5. Vakiokertoiminen lineaarinen normaaliryhmä

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "5. Vakiokertoiminen lineaarinen normaaliryhmä"

Transkriptio

1 1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa ja yksikäsieisyyä koskeva perusulos: Alkuarvoehävän olemassaolo- ja yksikäsieisyyslause n n Oleeaan, eä funkio f: on jakuva piseen (x, ) ympärisössä U I ja eä derivaaamariisi f on olemassa ja jakuva x siellä (derivoini muuujan x suheen). Silloin alkuarvoehävällä x'() = f(x(),), x( )=x on olemassa yksikäsieinen rakaisu jollakin välillä J I, J. Jos lisäksi mariisin f alkio ova rajoieuja, niin ämä rakaisu on x olemassa koko välillä I.

2 2 Lineaarise syseemi. Seuraavassa arkasellaan ns. auonomisen vakiokeroimisen homogeenisen differeniaalisyseemien rakaisemisa analyyisesi (numeerisiin meneelmiin ei ässä ny puuua). Syseemi on muooa (1) x'() = Ax() ja haeavana on yleinen rakaisu ai alkuehdon x()=x oeuava rakaisu. Mariisi A on kokoa n n oleva vakiomariisi (siis ajasa riippumaon) ja ilavekori x() n. Koska ny oikean puolen derivaaa on vakiomariisi A, olemassaolo- ja yksikäsieisyyslause on voimassa koko avaruudessa (U= n, I= ). Kun n=1 eli syseemi on yksiuloeinen x'( ) = ax( ), yleiseksi rakaisuksi a saaiin aiemmin x() = e c ja alkuehdon x() = x oeuavaksi rakaisuksi x() = e a x. Osoiauuu, eä ämä muoo rakaisuille päee myös korkeammissa dimensioissa n. Silloin a:n ilalla on mariisi A ja e A on mariisin A (=A) mariisiarvoinen funkio. Mariisieksponenifunkio e A voidaan määriellä e x :n sarjakehielmän avulla sijoiamalla luvun x paikalle neliömariisi A (ks. sarjaeorian osuus). Mua ässä vaiheessa yydymme yksinkeraisempaan apaukseen ja oleamme A:n olevan reaalisen diagonalisoiuvan mariisin. Diagonalisoiuvalle mariisille A on olemassa ei-singulaarinen mariisi Q =[v 1,...,v n ] sien, eä (2) A = QDQ -1, missä lävisäjämariisin D=diag(λ 1,..., λ n ) lävisäjällä on A:n ominaisarvo. Aikaisemmin olemme osoianee, eä ällöin A k = QD k Q -1.

3 Edelleen ämä avulla voidaan osoiaa, eä vasaava päee jokaiselle polynomille p: p(a) = Qp(D)Q -1, missä p(d) = diag(p(λ 1 ),...,p(λ n )). Kuen sarjaeoriassa odeaan, sarja ova polynomien (osasummien) raja-arvoja. On siis luonevaa määriellä diagonalisoiuvan mariisin A eksponenifunkio yheydellä () e A = Qe D Q -1, missä e D = diag(exp(λ 1 ),...,exp(λ n )). Tämä määrielmä voidaan osoiaa sarjaeorian avulla esieävissä olevaan yleisempään määrielmään yheensopivaksi. Alkuarvoehävän (4) x'() = Ax(), x() = x rakaisuksi saadaan ny vekorifunkio (5) x() = e A x. Derivoimalla odeaan, eä kyseessä on rakaisu: x'() = d/d (Qe D Q -1 )x = Q(d/de D )Q -1 x = Q(De D )Q -1 x = QDQ -1 Qe D Q -1 x =Ae A x =Ax(). Koska ämä oeuaa myös alkuehdon x()=x, on se olemassaolo- ja yksikäsieisyyslauseen mukaan alkuarvoehävän yksikäsieinen rakaisu.

