13. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä
|
|
- Maria Hovinen
- 5 vuotta sitten
- Katselukertoja:
Transkriptio
1 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on differentiaaliyhtälö. Se on yleisessä muodossaan yhtälö, jossa esiintyy tuntemattomia funktioita ja niiden derivaattoja. Jos derivaatoissa on osittaisderivaattoja, kyseessä on osittaisdifferentiaaliyhtälö, jos vain tavallisia derivaattoja, tavallinen differentiaaliyhtälö. Tällä kurssilla käsittelemme vain jälkimmäisiä, ja niitäkin lyhyesti. Differentiaaliyhtälön kertaluku on siinä esiintyvän korkeimman derivaatan kertaluku. Differentiaaliyhtälö on lineaarinen, jos tuntematon funktio ja sen yhtälössä esiintyvät derivaatat esiintyvät siinä lineaarisesti eli asteluvulla 1. Jos silloin tuntemattoman funktion ja derivaattojen kertoimet ovat vakioita, kyseessä on vakiokertoiminen lineaarinen differentiaaliyhtälö. Tuntematon funktio ja sen derivaatat laitetaan pääsääntöisesti yhtälön vasemmalle puolelle. Jos silloin oikealle puolelle jää, kyseessä on homogeeninen yhtälö, muuten yhtälö on epähomogeeninen. Esim. 1 Tarkastellaan seuraavia differentiaaliyhtälöitä: a) y'''( x) + x y''( x) + y( x) = sin x (4) b) ( y ( x)) + y( x) = x c) x''( t) + x'( t) + 4 x( t) = Näistä a ja c ovat lineaarisia, b on epälineaarinen. Yhtälön a kertaluku on 3, yhtälön b kertaluku on 4 ja c on toisen kertaluvun vakiokertoiminen lineaarinen homogeeninen yhtälö. Yhtälöt a ja b ovat epähomogeenisia. Differentiaaliyhtälön ratkaisuja ovat funktiot, jotka sijoitettuna yhtälöön toteuttavat sen jollakin avoimella välillä. Yleiseen ratkaisuun sisältyy kertaluvun ilmoittama määrä toisistaan riippumattomia vakioita eli parametreja. Parametrit tai osa niistä voidaan kiinnittää alkuehdoilla tai reunaehdoilla, jolloin kyseessä on alkuarvoprobleema tai reunaarvoprobleema.
2 188 Esim. Yhtälön y''( x) + y( x) = yleinen ratkaisu on yx ( ) = c1sinx+ ccosx, missä c1, c R ovat parametreja. Alkuarvoprobleeman y''( x) + y( x) =, y() =, y'() = ratkaisu (yksikäsitteinen) on yx ( ) = sin x. Reuna-arvoprobleeman y''( x) + y( x) =, y() =, y( π ) = ratkaisuja ovat kaikki funktiot yx ( ) = csin x, c R. Reuna-arvoprobleemalla y''( x) + y( x) =, y() =, y'( π ) = 1 taas ei ole ratkaisua lainkaan. Kuten esimerkistä näkyy, differentiaaliyhtälöllä ei välttämättä tarvitse olla olemassa ratkaisua, ja jos sellaisia on, niiden ei tarvitse olla yksikäsitteisiä. Tähän kysymykseen palaamme myöhemmin differentiaaliyhtälösysteemien yhteydessä. Käymme seuraavassa läpi yksinkertaisimpia perustapauksia 1. ja. kertaluvun differentiaaliyhtälöistä. Yleisempi teoria esitetään sitten myöhemmin. Totuttelemme kuitenkin yleiseen differentiaalisysteemien merkintätapaan jo nyt merkitsemällä tuntematonta funktiota useimmiten x:llä ja muuttujaa t:llä ("aika"). 1) Ensimmäisen kertaluvun lineaarinen homogeeninen vakiokertoiminen yhtälö: x'( t) ax( t) = eli x'( t) = ax( t), joka voidaan esittää muodossa x'( t) = a. xt () Kun tämä integroidaan puolittain, saadaan ln x( t) = at + d, missä d on integroimisvakio. Ottamalla tästä edelleen eksponenttifunktio exp puolittain tullaan muotoon
3 189 at d at d x( t) = exp( at+ d) = e + = e e Koska jokainen luku c R on esitettävissä lausekkeena ±e d jollakin d, saadaan itseisarvomerkit poistettua ja yleinen ratkaisu on x t at () = e c missä c on mielivaltainen vakio. Alkuehdon x()=x toteuttavassa ratkaisussa on silloin c=x : x() t = e at x. ) Ensimmäisen kertaluvun lineaarinen epähomogeeninen vakiokertoiminen yhtälö: x'( t) ax( t) = b( t) eli x'( t) = ax( t) + b( t) Yhtälön x'(t)=ax(t) eli homogeenisen yhtälön yleinen ratkaisu on edellisen nojalla x h (t)=e at c. Epähomogeenisen yhtälön x'(t)=ax(t)+b(t) yksityisratkaisu saadaan ns. vakion varioinnilla eli etsimällä ratkaisua muodossa x(t)=e at c(t). Silloin saadaan derivoimalla ja sijoittamalla epähomogeeniseen yhtälöön: josta sievenee yhtälö ae at c(t)+e at c'(t)=ae at c(t) + b(t) c'(t)=e -at b(t), eli eräs yksityisratkaisu on
4 19 x p (t)=e at e at b(t)dt. Silloin yleinen ratkaisu epähomogeeniselle yhtälölle on homogeenisen yhtälön yleinen ratkaisu plus epähomogeenisen yksityisratkaisu: x(t)=e at c + e at e -at b(t)dt Alkuehdon x()=x toteuttava ratkaisu on silloin t x(t)=e at a( t s) x + e b() s ds. Jos edellä vakio a vaihtuu funktioksi a(t), niin ratkaisujen johto menee lähes samalla tavalla, kun termi at korvataan integraalilla atdt () : 3) Ensimmäisen kertaluvun lineaarinen homogeeninen yhtälö: x'( t) a( t) x( t) = eli x'( t) = a( t) x( t). Yleinen ratkaisu on () xt () = e atdt c ja alkuehdon x()=x toteuttava ratkaisu t () xt () e atdt = x.
