Similaarisuus. Määritelmä. Huom.
|
|
- Kristiina Saarinen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP = B. P 1 AP = B AP = PB A = PBP 1. LM2, Kesä /260
2 Similaarisuus Esimerkki 61 Merkitään A = [ ] [ ] 1 0 ja B =. 2 1 Matriisi A on similaarinen matriisin B kanssa: Ensinnäkin matriisi [ ] 1 1 P = 1 1 on kääntyvä, sillä det(p) = 1 ( 1) = 2 0. LM2, Kesä /260
3 Lisäksi [ ] [ ] [ ] AP = = [ ] [ ] [ ] PB = = ja eli AP = PB, mistä seuraa, että P 1 AP = B. Huom. Tässä tarvittiin varmuus siitä, että P on kääntyvä! LM2, Kesä /260
4 Similaarisuus on ekvivalenssirelaatio Lause 62 Oletetaan, että A, B ja C ovat n n -neliömatriiseja. Tällöin (a) A A; (b) jos A B, niin B A; (c) jos A B ja B C, niin A C. Todistus (osa). (b) Oletetaan, että A B. Tällöin on olemassa kääntyvä matriisi P, jolla P 1 AP = B. Kertomalla tätä yhtälöä vasemmalta matriisilla P ja oikealta matriisilla P 1 saadaan A = PBP 1. LM2, Kesä /260
5 Merkitään Q = P 1. Tällöin Q on kääntyvä ja Siis B A. Q 1 BQ = (P 1 ) 1 BP 1 = PBP 1 = A. LM2, Kesä /260
6 Similaaristen matriisien ominaisuuksia Lause 63 Oletetaan, että A ja B ovat n n -neliömatriiseja. Oletetaan lisäksi, että A B. Tällöin (a) det(a) = det(b); (b) A on kääntyvä, jos ja vain jos B on kääntyvä; (c) matriiseilla A ja B on sama karakteristinen polynomi; (d) matriiseilla A ja B on samat ominaisarvot. Huom. Tämä tulos on käyttökelpoinen, jos pitää osoittaa, että jotkin matriisit eivät ole similaariset. LM2, Kesä /260
7 Lauseen 63 todistus (osa). (a) Koska A B, niin on olemassa kääntyvä matriisi P, jolla P 1 AP = B. Tällöin det(p 1 AP) = det(b). Determinantin ominaisuuksia käyttämällä saadaan det(b) = det(p 1 AP) = det(p 1 ) det(a) det(p) ( ) 1 = det(a) det(p) = det(a). det(p) LM2, Kesä /260
8 (c) Matriisin B karakteristinen polynomi on det(b λi). Koska A B, niin on olemassa kääntyvä matriisi P, jolla P 1 AP = B. Näin ollen det(b λi) = det(p 1 AP λi) = det(p 1 AP λp 1 IP) = det(p 1 AP P 1 λip) = det(p 1 (AP λip)) = det(p 1 (A λi)p) =... LM2, Kesä /260
9 ... = det(p 1 ) det(a λi) det(p) = ( ) 1 det(a λi) det(p) det(p) = det(a λi). Siis matriisien B ja A karakteristiset polynomit det(b λi) ja det(a λi) ovat samat. LM2, Kesä /260
10 Matriisit, jotka eivät ole similaarisia Esimerkki 64 Merkitään A = [ ] ja B = [ ] Huomataan, että det(a) = 3 ja det(b) = 3. Siis det(a) det(b), joten matriisit A ja B eivät ole similaariset lauseen 63 nojalla. LM2, Kesä /260
11 Matriisit, jotka eivät ole similaarisia Esimerkki 65 Merkitään A = [ ] ja B = [ ] Huomataan, että det(a) = 4 = det(b). Kuitenkin matriisin A karakterisinen polynomi on det(a λi) = (1 λ)(2 λ) 6 =... = λ 2 3λ 4 ja matriisin B karakterisinen polynomi on det(b λi) = (1 λ)( 1 λ) 3 =... = λ 2 4. Siten matriisit A ja B eivät ole similaariset lauseen 63 nojalla. LM2, Kesä /260
12 Matriisit, jotka eivät ole similaarisia Esimerkki 66 Tarkastellaan matriiseja [ ] 1 0 I = 0 1 ja B = [ ] Huomataan, että det(i) = 1 = det(b). Tästä seuraa, että molemmat ovat kääntyviä. Lisäksi matriiseilla I ja B on sama karakteristinen polynomi det(i λi) = (1 λ) 2 = det(b λi) ja kummankin matriisin ainoa ominaisarvo on λ = 1. LM2, Kesä /260
13 Tästä huolimatta matriisit I ja B eivät ole similaariset: jos P on mikä tahansa kääntyvä matriisi, niin P 1 IP = I B. LM2, Kesä /260
