Similaarisuus. Määritelmä. Huom.

Koko: px
Aloita esitys sivulta:

Download "Similaarisuus. Määritelmä. Huom."

Transkriptio

1 Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP = B. P 1 AP = B AP = PB A = PBP 1. LM2, Kesä /260

2 Similaarisuus Esimerkki 61 Merkitään A = [ ] [ ] 1 0 ja B =. 2 1 Matriisi A on similaarinen matriisin B kanssa: Ensinnäkin matriisi [ ] 1 1 P = 1 1 on kääntyvä, sillä det(p) = 1 ( 1) = 2 0. LM2, Kesä /260

3 Lisäksi [ ] [ ] [ ] AP = = [ ] [ ] [ ] PB = = ja eli AP = PB, mistä seuraa, että P 1 AP = B. Huom. Tässä tarvittiin varmuus siitä, että P on kääntyvä! LM2, Kesä /260

4 Similaarisuus on ekvivalenssirelaatio Lause 62 Oletetaan, että A, B ja C ovat n n -neliömatriiseja. Tällöin (a) A A; (b) jos A B, niin B A; (c) jos A B ja B C, niin A C. Todistus (osa). (b) Oletetaan, että A B. Tällöin on olemassa kääntyvä matriisi P, jolla P 1 AP = B. Kertomalla tätä yhtälöä vasemmalta matriisilla P ja oikealta matriisilla P 1 saadaan A = PBP 1. LM2, Kesä /260

5 Merkitään Q = P 1. Tällöin Q on kääntyvä ja Siis B A. Q 1 BQ = (P 1 ) 1 BP 1 = PBP 1 = A. LM2, Kesä /260

6 Similaaristen matriisien ominaisuuksia Lause 63 Oletetaan, että A ja B ovat n n -neliömatriiseja. Oletetaan lisäksi, että A B. Tällöin (a) det(a) = det(b); (b) A on kääntyvä, jos ja vain jos B on kääntyvä; (c) matriiseilla A ja B on sama karakteristinen polynomi; (d) matriiseilla A ja B on samat ominaisarvot. Huom. Tämä tulos on käyttökelpoinen, jos pitää osoittaa, että jotkin matriisit eivät ole similaariset. LM2, Kesä /260

7 Lauseen 63 todistus (osa). (a) Koska A B, niin on olemassa kääntyvä matriisi P, jolla P 1 AP = B. Tällöin det(p 1 AP) = det(b). Determinantin ominaisuuksia käyttämällä saadaan det(b) = det(p 1 AP) = det(p 1 ) det(a) det(p) ( ) 1 = det(a) det(p) = det(a). det(p) LM2, Kesä /260

8 (c) Matriisin B karakteristinen polynomi on det(b λi). Koska A B, niin on olemassa kääntyvä matriisi P, jolla P 1 AP = B. Näin ollen det(b λi) = det(p 1 AP λi) = det(p 1 AP λp 1 IP) = det(p 1 AP P 1 λip) = det(p 1 (AP λip)) = det(p 1 (A λi)p) =... LM2, Kesä /260

9 ... = det(p 1 ) det(a λi) det(p) = ( ) 1 det(a λi) det(p) det(p) = det(a λi). Siis matriisien B ja A karakteristiset polynomit det(b λi) ja det(a λi) ovat samat. LM2, Kesä /260

10 Matriisit, jotka eivät ole similaarisia Esimerkki 64 Merkitään A = [ ] ja B = [ ] Huomataan, että det(a) = 3 ja det(b) = 3. Siis det(a) det(b), joten matriisit A ja B eivät ole similaariset lauseen 63 nojalla. LM2, Kesä /260

11 Matriisit, jotka eivät ole similaarisia Esimerkki 65 Merkitään A = [ ] ja B = [ ] Huomataan, että det(a) = 4 = det(b). Kuitenkin matriisin A karakterisinen polynomi on det(a λi) = (1 λ)(2 λ) 6 =... = λ 2 3λ 4 ja matriisin B karakterisinen polynomi on det(b λi) = (1 λ)( 1 λ) 3 =... = λ 2 4. Siten matriisit A ja B eivät ole similaariset lauseen 63 nojalla. LM2, Kesä /260

