13. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Koko: px
Aloita esitys sivulta:

Download "13. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä"

Transkriptio

1 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on differentiaaliyhtälö. Se on yleisessä muodossaan yhtälö, jossa esiintyy tuntemattomia funktioita ja niiden derivaattoja. Jos derivaatoissa on osittaisderivaattoja, kyseessä on osittaisdifferentiaaliyhtälö, jos vain tavallisia derivaattoja, tavallinen differentiaaliyhtälö. Tällä kurssilla käsittelemme vain jälkimmäisiä, ja niitäkin lyhyesti. Differentiaaliyhtälön kertaluku on siinä esiintyvän korkeimman derivaatan kertaluku. Differentiaaliyhtälö on lineaarinen, jos tuntematon funktio ja sen yhtälössä esiintyvät derivaatat esiintyvät siinä lineaarisesti eli asteluvulla 1. Jos silloin tuntemattoman funktion ja derivaattojen kertoimet ovat vakioita, kyseessä on vakiokertoiminen lineaarinen differentiaaliyhtälö. Tuntematon funktio ja sen derivaatat laitetaan pääsääntöisesti yhtälön vasemmalle puolelle. Jos silloin oikealle puolelle jää, kyseessä on homogeeninen yhtälö, muuten yhtälö on epähomogeeninen. Esim. 1 Tarkastellaan seuraavia differentiaaliyhtälöitä: a) y'''( x) + x y''( x) + y( x) = sin x (4) b) ( y ( x)) + y( x) = x c) x''( t) + x'( t) + 4 x( t) = Näistä a ja c ovat lineaarisia, b on epälineaarinen. Yhtälön a kertaluku on 3, yhtälön b kertaluku on 4 ja c on toisen kertaluvun vakiokertoiminen lineaarinen homogeeninen yhtälö. Yhtälöt a ja b ovat epähomogeenisia. Differentiaaliyhtälön ratkaisuja ovat funktiot, jotka sijoitettuna yhtälöön toteuttavat sen jollakin avoimella välillä. Yleiseen ratkaisuun sisältyy kertaluvun ilmoittama määrä toisistaan riippumattomia vakioita eli parametreja. Parametrit tai osa niistä voidaan kiinnittää alkuehdoilla tai reunaehdoilla, jolloin kyseessä on alkuarvoprobleema tai reunaarvoprobleema.

2 188 Esim. Yhtälön y''( x) + y( x) = yleinen ratkaisu on yx ( ) = c1sinx+ ccosx, missä c1, c R ovat parametreja. Alkuarvoprobleeman y''( x) + y( x) =, y() =, y'() = ratkaisu (yksikäsitteinen) on yx ( ) = sin x. Reuna-arvoprobleeman y''( x) + y( x) =, y() =, y( π ) = ratkaisuja ovat kaikki funktiot yx ( ) = csin x, c R. Reuna-arvoprobleemalla y''( x) + y( x) =, y() =, y'( π ) = 1 taas ei ole ratkaisua lainkaan. Kuten esimerkistä näkyy, differentiaaliyhtälöllä ei välttämättä tarvitse olla olemassa ratkaisua, ja jos sellaisia on, niiden ei tarvitse olla yksikäsitteisiä. Tähän kysymykseen palaamme myöhemmin differentiaaliyhtälösysteemien yhteydessä. Käymme seuraavassa läpi yksinkertaisimpia perustapauksia 1. ja. kertaluvun differentiaaliyhtälöistä. Yleisempi teoria esitetään sitten myöhemmin. Totuttelemme kuitenkin yleiseen differentiaalisysteemien merkintätapaan jo nyt merkitsemällä tuntematonta funktiota useimmiten x:llä ja muuttujaa t:llä ("aika"). 1) Ensimmäisen kertaluvun lineaarinen homogeeninen vakiokertoiminen yhtälö: x'( t) ax( t) = eli x'( t) = ax( t), joka voidaan esittää muodossa x'( t) = a. xt () Kun tämä integroidaan puolittain, saadaan ln x( t) = at + d, missä d on integroimisvakio. Ottamalla tästä edelleen eksponenttifunktio exp puolittain tullaan muotoon

3 189 at d at d x( t) = exp( at+ d) = e + = e e Koska jokainen luku c R on esitettävissä lausekkeena ±e d jollakin d, saadaan itseisarvomerkit poistettua ja yleinen ratkaisu on x t at () = e c missä c on mielivaltainen vakio. Alkuehdon x()=x toteuttavassa ratkaisussa on silloin c=x : x() t = e at x. ) Ensimmäisen kertaluvun lineaarinen epähomogeeninen vakiokertoiminen yhtälö: x'( t) ax( t) = b( t) eli x'( t) = ax( t) + b( t) Yhtälön x'(t)=ax(t) eli homogeenisen yhtälön yleinen ratkaisu on edellisen nojalla x h (t)=e at c. Epähomogeenisen yhtälön x'(t)=ax(t)+b(t) yksityisratkaisu saadaan ns. vakion varioinnilla eli etsimällä ratkaisua muodossa x(t)=e at c(t). Silloin saadaan derivoimalla ja sijoittamalla epähomogeeniseen yhtälöön: josta sievenee yhtälö ae at c(t)+e at c'(t)=ae at c(t) + b(t) c'(t)=e -at b(t), eli eräs yksityisratkaisu on

4 19 x p (t)=e at e at b(t)dt. Silloin yleinen ratkaisu epähomogeeniselle yhtälölle on homogeenisen yhtälön yleinen ratkaisu plus epähomogeenisen yksityisratkaisu: x(t)=e at c + e at e -at b(t)dt Alkuehdon x()=x toteuttava ratkaisu on silloin t x(t)=e at a( t s) x + e b() s ds. Jos edellä vakio a vaihtuu funktioksi a(t), niin ratkaisujen johto menee lähes samalla tavalla, kun termi at korvataan integraalilla atdt () : 3) Ensimmäisen kertaluvun lineaarinen homogeeninen yhtälö: x'( t) a( t) x( t) = eli x'( t) = a( t) x( t). Yleinen ratkaisu on () xt () = e atdt c ja alkuehdon x()=x toteuttava ratkaisu t () xt () e atdt = x.