14 Diagonalisointi Määritelmä Oletetaan, että A on n n - neliömatriisi. Matriisi A on diagonalisoituva, jos se on similaarinen jonkin lävistäjämatriisin kanssa. Toisin sanottuna matriisi A on diagonalisoituva, jos on olemassa kääntyvä matriisi P ja lävistäjämatriisi D, joille pätee P 1 AP = D. LM2, Kesä /260
15 Diagonalisointi Esimerkki 67 Esimerkin 59 matriisi A = [ ] on diagonalisoituva. Nimittäin jos merkitään niin P = [ ] ja D = [ ] 4 0, 0 1 matriisi P on kääntyvä, sillä det(p) = 2 ( 3) = 5 0; LM2, Kesä /260
16 havaitaan, että [ ] [ ] [ ] AP = = [ ] [ ] [ ] PD = = ja eli AP = PD, mistä seuraa, että P 1 AP = D. LM2, Kesä /260
17 Lävistäjämatriisin potenssit Lävistäjämatriisin potenssien laskeminen on helpompaa: voidaan osoittaa esimerkiksi induktiolla, että mille tahansa kokonaisluvulle k 1 ja lävistäjämatriisille pätee d d D = d n d n LM2, Kesä /260
18 d k d2 k D k = dn 1 k dn k LM2, Kesä /260
19 Diagonalisointi matriisipotensseja laskettaessa Jos matriisi on diagonalisoituva, on sen potenssien laskeminen helpompaa: Esimerkki 68 Merkitään A = [ ] 1 2, P = 3 2 [ ] ja D = [ ] Esimerkissä 67 nähtiin, että matriisi A on diagonalisoituva ja P 1 AP = D. Kertomalla tätä yhtälöä vasemmalta matriisilla P ja oikealta matriisilla P 1 saadaan A = PDP 1. LM2, Kesä /260
20 Jos kokonaisluku k 1, niin A k = (PDP 1 ) k = (PDP 1 )... (PDP 1 ) }{{} k kpl = PD(P 1 P)D... (P 1 P)DP 1 = P } D.{{.. D} k kpl = PD k P 1. P 1 LM2, Kesä /260
21 Määritetään matriisin P käänteismatriisi: [ ] [ ] /5 1/ /5 2/5 Siis esimerkiksi A 10 = PD 10 P 1 = = = 1 5 [ ] [ ] ( 1) 10 5 [ ] [ 1 ] LM2, Kesä /260
22 Ehto diagonalisoituvuudelle Lause 69 Oletetaan, että A on n n -neliömatriisi. Matriisi A on diagonalisoituva, jos ja vain jos matriisilla A on n lineaarisesti riippumatonta ominaisvektoria. LM2, Kesä /260
23 Lauseen 69 todistus. : Oletetaan, että matriisi A on diagonalisoituva eli on olemassa kääntyvä matriisi P ja lävistäjämatriisi D, joille P 1 AP = D. Tällöin AP = PD. Merkitään matriisin P sarakkeita p 1,..., p n ja matriisin D lävistäjäalkioita λ 1,..., λ n. Ts. ] P = [ p 1... p n λ λ ja D = λ n λ n LM2, Kesä /260
24 Matriisituloa laskettaessa tulon AP jokainen sarake saadaan kertomalla matriisilla A vastaava sarake matriisista P: ] ] AP = A [ p 1 p n = [A p 1 A p n. Vastaavasti PD = P [λ 1 ē 1 ] λ n ē n = = [ ] P(λ 1 ē 1 ) P(λ n ē n ) [ ] ] λ 1 (Pē 1 ) λ n (Pē n ) = [λ 1 p 1 λ n p n. Koska AP = PD, saadaan A p i = λ i p i kaikilla i {1,..., n}.siis jokainen λ i on matriisin A ominaisarvo ja p i sitä vastaava ominaisvektori. LM2, Kesä /260
25 Matriisi P on kääntyvä, joten yhtälöllä P x = 0 on täsmälleen yksi ratkaisu x = 0. Yhtälö P x = 0 voidaan kirjoittaa myös muotoon x 1 p 1 + x 2 p x n p n = 0. Tämän yhtälön ainoa ratkaisu on siis x 1 = 0,..., x n = 0. Näin ollen matriisin A ominaisvektoreiden jono ( p 1,..., p n ) on vapaa. LM2, Kesä /260
26 : Oletetaan, että matriisilla A on n lineaarisesti riippumatonta ominaisvektoria. Merkitään niitä p 1,..., p n ja vastaavia ominaisarvoja λ 1,..., λ n. Tällöin A p i = λ i p i kaikilla i {1,..., n}. Tästä seuraa, että ] ] [A p 1 A p n = [λ 1 p 1 λ n p n. Näin ollen AP = PD, missä on valittu λ ] 0 λ P = [ p 1... p n ja D = λ n λ n LM2, Kesä /260