12 Matriisit, jotka eivät ole similaarisia Esimerkki 66 Tarkastellaan matriiseja [ ] 1 0 I = 0 1 ja B = [ ] Huomataan, että det(i) = 1 = det(b). Tästä seuraa, että molemmat ovat kääntyviä. Lisäksi matriiseilla I ja B on sama karakteristinen polynomi det(i λi) = (1 λ) 2 = det(b λi) ja kummankin matriisin ainoa ominaisarvo on λ = 1. LM2, Kesä /260

13 Tästä huolimatta matriisit I ja B eivät ole similaariset: jos P on mikä tahansa kääntyvä matriisi, niin P 1 IP = I B. LM2, Kesä /260

14 Diagonalisointi Määritelmä Oletetaan, että A on n n - neliömatriisi. Matriisi A on diagonalisoituva, jos se on similaarinen jonkin lävistäjämatriisin kanssa. Toisin sanottuna matriisi A on diagonalisoituva, jos on olemassa kääntyvä matriisi P ja lävistäjämatriisi D, joille pätee P 1 AP = D. LM2, Kesä /260

15 Diagonalisointi Esimerkki 67 Esimerkin 59 matriisi A = [ ] on diagonalisoituva. Nimittäin jos merkitään niin P = [ ] ja D = [ ] 4 0, 0 1 matriisi P on kääntyvä, sillä det(p) = 2 ( 3) = 5 0; LM2, Kesä /260

16 havaitaan, että [ ] [ ] [ ] AP = = [ ] [ ] [ ] PD = = ja eli AP = PD, mistä seuraa, että P 1 AP = D. LM2, Kesä /260

17 Lävistäjämatriisin potenssit Lävistäjämatriisin potenssien laskeminen on helpompaa: voidaan osoittaa esimerkiksi induktiolla, että mille tahansa kokonaisluvulle k 1 ja lävistäjämatriisille pätee d d D = d n d n LM2, Kesä /260

18 d k d2 k D k = dn 1 k dn k LM2, Kesä /260

19 Diagonalisointi matriisipotensseja laskettaessa Jos matriisi on diagonalisoituva, on sen potenssien laskeminen helpompaa: Esimerkki 68 Merkitään A = [ ] 1 2, P = 3 2 [ ] ja D = [ ] Esimerkissä 67 nähtiin, että matriisi A on diagonalisoituva ja P 1 AP = D. Kertomalla tätä yhtälöä vasemmalta matriisilla P ja oikealta matriisilla P 1 saadaan A = PDP 1. LM2, Kesä /260

20 Jos kokonaisluku k 1, niin A k = (PDP 1 ) k = (PDP 1 )... (PDP 1 ) }{{} k kpl = PD(P 1 P)D... (P 1 P)DP 1 = P } D.{{.. D} k kpl = PD k P 1. P 1 LM2, Kesä /260

21 Määritetään matriisin P käänteismatriisi: [ ] [ ] /5 1/ /5 2/5 Siis esimerkiksi A 10 = PD 10 P 1 = = = 1 5 [ ] [ ] ( 1) 10 5 [ ] [ 1 ] LM2, Kesä /260

22 Ehto diagonalisoituvuudelle Lause 69 Oletetaan, että A on n n -neliömatriisi. Matriisi A on diagonalisoituva, jos ja vain jos matriisilla A on n lineaarisesti riippumatonta ominaisvektoria. LM2, Kesä /260

23 Lauseen 69 todistus. : Oletetaan, että matriisi A on diagonalisoituva eli on olemassa kääntyvä matriisi P ja lävistäjämatriisi D, joille P 1 AP = D. Tällöin AP = PD. Merkitään matriisin P sarakkeita p 1,..., p n ja matriisin D lävistäjäalkioita λ 1,..., λ n. Ts. ] P = [ p 1... p n λ λ ja D = λ n λ n LM2, Kesä /260

