3 ja S = {(1,0, 1,(2,0,4,( 5,0,2,(0,0,1} b V = P 2 (R ja S = {t1,t 2 1,t 2 t} ( ( 1 0 c

Lisätiedot

Paikannuksen matematiikka MAT

Paikannuksen matematiikka MAT TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y M a t h e m a t i c s Paikannuksen matematiikka MAT-45800 4..008. p.1/4 Käytännön järjestelyt Kotisivu: http://math.tut.fi/courses/mat-45800/ Luennot:

Lisätiedot

Lineaariset kongruenssiyhtälöryhmät

Lineaariset kongruenssiyhtälöryhmät Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................

Lisätiedot

Kaksirivisen matriisin determinantille käytämme myös merkintää. a 11 a 12 a 21 a 22. = a 11a 22 a 12 a 21. (5.1) kaksirivine

Kaksirivisen matriisin determinantille käytämme myös merkintää. a 11 a 12 a 21 a 22. = a 11a 22 a 12 a 21. (5.1) kaksirivine Vaasan yliopiston julkaisuja 97 5 DETERMINANTIT Ch:Determ Sec:DetDef 5.1 Determinantti Tämä kappale jakautuu kolmeen alakappaleeseen. Ensimmäisessä alakappaleessa määrittelemme kaksi- ja kolmiriviset determinantit.

Lisätiedot

Singulaariarvohajotelma ja pseudoinverssi

Singulaariarvohajotelma ja pseudoinverssi HELSINGIN YLIOPISTO Pro gradu -tutkielma Niko Kaitarinne Singulaariarvohajotelma ja pseudoinverssi Matematiikan ja tilastotieteen laitos Matematiikka Helmikuu 01 Helsingin yliopisto Matematiikan ja tilastotieteen

Lisätiedot

Ax, y = x, A y. A = A A hermiittinen. Jokainen reaalinen ja symmetrinen matriisi on määritelmän mukaan myös hermiittinen. A =, HARJOITUSTEHTÄVIÄ

Ax, y = x, A y. A = A A hermiittinen. Jokainen reaalinen ja symmetrinen matriisi on määritelmän mukaan myös hermiittinen. A =, HARJOITUSTEHTÄVIÄ X.. Matriisialgebra Esimerkki 4 Jos niin x =[i, +i, 2 i ] T C 3, y =[ 2i, 2i, i ] T C 3, x, x = x 2 =+(+)+(4+)=8, y, y =(+4)+4+(+)=, x, y = i( + 2i)+(+i)( 2i)+(2 i)( +i) = +3i. Matriisia A = ĀT sanotaan

Lisätiedot

1 Avaruuksien ja lineaarikuvausten suora summa

1 Avaruuksien ja lineaarikuvausten suora summa MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

Ortogonaaliset matriisit, määritelmä 1

Ortogonaaliset matriisit, määritelmä 1 , määritelmä 1 Määritelmä (a). Neliömatriisi Q on ortogonaalinen, jos Q T Q = I. Määritelmästä voidaan antaa samaa tarkoittavat, mutta erilaiselta näyttävät muodot: Määritelmä (b). n n neliömatriisi Q,

Lisätiedot

Neliömatriisit A ja B ovat similaareja toistensa suhteen, A B, jos on olemassa kääntyvä matriisi P, jolle pätee A = PBP 1.

Neliömatriisit A ja B ovat similaareja toistensa suhteen, A B, jos on olemassa kääntyvä matriisi P, jolle pätee A = PBP 1. Similaarisuus 1 (Kreyszig 8.4, Lay 5.2) Aalto MS-C1340, 2014, Kari Eloranta Määritelmä Neliömatriisit A ja B ovat similaareja toistensa suhteen, A B, jos on olemassa kääntyvä matriisi P, jolle pätee A

Lisätiedot

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa. BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 7, Syksy 206 Tutkitaan yhtälöryhmää x + y + z 0 2x + y + az b ax + y + 2z 0 (a) Jos a 0 ja b 0 niin mikä on yhtälöryhmän ratkaisu? Tulkitse ratkaisu

Lisätiedot

https://koppa.jyu.fi/kurssit/203013/luennot/luennot.pdf https://koppa.jyu.fi/kurssit/203013/harj/tehtavat.pdf

https://koppa.jyu.fi/kurssit/203013/luennot/luennot.pdf https://koppa.jyu.fi/kurssit/203013/harj/tehtavat.pdf M5 0.0. M5: Lineaarialgebra 1/76 M5: Lineaarialgebra Fysa115 (3 op) Syksy 2016, Fysiikan laitos, Jyväskylän yliopisto Luennot Juha Merikoski 5.9. 19.10.2016 ma&ke 12-14 (FYS3) Laskuharjoitukset 7 kertaa,

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

Lineaarikuvaukset. 12. joulukuuta F (A r ) = F (A r ) r .(3) F (s) = s. (4) Skalaareille kannattaa määritellä lisäksi seuraavat tulot:

Lineaarikuvaukset. 12. joulukuuta F (A r ) = F (A r ) r .(3) F (s) = s. (4) Skalaareille kannattaa määritellä lisäksi seuraavat tulot: Lineaarikuvaukset 12. joulukuuta 2005 1 Yleistys multivektoreille Olkoon F lineaarikuvaus vektoriavaruudessa. Yleistetään F luonnollisella tavalla terille F (a 1 a n ) = F (a 1 ) F (a n ), (1) sekä terien