5 191 4) Ensimmäisen kertaluvun lineaarinen epähomogeeninen yhtälö: x'( t) a( t) x( t) = b( t) eli x'( t) = a( t) x( t) + b( t). Yleinen ratkaisu on atdt () atdt () atdt () x() t = e c+ e e b() t dt. π π Esim. 3 x '( t) + (tan t) x( t) = cos t, < t <. sin t Koska atdt ( ) = ( tan tdt ) = dt= ln(cos t) cost yleinen ratkaisu on, niin e a() t dt = cost, joten 1 x( t) = (cos t) c+ cost cos tdt = (cos t) c+ costsin t. cost Epälineaariset differentiaaliyhtälöt ovat yleensä ratkaistavissa korkeintaan numeerisesti. Mutta dimensiossa 1 eli 1. kertaluvun differentiaaliyhtälöissä tietyt erityistapaukset ratkeavat periaatteessa helposti. Erikoistemppuihin perehtyminen ei nykyisin kuitenkaan enää ole tarpeellista (ohjelmistot Maple etc.), paitsi seuraavaa, joka on niin tavallinen, että esiintyy eri alojen oppikirjoissa "luonnonlakien" yms. johtamisissa: 5) Ensimmäisen kertaluvun separoituva differentiaaliyhtälö: x'( t) = h( t) g( x( t)),

6 19 Tämä on siis muotoa, missä oikealla puolella muuttujat t ja x ovat "separoituneet". Silloin yhtälö voidaan kirjoittaa muotoon (vasemmalle separoituneet x, oikealle pelkästään t:stä riippuvat.) x'( t) / g( x( t)) = h( t), josta puolittain integroituna x '( t ) / g ( x ( t )) dt = h ( t ) dt. Tämä integrointi onnistuessaan antaa yhtälön yleisen ratkaisun. Edellä olemme jo käyttäneetkin tätä menettelyä ensimmäisen kertaluvun lineaarisen homogeenisen differentiaaliyhtälön ratkaisujen johtamisessa. Esim. 4 x '( t) t x( t) = t (epälineaarinen, epähomogeeninen) x'( t) x'( t) x '( t) = t (1 + x( t) ) = t dt = t dt 1 + xt ( ) 1 + xt ( ) Sijoitetaan vasempaan integraaliin u = x( t), du = x'( t) dt, jolloin saadaan du 1 3 tdt arctan u 3 t c 1+ u = = +. Siis yleinen ratkaisu on x t = t + c. 1 3 () tan( 3 ) Esim. 5 x '( t) = x( t)(1- sin( t)) x'( t) x'( t) = 1 sin( t) dt = (1 sin( t)) dt xt () xt () puolille yhtälöä) (eli x ja t separoitiin eri ln xt ( ) t cos( t) d xt ( ) e ee xt () ce + t+ cos( t) + d d t+ cos( t) = + + = =, merk. t cos( t) =, c on mielivaltainen vakio. c d =± e :

7 193 6) Toisen kertaluvun lineaarinen homogeeninen vakiokertoiminen yhtälö: y''( t) + ay'( t) + by( t) = Koska eksponenttifunktio on ainoa funktio, joka derivoitaessa antaa takaisin saman funktion vakiolla kerrottuna, voidaan ratkaisua hakea rt sijoittamalla yt ( ) = e. Jakamalla sijoituksen jälkeen nollasta rt poikkeavalla lausekkeella e saadaan, että yhtälö toteutuu, jos r on karakteristisen yhtälön r + ar+ b= juuri. Tilanne jakaantuu juurten ominaisuuksien mukaan kolmeen tapaukseen (ei todistetta tässä tarkemmin, koska seuraa myöhemmästä differentiaaliyhtälöryhmien teoriasta): Olkoot karakteristisen yhtälön r + ar+ b= juuret λ ja µ. Silloin yllä olevan differentiaaliyhtälön yleinen ratkaisu on 1. yt () t t ce 1 ce µ. yt () λt λt ce 1 cte 3. αt 1 β = +, jos juuret ovat reaalisia ja λ µ = +, jos λ=µ yt () = ce sin( αt t) + ce cos( βt), jos λ=α+iβ, µ=α-iβ, β. Esim. 6 Hae differentiaaliyhtälön y''- y'- y = yleinen ratkaisu Karakteristinen yhtälö r r =, juuret ja -1. Siis tapaus 1. Yleinen t t ratkaisu yt () = ce + ce. 1 Esim. 7 Ratkaise alkuarvoprobleema y'' + y' + 5y =, y( π) = e π, y '( π) = 3e π Karakteristinen yhtälö r + r+ 5=, juuret kompleksiset: -1+i ja -1-i. Siis tapaus 3. Yleinen ratkaisu

8 194 t yt () = ce sint+ ce cost. t 1 π π π Alkuehdot: y( π ) = e ce = e c = 1; t t t t y'( t) = ce sin t+ ce cost e cost e sin t, 1 1 π π π π y'( π ) = 3e ce 1 e = 3e c1 =. Siis alkuarvoprobleeman ratkaisu on t t yt () = e sint+ e cost. Tapauksessa 3 ratkaisu on usein hyödyllistä esittää yhtenä sinilausekkeena (tai kosini-). Siihen päästään käyttämällä ns. harmonisia identiteettejä acosωt+ bsinωt= Asin( ωt+ φ) b a missä A = a + b ja cos φ =, sinφ =, sekä A A acosωt+ bsinωt= Acos( ωt δ), a b missä A = a + b ja cos δ =, sinδ =. A A Esim. 8 Edellisen esimerkin ratkaisufunktiolle saadaan muoto t t t yt ( ) = e (cos t+ sin t) = e 1+ 4 cos( t δ ) = 5e cos( t δ ), missä 1 π cos δ =, sinδ =, joten < δ < eli δ = arctan

9 Vakiokertoiminen lineaarinen normaaliryhmä Todetaan ensin ilman todistuksia (tulos on syvällinen) ratkaisujen olemassaoloa ja yksikäsitteisyyttä koskeva perustulos: Alkuarvotehtävän olemassaolo- ja yksikäsitteisyyslause Oletetaan, että funktio f: R n R R n on jatkuva pisteen (x, t ) ympäristössä U I ja että derivaattamatriisi f on olemassa ja jatkuva x siellä (derivointi muuttujan x suhteen). Silloin alkuarvotehtävällä x'(t) = f(x(t),t), x(t )=x on olemassa yksikäsitteinen ratkaisu jollakin välillä J I, t J. Jos lisäksi matriisin f x olemassa koko välillä I. alkiot ovat rajoitettuja, niin tämä ratkaisu on Lineaariset systeemit. Seuraavassa tarkastellaan ns. autonomisten vakiokertoimisten homogeenisten differentiaalisysteemien ratkaisemista analyyttisesti (numeerisiin menetelmiin ei tässä nyt puututa). Systeemi on muotoa (1) x'(t) = Ax(t) ja haettavana on yleinen ratkaisu tai alkuehdon x()=x toteuttava ratkaisu. Matriisi A on kokoa n n oleva vakiomatriisi (siis ajasta t riippumaton) ja tilavektori x(t) R n. Koska nyt oikean puolen derivaatta on vakiomatriisi A, olemassaolo- ja yksikäsitteisyyslause on voimassa koko avaruudessa (U=R n, I=R).