24 Matriisituloa laskettaessa tulon AP jokainen sarake saadaan kertomalla matriisilla A vastaava sarake matriisista P: ] ] AP = A [ p 1 p n = [A p 1 A p n. Vastaavasti PD = P [λ 1 ē 1 ] λ n ē n = = [ ] P(λ 1 ē 1 ) P(λ n ē n ) [ ] ] λ 1 (Pē 1 ) λ n (Pē n ) = [λ 1 p 1 λ n p n. Koska AP = PD, saadaan A p i = λ i p i kaikilla i {1,..., n}.siis jokainen λ i on matriisin A ominaisarvo ja p i sitä vastaava ominaisvektori. LM2, Kesä /260

25 Matriisi P on kääntyvä, joten yhtälöllä P x = 0 on täsmälleen yksi ratkaisu x = 0. Yhtälö P x = 0 voidaan kirjoittaa myös muotoon x 1 p 1 + x 2 p x n p n = 0. Tämän yhtälön ainoa ratkaisu on siis x 1 = 0,..., x n = 0. Näin ollen matriisin A ominaisvektoreiden jono ( p 1,..., p n ) on vapaa. LM2, Kesä /260

26 : Oletetaan, että matriisilla A on n lineaarisesti riippumatonta ominaisvektoria. Merkitään niitä p 1,..., p n ja vastaavia ominaisarvoja λ 1,..., λ n. Tällöin A p i = λ i p i kaikilla i {1,..., n}. Tästä seuraa, että ] ] [A p 1 A p n = [λ 1 p 1 λ n p n. Näin ollen AP = PD, missä on valittu λ ] 0 λ P = [ p 1... p n ja D = λ n λ n LM2, Kesä /260

27 Oletuksen mukaan matriisin A ominaisvektorit p 1,..., p n ovat lineaarisesti riippumattomat, joten yhtälöstä x 1 p 1 + x 2 p x n p n = 0 seuraa, että x 1 = 0, x 2 = 0,..., x n = 0. Koska p 1,..., p n ovat matriisin P sarakkeet, voidaan yllä oleva yhtälö kirjoittaa muodossa P x = 0. Näin ollen yhtälöllä P x = 0 on tasan yksi ratkaisu x = 0. Kurssilla Lineaarialgebra ja matriisilaskenta I osoitettiin, että tällöin matriisi P on kääntyvä. Yhtälö AP = PD saadaan siis muotoon P 1 AP = D. LM2, Kesä /260

28 Diagonalisointi Oletetaan, että A on n n -neliömatriisi. Matriisin A diagonalisoiminen: 1. Etsi matriisin A ominaisarvot. 2. Määritä jokaista ominaisarvoa vastaava ominaisavaruus. 3. Tutki, onko matriisilla A n kappaletta lineaarisesti riippumattomia ominaisvektoreita. Jos lineaarisesti riippumattomia ominaisvektoreita on vähemmän kuin n kappaletta, matriisi A ei ole diagonalisoituva. LM2, Kesä /260

29 4. Muodosta matriisi P laittamalla löytämäsi lineaarisesti riippumattomat ominaisvektorit sen sarakkeiksi. Tällöin P on lauseen 69 todistuksen nojalla kääntyvä (voit tarkistaa tämän esim. determinantin avulla). 5. Muodosta lävistäjämatriisi D laittamalla sen sarakkeisiin matriisin P sarakkeita vastaavat ominaisarvot. Tällöin P 1 AP = D lauseen 69 todistuksen nojalla (voit tarkistaa tämän laskemalla tulot AP ja PD). LM2, Kesä /260

30 Diagonalisointi Esimerkki 70 Merkitään A = Diagonalisoi matriisi A, jos mahdollista. LM2, Kesä /260

31 1. Määritetään matriisin A ominaisarvot: Karakteristinen polynomi on λ 1 0 det(a λi) = 0 λ λ λ 1 = λ 5 4 λ λ = = λ 3 + 4λ 2 5λ + 2. Siis det(a λi) = 0 λ 3 + 4λ 2 5λ + 2 = 0. LM2, Kesä /260