4 4 Lähdeään sien oisa kaua hakemaan yleisä rakaisua. Todeaan ensin, eä jos x 1,..., x k ova lineaarisen syseemin x'()=ax() rakaisuja, niin myös niiden jokainen lineaarikombinaaio x() = c 1 x 1 () c k x k () on siä. (Operaaori L(x)=x'-Ax on lineaarinen.) Funkioia x 1,..., x k sanoaan välillä I lineaarisesi riippumaomiksi, jos yhälö c 1 x 1 () + cnxn() = oeuuu välillä I vain, kun c = = c n =. 1 Jos funkio x i ova lineaarisen syseemin rakaisuja, riippumaomuua selvieäessä ei kuienkaan arvise ukia jokaisa, vaan yksikin 1 riiää. Jos nimiäin vekori x 1 (),..., x k () ova riippuvia hekellä 1, niin silloin on joillakin keroimilla c i voimassa yhälö c 1 x 1 ( 1 ) c k x k ( 1 ) = ( 1 ) jolloin molemmilla puolilla esiinyy alkuarvoehävän x'()=ax(), x( 1 )= rakaisu. Ne ova siis sama kaikilla, joen funkio x 1,..., x k ova lineaarisesi riippuvia. Lineaarisen syseemin x'()=ax() yleinen rakaisu muodosuu misä hyvänsä n:sä lineaarisesi riippumaomasa rakaisusa x 1,..., x n niiden lineaarikombinaaiona: (6) x() = c 1 x 1 () c n x n (). Tämä seuraa olemassaolo- ja yksikäsieisyyslauseesa ja siiä, eä mielivalainen alkuila x saadaan sopivilla keroimilla c i yhälösä c 1 x 1 () c n x n () =x. (Vekori x1 (),, x n () ova lineaarisesi riippumaomia ja niiä on n n kappalea, joen ne muodosava avaruuden kannan.)

5 5 Kerroinyhälö on mariisimuodossa [x 1 (),...,x n ()]c =x, missä c=[c 1,...,c n ] T. Kerroinmariisi on ei-singulaarinen, koska sen sarakkee ova lineaarisesi riippumaomia. Siis kerroinyhälöllä on yksikäsieinen rakaisu c. Täsä saadaan sen lineaarikombinaaion c 1 x 1 () c n x n () keroime, joka on alkuilan x määräämää rakaisu differeniaaliyhälösyseemille. Mariisia X() = [x 1 (),...,x n ()] sanoaan differeniaaliyhälösyseemin fundamenaalimariisiksi. Siä käyäen yleinen rakaisu(6) voidaan esiää muodossa (7) x() = X()c. Fundamenaalimariisi ei ole yksikäsieinen, sehän rakenuu valiuisa n:sä lineaarisesi riippumaomasa rakaisusa. Usein kuienkin aseeaan eho X()=I. Silloin alkuehdon x()=x oeuava rakaisu on (8) x() = X()x. Näemme siis, eä diagonalisoiuvan mariisin apauksessa yksikäsieisyyslauseen nojalla e A on fundamenaalimariisi: (9) X() = e A, X()=I. Yleinen rakaisu (7) voidaan siis esiää myös muodossa (1) x() = e A c.

6 6 Jos A on diagonalisoiuva ja Q =[v 1,...,v n ] rakenuu sen lineaarisesi riippumaomisa ominaisvekoreisa (joia siis on äysi määrä n), niin alkuarvoehävän rakaisuksi saaiin x() = e A x = Qe D Q -1 x, joka voidaan kirjoiaa muooon (11) x() = [exp(λ 1 )v 1... exp(λ n )v n ] T Q -1 x. Merkisemällä c = Q -1 x = [c 1,...,c n ] T saadaan (12) x() = c 1 exp(λ 1 )v c n exp(λ n )v n, joka on yleisen rakaisun (6) muooa, jos keroime c i ova mielivalaisia ja x i () = exp(λ i )v i. Jokainen ällainen x i () odella on rakaisu: derivoidaan ja käyeään ominaisvekorin ominaisuua Av i =λ i v i x'() = d/d(exp(λ i )v i ) = λ i exp(λ i )v i =exp(λ i )Av i = A(exp(λ i )v i ) =Ax(). Siis yleinen rakaisu (1) on "aukikirjoieuna" lauseke (12). Alkuehdon x()=x oeuava rakaisu kaavasa (12) saadaan, jos c =Q -1 x eli yhälön Qc=x rakaisu.