27 Oletuksen mukaan matriisin A ominaisvektorit p 1,..., p n ovat lineaarisesti riippumattomat, joten yhtälöstä x 1 p 1 + x 2 p x n p n = 0 seuraa, että x 1 = 0, x 2 = 0,..., x n = 0. Koska p 1,..., p n ovat matriisin P sarakkeet, voidaan yllä oleva yhtälö kirjoittaa muodossa P x = 0. Näin ollen yhtälöllä P x = 0 on tasan yksi ratkaisu x = 0. Kurssilla Lineaarialgebra ja matriisilaskenta I osoitettiin, että tällöin matriisi P on kääntyvä. Yhtälö AP = PD saadaan siis muotoon P 1 AP = D. LM2, Kesä /260
28 Diagonalisointi Oletetaan, että A on n n -neliömatriisi. Matriisin A diagonalisoiminen: 1. Etsi matriisin A ominaisarvot. 2. Määritä jokaista ominaisarvoa vastaava ominaisavaruus. 3. Tutki, onko matriisilla A n kappaletta lineaarisesti riippumattomia ominaisvektoreita. Jos lineaarisesti riippumattomia ominaisvektoreita on vähemmän kuin n kappaletta, matriisi A ei ole diagonalisoituva. LM2, Kesä /260
29 4. Muodosta matriisi P laittamalla löytämäsi lineaarisesti riippumattomat ominaisvektorit sen sarakkeiksi. Tällöin P on lauseen 69 todistuksen nojalla kääntyvä (voit tarkistaa tämän esim. determinantin avulla). 5. Muodosta lävistäjämatriisi D laittamalla sen sarakkeisiin matriisin P sarakkeita vastaavat ominaisarvot. Tällöin P 1 AP = D lauseen 69 todistuksen nojalla (voit tarkistaa tämän laskemalla tulot AP ja PD). LM2, Kesä /260
30 Diagonalisointi Esimerkki 70 Merkitään A = Diagonalisoi matriisi A, jos mahdollista. LM2, Kesä /260
31 1. Määritetään matriisin A ominaisarvot: Karakteristinen polynomi on λ 1 0 det(a λi) = 0 λ λ λ 1 = λ 5 4 λ λ = = λ 3 + 4λ 2 5λ + 2. Siis det(a λi) = 0 λ 3 + 4λ 2 5λ + 2 = 0. LM2, Kesä /260
32 Yksi ratkaisu esim. arvaamalla: jos λ = 1, niin = = 0. Tällöin polynomi λ 3 + 4λ 2 5λ + 2 on jaollinen polynomilla λ 1 ja esim. jakokulmassa saadaan λ 3 + 4λ 2 5λ + 2 = (λ 1)( λ 2 + 3λ 2). Muut ratkaisut saadaan näin ollen 2. asteen yhtälön ratkaisukaavalla: λ 2 +3λ 2 = 0 λ = 3 ± ( 1) ( 2) = 3 ± 1. 2 ( 1) 2 Matriisin A ominaisarvot ovat siis yhtälön λ 3 + 4λ 2 5λ + 2 = 0 ratkaisut λ 1 = 1 ja λ 2 = 2. LM2, Kesä /260
33 2. Ominaisarvoja vastaavat ominaisavaruudet: Ominaisarvoa λ 1 = 1 vastaava ominaisavaruus on V 1 = { v R 3 A v = v }. Ratkaistaan yhtälö A x = x eli yhtälö (A I) x = 0: Havaitaan, että x 3 on vapaa muuttuja, merkitään x 3 = t R. Tällöin ratkaisut ovat x = (t, t, t), missä t R. Siis V 1 = { t(1, 1, 1) t R } = span ( (1, 1, 1) ). LM2, Kesä /260
34 Ominaisarvoa λ 2 = 2 vastaava ominaisavaruus on V 2 = { v R 3 A v = 2 v }. Ratkaistaan yhtälö A x = 2 x eli yhtälö (A 2I) x = 0: / / Havaitaan, että x 3 on vapaa muuttuja, merkitään x 3 = t R. Tällöin ratkaisut ovat x = (t/4, t/2, t), missä t R. Siis V 2 = { t(1/4, 1/2, 1) t R } = span ( (1/4, 1/2, 1) ) = span ( (1, 2, 4) ). LM2, Kesä /260
35 3. Onko 3 3 -matriisilla A kolme lineaarisesti riippumatonta ominaisvektoria? Edellä havaittiin, että matriisin A ominaisavaruudet ovat V 1 = span ( (1, 1, 1) ) ja V 2 = span ( (1, 2, 4) ). Näin ollen matriisilla A ei ole kolmea lineaarisesti riippumatonta ominaisvektoria. Siis A ei ole diagonalisoituva lauseen 69 nojalla. LM2, Kesä /260