32 Yksi ratkaisu esim. arvaamalla: jos λ = 1, niin = = 0. Tällöin polynomi λ 3 + 4λ 2 5λ + 2 on jaollinen polynomilla λ 1 ja esim. jakokulmassa saadaan λ 3 + 4λ 2 5λ + 2 = (λ 1)( λ 2 + 3λ 2). Muut ratkaisut saadaan näin ollen 2. asteen yhtälön ratkaisukaavalla: λ 2 +3λ 2 = 0 λ = 3 ± ( 1) ( 2) = 3 ± 1. 2 ( 1) 2 Matriisin A ominaisarvot ovat siis yhtälön λ 3 + 4λ 2 5λ + 2 = 0 ratkaisut λ 1 = 1 ja λ 2 = 2. LM2, Kesä /260

33 2. Ominaisarvoja vastaavat ominaisavaruudet: Ominaisarvoa λ 1 = 1 vastaava ominaisavaruus on V 1 = { v R 3 A v = v }. Ratkaistaan yhtälö A x = x eli yhtälö (A I) x = 0: Havaitaan, että x 3 on vapaa muuttuja, merkitään x 3 = t R. Tällöin ratkaisut ovat x = (t, t, t), missä t R. Siis V 1 = { t(1, 1, 1) t R } = span ( (1, 1, 1) ). LM2, Kesä /260

34 Ominaisarvoa λ 2 = 2 vastaava ominaisavaruus on V 2 = { v R 3 A v = 2 v }. Ratkaistaan yhtälö A x = 2 x eli yhtälö (A 2I) x = 0: / / Havaitaan, että x 3 on vapaa muuttuja, merkitään x 3 = t R. Tällöin ratkaisut ovat x = (t/4, t/2, t), missä t R. Siis V 2 = { t(1/4, 1/2, 1) t R } = span ( (1/4, 1/2, 1) ) = span ( (1, 2, 4) ). LM2, Kesä /260

35 3. Onko 3 3 -matriisilla A kolme lineaarisesti riippumatonta ominaisvektoria? Edellä havaittiin, että matriisin A ominaisavaruudet ovat V 1 = span ( (1, 1, 1) ) ja V 2 = span ( (1, 2, 4) ). Näin ollen matriisilla A ei ole kolmea lineaarisesti riippumatonta ominaisvektoria. Siis A ei ole diagonalisoituva lauseen 69 nojalla. LM2, Kesä /260

36 Ominaisavaruuksien kantavektoreista saadaan vapaa jono Lause 71 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ k ovat matriisin A eri ominaisarvoja. Tällöin ominaisavaruuksien V λ1,..., V λk kantavektoreista muodostettu jono on vapaa. Todistus. Olkoon ominaisavaruuden V λi kanta ( v i1, v i2,..., v imi ), missä kokonaisluku m i 1. On osoitettava, että kaikista kantavektoreista muodostettu jono on vapaa. ( v 11,..., v 1m1, v 21,..., v 2m2,..., v k1,..., v kmk ) LM2, Kesä /260

37 Oletetaan, että (c 11 v c 1m1 v 1m1 ) + + (c k1 v k1 + + c kmk v kmk ) = 0. Merkitään w i = (c i1 v i1 + + c imi v imi ) kaikilla i {1,..., k}. Tällöin w i V λi, sillä v i1,..., v imi V λi ja V λi on aliavaruus. Yhtälö saa muodon w w k = 0. Koska w i V λi, niin on kaksi mahdollisuutta: w i on ominaisarvoon λ i liittyvä ominaisvektori tai w i = 0. Tiedetään, että eri ominaisarvoihin liittyvät ominaisvektorit ovat lineaarisesti riippumattomia (lause 60). LM2, Kesä /260