10 196 Kun n=1 eli systeemi on yksiulotteinen x'( t) = ax( t), yleiseksi ratkaisuksi at saatiin luvussa 13 x( t) = e c ja alkuehdon x() = x toteuttavaksi ratkaisuksi x() t = e at x. Osoittautuu, että tämä muoto ratkaisuille pätee myös korkeammissa dimensioissa n. Silloin a:n tilalla on matriisi A ja e At on matriisin At (=ta) matriisiarvoinen funktio. Matriisieksponenttifunktio e A voidaan määritellä e x :n sarjakehitelmän avulla sijoittamalla luvun x paikalle neliömatriisi A (ks. sarjateorian osuus). Mutta tässä vaiheessa tyydymme yksinkertaisempaan tapaukseen ja oletamme A:n olevan reaalisen diagonalisoituvan matriisin. Diagonalisoituvalle matriisille A on olemassa ei-singulaarinen matriisi Q =[v 1,...,v n ] siten, että () A = QDQ -1, missä lävistäjämatriisin D=diag(λ 1,..., λ n ) lävistäjällä on A:n ominaisarvot. Aikaisemmin olemme osoittaneet, että tällöin A k = QD k Q -1. Edelleen tämä avulla voidaan osoittaa, että vastaava pätee jokaiselle polynomille p: p(a) = Qp(D)Q -1, missä p(d) = diag(p(λ 1 ),...,p(λ n )). Kuten sarjateoriassa todetaan, sarjat ovat polynomien (osasummien) raja-arvoja. On siis luontevaa määritellä diagonalisoituvan matriisin A eksponenttifunktio yhteydellä (3) e A = Qe D Q -1, missä e D = diag(exp(λ 1 ),...,exp(λ n )). Tämä määritelmä voidaan osoittaa sarjateorian avulla esitettävissä olevaan yleisempään määritelmään yhteensopivaksi.

11 197 Alkuarvotehtävän (4) x'(t) = Ax(t), x() = x ratkaisuksi saadaan nyt vektorifunktio (5) x(t) = e At x. Derivoimalla todetaan, että kyseessä on ratkaisu: x'(t) = d/dt (Qe Dt Q -1 )x = Q(d/dte Dt )Q -1 x = Q(De Dt )Q -1 x = QDQ -1 Qe Dt Q -1 x =Ae At x =Ax(t). Koska tämä toteuttaa myös alkuehdon x()=x, on se olemassaolo- ja yksikäsitteisyyslauseen mukaan alkuarvotehtävän yksikäsitteinen ratkaisu. Lähdetään sitten toista kautta hakemaan yleistä ratkaisua. Todetaan ensin, että jos x 1,..., x k ovat lineaarisen systeemin x'(t)=ax(t) ratkaisuja, niin myös niiden jokainen lineaarikombinaatio x(t) = c 1 x 1 (t) c k x k (t) on sitä. (Operaattori L(x)=x'-Ax on lineaarinen.) Funktioita x 1,..., x k sanotaan välillä I lineaarisesti riippumattomiksi, jos yhtälö c 1 x 1 () t + cnxn() t = toteutuu välillä I vain, kun c = = c n =. 1 Jos funktiot x i ovat lineaarisen systeemin ratkaisuja, riippumattomuutta selvitettäessä ei kuitenkaan tarvitse tutkia jokaista t, vaan yksikin t 1

12 198 riittää. Jos nimittäin vektorit x 1 (t),..., x k (t) ovat riippuvia hetkellä t 1, niin silloin on joillakin kertoimilla c i voimassa yhtälö c 1 x 1 (t 1 ) c k x k (t 1 ) = (t 1 ) jolloin molemmilla puolilla esiintyy alkuarvotehtävän x'(t)=ax(t), x(t 1 )= ratkaisu. Ne ovat siis samat kaikilla t, joten funktiot x 1,..., x k ovat lineaarisesti riippuvia. Lineaarisen systeemin x'(t)=ax(t) yleinen ratkaisu muodostuu mistä hyvänsä n:stä lineaarisesti riippumattomasta ratkaisusta x 1,..., x n niiden lineaarikombinaationa: (6) x(t) = c 1 x 1 (t) c n x n (t). Tämä seuraa olemassaolo- ja yksikäsitteisyyslauseesta ja siitä, että mielivaltainen alkutila x saadaan sopivilla kertoimilla c i yhtälöstä c 1 x 1 () c n x n () =x. (Vektorit x1 (),, x n () ovat lineaarisesti riippumattomia ja niitä on n kappaletta, joten ne muodostavat avaruuden R n kannan.) Kerroinyhtälö on matriisimuodossa [x 1 (),...,x n ()]c =x, missä c=[c 1,...,c n ] T. Kerroinmatriisi on ei-singulaarinen, koska sen sarakkeet ovat lineaarisesti riippumattomia. Siis kerroinyhtälöllä on yksikäsitteinen ratkaisu c. Tästä saadaan sen lineaarikombinaation c 1 x 1 (t) c n x n (t) kertoimet, joka on alkutilan x määräämää ratkaisu differentiaaliyhtälösysteemille.