36 Ominaisavaruuksien kantavektoreista saadaan vapaa jono Lause 71 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ k ovat matriisin A eri ominaisarvoja. Tällöin ominaisavaruuksien V λ1,..., V λk kantavektoreista muodostettu jono on vapaa. Todistus. Olkoon ominaisavaruuden V λi kanta ( v i1, v i2,..., v imi ), missä kokonaisluku m i 1. On osoitettava, että kaikista kantavektoreista muodostettu jono on vapaa. ( v 11,..., v 1m1, v 21,..., v 2m2,..., v k1,..., v kmk ) LM2, Kesä /260
37 Oletetaan, että (c 11 v c 1m1 v 1m1 ) + + (c k1 v k1 + + c kmk v kmk ) = 0. Merkitään w i = (c i1 v i1 + + c imi v imi ) kaikilla i {1,..., k}. Tällöin w i V λi, sillä v i1,..., v imi V λi ja V λi on aliavaruus. Yhtälö saa muodon w w k = 0. Koska w i V λi, niin on kaksi mahdollisuutta: w i on ominaisarvoon λ i liittyvä ominaisvektori tai w i = 0. Tiedetään, että eri ominaisarvoihin liittyvät ominaisvektorit ovat lineaarisesti riippumattomia (lause 60). LM2, Kesä /260
38 Siten yhtälössä 1 w w k = 0 yksikään vektori ei voi olla ominaisvektori vaan jokainen w i = 0. Näin (c i1 v i1 + + c imi v imi ) = 0. Jono ( v i1, v i2,..., v imi ) on ominaisavaruuden V λi kantana vapaa, joten c i1 = 0,..., c imi = 0. Siis alkuperäisen yhtälön kaikki kertoimet ovat nollia. Näin ollen ominaisavaruuksien V λi kantavektoreista muodostettu jono on vapaa. LM2, Kesä /260
39 Diagonalisointi Esimerkki 72 Merkitään A = Diagonalisoi matriisi A, jos mahdollista. LM2, Kesä /260
40 1. Määritetään matriisin A ominaisarvot: Karakteristinen polynomi on 1 λ 0 1 det(a λi) = 3 λ λ 1 λ 1 = λ 1 1 λ = = λ 2 (λ + 2). Siis det(a λi) = 0 λ 2 (λ + 2) = 0 λ = 0 λ = 2. LM2, Kesä /260
41 2. Ominaisarvoja vastaavat ominaisavaruudet: Ominaisarvoa λ 1 = 0 vastaava ominaisavaruus on V 0 = { v R 3 A v = 0 v }. Ratkaistaan yhtälö A x = 0 x eli yhtälö A x = 0: Havaitaan, että x 2 ja x 3 ovat vapaita muuttujia, merkitään x 2 = s, x 3 = t (s, t R). Tällöin ratkaisut ovat x = (t, s, t), missä s, t R. Siis V 0 = { t(1, 0, 1) + s(0, 1, 0) s, t R } = span ( (1, 0, 1), (0, 1, 0) ). LM2, Kesä /260
42 Ominaisarvoa λ 2 = 2 vastaava ominaisavaruus on V 2 = { v R 3 A v = 2 v }. Ratkaistaan yhtälö A x = 2 x eli yhtälö (A + 2I) x = 0: Havaitaan, että x 3 on vapaa muuttuja, merkitään x 3 = t R. Tällöin ratkaisut ovat x = ( t, 3t, t), missä t R. Siis V 2 = { t( 1, 3, 1) t R } = span ( ( 1, 3, 1) ). LM2, Kesä /260
43 3. Onko 3 3 -matriisilla A kolme lineaarisesti riippumatonta ominaisvektoria? Edellä havaittiin, että matriisin A ominaisavaruudet ovat V 0 = span ( (1, 0, 1), (0, 1, 0) ) ja V 2 = span ( ( 1, 3, 1) ). Lisäksi vektorit (1, 0, 1) ja (0, 1, 0) ovat lineaarisesti riippumattomat, joten ne muodostavat ominaisavaruuden V 0 kannan.näin ollen matriisilla A on kolme lineaarisesti riippumatonta ominaisvektoria; esimerkiksi ominaisavaruuksen V 0 ja V 2 kantavektorit p 1 = (1, 0, 1), p 2 = (0, 1, 0) ja p 3 = ( 1, 3, 1). Siis A on diagonalisoituva lauseen 69 nojalla. LM2, Kesä /260
44 4. 5. Merkitään ] P = [ p p 2 p 3 = ja D = Tällöin lauseen 69 todistuksen mukaan P on kääntyvä ja P 1 AP = D. Huom. On mahdollista tarkistaa, että todella det(p) 0 ja AP = PD. LM2, Kesä /260