7 7 Esim. 1 x' = x Mariisin A = ominaisarvo ova ja -1, sekä vasaava ominaisvekori [1 2] T ja [1-2] T. Yleinen rakaisu on silloin x() = ce ce (muooa 12) = e e e 2 2 e c (muooa 7 ) ce 1 + ce 2 = 2ce 1 2ce 2 (rakaisu komponeneiain). Edellä oleeiin, eä mariisi A on diagonalisoiuva. Tällainen on ilanne äsmälleen silloin, kun jokaisen ominaisarvon geomerinen keraluku on sama kuin algebrallinen. Täydenneään eoriaa seuraavilla uloksilla apauksisa, joissa moninkeraisen ominaisarvon geomerinen keraluku on yksi: Olkoon A:n ominaisarvon λ algebrallinen keraluku 2, geomerinen keraluku 1 ja vekori u λ:aa vasaava ominaisvekori. Silloin kaksi λ:aa vasaavaa lineaarisesi riippumaona syseemin x' = Ax rakaisua ova (1) e λ u ja e λ u + e λ v. missä vekori u ja v rakaisaan yhälöisä (14) (A-λI)u =, (A-λI)v = u.

8 8 (Todiseaan sijoiamalla (1) yhälöön x' = Ax. Ensimmäinen yhälö ilmaisee sen, eä u on A:n ominaisvekori.) Edelleen, jos λ:n algebrallinen keraluku on ja geomerinen keraluku 1, niin lineaarisesi riippuvia rakaisuja differeniaaliyhälösyseemille ova (15) e λ u, e λ u + e λ v ja ½ 2 e λ u + e λ v + e λ w, missä u, v ja w rakaisaan peräkkäin yhälöisä (16) (A-λI)u =, (A-λI)v = u, (A-λI)w = v. Esim. 2 Rakaisaan differeniaaliyhälösyseemi x'() = x(). 2 5 Ominaisarvo: 5 λ λ 2 = (5 λ)( λ(5 λ) 4) ( 4)(5 λ) = (5 λ)( λ 5 λ) = 2 5 λ λ = 5, λ = 1,2 Ominaisvekori ominaisarvolle 5: x1+ 2x =, x2 =, vain yksi lineaarisesi riippumaon: esim. u =. 1 Toinen rakenneava kaavan (14) avulla (yleisey ominaisvekori): /2 ( A 5 I) v = u ½ 1 ½ 2 1

9 9 5/2 2 x1+ 2x = 5/2, x2 = ½, v = ½ + s, valiaan esim. s = 1, jolloin 1 ½ v = ½. 1 4 Ominaisarvon ominaisvekoriksi saadaan vasaavasi w = 5. Siis yleinen 2 rakaisu on kaavan (1) mukaisesi: 2 2 ½ x () = ce 1 + c2( e + e ½) + c Yleisemmä ilanee johava mariisien Jordanin kanonisen muodon käyöön. (Ks. kurssi Differeniaaliyhälö.)

10 1 Seuraavaksi arkasellaan (yksinkeraisen) kompleksisen ominaisarvon λ=α+iβ apausa. Mariisi A oleeaan reaaliseksi ja differeniaaliyhälösyseemille haeaan nimenomaan reaalisia rakaisuja. Reaalisen mariisin kompleksise ominaisarvo esiinyvä liiolukupareina λ 1,2 =α±iβ. Silloin yleensä myös vasaava ominaisvekori ova kompleksivekoreia, ja reaalimariisin apauksessa ne ova oisensa liiovekoreia. Suoralla sijoiuksella odeaan, eä jos v on vasaava ominaisvekori, niin (17) e (α+iβ) v on syseemin rakaisu (kompleksinen), ja sen reaali- ja imaginaariosa ova myös. Ne ova silloin kaksi ominaisarvoon λ 1 =α+iβ liiyvää reaalisa rakaisua. Koska ominaisarvoon λ 2 =α-iβ liiyvä sama reaalise rakaisu, saadaan näiä kaha kompleksisa ominaisarvoa vasaamaan lopula kaksi reaalisa rakaisua (18) Re(e (α+iβ) v) ja Im(e (α+iβ) v). Jos merkiään v=a+ib, saadaan silloin yhälöisä e (α+iβ) v=e α e iβ v = e α (cos(β)+isin(β))(a+ib) = e α (cos(β)a-sin(β)b +i(cos(β)b+sin(β)a)) rakaisujen muodoksi (19) x 1 () = e α (cos(β)a-sin(β)b) ja x 2 () = e α (cos(β)b+sin(β)a)). 2 8 Esim. Tarkasellaan alkuarvoehävää x' = 1 2 x, x()= 2 1. Kerroinmariisin ominaisarvo ova ±2i, ja vasaava ominaisvekori v= i 1, josa 2 2 reaaliosa a = 1 ja imaginaariosa b =. Syseemin yleinen rakaisu on siis x()=c 1 (cos2 1 -sin2 )+c 2 (cos2 +sin2 1 ). Alkuehdo oeuuva, kun vakioilla on arvo c 1 =1, c 2 =.