38 Siten yhtälössä 1 w w k = 0 yksikään vektori ei voi olla ominaisvektori vaan jokainen w i = 0. Näin (c i1 v i1 + + c imi v imi ) = 0. Jono ( v i1, v i2,..., v imi ) on ominaisavaruuden V λi kantana vapaa, joten c i1 = 0,..., c imi = 0. Siis alkuperäisen yhtälön kaikki kertoimet ovat nollia. Näin ollen ominaisavaruuksien V λi kantavektoreista muodostettu jono on vapaa. LM2, Kesä /260

39 Diagonalisointi Esimerkki 72 Merkitään A = Diagonalisoi matriisi A, jos mahdollista. LM2, Kesä /260

40 1. Määritetään matriisin A ominaisarvot: Karakteristinen polynomi on 1 λ 0 1 det(a λi) = 3 λ λ 1 λ 1 = λ 1 1 λ = = λ 2 (λ + 2). Siis det(a λi) = 0 λ 2 (λ + 2) = 0 λ = 0 λ = 2. LM2, Kesä /260

41 2. Ominaisarvoja vastaavat ominaisavaruudet: Ominaisarvoa λ 1 = 0 vastaava ominaisavaruus on V 0 = { v R 3 A v = 0 v }. Ratkaistaan yhtälö A x = 0 x eli yhtälö A x = 0: Havaitaan, että x 2 ja x 3 ovat vapaita muuttujia, merkitään x 2 = s, x 3 = t (s, t R). Tällöin ratkaisut ovat x = (t, s, t), missä s, t R. Siis V 0 = { t(1, 0, 1) + s(0, 1, 0) s, t R } = span ( (1, 0, 1), (0, 1, 0) ). LM2, Kesä /260

42 Ominaisarvoa λ 2 = 2 vastaava ominaisavaruus on V 2 = { v R 3 A v = 2 v }. Ratkaistaan yhtälö A x = 2 x eli yhtälö (A + 2I) x = 0: Havaitaan, että x 3 on vapaa muuttuja, merkitään x 3 = t R. Tällöin ratkaisut ovat x = ( t, 3t, t), missä t R. Siis V 2 = { t( 1, 3, 1) t R } = span ( ( 1, 3, 1) ). LM2, Kesä /260

43 3. Onko 3 3 -matriisilla A kolme lineaarisesti riippumatonta ominaisvektoria? Edellä havaittiin, että matriisin A ominaisavaruudet ovat V 0 = span ( (1, 0, 1), (0, 1, 0) ) ja V 2 = span ( ( 1, 3, 1) ). Lisäksi vektorit (1, 0, 1) ja (0, 1, 0) ovat lineaarisesti riippumattomat, joten ne muodostavat ominaisavaruuden V 0 kannan.näin ollen matriisilla A on kolme lineaarisesti riippumatonta ominaisvektoria; esimerkiksi ominaisavaruuksen V 0 ja V 2 kantavektorit p 1 = (1, 0, 1), p 2 = (0, 1, 0) ja p 3 = ( 1, 3, 1). Siis A on diagonalisoituva lauseen 69 nojalla. LM2, Kesä /260

44 4. 5. Merkitään ] P = [ p p 2 p 3 = ja D = Tällöin lauseen 69 todistuksen mukaan P on kääntyvä ja P 1 AP = D. Huom. On mahdollista tarkistaa, että todella det(p) 0 ja AP = PD. LM2, Kesä /260

45 Diagonalisointi Lause 73 Oletetaan, että n n -matriisilla on n eri ominaisarvoa. Tällöin A on diagonalisoituva. Todistus. Olkoot v 1,..., v n jotkin eri ominaisarvoihin liittyvät ominaisvektorit. Ne ovat lineaarisesti riippumattomia lauseen 60 nojalla. Koska matriisilla A on n lineaarisesti riippumatonta ominaisvektoria, niin A on diagonalisoituva lauseen 69 nojalla. LM2, Kesä /260

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.