5 191 4) Ensimmäisen kertaluvun lineaarinen epähomogeeninen yhtälö: x'( t) a( t) x( t) = b( t) eli x'( t) = a( t) x( t) + b( t). Yleinen ratkaisu on atdt () atdt () atdt () x() t = e c+ e e b() t dt. π π Esim. 3 x '( t) + (tan t) x( t) = cos t, < t <. sin t Koska atdt ( ) = ( tan tdt ) = dt= ln(cos t) cost yleinen ratkaisu on, niin e a() t dt = cost, joten 1 x( t) = (cos t) c+ cost cos tdt = (cos t) c+ costsin t. cost Epälineaariset differentiaaliyhtälöt ovat yleensä ratkaistavissa korkeintaan numeerisesti. Mutta dimensiossa 1 eli 1. kertaluvun differentiaaliyhtälöissä tietyt erityistapaukset ratkeavat periaatteessa helposti. Erikoistemppuihin perehtyminen ei nykyisin kuitenkaan enää ole tarpeellista (ohjelmistot Maple etc.), paitsi seuraavaa, joka on niin tavallinen, että esiintyy eri alojen oppikirjoissa "luonnonlakien" yms. johtamisissa: 5) Ensimmäisen kertaluvun separoituva differentiaaliyhtälö: x'( t) = h( t) g( x( t)),
6 19 Tämä on siis muotoa, missä oikealla puolella muuttujat t ja x ovat "separoituneet". Silloin yhtälö voidaan kirjoittaa muotoon (vasemmalle separoituneet x, oikealle pelkästään t:stä riippuvat.) x'( t) / g( x( t)) = h( t), josta puolittain integroituna x '( t ) / g ( x ( t )) dt = h ( t ) dt. Tämä integrointi onnistuessaan antaa yhtälön yleisen ratkaisun. Edellä olemme jo käyttäneetkin tätä menettelyä ensimmäisen kertaluvun lineaarisen homogeenisen differentiaaliyhtälön ratkaisujen johtamisessa. Esim. 4 x '( t) t x( t) = t (epälineaarinen, epähomogeeninen) x'( t) x'( t) x '( t) = t (1 + x( t) ) = t dt = t dt 1 + xt ( ) 1 + xt ( ) Sijoitetaan vasempaan integraaliin u = x( t), du = x'( t) dt, jolloin saadaan du 1 3 tdt arctan u 3 t c 1+ u = = +. Siis yleinen ratkaisu on x t = t + c. 1 3 () tan( 3 ) Esim. 5 x '( t) = x( t)(1- sin( t)) x'( t) x'( t) = 1 sin( t) dt = (1 sin( t)) dt xt () xt () puolille yhtälöä) (eli x ja t separoitiin eri ln xt ( ) t cos( t) d xt ( ) e ee xt () ce + t+ cos( t) + d d t+ cos( t) = + + = =, merk. t cos( t) =, c on mielivaltainen vakio. c d =± e :
7 193 6) Toisen kertaluvun lineaarinen homogeeninen vakiokertoiminen yhtälö: y''( t) + ay'( t) + by( t) = Koska eksponenttifunktio on ainoa funktio, joka derivoitaessa antaa takaisin saman funktion vakiolla kerrottuna, voidaan ratkaisua hakea rt sijoittamalla yt ( ) = e. Jakamalla sijoituksen jälkeen nollasta rt poikkeavalla lausekkeella e saadaan, että yhtälö toteutuu, jos r on karakteristisen yhtälön r + ar+ b= juuri. Tilanne jakaantuu juurten ominaisuuksien mukaan kolmeen tapaukseen (ei todistetta tässä tarkemmin, koska seuraa myöhemmästä differentiaaliyhtälöryhmien teoriasta): Olkoot karakteristisen yhtälön r + ar+ b= juuret λ ja µ. Silloin yllä olevan differentiaaliyhtälön yleinen ratkaisu on 1. yt () t t ce 1 ce µ. yt () λt λt ce 1 cte 3. αt 1 β = +, jos juuret ovat reaalisia ja λ µ = +, jos λ=µ yt () = ce sin( αt t) + ce cos( βt), jos λ=α+iβ, µ=α-iβ, β. Esim. 6 Hae differentiaaliyhtälön y''- y'- y = yleinen ratkaisu Karakteristinen yhtälö r r =, juuret ja -1. Siis tapaus 1. Yleinen t t ratkaisu yt () = ce + ce. 1 Esim. 7 Ratkaise alkuarvoprobleema y'' + y' + 5y =, y( π) = e π, y '( π) = 3e π Karakteristinen yhtälö r + r+ 5=, juuret kompleksiset: -1+i ja -1-i. Siis tapaus 3. Yleinen ratkaisu
8 194 t yt () = ce sint+ ce cost. t 1 π π π Alkuehdot: y( π ) = e ce = e c = 1; t t t t y'( t) = ce sin t+ ce cost e cost e sin t, 1 1 π π π π y'( π ) = 3e ce 1 e = 3e c1 =. Siis alkuarvoprobleeman ratkaisu on t t yt () = e sint+ e cost. Tapauksessa 3 ratkaisu on usein hyödyllistä esittää yhtenä sinilausekkeena (tai kosini-). Siihen päästään käyttämällä ns. harmonisia identiteettejä acosωt+ bsinωt= Asin( ωt+ φ) b a missä A = a + b ja cos φ =, sinφ =, sekä A A acosωt+ bsinωt= Acos( ωt δ), a b missä A = a + b ja cos δ =, sinδ =. A A Esim. 8 Edellisen esimerkin ratkaisufunktiolle saadaan muoto t t t yt ( ) = e (cos t+ sin t) = e 1+ 4 cos( t δ ) = 5e cos( t δ ), missä 1 π cos δ =, sinδ =, joten < δ < eli δ = arctan
9 Vakiokertoiminen lineaarinen normaaliryhmä Todetaan ensin ilman todistuksia (tulos on syvällinen) ratkaisujen olemassaoloa ja yksikäsitteisyyttä koskeva perustulos: Alkuarvotehtävän olemassaolo- ja yksikäsitteisyyslause Oletetaan, että funktio f: R n R R n on jatkuva pisteen (x, t ) ympäristössä U I ja että derivaattamatriisi f on olemassa ja jatkuva x siellä (derivointi muuttujan x suhteen). Silloin alkuarvotehtävällä x'(t) = f(x(t),t), x(t )=x on olemassa yksikäsitteinen ratkaisu jollakin välillä J I, t J. Jos lisäksi matriisin f x olemassa koko välillä I. alkiot ovat rajoitettuja, niin tämä ratkaisu on Lineaariset systeemit. Seuraavassa tarkastellaan ns. autonomisten vakiokertoimisten homogeenisten differentiaalisysteemien ratkaisemista analyyttisesti (numeerisiin menetelmiin ei tässä nyt puututa). Systeemi on muotoa (1) x'(t) = Ax(t) ja haettavana on yleinen ratkaisu tai alkuehdon x()=x toteuttava ratkaisu. Matriisi A on kokoa n n oleva vakiomatriisi (siis ajasta t riippumaton) ja tilavektori x(t) R n. Koska nyt oikean puolen derivaatta on vakiomatriisi A, olemassaolo- ja yksikäsitteisyyslause on voimassa koko avaruudessa (U=R n, I=R).