11 11 Tarkasellaan vielä epähomogeenisen yhälön alkuarvoprobleemaa: (2) x'() = Ax() + b(), x()=x. Tässä A on edelleen vakiomariisi ja funkio b jakuva. Olemassaolo- ja yksikäsieisyyslauseen mukaan yksikäsieinen rakaisu on olemassa. Todeaan ensin yleinen yheys homogeenisen ja epähomogeenisen lineaarisen differeniaaliyhälösyseemien välille: Epähomogeenisen yhälön yleinen rakaisu on homogeenisen yhälön yleinen rakaisu plus epähomogeenisen yhälön jokin yksiyisrakaisu. Eli jos x h on homogeenisen syseemin x'=ax yleinen rakaisu ja x p epähomogeenisen syseemin x'=ax+b yksiyisrakaisu, niin epähomogeenisen syseemin yleinen rakaisu on x=x h +x p. Haeaan vinkki rakaisun muodolle aas yksiuloeisesa apauksesa: Yhälön x'( ) = ax( ) + b( ) yleinen rakaisu on x()=e a c + e a e -a b()d ja alkuarvoprobleeman rakaisu alkuehdolla x() = x x()=e a a( s) x + e b() s ds. Kokeillaan siis n-uloeiselle syseemille alkuarvoehävän rakaisuksi (21) x()=e A x + ea(-s) b(s) ds, joka derivoimalla ja sijoiamalla odeaan rakaisuksi. Se on siis olemassaolo- ja yksikäsieisyyslauseen peruseella probleeman (2) yksikäsieinen rakaisu. Yleinen rakaisu saadaan korvaamalla x yleisellä vakiovekorilla c.

12 12 Esim. 4 Rakaisaan alkuarvoprobleema x'() = x()+ e, x()= 2. A:n ominaisarvo ova -5 ja -2, vasaava ominaisvekori v = & 2 = 2 v 1. Silloin A:n diagonalisoini anaa eksponenifunkion: e A e 1 1 e = 2 2 e =. e Siis alkuarvoehävän rakaisu on kaavan (21) mukaisesi () = A A( s) + ( ) x e x e b s ds ( s) 1 1 e e s = + ds 2 2( s) s e 2 e e 5 5s 1 4s e ( e s 5 e ) ds e ( 4 2 ) e 2 2s 1 s e ( e 2 s+ e ) ds = + (mariisi yheisenä ekijänä) e 5 ( e + e = ) + e 2 + e + 6e ( 12 e + e ) 2 e 6e = e + 2e + 1e = e + 2e 5 e

Vakiokertoiminen lineaarinen normaaliryhmä

Vakiokertoiminen lineaarinen normaaliryhmä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 29 Vakiokertoiminen lineaarinen normaaliryhmä Todetaan ensin ilman todistuksia (tulos on syvällinen) ratkaisujen

Lisätiedot

Täydennetään teoriaa seuraavilla tuloksilla tapauksista, joissa moninkertaisen ominaisarvon geometrinen kertaluku on yksi:

Täydennetään teoriaa seuraavilla tuloksilla tapauksista, joissa moninkertaisen ominaisarvon geometrinen kertaluku on yksi: 77 Aemmn oleen, eä mars A on dagonalsouva. Tällanen on lanne äsmälleen sllon, un joasen omnasarvon geomernen eraluu on sama un algebrallnen. Täydenneään eoraa seuraavlla uloslla apaussa, jossa monnerasen

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,

Lisätiedot

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A.