13 199 Matriisia X(t) = [x 1 (t),...,x n (t)] sanotaan differentiaaliyhtälösysteemin fundamentaalimatriisiksi. Sitä käyttäen yleinen ratkaisu(6) voidaan esittää muodossa (7) x(t) = X(t)c. Fundamentaalimatriisi ei ole yksikäsitteinen, sehän rakentuu valituista n:stä lineaarisesti riippumattomasta ratkaisusta. Usein kuitenkin asetetaan ehto X()=I. Silloin alkuehdon x()=x toteuttava ratkaisu on (8) x(t) = X(t)x. Näemme siis, että diagonalisoituvan matriisin tapauksessa yksikäsitteisyyslauseen nojalla e At on fundamentaalimatriisi: (9) X(t) = e At, X()=I. Yleinen ratkaisu (7) voidaan siis esittää myös muodossa (1) x(t) = e At c. Jos A on diagonalisoituva ja Q =[v 1,...,v n ] rakentuu sen lineaarisesti riippumattomista ominaisvektoreista (joita siis on täysi määrä n), niin alkuarvotehtävän ratkaisuksi saatiin x(t) = e At x = Qe Dt Q -1 x, joka voidaan kirjoittaa muotoon (11) x(t) = [exp(λ 1 t)v 1... exp(λ n t)v n ] T Q -1 x. Merkitsemällä c = Q -1 x = [c 1,...,c n ] T saadaan (1) x(t) = c 1 exp(λ 1 t)v c n exp(λ n t)v n,

14 joka on yleisen ratkaisun (6) muotoa, jos kertoimet c i ovat mielivaltaisia ja x i (t) = exp(λ i t)v i. Jokainen tällainen x i (t) todella on ratkaisu: derivoidaan ja käytetään ominaisvektorin ominaisuutta Av i =λ i v i x'(t) = d/dt(exp(λ i t)v i ) = λ i exp(λ i t)v i =exp(λ i t)av i = A(exp(λ i t)v i ) =Ax(t). Siis yleinen ratkaisu (1) on "aukikirjoitettuna" lauseke (1). Alkuehdon x()=x toteuttava ratkaisu kaavasta (1) saadaan, jos c =Q -1 x eli yhtälön Qc=x ratkaisu. Esim. 1 x' = x Matriisin A = ominaisarvot ovat 3 ja -1, sekä vastaavat ominaisvektorit [1 ] T ja [1 -] T. Yleinen ratkaisu on silloin x(t) = ce 1 t 1 + ce 3t 1 (muotoa 1) = e e 3t e 3t t e t c (muotoa 7 ) 3t t ce 1 + ce = 3t ce 1 ce t (ratkaisu komponenteittain).

15 1 Edellä oletettiin, että matriisi A on diagonalisoituva. Tällainen on tilanne täsmälleen silloin, kun jokaisen ominaisarvon geometrinen kertaluku on sama kuin algebrallinen. Täydennetään teoriaa seuraavilla tuloksilla tapauksista, joissa moninkertaisen ominaisarvon geometrinen kertaluku on yksi: Olkoon A:n ominaisarvon λ algebrallinen kertaluku, geometrinen kertaluku 1 ja vektori u λ:aa vastaava ominaisvektori. Silloin kaksi λ:aa vastaavaa lineaarisesti riippumatonta systeemin x' = Ax ratkaisua ovat (13) e λt u ja te λt u + e λt v. missä vektorit u ja v ratkaistaan yhtälöistä (14) (A-λI)u =, (A-λI)v = u. (Todistetaan sijoittamalla (13) yhtälöön x' = Ax. Ensimmäinen yhtälö ilmaisee sen, että u on A:n ominaisvektori.) Edelleen, jos λ:n algebrallinen kertaluku on 3 ja geometrinen kertaluku 1, niin lineaarisesti riippuvia ratkaisuja differentiaaliyhtälösysteemille ovat (15) e λt u, te λt u + e λt v ja ½t e λt u + te λt v + e λt w, missä u, v ja w ratkaistaan peräkkäin yhtälöistä (16) (A-λI)u =, (A-λI)v = u, (A-λI)w = v. Esim. Ratkaistaan differentiaaliyhtälösysteemi x'(t) = x(t). 5 Ominaisarvot: 5 λ 4 1 λ = (5 λ)( λ(5 λ) 4) ( 4)(5 λ) = (5 λ)( λ 5 λ) = 5 λ λ = 5, λ = 1, 3

16 Ominaisvektorit ominaisarvolle 5: x1+ x3 =, x =, vain yksi lineaarisesti riippumaton: esim. u =. 1 Toinen rakennettava kaavan (14) avulla (yleistetty ominaisvektori): / ( A 5 I) v = u ½ 1 ½ 1 5/ x1+ x3 = 5/, x = ½, v = ½ + s, valitaan esim. s = 1, jolloin 1 ½ v = ½. 1 4 Ominaisarvon ominaisvektoriksi saadaan vastaavasti w = 5. Siis yleinen ratkaisu on kaavan (13) mukaisesti: ½ 4 5t 5t 5t x () t = ce 1 + c( te + e ½) + c Yleisemmät tilanteet johtavat matriisien Jordanin kanonisen muodon käyttöön. (Ks. kurssi Differentiaaliyhtälöt.)

17 3 Seuraavaksi tarkastellaan (yksinkertaisen) kompleksisen ominaisarvon λ=α+iβ tapausta. Matriisi A oletetaan reaaliseksi ja differentiaaliyhtälösysteemille haetaan nimenomaan reaalisia ratkaisuja. Reaalisen matriisin kompleksiset ominaisarvot esiintyvät liittolukupareina λ 1, =α±iβ. Silloin yleensä myös vastaavat ominaisvektorit ovat kompleksivektoreita, ja reaalimatriisin tapauksessa ne ovat toistensa liittovektoreita. Suoralla sijoituksella todetaan, että jos v on vastaava ominaisvektori, niin (17) e (α+iβ)t v on systeemin ratkaisu (kompleksinen), ja sen reaali- ja imaginaariosat ovat myös. Ne ovat silloin kaksi ominaisarvoon λ 1 =α+iβ liittyvää reaalista ratkaisua. Koska ominaisarvoon λ =α-iβ liittyvät samat reaaliset ratkaisut, saadaan näitä kahta kompleksista ominaisarvoa vastaamaan lopulta kaksi reaalista ratkaisua (18) Re(e (α+iβ)t v) ja Im(e (α+iβ)t v). Jos merkitään v=a+ib, saadaan silloin yhtälöistä e (α+iβ)t v=e αt e iβ t v = e αt (cos(βt)+isin(βt))(a+ib) = e αt (cos(βt)a-sin(βt)b +i(cos(βt)b+sin(βt)a)) ratkaisujen muodoksi (19) x 1 (t) = e αt (cos(βt)a-sin(βt)b) ja x (t) = e αt (cos(βt)b+sin(βt)a)). 8 Esim. 3 Tarkastellaan alkuarvotehtävää x' = 1 x, x()= 1. Kerroinmatriisin ominaisarvot ovat ±i, ja vastaava ominaisvektori v= + i 1, josta reaaliosa a = 1 ja imaginaariosa b =. Systeemin yleinen ratkaisu on siis x(t)=c 1 (cost 1 -sint )+c (cost +sint 1 ). Alkuehdot toteutuvat, kun vakioilla on arvot c 1 =1, c =.