10 196 Kun n=1 eli systeemi on yksiulotteinen x'( t) = ax( t), yleiseksi ratkaisuksi at saatiin luvussa 13 x( t) = e c ja alkuehdon x() = x toteuttavaksi ratkaisuksi x() t = e at x. Osoittautuu, että tämä muoto ratkaisuille pätee myös korkeammissa dimensioissa n. Silloin a:n tilalla on matriisi A ja e At on matriisin At (=ta) matriisiarvoinen funktio. Matriisieksponenttifunktio e A voidaan määritellä e x :n sarjakehitelmän avulla sijoittamalla luvun x paikalle neliömatriisi A (ks. sarjateorian osuus). Mutta tässä vaiheessa tyydymme yksinkertaisempaan tapaukseen ja oletamme A:n olevan reaalisen diagonalisoituvan matriisin. Diagonalisoituvalle matriisille A on olemassa ei-singulaarinen matriisi Q =[v 1,...,v n ] siten, että () A = QDQ -1, missä lävistäjämatriisin D=diag(λ 1,..., λ n ) lävistäjällä on A:n ominaisarvot. Aikaisemmin olemme osoittaneet, että tällöin A k = QD k Q -1. Edelleen tämä avulla voidaan osoittaa, että vastaava pätee jokaiselle polynomille p: p(a) = Qp(D)Q -1, missä p(d) = diag(p(λ 1 ),...,p(λ n )). Kuten sarjateoriassa todetaan, sarjat ovat polynomien (osasummien) raja-arvoja. On siis luontevaa määritellä diagonalisoituvan matriisin A eksponenttifunktio yhteydellä (3) e A = Qe D Q -1, missä e D = diag(exp(λ 1 ),...,exp(λ n )). Tämä määritelmä voidaan osoittaa sarjateorian avulla esitettävissä olevaan yleisempään määritelmään yhteensopivaksi.
11 197 Alkuarvotehtävän (4) x'(t) = Ax(t), x() = x ratkaisuksi saadaan nyt vektorifunktio (5) x(t) = e At x. Derivoimalla todetaan, että kyseessä on ratkaisu: x'(t) = d/dt (Qe Dt Q -1 )x = Q(d/dte Dt )Q -1 x = Q(De Dt )Q -1 x = QDQ -1 Qe Dt Q -1 x =Ae At x =Ax(t). Koska tämä toteuttaa myös alkuehdon x()=x, on se olemassaolo- ja yksikäsitteisyyslauseen mukaan alkuarvotehtävän yksikäsitteinen ratkaisu. Lähdetään sitten toista kautta hakemaan yleistä ratkaisua. Todetaan ensin, että jos x 1,..., x k ovat lineaarisen systeemin x'(t)=ax(t) ratkaisuja, niin myös niiden jokainen lineaarikombinaatio x(t) = c 1 x 1 (t) c k x k (t) on sitä. (Operaattori L(x)=x'-Ax on lineaarinen.) Funktioita x 1,..., x k sanotaan välillä I lineaarisesti riippumattomiksi, jos yhtälö c 1 x 1 () t + cnxn() t = toteutuu välillä I vain, kun c = = c n =. 1 Jos funktiot x i ovat lineaarisen systeemin ratkaisuja, riippumattomuutta selvitettäessä ei kuitenkaan tarvitse tutkia jokaista t, vaan yksikin t 1
12 198 riittää. Jos nimittäin vektorit x 1 (t),..., x k (t) ovat riippuvia hetkellä t 1, niin silloin on joillakin kertoimilla c i voimassa yhtälö c 1 x 1 (t 1 ) c k x k (t 1 ) = (t 1 ) jolloin molemmilla puolilla esiintyy alkuarvotehtävän x'(t)=ax(t), x(t 1 )= ratkaisu. Ne ovat siis samat kaikilla t, joten funktiot x 1,..., x k ovat lineaarisesti riippuvia. Lineaarisen systeemin x'(t)=ax(t) yleinen ratkaisu muodostuu mistä hyvänsä n:stä lineaarisesti riippumattomasta ratkaisusta x 1,..., x n niiden lineaarikombinaationa: (6) x(t) = c 1 x 1 (t) c n x n (t). Tämä seuraa olemassaolo- ja yksikäsitteisyyslauseesta ja siitä, että mielivaltainen alkutila x saadaan sopivilla kertoimilla c i yhtälöstä c 1 x 1 () c n x n () =x. (Vektorit x1 (),, x n () ovat lineaarisesti riippumattomia ja niitä on n kappaletta, joten ne muodostavat avaruuden R n kannan.) Kerroinyhtälö on matriisimuodossa [x 1 (),...,x n ()]c =x, missä c=[c 1,...,c n ] T. Kerroinmatriisi on ei-singulaarinen, koska sen sarakkeet ovat lineaarisesti riippumattomia. Siis kerroinyhtälöllä on yksikäsitteinen ratkaisu c. Tästä saadaan sen lineaarikombinaation c 1 x 1 (t) c n x n (t) kertoimet, joka on alkutilan x määräämää ratkaisu differentiaaliyhtälösysteemille.