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A. 9. Epäoleellise inegraali; inegraalin derivoini paramerin suheen 9.. Epäoleellise aso- ja avaruusinegraali 27. Olkoon = {(x, y) x, y }. Osoia hajaanuminen ai laske arvo epäoleelliselle asoinegraalille

Lisätiedot

Diskreetillä puolella impulssi oli yksinkertainen lukujono:

Diskreetillä puolella impulssi oli yksinkertainen lukujono: DEE-00 ineaarise järjeselmä Harjoius 5, rakaisuehdoukse [johdano impulssivaseeseen] Jakuva-aikaisen järjeselmän impulssivase on vasaavanlainen järjeselmäyökalu kuin diskreeillä puolellakin: impulssivase

Lisätiedot

ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +.

ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +. Diffrniaaliyhälö II, harjoius 3, 8 228, rakaisu JL, kuusi sivua a On muunnava linaarinn oisn kraluvun diffrniaaliyhälö ẍ qx f yhäpiäväksi nsimmäisn kraluvun linaarisksi kahdn skalaariyhälön sysmiksi Rak

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 3, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 3, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset DEE- ineaarise järjeselmä Harjoius 3, harjoiusenpiäjille arkoieu rakaisuehdoukse Ennen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu Piirianalyysin juuri suorianee

Lisätiedot

Tasaantumisilmiöt eli transientit

Tasaantumisilmiöt eli transientit uku 12 Tasaanumisilmiö eli ransieni 12.1 Kelan kykeminen asajännieeseen Kappaleessa 11.2 kykeiin reaalinen kela asajännieeseen ja ukiiin energian varasoiumisa kelan magneeikenään. Tilanne on esiey uudelleen

Lisätiedot

Systeemimallit: sisältö

Systeemimallit: sisältö Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -kuvaus ja ilayhälömalli, ila Linearisoini Jakuva-aikaisen lineaarisen järjeselmän siirofunkio, sabiilisuus Laplace-muunnos Diskreeiaikaisen lineaarisen

Lisätiedot

X(t) = X 0 + tx 1 + t 2 X 2 + t 3 X ,

X(t) = X 0 + tx 1 + t 2 X 2 + t 3 X , Ma-1.1332 Mariisiksponnifunkio, KP3-II, syksy 2007 Pkka Alsalo Johdano. Tämä monis sisälää kurssilla arviava ido mariisiksponnifunkiosa. Mariisiksponnifunkio. Suraavassa A on raalinn n n-mariisi, jonka

Lisätiedot

2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t

2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t Tilasollinen ennusaminen Seppo Pynnönen Tilasoieeen professori, Meneelmäieeiden laios, Vaasan yliopiso. Tausaa Tulevaisuuden ennusaminen on ehkä yksi luoneenomaisimpia piireiä ihmiselle. On ilmeisesi aina

Lisätiedot

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia 6.4 Variaaiolaskennan oleusen rajoiukse Sivu ss. 27 31 läheien Kirk, ss. 13 143] ja KS, Ch. 5] pohjala Lähökoha oli: jos J:llä on eksremaali (), niin J:n variaaio δj( (), δ()) ():ä pikin on nolla. 1. Välämäön

Lisätiedot

Derivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan

Derivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan 87 5. Eliminoinimeneely Tarkaellaan -kokoia vakiokeroimia yeemiä + x a a x a x + a x b() x = = = +. a a x a x a x b () (3) b() x + Derivoimalla enimmäinen komponeni, ijoiamalla jälkimmäien derivaaa iihen

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.4 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vasausen piireiden, sisälöjen ja piseiysen luonnehdina ei sido ylioppilasukinolauakunnan arvoselua. Lopullisessa arvoselussa