45 Diagonalisointi Lause 73 Oletetaan, että n n -matriisilla on n eri ominaisarvoa. Tällöin A on diagonalisoituva. Todistus. Olkoot v 1,..., v n jotkin eri ominaisarvoihin liittyvät ominaisvektorit. Ne ovat lineaarisesti riippumattomia lauseen 60 nojalla. Koska matriisilla A on n lineaarisesti riippumatonta ominaisvektoria, niin A on diagonalisoituva lauseen 69 nojalla. LM2, Kesä /260
Ominaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
LisätiedotOrtogonaalisen kannan etsiminen
Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,
LisätiedotLineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.
LisätiedotOminaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.
Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (
LisätiedotEsimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt
Esimerkki 4.4. Määrää matriisin 2 2 1 A = 1 3 1 2 4 3 ominaisarvot ja -vektorit. Ratk. Nyt det(a λi ) = 1 + 2 λ 2 1 + 1 λ 1 λ 1 3 λ 1 = 1 3 λ 1 2 4 3 λ 2 4 3 λ 1 λ = 1 4 λ 1 = (1 λ)( 1)1+1 4 λ 1 2 6 3
LisätiedotOminaisarvo ja ominaisvektori
Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot
Lisätiedotominaisvektorit. Nyt 2 3 6
Esimerkki 2 6 8 Olkoon A = 40 0 6 5. Etsitäänmatriisinominaisarvotja 0 0 2 ominaisvektorit. Nyt 2 0 2 6 8 2 6 8 I A = 40 05 40 0 6 5 = 4 0 6 5 0 0 0 0 2 0 0 2 15 / 172 Täten c A ( )=det( I A) =( ) ( 2)
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
Lisätiedot6. OMINAISARVOT JA DIAGONALISOINTI
0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos
LisätiedotVapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotOminaisvektoreiden lineaarinen riippumattomuus
Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin
LisätiedotKannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
LisätiedotTehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun
LisätiedotNeliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja
7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien
LisätiedotMS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
LisätiedotOminaisarvo-hajoitelma ja diagonalisointi
Ominaisarvo-hajoitelma ja a 1 Lause 1: Jos reaalisella n n matriisilla A on n eri suurta reaalista ominaisarvoa λ 1,λ 2,...,λ n, λ i λ j, kun i j, niin vastaavat ominaisvektorit x 1, x 2,..., x n muodostavat
LisätiedotMS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotTehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin
Lisätiedot5 OMINAISARVOT JA OMINAISVEKTORIT
5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön
LisätiedotInsinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 06 laskuharjoituksien esimerkkiratkaisut Alla olevat esimerkkiratkaisut ovat melko ksitiskohtaisia Tenttivastauksissa ei leensä tarvitse muistaa lauseiden, määritelmien, esimerkkien
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:
Lisätiedot6 MATRIISIN DIAGONALISOINTI
6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,
LisätiedotMatriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Antti Rasila 2016 Ominaisarvot ja ominaisvektorit 1/5 Määritelmä Skalaari λ C on matriisin A C n n ominaisarvo ja vektori v C n sitä
LisätiedotMatriisialgebra harjoitukset, syksy 2016
Matriisialgebra harjoitukset, syksy 6 MATRIISIALGEBRA, s. 6, Ratkaisuja/ M.Hamina & M. Peltola 8. Olkoon 4 A 6. 4 Tutki, onko A diagonalisoituva. Jos on, niin määrää matriisi D T AT ja siihen liittyvä