13 199 Matriisia X(t) = [x 1 (t),...,x n (t)] sanotaan differentiaaliyhtälösysteemin fundamentaalimatriisiksi. Sitä käyttäen yleinen ratkaisu(6) voidaan esittää muodossa (7) x(t) = X(t)c. Fundamentaalimatriisi ei ole yksikäsitteinen, sehän rakentuu valituista n:stä lineaarisesti riippumattomasta ratkaisusta. Usein kuitenkin asetetaan ehto X()=I. Silloin alkuehdon x()=x toteuttava ratkaisu on (8) x(t) = X(t)x. Näemme siis, että diagonalisoituvan matriisin tapauksessa yksikäsitteisyyslauseen nojalla e At on fundamentaalimatriisi: (9) X(t) = e At, X()=I. Yleinen ratkaisu (7) voidaan siis esittää myös muodossa (1) x(t) = e At c. Jos A on diagonalisoituva ja Q =[v 1,...,v n ] rakentuu sen lineaarisesti riippumattomista ominaisvektoreista (joita siis on täysi määrä n), niin alkuarvotehtävän ratkaisuksi saatiin x(t) = e At x = Qe Dt Q -1 x, joka voidaan kirjoittaa muotoon (11) x(t) = [exp(λ 1 t)v 1... exp(λ n t)v n ] T Q -1 x. Merkitsemällä c = Q -1 x = [c 1,...,c n ] T saadaan (1) x(t) = c 1 exp(λ 1 t)v c n exp(λ n t)v n,
14 joka on yleisen ratkaisun (6) muotoa, jos kertoimet c i ovat mielivaltaisia ja x i (t) = exp(λ i t)v i. Jokainen tällainen x i (t) todella on ratkaisu: derivoidaan ja käytetään ominaisvektorin ominaisuutta Av i =λ i v i x'(t) = d/dt(exp(λ i t)v i ) = λ i exp(λ i t)v i =exp(λ i t)av i = A(exp(λ i t)v i ) =Ax(t). Siis yleinen ratkaisu (1) on "aukikirjoitettuna" lauseke (1). Alkuehdon x()=x toteuttava ratkaisu kaavasta (1) saadaan, jos c =Q -1 x eli yhtälön Qc=x ratkaisu. Esim. 1 x' = x Matriisin A = ominaisarvot ovat 3 ja -1, sekä vastaavat ominaisvektorit [1 ] T ja [1 -] T. Yleinen ratkaisu on silloin x(t) = ce 1 t 1 + ce 3t 1 (muotoa 1) = e e 3t e 3t t e t c (muotoa 7 ) 3t t ce 1 + ce = 3t ce 1 ce t (ratkaisu komponenteittain).
15 1 Edellä oletettiin, että matriisi A on diagonalisoituva. Tällainen on tilanne täsmälleen silloin, kun jokaisen ominaisarvon geometrinen kertaluku on sama kuin algebrallinen. Täydennetään teoriaa seuraavilla tuloksilla tapauksista, joissa moninkertaisen ominaisarvon geometrinen kertaluku on yksi: Olkoon A:n ominaisarvon λ algebrallinen kertaluku, geometrinen kertaluku 1 ja vektori u λ:aa vastaava ominaisvektori. Silloin kaksi λ:aa vastaavaa lineaarisesti riippumatonta systeemin x' = Ax ratkaisua ovat (13) e λt u ja te λt u + e λt v. missä vektorit u ja v ratkaistaan yhtälöistä (14) (A-λI)u =, (A-λI)v = u. (Todistetaan sijoittamalla (13) yhtälöön x' = Ax. Ensimmäinen yhtälö ilmaisee sen, että u on A:n ominaisvektori.) Edelleen, jos λ:n algebrallinen kertaluku on 3 ja geometrinen kertaluku 1, niin lineaarisesti riippuvia ratkaisuja differentiaaliyhtälösysteemille ovat (15) e λt u, te λt u + e λt v ja ½t e λt u + te λt v + e λt w, missä u, v ja w ratkaistaan peräkkäin yhtälöistä (16) (A-λI)u =, (A-λI)v = u, (A-λI)w = v. Esim. Ratkaistaan differentiaaliyhtälösysteemi x'(t) = x(t). 5 Ominaisarvot: 5 λ 4 1 λ = (5 λ)( λ(5 λ) 4) ( 4)(5 λ) = (5 λ)( λ 5 λ) = 5 λ λ = 5, λ = 1, 3
16 Ominaisvektorit ominaisarvolle 5: x1+ x3 =, x =, vain yksi lineaarisesti riippumaton: esim. u =. 1 Toinen rakennettava kaavan (14) avulla (yleistetty ominaisvektori): / ( A 5 I) v = u ½ 1 ½ 1 5/ x1+ x3 = 5/, x = ½, v = ½ + s, valitaan esim. s = 1, jolloin 1 ½ v = ½. 1 4 Ominaisarvon ominaisvektoriksi saadaan vastaavasti w = 5. Siis yleinen ratkaisu on kaavan (13) mukaisesti: ½ 4 5t 5t 5t x () t = ce 1 + c( te + e ½) + c Yleisemmät tilanteet johtavat matriisien Jordanin kanonisen muodon käyttöön. (Ks. kurssi Differentiaaliyhtälöt.)
17 3 Seuraavaksi tarkastellaan (yksinkertaisen) kompleksisen ominaisarvon λ=α+iβ tapausta. Matriisi A oletetaan reaaliseksi ja differentiaaliyhtälösysteemille haetaan nimenomaan reaalisia ratkaisuja. Reaalisen matriisin kompleksiset ominaisarvot esiintyvät liittolukupareina λ 1, =α±iβ. Silloin yleensä myös vastaavat ominaisvektorit ovat kompleksivektoreita, ja reaalimatriisin tapauksessa ne ovat toistensa liittovektoreita. Suoralla sijoituksella todetaan, että jos v on vastaava ominaisvektori, niin (17) e (α+iβ)t v on systeemin ratkaisu (kompleksinen), ja sen reaali- ja imaginaariosat ovat myös. Ne ovat silloin kaksi ominaisarvoon λ 1 =α+iβ liittyvää reaalista ratkaisua. Koska ominaisarvoon λ =α-iβ liittyvät samat reaaliset ratkaisut, saadaan näitä kahta kompleksista ominaisarvoa vastaamaan lopulta kaksi reaalista ratkaisua (18) Re(e (α+iβ)t v) ja Im(e (α+iβ)t v). Jos merkitään v=a+ib, saadaan silloin yhtälöistä e (α+iβ)t v=e αt e iβ t v = e αt (cos(βt)+isin(βt))(a+ib) = e αt (cos(βt)a-sin(βt)b +i(cos(βt)b+sin(βt)a)) ratkaisujen muodoksi (19) x 1 (t) = e αt (cos(βt)a-sin(βt)b) ja x (t) = e αt (cos(βt)b+sin(βt)a)). 8 Esim. 3 Tarkastellaan alkuarvotehtävää x' = 1 x, x()= 1. Kerroinmatriisin ominaisarvot ovat ±i, ja vastaava ominaisvektori v= + i 1, josta reaaliosa a = 1 ja imaginaariosa b =. Systeemin yleinen ratkaisu on siis x(t)=c 1 (cost 1 -sint )+c (cost +sint 1 ). Alkuehdot toteutuvat, kun vakioilla on arvot c 1 =1, c =.