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt. osa 2 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 1 R. Kangaslampi Matriisihajotelmista

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C340 Lineaarialgebra ja differentiaaliyhtälöt Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 205 / 3 R. Kangaslampi Matriisihajotelmista Differentiaaliyhtälöitä ratkaistaessa

Lisätiedot

Tiivistelmä matriisilaskennasta

Tiivistelmä matriisilaskennasta Tiivistelmä matriisilaskennasta v 35, 2122008, Ossi Pasanen Nimityksiä ja merkintätapoja m n -matriisi on reaali- tai kompleksiluvuista koostuva lukukaavio, jossa on m vaakariviä ja n saraketta pystyriviä)

Lisätiedot

Kurssimateriaalia K3/P3-kursille syksyllä Heikki Apiola. 1. Ominaisarvot ja -vektorit

Kurssimateriaalia K3/P3-kursille syksyllä Heikki Apiola. 1. Ominaisarvot ja -vektorit Kurssimateriaalia K3/P3-kursille syksyllä 2003. 8.10.2003 Heikki Apiola Tämä pruju on kiireellä kirjoitettu. Viimeistely viivyttäisi liikaa 1. välikoetta ajatellen. Pyydän kertomaan havaituista virheistä

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet

Lisätiedot

2v 1 = v 2, 2v 1 + 3v 2 = 4v 2.. Vastaavasti ominaisarvoa λ 2 = 4 vastaavat ominaisvektorit toteuttavat. v 2 =

2v 1 = v 2, 2v 1 + 3v 2 = 4v 2.. Vastaavasti ominaisarvoa λ 2 = 4 vastaavat ominaisvektorit toteuttavat. v 2 = TKK, Matematiikan laitos Pikkarainen/Tikanmäki Mat-1.1320 Matematiikan peruskurssi K2 Harjoitus 12, A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä 21. 25.4.2008, viikko

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A

Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 28 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 a) A + B b) AB BA d) A 2 e) A T f) A T B g) 3A ja B = 2 1 6 3 1 2. Laske seuraavat determinantit

Lisätiedot

Oppimistavoitematriisi

Oppimistavoitematriisi Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Esitiedot Arvosanaan 1 2 riittävät Arvosanaan 3 4 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Vakiokertoiminen lineaarinen normaaliryhmä

Vakiokertoiminen lineaarinen normaaliryhmä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 29 Vakiokertoiminen lineaarinen normaaliryhmä Todetaan ensin ilman todistuksia (tulos on syvällinen) ratkaisujen

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili 6 4 2 x 2 x 3 15 10 5 0 5 15 5 3 2 1 1 2 3 2 0 x 2 = 1 2x 1 0 4 x 2 = 3 x 1 x 5 2 5 x 1 10 x 1 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili Sisältö

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

M5: Lineaarialgebra Kurssin tavoitteet. 1. Matriisit ja matriisioperaatiot. Useammankin kuin kahden muuttujan yhtälöryhmälle pätee Lause:

M5: Lineaarialgebra Kurssin tavoitteet. 1. Matriisit ja matriisioperaatiot. Useammankin kuin kahden muuttujan yhtälöryhmälle pätee Lause: M5.. M5: Lineaarialgebra /76 M5: Lineaarialgebra Fysa5 (3 op) Syksy 4, Fysiikan laitos, Jyväskylän yliopisto Luennot Juha Merikoski 8.9. 9..4 ma&ke -4 (FYS3) Laskuharjoitukset 7 kertaa, ke, max p (voimassa

Lisätiedot

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla: 11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta

Lisätiedot

Aiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa.

Aiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa. Yhtälöryhmän ratkaisujen lukumäärä, L8 Esimerkki kvadraattinen Haluamme ratkaista n 4x + y z = x + y + z = 5 x + y + z = 4 4 x 4 + y x y z = + z 5 4 = 5 4 Esimerkki kvadraattinen Yhtälöryhmä on kvadraattinen,

Lisätiedot

Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen.

Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Pns ratkaisu (Kr. 20.5, Lay 6.5 C-II/KP-II, 20, Kari Eloranta Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Määritelmä Jos A on

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Simo Jaakkola. Ortogonaalisuudesta

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Simo Jaakkola. Ortogonaalisuudesta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Simo Jaakkola Ortogonaalisuudesta Informaatiotieteiden yksikkö Matematiikka Joulukuu 2015 Tampereen yliopisto Informaatiotieteiden yksikkö JAAKKOLA, SIMO: Ortogonaalisuudesta

Lisätiedot

Jouni Sampo. 4. maaliskuuta 2013

Jouni Sampo. 4. maaliskuuta 2013 B2 Jouni Sampo 4. maaliskuuta 2013 Sisältö 1 Johdanto 2 1.1 Matriisin käsite.................................... 2 1.2 Mihin matriiseja tarvitaan?............................. 2 1.3 Matriiseihin liittyvät

Lisätiedot

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) A =

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) A = Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 211 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 ja B = 2 1 6 3 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A. 2. Laske seuraavat determinantit

Lisätiedot