18 4 'Tarkastellaan vielä epähomogeenisen yhtälön alkuarvoprobleemaa: () x'(t) = Ax(t) + b(t), x()=x. Tässä A on edelleen vakiomatriisi ja funktio b jatkuva. Olemassaolo- ja yksikäsitteisyyslauseen mukaan yksikäsitteinen ratkaisu on olemassa. Todetaan ensin yleinen yhteys homogeenisen ja epähomogeenisen lineaaristen differentiaaliyhtälösysteemien välille: Epähomogeenisen yhtälön yleinen ratkaisu on homogeenisen yhtälön yleinen ratkaisu plus epähomogeenisen yhtälön jokin yksityisratkaisu. Eli jos x h on homogeenisen systeemin x'=ax yleinen ratkaisu ja x p epähomogeenisen systeemin x'=ax+b yksityisratkaisu, niin epähomogeenisen systeemin yleinen ratkaisu on x=x h +x p. Haetaan vinkki ratkaisun muodolle taas yksiulotteisesta tapauksesta: Yhtälön x'( t) = ax( t) + b( t) yleinen ratkaisu on x(t)=e at c + e at e -at b(t)dt ja alkuarvoprobleeman ratkaisu alkuehdolla x() = x t x(t)=e at a( t s) x + e b() s ds. Kokeillaan siis n-ulotteiselle systeemille alkuarvotehtävän ratkaisuksi (1) x(t)=e At x + t ea(t-s) b(s) ds, joka derivoimalla ja sijoittamalla todetaan ratkaisuksi. Se on siis olemassaolo- ja yksikäsitteisyyslauseen perusteella probleeman () yksikäsitteinen ratkaisu. Yleinen ratkaisu saadaan korvaamalla x yleisellä vakiovektorilla c.

19 5 Esim. 4 Ratkaistaan alkuarvoprobleema x'(t) = x(t)+ 3 t t e, x()= 3. A:n ominaisarvot ovat -5 ja -, vastaavat ominaisvektorit v = & = v 1. Silloin A:n diagonalisointi antaa eksponenttifunktion: e At 5t 1 5t 1 1 e e = t t 1 1 e 1 = 1. e 3 3 Siis alkuarvotehtävän ratkaisu on kaavan (1) mukaisesti t () = At A( t s) + ( ) x t e x e b s ds 5t 1 1 t 5( t s) 1 1 e e 3 3 3s = + ds t 1 ( t s) 1 s 1 e e 3 3 e t 5t 5s 1 4s e ( e s 5 3 e ) ds 5 t e ( 4 t t ) 1 3 e t s 1 s e ( e s+ 3 e ) ds = + (matriisi yhteisenä tekijänä) 5 5t t 37 5t e 5 t ( 5 1 e + 3 e = 4 t 1 1 t 1 t ) 1 + 3e t + 3e + 6e t 537 5t t 5 ( 1 e + 3 e 1 1 t 9 t ) 1 t 3e 6e = t 3 t 179 5t 5t 5 + 4e + e + 1e = t 3 t 179 t. 5t 5 + e + e 5 e

20 6 15. Differentiaaliyhtälösysteemien laadullista teoriaa. Keskitymme tässä kurssissa ensimmäisen kertaluvun differentiaaliyhtälösysteemeihin, jotka ovat muotoa x '(t) = f(t, x(t)), x(t) R n. Tässä f on jatkuva funktio: R R n R. Vektorin x(t) voidaan sanoa esittävän systeemin tilaa ajanhetkellä t. Geometrisesti x muodostaa ratakäyrän n-ulotteisessa avaruudessa. Systeemin ratkaisu avoimella välillä I on tällä välillä määritelty jatkuvasti derivoituva vektoriarvoinen funktio x, joka toteuttaa yllä mainitun yhtälön tämän välin jokaisessa pisteessä. Ratkaisuja on yleensä ääretön määrä. Alkuarvotehtävässä x '(t) = f(t, x(t)), x(t )=c ratkaisun määrätään kulkevan ajanhetkellä t pisteen c kautta. Edellisessä luvussa olevan lauseen mukaan ratkaisu on tällöin yksikäsitteinen. Ensimmäisen kertaluvun derivaattaan keskittyminen edellä ei ole kovin yleisyyttä rajoittavaa: Korkeampaa kertalukua olevat differentiaaliyhtälöt voidaan palauttaa ensimmäisen kertaluvun systeemiksi. Edellytyksenä tälle on, että esiintyvä korkein derivaatta voidaan ratkaista yhtälöstä. Esim. 1 Muutetaan seuraava differentiaaliyhtälö ensimmäisen kertaluvun systeemiksi: y'''( t) - 3 y''( t) + 4 y'( t) - y( t) =. Valitaan x1( t) = y( t), x( t) = y'( t), x3( t) = y''( t), jolloin näiden derivaatoille saadaan

21 7 x '( t) = x ( t) 1 x '( t) = x ( t) 3 x '() t = 1/ x ()- t x () t + 3/ x () t Differentiaaliyhtälösysteemien tasapainotilat ja stabiilius. Differentiaaliyhtälön x'(t) = f(t, x(t)), x(t) R n määrittelemän systeemin sanotaan olevan autonominen, jos oikea puoli ei eksplisiittisesti riipu ajasta t: x'(t) = f(x(t)). Jos vakiotila x(t) x toteuttaa yhtälön, niin silloin vakiona sen derivaatta x'(t) ja sanomme, että systeemi on tasapainotilassa ja x on systeemin tasapainopiste. Tasapainopistettä karakterisoi siis yhtälö f(x ) =, josta systeemin tasapainopisteet voidaan ratkaista. Esim. Systeemin tasapainopisteet ovat (, nπ). f(x) = [sin(x 1 +x ) exp(x 1 )-1] T Systeemi on tasapainopisteessä x stabiili, jos sen tila x(t) eroaa ajan kuluessa tasapainostaan hallitun vähän, kun poikkeama tasapainopisteestä on riittävän pieni. Eli jos systeemi lähtee poikkeutetusta alkutilasta x * ja etenee alkuarvoprobleeman x' = f(x), x() = x * ratkaisuna x(t), niin jokaista ε > kohti on olemassa δ > siten,että