18 4 'Tarkastellaan vielä epähomogeenisen yhtälön alkuarvoprobleemaa: () x'(t) = Ax(t) + b(t), x()=x. Tässä A on edelleen vakiomatriisi ja funktio b jatkuva. Olemassaolo- ja yksikäsitteisyyslauseen mukaan yksikäsitteinen ratkaisu on olemassa. Todetaan ensin yleinen yhteys homogeenisen ja epähomogeenisen lineaaristen differentiaaliyhtälösysteemien välille: Epähomogeenisen yhtälön yleinen ratkaisu on homogeenisen yhtälön yleinen ratkaisu plus epähomogeenisen yhtälön jokin yksityisratkaisu. Eli jos x h on homogeenisen systeemin x'=ax yleinen ratkaisu ja x p epähomogeenisen systeemin x'=ax+b yksityisratkaisu, niin epähomogeenisen systeemin yleinen ratkaisu on x=x h +x p. Haetaan vinkki ratkaisun muodolle taas yksiulotteisesta tapauksesta: Yhtälön x'( t) = ax( t) + b( t) yleinen ratkaisu on x(t)=e at c + e at e -at b(t)dt ja alkuarvoprobleeman ratkaisu alkuehdolla x() = x t x(t)=e at a( t s) x + e b() s ds. Kokeillaan siis n-ulotteiselle systeemille alkuarvotehtävän ratkaisuksi (1) x(t)=e At x + t ea(t-s) b(s) ds, joka derivoimalla ja sijoittamalla todetaan ratkaisuksi. Se on siis olemassaolo- ja yksikäsitteisyyslauseen perusteella probleeman () yksikäsitteinen ratkaisu. Yleinen ratkaisu saadaan korvaamalla x yleisellä vakiovektorilla c.
19 5 Esim. 4 Ratkaistaan alkuarvoprobleema x'(t) = x(t)+ 3 t t e, x()= 3. A:n ominaisarvot ovat -5 ja -, vastaavat ominaisvektorit v = & = v 1. Silloin A:n diagonalisointi antaa eksponenttifunktion: e At 5t 1 5t 1 1 e e = t t 1 1 e 1 = 1. e 3 3 Siis alkuarvotehtävän ratkaisu on kaavan (1) mukaisesti t () = At A( t s) + ( ) x t e x e b s ds 5t 1 1 t 5( t s) 1 1 e e 3 3 3s = + ds t 1 ( t s) 1 s 1 e e 3 3 e t 5t 5s 1 4s e ( e s 5 3 e ) ds 5 t e ( 4 t t ) 1 3 e t s 1 s e ( e s+ 3 e ) ds = + (matriisi yhteisenä tekijänä) 5 5t t 37 5t e 5 t ( 5 1 e + 3 e = 4 t 1 1 t 1 t ) 1 + 3e t + 3e + 6e t 537 5t t 5 ( 1 e + 3 e 1 1 t 9 t ) 1 t 3e 6e = t 3 t 179 5t 5t 5 + 4e + e + 1e = t 3 t 179 t. 5t 5 + e + e 5 e
20 6 15. Differentiaaliyhtälösysteemien laadullista teoriaa. Keskitymme tässä kurssissa ensimmäisen kertaluvun differentiaaliyhtälösysteemeihin, jotka ovat muotoa x '(t) = f(t, x(t)), x(t) R n. Tässä f on jatkuva funktio: R R n R. Vektorin x(t) voidaan sanoa esittävän systeemin tilaa ajanhetkellä t. Geometrisesti x muodostaa ratakäyrän n-ulotteisessa avaruudessa. Systeemin ratkaisu avoimella välillä I on tällä välillä määritelty jatkuvasti derivoituva vektoriarvoinen funktio x, joka toteuttaa yllä mainitun yhtälön tämän välin jokaisessa pisteessä. Ratkaisuja on yleensä ääretön määrä. Alkuarvotehtävässä x '(t) = f(t, x(t)), x(t )=c ratkaisun määrätään kulkevan ajanhetkellä t pisteen c kautta. Edellisessä luvussa olevan lauseen mukaan ratkaisu on tällöin yksikäsitteinen. Ensimmäisen kertaluvun derivaattaan keskittyminen edellä ei ole kovin yleisyyttä rajoittavaa: Korkeampaa kertalukua olevat differentiaaliyhtälöt voidaan palauttaa ensimmäisen kertaluvun systeemiksi. Edellytyksenä tälle on, että esiintyvä korkein derivaatta voidaan ratkaista yhtälöstä. Esim. 1 Muutetaan seuraava differentiaaliyhtälö ensimmäisen kertaluvun systeemiksi: y'''( t) - 3 y''( t) + 4 y'( t) - y( t) =. Valitaan x1( t) = y( t), x( t) = y'( t), x3( t) = y''( t), jolloin näiden derivaatoille saadaan
21 7 x '( t) = x ( t) 1 x '( t) = x ( t) 3 x '() t = 1/ x ()- t x () t + 3/ x () t Differentiaaliyhtälösysteemien tasapainotilat ja stabiilius. Differentiaaliyhtälön x'(t) = f(t, x(t)), x(t) R n määrittelemän systeemin sanotaan olevan autonominen, jos oikea puoli ei eksplisiittisesti riipu ajasta t: x'(t) = f(x(t)). Jos vakiotila x(t) x toteuttaa yhtälön, niin silloin vakiona sen derivaatta x'(t) ja sanomme, että systeemi on tasapainotilassa ja x on systeemin tasapainopiste. Tasapainopistettä karakterisoi siis yhtälö f(x ) =, josta systeemin tasapainopisteet voidaan ratkaista. Esim. Systeemin tasapainopisteet ovat (, nπ). f(x) = [sin(x 1 +x ) exp(x 1 )-1] T Systeemi on tasapainopisteessä x stabiili, jos sen tila x(t) eroaa ajan kuluessa tasapainostaan hallitun vähän, kun poikkeama tasapainopisteestä on riittävän pieni. Eli jos systeemi lähtee poikkeutetusta alkutilasta x * ja etenee alkuarvoprobleeman x' = f(x), x() = x * ratkaisuna x(t), niin jokaista ε > kohti on olemassa δ > siten,että