Lisätiedot

Esimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt

Esimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt Esimerkki 4.4. Määrää matriisin 2 2 1 A = 1 3 1 2 4 3 ominaisarvot ja -vektorit. Ratk. Nyt det(a λi ) = 1 + 2 λ 2 1 + 1 λ 1 λ 1 3 λ 1 = 1 3 λ 1 2 4 3 λ 2 4 3 λ 1 λ = 1 4 λ 1 = (1 λ)( 1)1+1 4 λ 1 2 6 3

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

6. OMINAISARVOT JA DIAGONALISOINTI

6. OMINAISARVOT JA DIAGONALISOINTI 0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos

Lisätiedot

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:

Lisätiedot

6 MATRIISIN DIAGONALISOINTI

6 MATRIISIN DIAGONALISOINTI 6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,

Lisätiedot

Matriisialgebra harjoitukset, syksy 2016

Matriisialgebra harjoitukset, syksy 2016 Matriisialgebra harjoitukset, syksy 6 MATRIISIALGEBRA, s. 6, Ratkaisuja/ M.Hamina & M. Peltola 8. Olkoon 4 A 6. 4 Tutki, onko A diagonalisoituva. Jos on, niin määrää matriisi D T AT ja siihen liittyvä

Lisätiedot

Determinantti. Määritelmä

Determinantti. Määritelmä Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j) (a) Jos n = 1, niin det(a) = a 11 (b) Muussa tapauksessa n det(a)

Lisätiedot

Determinantti. Määritelmä

Determinantti. Määritelmä Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi. Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j). (a) Jos n = 1, niin det(a) = a 11. (b) Muussa tapauksessa n det(a)

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C340 Lineaarialgebra ja differentiaaliyhtälöt Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 205 / 3 R. Kangaslampi Matriisihajotelmista Differentiaaliyhtälöitä ratkaistaessa

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Ortogonaalinen ja ortonormaali kanta

Ortogonaalinen ja ortonormaali kanta Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä

Lisätiedot

Lineaariset yhtälöryhmät ja matriisit

Lineaariset yhtälöryhmät ja matriisit Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on? Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi

Lisätiedot

Matematiikka B2 - TUDI

Matematiikka B2 - TUDI Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

MATRIISIN HESSENBERGIN MUOTO. Niko Holopainen

MATRIISIN HESSENBERGIN MUOTO. Niko Holopainen MATRIISIN HESSENBERGIN MUOTO Niko Holopainen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Syksy 2013 Tiivistelmä: Niko Holopainen, Matriisin Hessenbergin muoto Matematiikan

Lisätiedot

Ortogonaaliset matriisit, määritelmä 1

Ortogonaaliset matriisit, määritelmä 1 , määritelmä 1 Määritelmä (a). Neliömatriisi Q on ortogonaalinen, jos Q T Q = I. Määritelmästä voidaan antaa samaa tarkoittavat, mutta erilaiselta näyttävät muodot: Määritelmä (b). n n neliömatriisi Q,

Lisätiedot

Milloin A diagonalisoituva?

Milloin A diagonalisoituva? Milloin A diagonalisoituva? ) Oletus: A on diagonalisoituva eli D = TAT, jollakin D = diag(λ, λ 2,..., λ n ). A:n ja D:n ominaisarvot ovat samat λ, λ 2,..., λ n ovat myös A:n ominaisarvot... D e i = D

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kantavektorien kuvavektorit määräävät lineaarikuvauksen Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin

Lisätiedot

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla: 11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

OMINAISARVOISTA JA OMINAISVEKTOREISTA

OMINAISARVOISTA JA OMINAISVEKTOREISTA 1 OMINAISARVOISTA JA OMINAISVEKTOREISTA Olkoon x = (x 1,..., x n ) avaruuden R n piste (l. vektori). Vektori x samaistetaan n 1-matriisin (x 1 x 2... x n ) T kanssa, ts. voidaan yhtä hyvin kirjoittaa x1

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28 Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

Esimerkki 19. Esimerkissä 16 miniminormiratkaisu on (ˆx 1, ˆx 2 ) = (1, 0).