22 8 x * - x < δ x(t) - x < ε kaikilla t>. Tällöin sanotaan myös, että kyseinen tasapainopiste on stabiili. Voimakkaampi ominaisuus on asymptoottinen stabiilius: Systeemi on stabiili ja x(t) x, kun t. Eli kun poikkeutus tasapainopisteestä on riittävän pieni, niin systeemi palaa ajan kuluessa lopulta takaisin tasapainotilaansa raja-arvona. Globaalissa asymptoottisessa stabiiliudessa poikkeaman suuruus K saa olla mikä hyvänsä. Jos systeemi ei ole stabiili, se on epästabiili. Silloin poikkeutuksen vähäisyys ei riitä takaamaan systeemin tilan pysymistä hallituissa rajoissa. Oheinen kuva havainnollistaa stabiilin, asymptoottisesti stabiilin ja epästabiilin tasapainopisteen käsitteitä:

23 9 Avaruuden R n lineaarisille systeemeille x' = Ax stabiiliuskysymykset voidaan selvittää ominaisarvojen avulla. Olkoon det(a), jolloin ainoa tasapainopiste on origo. Origo on systeemin stabiili tasapainotila täsmälleen silloin, kun sen ominaisarvojen reaaliosat ovat ja lisäksi niiden ominaisarvojen, joilla geometrinen kertaluku on pienempi kuin algebrallinen, reaaliosa on <. Jos lisäksi kaikkien ominaisarvojen reaaliosat ovat <, niin origo on globaalisti asymptoottisesti stabiili tasapainotila. Yleisemmän lineaarisen systeemin x' = Ax + b tasapainotila on (A:n ollessa kääntyvä) yhtälön ratkaisu Ax + b = x = -A -1 b. Sen stabiiliusominaisuudet määräytyvät A:n ominaisarvoista täsmälleen kuten origon tapauksessa yllä. Siis lineaarisen systeemin x' = Ax + b (det(a) ) tasapainotila on globaalisti asymptoottisesti stabiili, jos A:n ominaisarvot λ C ovat aidosti vasemmassa puolitasossa (ei imaginääriakselilla). Jos ne ovat vasemmassa puolitasossa, mutta jokin on imaginääriakselilla, systeemi on silti stabiili. Jos jokin ominaisarvoista on aidosti oikeassa puolitasossa (Reλ>), systeemi on tasapainotilassaan epästabiili.

24 1 Epälineaarisen systeemin x' = f(x) tasapainotilan x stabiilius selvitetään tutkimalla pisteen x ympäristössä linearisoitua systeemiä f(x) = f(x ) + f '(x )(x-x ). Koska tasapainopisteessä x on f(x ) =, on linearisoitu systeemi x' = Ax +b, missä A = f '(x ) on f:n derivaatta eli Jacobin matriisi pisteessä x ja b = - f '(x )x. Jos Jacobin matriisin ominaisarvojen reaaliosat ovat <, niin tasapainotila x on epälineaariselle systeemille asymptoottisesti stabiili. Jos yksikin ominaisarvoista on reaaliosaltaan positiivinen, tasapainotila on epästabiili.

25 11 Tason R lineaarisille systeemeille x' = Ax voidaan eri tilanteet tasapainotilalle luokitella seuraavasti ominaisarvojen λ 1, λ avulla:

26 1

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

Vakiokertoiminen lineaarinen normaaliryhmä

Vakiokertoiminen lineaarinen normaaliryhmä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 29 Vakiokertoiminen lineaarinen normaaliryhmä Todetaan ensin ilman todistuksia (tulos on syvällinen) ratkaisujen

Lisätiedot

4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 Laaja matematiikka 5 Kevät 010 4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on differentiaaliyhtälö.

Lisätiedot

6. Differentiaaliyhtälösysteemien laadullista teoriaa.

6. Differentiaaliyhtälösysteemien laadullista teoriaa. 1 MAT-13450 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 2010 6. Differentiaaliyhtälösysteemien laadullista teoriaa. Olemme keskittyneet tässä kurssissa ensimmäisen kertaluvun

Lisätiedot

17. Differentiaaliyhtälösysteemien laadullista teoriaa.

17. Differentiaaliyhtälösysteemien laadullista teoriaa. 99 17. Differentiaaliyhtälösysteemien laadullista teoriaa. Differentiaaliyhtälön x'(t) = f(x(t),t), x(t) n määrittelemän systeemin sanotaan olevan autonominen, jos oikea puoli ei eksplisiittisesti riipu

Lisätiedot

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt 37. Toisen kertaluvun lineaariset differentiaalihtälöt Tarkastelemme muotoa () ( x) + a( x) ( x) + a( x) ( x) = b( x) olevia htälöitä, missä kerroinfunktiot ja oikea puoli ovat välillä I jatkuvia. Edellisen

Lisätiedot

5 Differentiaaliyhtälöryhmät

5 Differentiaaliyhtälöryhmät 5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

Matematiikka B3 - Avoin yliopisto

Matematiikka B3 - Avoin yliopisto 2. heinäkuuta 2009 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Lisäharjoitustehtävä Kurssin sisältö (1/2) 1. asteen Differentiaali yhtälöt (1.DY) Separoituva Ratkaisukaava Bernoyulli

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt. osa 2 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 1 R. Kangaslampi Matriisihajotelmista

Lisätiedot

4 Korkeamman kertaluvun differentiaaliyhtälöt

4 Korkeamman kertaluvun differentiaaliyhtälöt Differentiaaliyhtälöt c Pekka Alestalo 2015 Tässä monisteessa käydään läpi tavallisiin differentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Luennolla lasketaan esimerkkitehtäviä

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

1 Di erentiaaliyhtälöt

1 Di erentiaaliyhtälöt Taloustieteen mat.menetelmät syksy 2017 materiaali II-5 1 Di erentiaaliyhtälöt 1.1 Skalaariyhtälöt Määritelmä: ensimmäisen kertaluvun di erentiaaliyhtälö on muotoa _y = F (y; t) oleva yhtälö, missä _y

Lisätiedot

Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva).

Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva). 6 DIFFERENTIAALIYHTÄLÖISTÄ Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva). Newtonin II:n lain (ma missä Yhtälö dh dt m dh dt F) mukaan mg, on kiihtyvyys ja

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto DY-teoriaa DY-teoriaa Käsitellään seuraavaksi

Lisätiedot

TAVALLISET DIFFERENTIAALIYHTÄLÖT

TAVALLISET DIFFERENTIAALIYHTÄLÖT MAT-33500 Differentiaaliyhtälöt Kesä 00 Risto Silvennoinen TAVALLISET DIFFERENTIAALIYHTÄLÖT Peruskäsitteitä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on

Lisätiedot

1 Peruskäsitteet. Dierentiaaliyhtälöt

1 Peruskäsitteet. Dierentiaaliyhtälöt Teknillinen korkeakoulu Matematiikka Dierentiaaliyhtälöt Alestalo Tässä monisteessa käydään läpi tavallisiin dierentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Esimerkkejä luennoilla

Lisätiedot

2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.