22 8 x * - x < δ x(t) - x < ε kaikilla t>. Tällöin sanotaan myös, että kyseinen tasapainopiste on stabiili. Voimakkaampi ominaisuus on asymptoottinen stabiilius: Systeemi on stabiili ja x(t) x, kun t. Eli kun poikkeutus tasapainopisteestä on riittävän pieni, niin systeemi palaa ajan kuluessa lopulta takaisin tasapainotilaansa raja-arvona. Globaalissa asymptoottisessa stabiiliudessa poikkeaman suuruus K saa olla mikä hyvänsä. Jos systeemi ei ole stabiili, se on epästabiili. Silloin poikkeutuksen vähäisyys ei riitä takaamaan systeemin tilan pysymistä hallituissa rajoissa. Oheinen kuva havainnollistaa stabiilin, asymptoottisesti stabiilin ja epästabiilin tasapainopisteen käsitteitä:
23 9 Avaruuden R n lineaarisille systeemeille x' = Ax stabiiliuskysymykset voidaan selvittää ominaisarvojen avulla. Olkoon det(a), jolloin ainoa tasapainopiste on origo. Origo on systeemin stabiili tasapainotila täsmälleen silloin, kun sen ominaisarvojen reaaliosat ovat ja lisäksi niiden ominaisarvojen, joilla geometrinen kertaluku on pienempi kuin algebrallinen, reaaliosa on <. Jos lisäksi kaikkien ominaisarvojen reaaliosat ovat <, niin origo on globaalisti asymptoottisesti stabiili tasapainotila. Yleisemmän lineaarisen systeemin x' = Ax + b tasapainotila on (A:n ollessa kääntyvä) yhtälön ratkaisu Ax + b = x = -A -1 b. Sen stabiiliusominaisuudet määräytyvät A:n ominaisarvoista täsmälleen kuten origon tapauksessa yllä. Siis lineaarisen systeemin x' = Ax + b (det(a) ) tasapainotila on globaalisti asymptoottisesti stabiili, jos A:n ominaisarvot λ C ovat aidosti vasemmassa puolitasossa (ei imaginääriakselilla). Jos ne ovat vasemmassa puolitasossa, mutta jokin on imaginääriakselilla, systeemi on silti stabiili. Jos jokin ominaisarvoista on aidosti oikeassa puolitasossa (Reλ>), systeemi on tasapainotilassaan epästabiili.
24 1 Epälineaarisen systeemin x' = f(x) tasapainotilan x stabiilius selvitetään tutkimalla pisteen x ympäristössä linearisoitua systeemiä f(x) = f(x ) + f '(x )(x-x ). Koska tasapainopisteessä x on f(x ) =, on linearisoitu systeemi x' = Ax +b, missä A = f '(x ) on f:n derivaatta eli Jacobin matriisi pisteessä x ja b = - f '(x )x. Jos Jacobin matriisin ominaisarvojen reaaliosat ovat <, niin tasapainotila x on epälineaariselle systeemille asymptoottisesti stabiili. Jos yksikin ominaisarvoista on reaaliosaltaan positiivinen, tasapainotila on epästabiili.
25 11 Tason R lineaarisille systeemeille x' = Ax voidaan eri tilanteet tasapainotilalle luokitella seuraavasti ominaisarvojen λ 1, λ avulla:
26 1
Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä
1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa
LisätiedotVakiokertoiminen lineaarinen normaaliryhmä
1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 29 Vakiokertoiminen lineaarinen normaaliryhmä Todetaan ensin ilman todistuksia (tulos on syvällinen) ratkaisujen
Lisätiedot4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä
1 Laaja matematiikka 5 Kevät 010 4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on differentiaaliyhtälö.
Lisätiedot6. Differentiaaliyhtälösysteemien laadullista teoriaa.
1 MAT-13450 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 2010 6. Differentiaaliyhtälösysteemien laadullista teoriaa. Olemme keskittyneet tässä kurssissa ensimmäisen kertaluvun
Lisätiedot17. Differentiaaliyhtälösysteemien laadullista teoriaa.
99 17. Differentiaaliyhtälösysteemien laadullista teoriaa. Differentiaaliyhtälön x'(t) = f(x(t),t), x(t) n määrittelemän systeemin sanotaan olevan autonominen, jos oikea puoli ei eksplisiittisesti riipu
Lisätiedot10. Toisen kertaluvun lineaariset differentiaaliyhtälöt
37. Toisen kertaluvun lineaariset differentiaalihtälöt Tarkastelemme muotoa () ( x) + a( x) ( x) + a( x) ( x) = b( x) olevia htälöitä, missä kerroinfunktiot ja oikea puoli ovat välillä I jatkuvia. Edellisen
Lisätiedot5 Differentiaaliyhtälöryhmät
5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista
LisätiedotMatematiikka B3 - Avoin yliopisto
2. heinäkuuta 2009 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Lisäharjoitustehtävä Kurssin sisältö (1/2) 1. asteen Differentiaali yhtälöt (1.DY) Separoituva Ratkaisukaava Bernoyulli
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt. osa 2 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 1 R. Kangaslampi Matriisihajotelmista
Lisätiedot4 Korkeamman kertaluvun differentiaaliyhtälöt
Differentiaaliyhtälöt c Pekka Alestalo 2015 Tässä monisteessa käydään läpi tavallisiin differentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Luennolla lasketaan esimerkkitehtäviä
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lisätiedot1 Di erentiaaliyhtälöt
Taloustieteen mat.menetelmät syksy 2017 materiaali II-5 1 Di erentiaaliyhtälöt 1.1 Skalaariyhtälöt Määritelmä: ensimmäisen kertaluvun di erentiaaliyhtälö on muotoa _y = F (y; t) oleva yhtälö, missä _y
LisätiedotEsimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva).