Lisätiedot

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä

Lisätiedot

Mittaustekniikan perusteet, piirianalyysin kertausta

Mittaustekniikan perusteet, piirianalyysin kertausta Miausekniikan perusee, piirianalyysin kerausa. Ohmin laki: =, ai = Z ( = ännie, = resisanssi, Z = impedanssi, = vira). Kompleksiluvu Kompleksilukua arviaan elekroniikassa analysoiaessa piireä, oka sisälävä

Lisätiedot

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt SMG-500 Verolasennan numeerise meneelmä Ehdouse harjoiusen 4 raaisuisi Haeaan ensin ehävän analyyinen raaisu: dx 0 0 0 0 dx 00e = 0 = 00e 00 x = e + = 5e + alueho: x(0 = 0 0 x 0 = 5e + = 0 = 5 0 0 0 5

Lisätiedot

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän: ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän

Lisätiedot

Tietoliikennesignaalit

Tietoliikennesignaalit ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime

Lisätiedot

W dt dt t J.

W dt dt t J. DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan

Lisätiedot

12. ARKISIA SOVELLUKSIA

12. ARKISIA SOVELLUKSIA MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina

Lisätiedot

Jaksollisista funktioista

Jaksollisista funktioista Jaksollisisa funkioisa Jukka Liukkonen Ylioeaja Helsingin ammaikorkeakoulu Sadia Ymärillämme ja joa sisällämme on runsaasi jaksollisina oisuvia ilmiöiä: äivä seuraa yöä, kesä alvea, sydän lyö ahdissa,

Lisätiedot

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit 68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial

Lisätiedot

Luento 2. Järjestelmät aika-alueessa Konvoluutio-integraali. tietoverkkotekniikan laitos

Luento 2. Järjestelmät aika-alueessa Konvoluutio-integraali. tietoverkkotekniikan laitos Lueno 2 Järjeselmä aika-alueessa Konvoluuio-inegraali Lueno 2 Lueno 2 Järjeselmä aika alueessa; Konvoluuio inegraali 2.1 Järjeselmien perusominaisuude Oppenheim 1.5. 1.6 Muisillise ja muisioma järjeselmä

Lisätiedot

4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt

4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt 4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt 4.1 Homogeeniset lineaariset differentiaaliyhtälöt Homogeeninen yhtälö on muotoa F(x, y,, y (n) ) = 0. (1) Yhtälö on lineaarinen, jos se voidaan

Lisätiedot

Luento 4. Fourier-muunnos

Luento 4. Fourier-muunnos Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:

Lisätiedot

f x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d)

f x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d) Tehävä 1. Oleeaan, eä on käössä jakuva kuva, jossa (,, ) keroo harmaasävn arvon paikassa (, ) ajanhekenä. Dnaaminen kuva voidaan esiää Talor sarjana: d d d d d d O ( +, +, + ) = (,, ) + + + + ( ). (4a)

Lisätiedot

2. Matemaattinen malli ja funktio 179. a) f (-2) = -2 (-2) = = -6 b) f (-2) = 2 (-2) 2 - (-2) = (-8) + 7 = = 23

2. Matemaattinen malli ja funktio 179. a) f (-2) = -2 (-2) = = -6 b) f (-2) = 2 (-2) 2 - (-2) = (-8) + 7 = = 23 LISÄTEHTÄVÄT. Maemaainen malli ja funkio 9. a) f (-) = - (-) + = - + = -6 b) f (-) = (-) - (-) + = - (-8) + = 8 + 8 + = 80. a) f ( ) = + f ( ) = 0 + = 0 ( ) = ± = ± = ai = Vasaus: = - ai = b) + = + = 0

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto Kojemeeorologia Sami Haapaala syksy 03 Fysiika laios, Ilmakehäieeide osaso Mialaieide dyaamise omiaisuude Dyaamise uusluvu määriävä mie mialaie käyäyyy syöeide muuuessa Apua käyeää differeiaaliyhälöiä,

Lisätiedot

Silloin voidaan suoraan kirjoittaa spektrin yhtälö käyttämällä hyväksi suorakulmaisen pulssin Fouriermuunnosta sekä viiveen vaikutusta: ( ) (