2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2. 2. kl:n DY:t Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.) Lause Olkoon f(x 2, x 1, t) funktio, ja oletetaan, että f, f/ x 1 ja f/ x

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, kevät 01 / ORMS1010 Matemaattinen Analyysi. harjoitus, viikko 1 R1 ke 1 16 D11 (..) R to 10 1 D11 (..) 1. Määritä funktion y(x) MacLaurinin sarjan kertoimet, kun y(0) = ja y (x) = (x

Lisätiedot

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista 29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

5 DIFFERENTIAALIYHTÄLÖRYHMÄT

5 DIFFERENTIAALIYHTÄLÖRYHMÄT 5 DIFFERENTIAALIYHTÄLÖRYHMÄT 5. Ensimmäisen kl:n DY-ryhmät Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Useimmat voidaan mallintaa ensimmäisen kertaluvun DY-ryhmien avulla. Ensimmäisen kl:n

Lisätiedot

3 TOISEN KERTALUVUN LINEAARISET DY:T

3 TOISEN KERTALUVUN LINEAARISET DY:T 3 TOISEN KERTALUVUN LINEAARISET DY:T Huomautus epälineaarisista. kertaluvun differentiaaliyhtälöistä Epälineaarisen DY:n ratkaisemiseen ei ole yleismenetelmää. Seuraavat erikoistapaukset voidaan ratkaista

Lisätiedot

6. Toisen ja korkeamman kertaluvun lineaariset

6. Toisen ja korkeamman kertaluvun lineaariset SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt

4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt 4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt 4.1 Homogeeniset lineaariset differentiaaliyhtälöt Homogeeninen yhtälö on muotoa F(x, y,, y (n) ) = 0. (1) Yhtälö on lineaarinen, jos se voidaan

Lisätiedot

Differentiaaliyhtälösysteemit sekä niiden tasapainopisteiden stabiilisuus

Differentiaaliyhtälösysteemit sekä niiden tasapainopisteiden stabiilisuus TAMPEREEN YLIOPISTO Luonnontieteiden Pro gradu -tutkielma Ilkka Niemi-Nikkola Differentiaaliyhtälösysteemit sekä niiden tasapainopisteiden stabiilisuus Luonnontieteiden tiedekunta Matematiikka Tammikuu

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II Dynaamisten systeemien teoriaa Systeemianalyysilaboratorio II 15.11.2017 Vakiot, sisäänmenot, ulostulot ja häiriöt Mallin vakiot Systeemiparametrit annettuja vakioita, joita ei muuteta; esim. painovoiman

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 17. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

y + 4y = 0 (1) λ = 0

y + 4y = 0 (1) λ = 0 Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 6 mallit Kevät 2019 Tehtävä 1. Ratkaise yhtälöt a) y + 4y = x 2, b) y + 4y = 3e x. Ratkaisu: a) Differentiaaliyhtälön yleinen

Lisätiedot

Kompleksiluvun logaritmi: Jos nyt z = re iθ = re iθ e in2π, missä n Z, niin saadaan. ja siihen vaikuttava

Kompleksiluvun logaritmi: Jos nyt z = re iθ = re iθ e in2π, missä n Z, niin saadaan. ja siihen vaikuttava Kompleksiluvun logaritmi: ln z = w z = e w Jos nyt z = re iθ = re iθ e inπ, missä n Z, niin saadaan w = ln z = ln r + iθ + inπ, n Z Logaritmi on siis äärettömän moniarvoinen funktio. Helposti nähdään että

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

a 1 y 1 (x) + a 2 y 2 (x) = 0 vain jos a 1 = a 2 = 0

a 1 y 1 (x) + a 2 y 2 (x) = 0 vain jos a 1 = a 2 = 0 6. Lineaariset toisen kertaluvun yhtälöt Toisen kertaluvun differentiaaliyhtälöt ovat tuntuvasti hankalampia ratkaista kuin ensimmäinen. Käsittelemmekin tässä vain tärkeintä erikoistapausta, toisen kertaluvun

Lisätiedot

SARJAT JA DIFFERENTIAALIYHTÄLÖT

SARJAT JA DIFFERENTIAALIYHTÄLÖT SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 43 0.5 0.4 0.3 0.2 0.1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 Kuva 12. Esimerkin 4.26(c kuvauksen

Lisätiedot

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y ) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit 68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 14. helmikuuta 2011 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun olemassaolosta ja yksikäsitteisyydestä...........

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä

Lisätiedot

2v 1 = v 2, 2v 1 + 3v 2 = 4v 2.. Vastaavasti ominaisarvoa λ 2 = 4 vastaavat ominaisvektorit toteuttavat. v 2 =

2v 1 = v 2, 2v 1 + 3v 2 = 4v 2.. Vastaavasti ominaisarvoa λ 2 = 4 vastaavat ominaisvektorit toteuttavat. v 2 = TKK, Matematiikan laitos Pikkarainen/Tikanmäki Mat-1.1320 Matematiikan peruskurssi K2 Harjoitus 12, A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä 21. 25.4.2008, viikko

Lisätiedot

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 13: ti klo 13:00-15:30 ja to 1.4.

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 13: ti klo 13:00-15:30 ja to 1.4. DI matematiikan opettajaksi: Täydennyskurssi, kevät Luentorunkoa ja harjoituksia viikolle 3: ti 33 klo 3:-5:3 ja to 4 klo 9:5-: Käydään läpi differentiaaliyhtälöitä Määritelmä Olkoon A R n n (MatLab:ssa

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / 16. 18.5. Lineaariset differentiaaliyhtälöt, homogeeniset differentiaaliyhtälöt Tehtävä 1: a) Määritä differentiaaliyhtälön y 3y = 14e 4x

Lisätiedot

Differentiaaliyhtälöt II, kevät 2017 Harjoitus 5

Differentiaaliyhtälöt II, kevät 2017 Harjoitus 5 Differentiaaliyhtälöt II, kevät 27 Harjoitus 5 Heikki Korpela 26. huhtikuuta 27 Tehtävä 2. Määrää seuraavan autonomisen systeemin kriittiset pisteet, ratakäyrät ja luonnostele systeemin aikakehitys: (t)