6 DIFFERENTIAALIYHTÄLÖISTÄ Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva). Newtonin II:n lain (ma missä Yhtälö dh dt m dh dt F) mukaan mg, on kiihtyvyys ja
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto DY-teoriaa DY-teoriaa Käsitellään seuraavaksi
LisätiedotTAVALLISET DIFFERENTIAALIYHTÄLÖT
MAT-33500 Differentiaaliyhtälöt Kesä 00 Risto Silvennoinen TAVALLISET DIFFERENTIAALIYHTÄLÖT Peruskäsitteitä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on
Lisätiedot1 Peruskäsitteet. Dierentiaaliyhtälöt
Teknillinen korkeakoulu Matematiikka Dierentiaaliyhtälöt Alestalo Tässä monisteessa käydään läpi tavallisiin dierentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Esimerkkejä luennoilla
Lisätiedot2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.
2. kl:n DY:t Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.) Lause Olkoon f(x 2, x 1, t) funktio, ja oletetaan, että f, f/ x 1 ja f/ x
LisätiedotMatemaattinen Analyysi
Vaasan yliopisto, kevät 01 / ORMS1010 Matemaattinen Analyysi. harjoitus, viikko 1 R1 ke 1 16 D11 (..) R to 10 1 D11 (..) 1. Määritä funktion y(x) MacLaurinin sarjan kertoimet, kun y(0) = ja y (x) = (x
Lisätiedot9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista
29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n
LisätiedotMS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos
Lisätiedot5 DIFFERENTIAALIYHTÄLÖRYHMÄT
5 DIFFERENTIAALIYHTÄLÖRYHMÄT 5. Ensimmäisen kl:n DY-ryhmät Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Useimmat voidaan mallintaa ensimmäisen kertaluvun DY-ryhmien avulla. Ensimmäisen kl:n
Lisätiedot3 TOISEN KERTALUVUN LINEAARISET DY:T
3 TOISEN KERTALUVUN LINEAARISET DY:T Huomautus epälineaarisista. kertaluvun differentiaaliyhtälöistä Epälineaarisen DY:n ratkaisemiseen ei ole yleismenetelmää. Seuraavat erikoistapaukset voidaan ratkaista
Lisätiedot6. Toisen ja korkeamman kertaluvun lineaariset
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
Lisätiedot4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt
4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt 4.1 Homogeeniset lineaariset differentiaaliyhtälöt Homogeeninen yhtälö on muotoa F(x, y,, y (n) ) = 0. (1) Yhtälö on lineaarinen, jos se voidaan
LisätiedotDifferentiaaliyhtälösysteemit sekä niiden tasapainopisteiden stabiilisuus
TAMPEREEN YLIOPISTO Luonnontieteiden Pro gradu -tutkielma Ilkka Niemi-Nikkola Differentiaaliyhtälösysteemit sekä niiden tasapainopisteiden stabiilisuus Luonnontieteiden tiedekunta Matematiikka Tammikuu
Lisätiedot5 OMINAISARVOT JA OMINAISVEKTORIT
5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön
LisätiedotBM20A0900, Matematiikka KoTiB3
BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt
LisätiedotDynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II
Dynaamisten systeemien teoriaa Systeemianalyysilaboratorio II 15.11.2017 Vakiot, sisäänmenot, ulostulot ja häiriöt Mallin vakiot Systeemiparametrit annettuja vakioita, joita ei muuteta; esim. painovoiman
LisätiedotDierentiaaliyhtälöistä
Dierentiaaliyhtälöistä Markus Kettunen 17. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................
Lisätiedoty + 4y = 0 (1) λ = 0
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 6 mallit Kevät 2019 Tehtävä 1. Ratkaise yhtälöt a) y + 4y = x 2, b) y + 4y = 3e x. Ratkaisu: a) Differentiaaliyhtälön yleinen
LisätiedotKompleksiluvun logaritmi: Jos nyt z = re iθ = re iθ e in2π, missä n Z, niin saadaan. ja siihen vaikuttava
Kompleksiluvun logaritmi: ln z = w z = e w Jos nyt z = re iθ = re iθ e inπ, missä n Z, niin saadaan w = ln z = ln r + iθ + inπ, n Z Logaritmi on siis äärettömän moniarvoinen funktio. Helposti nähdään että
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
Lisätiedota 1 y 1 (x) + a 2 y 2 (x) = 0 vain jos a 1 = a 2 = 0
6. Lineaariset toisen kertaluvun yhtälöt Toisen kertaluvun differentiaaliyhtälöt ovat tuntuvasti hankalampia ratkaista kuin ensimmäinen. Käsittelemmekin tässä vain tärkeintä erikoistapausta, toisen kertaluvun
LisätiedotSARJAT JA DIFFERENTIAALIYHTÄLÖT
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 43 0.5 0.4 0.3 0.2 0.1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 Kuva 12. Esimerkin 4.26(c kuvauksen
Lisätiedot13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lisätiedot13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit
68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta
LisätiedotDierentiaaliyhtälöistä
Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................
LisätiedotMS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
LisätiedotDierentiaaliyhtälöistä
Dierentiaaliyhtälöistä Markus Kettunen 14. helmikuuta 2011 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun olemassaolosta ja yksikäsitteisyydestä...........
LisätiedotNumeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä
Lisätiedot2v 1 = v 2, 2v 1 + 3v 2 = 4v 2.. Vastaavasti ominaisarvoa λ 2 = 4 vastaavat ominaisvektorit toteuttavat. v 2 =
TKK, Matematiikan laitos Pikkarainen/Tikanmäki Mat-1.1320 Matematiikan peruskurssi K2 Harjoitus 12, A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä 21. 25.4.2008, viikko
LisätiedotDI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 13: ti klo 13:00-15:30 ja to 1.4.