LisätiedotMS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48
MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?
LisätiedotMS-A0003/A Matriisilaskenta Laskuharjoitus 6
MS-A3/A - Matriisilaskenta Laskuharjoitus 6 Ratkaisuehdotelmia. Diagonalisointi on hajotelma A SΛS, jossa diagonaalimatriisi Λ sisältää matriisin A ominaisarvot ja matriisin S sarakkeet ovat näitä ominaisarvoja
LisätiedotLineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)
Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä
LisätiedotDeterminantti. Määritelmä
Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j) (a) Jos n = 1, niin det(a) = a 11 (b) Muussa tapauksessa n det(a)
LisätiedotDemorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104
Lineaarialgebra (muut ko) p. 1/104 Ensi viikolla luennot salissa X Torstaina 7.12. viimeiset demot (12.12. ja 13.12. viimeiset luennot). Torstaina 14.12 on välikoe 2, muista ilmoittautua! Demorastitiedot
LisätiedotOrtogonaalinen ja ortonormaali kanta
Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä
LisätiedotDeterminantti. Määritelmä
Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi. Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j). (a) Jos n = 1, niin det(a) = a 11. (b) Muussa tapauksessa n det(a)
LisätiedotNeliömatriisit A ja B ovat similaareja toistensa suhteen, A B, jos on olemassa kääntyvä matriisi P, jolle pätee A = PBP 1.
Similaarisuus 1 (Kreyszig 8.4, Lay 5.2) Aalto MS-C1340, 2014, Kari Eloranta Määritelmä Neliömatriisit A ja B ovat similaareja toistensa suhteen, A B, jos on olemassa kääntyvä matriisi P, jolle pätee A
LisätiedotOminaisarvot ja ominaisvektorit 140 / 170
Ominaisarvot ja ominaisvektorit 140 / 170 Seuraavissa luvuissa matriisit ja vektori ajatellaan kompleksisiksi, ts. kertojakuntana oletetaan olevan aina kompleksilukujoukko C Huomaa, että reaalilukujoukko
Lisätiedot1 Ominaisarvot ja ominaisvektorit
1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C340 Lineaarialgebra ja differentiaaliyhtälöt Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 205 / 3 R. Kangaslampi Matriisihajotelmista Differentiaaliyhtälöitä ratkaistaessa
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
LisätiedotVektorien virittämä aliavaruus
Vektorien virittämä aliavaruus Esimerkki 13 Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w kuuluu vektoreiden v 1 = (3, 2, 1), v 2 = (2, 2, 6) ja v 3 = (3, 4, 5) virittämään
LisätiedotOsoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
LisätiedotLineaariset yhtälöryhmät ja matriisit
Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä
LisätiedotOrtogonaaliset matriisit, määritelmä 1
, määritelmä 1 Määritelmä (a). Neliömatriisi Q on ortogonaalinen, jos Q T Q = I. Määritelmästä voidaan antaa samaa tarkoittavat, mutta erilaiselta näyttävät muodot: Määritelmä (b). n n neliömatriisi Q,
Lisätiedot1 Matriisit ja lineaariset yhtälöryhmät
1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n
Lisätiedot7 Vapaus. 7.1 Vapauden määritelmä
7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan
LisätiedotMatriisi-vektori-kertolasku, lineaariset yhtälöryhmät
Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa
LisätiedotMatriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?
Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi
LisätiedotMatematiikka B2 - TUDI
Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
LisätiedotKäänteismatriisi 1 / 14
1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella
LisätiedotMATRIISIN HESSENBERGIN MUOTO. Niko Holopainen
MATRIISIN HESSENBERGIN MUOTO Niko Holopainen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Syksy 2013 Tiivistelmä: Niko Holopainen, Matriisin Hessenbergin muoto Matematiikan
LisätiedotA = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:
11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta
LisätiedotMilloin A diagonalisoituva?
Milloin A diagonalisoituva? ) Oletus: A on diagonalisoituva eli D = TAT, jollakin D = diag(λ, λ 2,..., λ n ). A:n ja D:n ominaisarvot ovat samat λ, λ 2,..., λ n ovat myös A:n ominaisarvot... D e i = D
LisätiedotLineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg
Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa
LisätiedotKantavektorien kuvavektorit määräävät lineaarikuvauksen
Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
LisätiedotMatematiikka B2 - Avoin yliopisto
6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
LisätiedotMatriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41
MS-A0004/MS-A0006 Matriisilaskenta, I/06 Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 4 Tehtävä 5 (L): a) Oletetaan, että λ 0 on kääntyvän matriisin A ominaisarvo. Osoita, että /λ on matriisin A
Lisätiedot5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
LisätiedotKanta ja Kannan-vaihto
ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V
LisätiedotVektoreiden virittämä aliavaruus
Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden
LisätiedotOMINAISARVOISTA JA OMINAISVEKTOREISTA
1 OMINAISARVOISTA JA OMINAISVEKTOREISTA Olkoon x = (x 1,..., x n ) avaruuden R n piste (l. vektori). Vektori x samaistetaan n 1-matriisin (x 1 x 2... x n ) T kanssa, ts. voidaan yhtä hyvin kirjoittaa x1
LisätiedotDeterminantti 1 / 30
1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen
LisätiedotNumeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28
Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä
LisätiedotLineaarialgebra, kertausta aiheita
Lineaarialgebra, kertausta aiheita Matriisitulo käänteismatriisi determinantin kehittäminen determinantin ominaisuudet adjungaatti ja Cramerin kaavat yhtälöryhmän eri esitystavat Gauss-Jordan -algoritmi
LisätiedotDifferentiaaliyhtälöt II, kevät 2017 Harjoitus 5
Differentiaaliyhtälöt II, kevät 27 Harjoitus 5 Heikki Korpela 26. huhtikuuta 27 Tehtävä 2. Määrää seuraavan autonomisen systeemin kriittiset pisteet, ratakäyrät ja luonnostele systeemin aikakehitys: (t)
LisätiedotLineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut
MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A
LisätiedotEsimerkki 19. Esimerkissä 16 miniminormiratkaisu on (ˆx 1, ˆx 2 ) = (1, 0).
Esimerkki 9 Esimerkissä 6 miniminormiratkaisu on (ˆx, ˆx (, 0 Seuraavaksi näytetään, että miniminormiratkaisuun siirtyminen poistaa likimääräisongelman epäyksikäsitteisyyden (mutta lisääntyvän ratkaisun
Lisätiedot(1.1) Ae j = a k,j e k.
Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
Lisätiedot10 Matriisit ja yhtälöryhmät
10 Matriisit ja yhtälöryhmät Tässä luvussa esitellään uusi tapa kirjoittaa lineaarinen yhtälöryhmä matriisien avulla käyttäen hyväksi matriisikertolaskua sekä sarakevektoreita Pilkotaan sitä varten yhtälöryhmän
Lisätiedot9 Matriisit. 9.1 Matriisien laskutoimituksia
9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä
LisätiedotEnnakkotehtävän ratkaisu
Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 4.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Viimeiset harjoitukset on palautettava torstaina 13.6. Laskaripisteensä ja läsnäolonsa voi kukin tarkistaa
Lisätiedot2.8. Kannanvaihto R n :ssä
28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit
LisätiedotPäättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1
Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon
LisätiedotC = {(x,y) x,y R} joiden joukossa on määritelty yhteen- ja kertolasku seuraavasti
Vaasan yliopiston julkaisuja 189 9 OMINAISARVOTEHTÄVÄ Ch:EigSystem Sec:CMatrix 9.1 Kompleksinen lineaariavaruus 9.1.1 Kompleksiluvut Pian tulemme tarvitsemaan kompleksisen lineaariavaruuden alkeita. Tätä
Lisätiedot1 Kannat ja kannanvaihto
1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:
LisätiedotTalousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu
Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi
LisätiedotAlkeismuunnokset matriisille, sivu 57
Lineaarialgebra (muut ko) p. 1/88 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1
LisätiedotDeterminantit. Kaksirivinen determinantti. Aiheet. Kaksirivinen determinantti. Kaksirivinen determinantti. Kolmirivinen determinantti
Determinantit 1 2 2-matriisin ( A = on det(a) = a 11 a 12 a 21 a 22 a 11 a 12 a 21 a 22 ) = a 11a 22 a 12 a 21. 1 2 2-matriisin on det(a) = Esim. Jos A = ( a 11 a 12 a 21 a 22 A = a 11 a 12 a 21 a 22 )
LisätiedotNeliömatriisin adjungaatti, L24
Neliömatriisin adjungaatti, L24 1 2 1 3 Matriisi = A = 7 4 6 5 2 0 ( ) 7 6 Alimatriisi = A 12 = 5 0 Minori = det(a 12 ) = 7 6 5 0 = 30 Kofaktori = ( 1) 1+2 det(a 12 ) = 30 2 Määritelmä n n neliö-matriisin
LisätiedotMatriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n.
Matriisipotenssi Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: Määritelmä Oletetaan, että A on n n -matriisi (siis neliömatriisi) ja k
LisätiedotTalousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu
Talousmatematiikan perusteet: Luento 14 Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Luennolla 6 Tarkastelimme yhden muuttujan funktion f(x) rajoittamatonta optimointia
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:
LisätiedotMatriisihajotelmat. MS-A0007 Matriisilaskenta. 5.1 Diagonalisointi. 5.1 Diagonalisointi
MS-A0007 Matriisilaskenta 5. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 25.11.2015 Laskentaongelmissa käsiteltävät matriisit ovat tyypillisesti valtavia.
Lisätiedot800350A / S Matriisiteoria
800350A / 800693S Matriisiteoria Emma Leppälä Tero Vedenjuoksun luentomonisteen pohjalta 15 syyskuuta 2017 Sisältö 1 Lineaarialgebraa 2 11 Merkintöjä 2 12 Matriisien perusominaisuuksia 4 13 Matriisien
LisätiedotMonissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen.
Pns ratkaisu (Kr. 20.5, Lay 6.5 C-II/KP-II, 20, Kari Eloranta Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Määritelmä Jos A on
LisätiedotKäänteismatriisin. Aiheet. Käänteismatriisin ominaisuuksia. Rivioperaatiot matriisitulona. Matriisin kääntäminen rivioperaatioiden avulla
Käänteismatriisi, L5 1 Tässä kalvosarjassa käsittelemme neliömatriiseja. Ilman asian jatkuvaa toistamista oletamme seuraavassa, että kaikki käsittelemämme matriisit ovat neliömatriiseja. Määritelmä. Olkoon
LisätiedotMatemaattinen Analyysi / kertaus
Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Lineaarikuvaukset Lineaarikuvaus Olkoot U ja V
LisätiedotLineaarialgebra a, kevät 2018 Harjoitusta 5 Maplella
Lineaarialgebra a, kevät 2018 Harjoitusta 5 Maplella Tehtävä 1. Determinantti = 0, kun 2 samaa saraketta restart; with(linalg): Induktiotodistus matriisin koon ( ) suhteen. Väite. Jos ja n x n -matriisissa
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus
LisätiedotDI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 13: ti klo 13:00-15:30 ja to 1.4.
DI matematiikan opettajaksi: Täydennyskurssi, kevät Luentorunkoa ja harjoituksia viikolle 3: ti 33 klo 3:-5:3 ja to 4 klo 9:5-: Käydään läpi differentiaaliyhtälöitä Määritelmä Olkoon A R n n (MatLab:ssa
Lisätiedot