Esimerkki 19. Esimerkissä 16 miniminormiratkaisu on (ˆx 1, ˆx 2 ) = (1, 0). Esimerkki 9 Esimerkissä 6 miniminormiratkaisu on (ˆx, ˆx (, 0 Seuraavaksi näytetään, että miniminormiratkaisuun siirtyminen poistaa likimääräisongelman epäyksikäsitteisyyden (mutta lisääntyvän ratkaisun

Lisätiedot

Lineaarialgebra, kertausta aiheita

Lineaarialgebra, kertausta aiheita Lineaarialgebra, kertausta aiheita Matriisitulo käänteismatriisi determinantin kehittäminen determinantin ominaisuudet adjungaatti ja Cramerin kaavat yhtälöryhmän eri esitystavat Gauss-Jordan -algoritmi

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 4.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Viimeiset harjoitukset on palautettava torstaina 13.6. Laskaripisteensä ja läsnäolonsa voi kukin tarkistaa

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita

Lisätiedot

2.8. Kannanvaihto R n :ssä

2.8. Kannanvaihto R n :ssä 28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1

Lisätiedot

Determinantit. Kaksirivinen determinantti. Aiheet. Kaksirivinen determinantti. Kaksirivinen determinantti. Kolmirivinen determinantti

Determinantit. Kaksirivinen determinantti. Aiheet. Kaksirivinen determinantti. Kaksirivinen determinantti. Kolmirivinen determinantti Determinantit 1 2 2-matriisin ( A = on det(a) = a 11 a 12 a 21 a 22 a 11 a 12 a 21 a 22 ) = a 11a 22 a 12 a 21. 1 2 2-matriisin on det(a) = Esim. Jos A = ( a 11 a 12 a 21 a 22 A = a 11 a 12 a 21 a 22 )

Lisätiedot

Alkeismuunnokset matriisille, sivu 57

Alkeismuunnokset matriisille, sivu 57 Lineaarialgebra (muut ko) p. 1/88 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna

Lisätiedot

Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n.

Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n. Matriisipotenssi Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: Määritelmä Oletetaan, että A on n n -matriisi (siis neliömatriisi) ja k

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:

Lisätiedot

Matriisihajotelmat. MS-A0007 Matriisilaskenta. 5.1 Diagonalisointi. 5.1 Diagonalisointi

Matriisihajotelmat. MS-A0007 Matriisilaskenta. 5.1 Diagonalisointi. 5.1 Diagonalisointi MS-A0007 Matriisilaskenta 5. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 25.11.2015 Laskentaongelmissa käsiteltävät matriisit ovat tyypillisesti valtavia.

Lisätiedot

Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen.

Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Pns ratkaisu (Kr. 20.5, Lay 6.5 C-II/KP-II, 20, Kari Eloranta Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Määritelmä Jos A on

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Lineaarikuvaukset Lineaarikuvaus Olkoot U ja V

Lisätiedot

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 13: ti klo 13:00-15:30 ja to 1.4.

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 13: ti klo 13:00-15:30 ja to 1.4. DI matematiikan opettajaksi: Täydennyskurssi, kevät Luentorunkoa ja harjoituksia viikolle 3: ti 33 klo 3:-5:3 ja to 4 klo 9:5-: Käydään läpi differentiaaliyhtälöitä Määritelmä Olkoon A R n n (MatLab:ssa

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:

Lisätiedot

1 Avaruuksien ja lineaarikuvausten suora summa

1 Avaruuksien ja lineaarikuvausten suora summa MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon

Lisätiedot

i=1 Tarkastellaan ensin inversio-ongelman injektiivisyys: Kun vaaditaan, että 0 = M x x 2

i=1 Tarkastellaan ensin inversio-ongelman injektiivisyys: Kun vaaditaan, että 0 = M x x 2 Lemma 1. Olkoon V R n lineaarinen aliavaruus. Lineaarisen kuvauksen F : V R m kuvajoukko F (V R m on lineaarinen aliavaruus, joka koostuu lineaarisen kuvauksen F matriisin M pystyvektorien {M i : i 1,...