DI matematiikan opettajaksi: Täydennyskurssi, kevät Luentorunkoa ja harjoituksia viikolle 3: ti 33 klo 3:-5:3 ja to 4 klo 9:5-: Käydään läpi differentiaaliyhtälöitä Määritelmä Olkoon A R n n (MatLab:ssa
LisätiedotOminaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /
Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / 16. 18.5. Lineaariset differentiaaliyhtälöt, homogeeniset differentiaaliyhtälöt Tehtävä 1: a) Määritä differentiaaliyhtälön y 3y = 14e 4x
LisätiedotDifferentiaaliyhtälöt II, kevät 2017 Harjoitus 5
Differentiaaliyhtälöt II, kevät 27 Harjoitus 5 Heikki Korpela 26. huhtikuuta 27 Tehtävä 2. Määrää seuraavan autonomisen systeemin kriittiset pisteet, ratakäyrät ja luonnostele systeemin aikakehitys: (t)
Lisätiedoty (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x
BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen
LisätiedotHarjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,
Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot
LisätiedotLineaariset differentiaaliyhtälöryhmät
Lineaariset differentiaaliyhtälöryhmät Antti Kosonen Matematiikan kandidaatintutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 204 Sisältö Johdanto 2 Differentiaaliyhtälöryhmät
LisätiedotMat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ
Mat-48 Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ L ẋ = x ẋ = g L sin x rx Epälineaarisen systeemin tasapainotiloja voidaan
LisätiedotNumeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28
Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
LisätiedotInsinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 5.4.06 5. laskuharjoituksien esimerkkiratkaisut. Etsitään homogeenisen vakiokertoimisen lineaarisen differentiaaliyhtälön kaikki ratkaisut (reaalisessa muodossa). y (5) +4y (4)
Lisätiedot5. Vakiokertoiminen lineaarinen normaaliryhmä
1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa
Lisätiedot3 Toisen kertaluvun lineaariset differentiaaliyhtälöt
3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)
Lisätiedot2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre.
2. Viikko Keskeiset asiat ja tavoitteet: 1. Peruskäsitteet: kertaluku, lineaarisuus, homogeenisuus. 2. Separoituvan diff. yhtälön ratkaisu, 3. Lineaarisen 1. kl yhtälön ratkaisu, CDH: luvut 19.1.-19.4.
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 3 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 28 R. Kangaslampi Matriisihajotelmista
Lisätiedot4. Differentiaaliyhtälöryhmät 4.1. Ryhmän palauttaminen yhteen yhtälöön
4 Differentiaaliyhtälöryhmät 41 Ryhmän palauttaminen yhteen yhtälöön 176 Ratkaise differentiaaliyhtälöryhmät a) dt = y +t, b) = y z + sinx x 2 dt = x +t, c) + z = x2 = y + z + cosx + 2y = x a)x = C 1 e
Lisätiedot1 Matriisit ja lineaariset yhtälöryhmät
1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n
LisätiedotMatriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Antti Rasila 2016 Ominaisarvot ja ominaisvektorit 1/5 Määritelmä Skalaari λ C on matriisin A C n n ominaisarvo ja vektori v C n sitä
LisätiedotNormaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa
Normaaliryhmä Toisen kertaluvun normaaliryhmä on yleistä muotoa x = u(t,x,y), y t I, = v(t,x,y), Funktiot u = u(t,x,y), t I ja v = v(t,x,y), t I ovat tunnettuja Toisen kertaluvun normaaliryhmän ratkaisu
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 12 To 13.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 12 To 13.10.2011 p. 1/38 p. 1/38 Tavalliset differentiaaliyhtälöt Yhtälöissä tuntematon funktio Tavalliset
LisätiedotJAKSO 2 KANTA JA KOORDINAATIT
JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
LisätiedotLineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut
MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A
LisätiedotMS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
LisätiedotSimilaarisuus. Määritelmä. Huom.
Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP
LisätiedotJohdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
LisätiedotHarjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:
Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien
Lisätiedoty = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
LisätiedotLineaarinen toisen kertaluvun yhtälö
Lineaarinen toisen kertaluvun yhtälö Keijo Ruotsalainen Mathematics Division Lineaarinen toisen kertaluvun differentiaaliyhtälö Toisen kertaluvun täydellinen lineaarinen yhtälö muotoa p 2 (x)y + p 1 (x)y
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi
LisätiedotVärähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.
Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)
Lisätiedot6. OMINAISARVOT JA DIAGONALISOINTI
0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos
LisätiedotOminaisarvo-hajoitelma ja diagonalisointi
Ominaisarvo-hajoitelma ja a 1 Lause 1: Jos reaalisella n n matriisilla A on n eri suurta reaalista ominaisarvoa λ 1,λ 2,...,λ n, λ i λ j, kun i j, niin vastaavat ominaisvektorit x 1, x 2,..., x n muodostavat
LisätiedotIlkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
LisätiedotNumeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35
Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen
LisätiedotPRO GRADU -TUTKIELMA. Samuli Koskinen. Differentiaaliyhtälöryhmät ja matriisieksponenttifunktiot
PRO GRADU -TUTKIELMA Samuli Koskinen Differentiaaliyhtälöryhmät ja matriisieksponenttifunktiot TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö Matematiikka Joulukuu 2014 2 Tampereen yliopisto Informaatiotieteiden
LisätiedotMatemaattinen Analyysi
Vaasan yliopisto, 009-010 / ORMS1010 Matemaattinen Analyysi 8. harjoitus 1. Ratkaise y + y + y = x. Kommentti: Yleinen työlista ratkaistaessa lineaarista, vakiokertoimista toisen kertaluvun differentiaaliyhtälöä
LisätiedotMS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48
MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotMatriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?
Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi
Lisätiedot5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
LisätiedotC = {(x,y) x,y R} joiden joukossa on määritelty yhteen- ja kertolasku seuraavasti
Vaasan yliopiston julkaisuja 189 9 OMINAISARVOTEHTÄVÄ Ch:EigSystem Sec:CMatrix 9.1 Kompleksinen lineaariavaruus 9.1.1 Kompleksiluvut Pian tulemme tarvitsemaan kompleksisen lineaariavaruuden alkeita. Tätä
LisätiedotLineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:
LisätiedotEnsimmäisen asteen lineaariset differentiaaliyhtälösysteemit ja stabilisuusteoriaa
Ensimmäisen asteen lineaariset differentiaaliyhtälösysteemit ja stabilisuusteoriaa Toni Saarenpää Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2016 Tiivistelmä:
Lisätiedot12. Hessen matriisi. Ääriarvoteoriaa
179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä
LisätiedotLuento 9: Yhtälörajoitukset optimoinnissa
Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon
LisätiedotOsoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
LisätiedotTyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5
MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää
LisätiedotOsa 11. Differen-aaliyhtälöt
Osa 11. Differen-aaliyhtälöt Differen-aaliyhtälö = yhtälö jossa esiintyy jonkin funk-on derivaa
Lisätiedot