Lisätiedot

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen

Lisätiedot

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio, Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot

Lisätiedot

Lineaariset differentiaaliyhtälöryhmät

Lineaariset differentiaaliyhtälöryhmät Lineaariset differentiaaliyhtälöryhmät Antti Kosonen Matematiikan kandidaatintutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 204 Sisältö Johdanto 2 Differentiaaliyhtälöryhmät

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ

Mat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ Mat-48 Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ L ẋ = x ẋ = g L sin x rx Epälineaarisen systeemin tasapainotiloja voidaan

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28 Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 5.4.06 5. laskuharjoituksien esimerkkiratkaisut. Etsitään homogeenisen vakiokertoimisen lineaarisen differentiaaliyhtälön kaikki ratkaisut (reaalisessa muodossa). y (5) +4y (4)

Lisätiedot

5. Vakiokertoiminen lineaarinen normaaliryhmä

5. Vakiokertoiminen lineaarinen normaaliryhmä 1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa

Lisätiedot

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)

Lisätiedot

2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre.

2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre. 2. Viikko Keskeiset asiat ja tavoitteet: 1. Peruskäsitteet: kertaluku, lineaarisuus, homogeenisuus. 2. Separoituvan diff. yhtälön ratkaisu, 3. Lineaarisen 1. kl yhtälön ratkaisu, CDH: luvut 19.1.-19.4.

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 3 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 28 R. Kangaslampi Matriisihajotelmista

Lisätiedot

4. Differentiaaliyhtälöryhmät 4.1. Ryhmän palauttaminen yhteen yhtälöön

4. Differentiaaliyhtälöryhmät 4.1. Ryhmän palauttaminen yhteen yhtälöön 4 Differentiaaliyhtälöryhmät 41 Ryhmän palauttaminen yhteen yhtälöön 176 Ratkaise differentiaaliyhtälöryhmät a) dt = y +t, b) = y z + sinx x 2 dt = x +t, c) + z = x2 = y + z + cosx + 2y = x a)x = C 1 e

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit

Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Antti Rasila 2016 Ominaisarvot ja ominaisvektorit 1/5 Määritelmä Skalaari λ C on matriisin A C n n ominaisarvo ja vektori v C n sitä

Lisätiedot

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa Normaaliryhmä Toisen kertaluvun normaaliryhmä on yleistä muotoa x = u(t,x,y), y t I, = v(t,x,y), Funktiot u = u(t,x,y), t I ja v = v(t,x,y), t I ovat tunnettuja Toisen kertaluvun normaaliryhmän ratkaisu

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 12 To 13.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 12 To 13.10.2011 p. 1/38 p. 1/38 Tavalliset differentiaaliyhtälöt Yhtälöissä tuntematon funktio Tavalliset

Lisätiedot

JAKSO 2 KANTA JA KOORDINAATIT

JAKSO 2 KANTA JA KOORDINAATIT JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Similaarisuus. Määritelmä. Huom.

Similaarisuus. Määritelmä. Huom. Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien

Lisätiedot

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2 Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),

Lisätiedot

Lineaarinen toisen kertaluvun yhtälö

Lineaarinen toisen kertaluvun yhtälö Lineaarinen toisen kertaluvun yhtälö Keijo Ruotsalainen Mathematics Division Lineaarinen toisen kertaluvun differentiaaliyhtälö Toisen kertaluvun täydellinen lineaarinen yhtälö muotoa p 2 (x)y + p 1 (x)y

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi

Lisätiedot

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima. Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)

Lisätiedot

6. OMINAISARVOT JA DIAGONALISOINTI

6. OMINAISARVOT JA DIAGONALISOINTI 0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos

Lisätiedot

Ominaisarvo-hajoitelma ja diagonalisointi

Ominaisarvo-hajoitelma ja diagonalisointi Ominaisarvo-hajoitelma ja a 1 Lause 1: Jos reaalisella n n matriisilla A on n eri suurta reaalista ominaisarvoa λ 1,λ 2,...,λ n, λ i λ j, kun i j, niin vastaavat ominaisvektorit x 1, x 2,..., x n muodostavat

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

PRO GRADU -TUTKIELMA. Samuli Koskinen. Differentiaaliyhtälöryhmät ja matriisieksponenttifunktiot

PRO GRADU -TUTKIELMA. Samuli Koskinen. Differentiaaliyhtälöryhmät ja matriisieksponenttifunktiot PRO GRADU -TUTKIELMA Samuli Koskinen Differentiaaliyhtälöryhmät ja matriisieksponenttifunktiot TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö Matematiikka Joulukuu 2014 2 Tampereen yliopisto Informaatiotieteiden

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, 009-010 / ORMS1010 Matemaattinen Analyysi 8. harjoitus 1. Ratkaise y + y + y = x. Kommentti: Yleinen työlista ratkaistaessa lineaarista, vakiokertoimista toisen kertaluvun differentiaaliyhtälöä

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48 MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on? Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

C = {(x,y) x,y R} joiden joukossa on määritelty yhteen- ja kertolasku seuraavasti

C = {(x,y) x,y R} joiden joukossa on määritelty yhteen- ja kertolasku seuraavasti Vaasan yliopiston julkaisuja 189 9 OMINAISARVOTEHTÄVÄ Ch:EigSystem Sec:CMatrix 9.1 Kompleksinen lineaariavaruus 9.1.1 Kompleksiluvut Pian tulemme tarvitsemaan kompleksisen lineaariavaruuden alkeita. Tätä

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:

Lisätiedot

Ensimmäisen asteen lineaariset differentiaaliyhtälösysteemit ja stabilisuusteoriaa

Ensimmäisen asteen lineaariset differentiaaliyhtälösysteemit ja stabilisuusteoriaa Ensimmäisen asteen lineaariset differentiaaliyhtälösysteemit ja stabilisuusteoriaa Toni Saarenpää Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2016 Tiivistelmä:

Lisätiedot

12. Hessen matriisi. Ääriarvoteoriaa

12. Hessen matriisi. Ääriarvoteoriaa 179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä

Lisätiedot

Luento 9: Yhtälörajoitukset optimoinnissa

Luento 9: Yhtälörajoitukset optimoinnissa Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon

Lisätiedot

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa. LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

Osa 11. Differen-aaliyhtälöt

Osa 11. Differen-aaliyhtälöt Osa 11. Differen-aaliyhtälöt Differen-aaliyhtälö = yhtälö jossa esiintyy jonkin funk-on derivaa

Lisätiedot