Lisätiedot

Kaksirivisen matriisin determinantille käytämme myös merkintää. a 11 a 12 a 21 a 22. = a 11a 22 a 12 a 21. (5.1) kaksirivine

Kaksirivisen matriisin determinantille käytämme myös merkintää. a 11 a 12 a 21 a 22. = a 11a 22 a 12 a 21. (5.1) kaksirivine Vaasan yliopiston julkaisuja 97 5 DETERMINANTIT Ch:Determ Sec:DetDef 5.1 Determinantti Tämä kappale jakautuu kolmeen alakappaleeseen. Ensimmäisessä alakappaleessa määrittelemme kaksi- ja kolmiriviset determinantit.

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

5 Differentiaaliyhtälöryhmät

5 Differentiaaliyhtälöryhmät 5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =

Lisätiedot

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Singulaariarvohajotelma ja pseudoinverssi

Singulaariarvohajotelma ja pseudoinverssi HELSINGIN YLIOPISTO Pro gradu -tutkielma Niko Kaitarinne Singulaariarvohajotelma ja pseudoinverssi Matematiikan ja tilastotieteen laitos Matematiikka Helmikuu 01 Helsingin yliopisto Matematiikan ja tilastotieteen

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Antti Rasila 2016 Vektoriavaruuden kannan olemassaolo Jos {v 1, v 2,..., v k } on äärellisulotteisen vektoriavaruuden V lineaarisesti riippumaton

Lisätiedot

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin

Lisätiedot

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218 Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

Lineaariset kongruenssiyhtälöryhmät

Lineaariset kongruenssiyhtälöryhmät Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................

Lisätiedot

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2016 Harjoitus 3 Ratkaisut palautettava viimeistään maanantaina 29.8.2016 klo 13.15. Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä

Lisätiedot

Paikannuksen matematiikka MAT

Paikannuksen matematiikka MAT TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y M a t h e m a t i c s Paikannuksen matematiikka MAT-45800 4..008. p.1/4 Käytännön järjestelyt Kotisivu: http://math.tut.fi/courses/mat-45800/ Luennot:

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Inversio-ongelmien laskennallinen peruskurssi Luento 2 Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Simo Jaakkola. Ortogonaalisuudesta

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Simo Jaakkola. Ortogonaalisuudesta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Simo Jaakkola Ortogonaalisuudesta Informaatiotieteiden yksikkö Matematiikka Joulukuu 2015 Tampereen yliopisto Informaatiotieteiden yksikkö JAAKKOLA, SIMO: Ortogonaalisuudesta

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

tyyppi metalli puu lasi työ I II III metalli puu lasi työ

tyyppi metalli puu lasi työ I II III metalli puu lasi työ MATRIISIALGEBRA Harjoitustehtäviä syksy 29 ( 7 1 1 4 1 1. Olkoot, B = 1 5 2 5 3 Määrää 2A, B 2A, A T, ( 2A) T, (A T ) T. ), C = ( 1 ) 4 4 ja E = 7. 3 2. Olkoot A, B, C ja E kuten edellisessä tehtävässä.

Lisätiedot

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1) Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee

Lisätiedot

Matriisin eksponenttifunktio ja differentiaaliyhtälöryhmät

Matriisin eksponenttifunktio ja differentiaaliyhtälöryhmät Matriisin eksponenttifunktio ja differentiaaliyhtälöryhmät Petra Maaskola Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 203 Tiivistelmä: Petra Maaskola, Matriisin

Lisätiedot

BM20A0700, Matematiikka KoTiB2

BM20A0700, Matematiikka KoTiB2 BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin

Lisätiedot

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162 Tällä viikolla viimeiset luennot ja demot Lineaarialgebra (muut ko) p. 1/162 Lineaarialgebra (muut ko) p. 2/162 Kertausta Vektorin u = (u 1,u 2 ) R 2 pituus u = u 2 1 +u2 2 Vektorien u ja v = (v 1,v 2

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään

Lisätiedot