Silloin voidaan suoraan kirjoittaa spektrin yhtälö käyttämällä hyväksi suorakulmaisen pulssin Fouriermuunnosta sekä viiveen vaikutusta: ( ) ( TT/TV Inegraalimuunnokse Fourier-muunnos, ehäviä : Vasauksia Meropolia/. Koivumäki v(. Määriä oheisen signaalin Fourier-muunnos. Vinkki: Superposiio, viive. Voidaan sovelaa superposiioperiaaea, koska signaalin

Lisätiedot

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt 37. Toisen kertaluvun lineaariset differentiaalihtälöt Tarkastelemme muotoa () ( x) + a( x) ( x) + a( x) ( x) = b( x) olevia htälöitä, missä kerroinfunktiot ja oikea puoli ovat välillä I jatkuvia. Edellisen

Lisätiedot

4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 Laaja matematiikka 5 Kevät 010 4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on differentiaaliyhtälö.

Lisätiedot

Lineaaristen järjestelmien teoriaa

Lineaaristen järjestelmien teoriaa Lineaarisen järjeselmien eoriaa Saavueavuus, ohjaavuus Tarkkailavuus, havaiavuus Klassisen mekaniikan sabiilisuus vs. syseemiekninen sabiilisuusuus Tilaesimoini Kalman-suodin Mielenkiinoisia kysymyksiä

Lisätiedot

Lineaaristen järjestelmien teoriaa II

Lineaaristen järjestelmien teoriaa II Lieaarise järjeselmie eoriaa II Ohjaavuus Tarkkailavuus havaiavuus Lisää sabiilisuudesa Tilaesimoii, Kalma-suodi TKK/Syseemiaalyysi laboraorio Mielekiioisia kysymyksiä Oko syseemi rakeeelaa sellaie, eä

Lisätiedot

Matematiikka B3 - Avoin yliopisto

Matematiikka B3 - Avoin yliopisto 2. heinäkuuta 2009 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Lisäharjoitustehtävä Kurssin sisältö (1/2) 1. asteen Differentiaali yhtälöt (1.DY) Separoituva Ratkaisukaava Bernoyulli

Lisätiedot

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014 MAT-45 Fourier n meneelmä Merja Laaksonen, TTY 4..4 Sisälö Johano 3. Peruskäsieiä................................... 4.. Parillinen ja parion funkio....................... 7.. Heavisien funkio............................

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista Rahoiusriski ja johdannaise Mai Esola lueno Sokasisisa prosesseisa . Markov ominaisuus Markov -prosessi on sokasinen prosessi, missä ainoasaan muuujan viimeinen havaino on relevani muuujan seuraavaa arvoa

Lisätiedot

PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd

PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd PK-YRITYKSEN ARVONMÄÄRITYS KTT, DI TOIVO KOSKI elearning Communiy Ld Yriyksen arvonmääriys 1. Yriyksen ase- eli subsanssiarvo Arvioidaan yriyksen aseen vasaavaa puolella olevan omaisuuden käypäarvo, josa

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Ratkaisu. Virittäviä puita on kahdeksan erilaista, kun solmut pidetään nimettyinä. Esitetään aluksi verkko kaaviona:

Ratkaisu. Virittäviä puita on kahdeksan erilaista, kun solmut pidetään nimettyinä. Esitetään aluksi verkko kaaviona: Diskreei maemaiikka, sks 00 Harjoius 0, rakaisuisa. Esi viriävä puu suunaamaomalle verkolle G = (X, E, Ψ), kun X := {,,, }, E := { {, }, {, }, {, }, {, }, {, }}, ja Ψ on ieninen kuvaus. Rakaisu. Viriäviä

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt. osa 2 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 1 R. Kangaslampi Matriisihajotelmista

Lisätiedot

2. Suoraviivainen liike

2. Suoraviivainen liike . Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus

Lisätiedot

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekuna/Osaso Fakule/Sekion Faculy Laios Insiuion Deparmen Maemaais-luonnonieeellinen Tekijä Förfaare Auhor Miriam Hägele Työn nimi

Lisätiedot

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen Soimukseneon dynamiikka: johdano ja haiallinen valikoiuminen Ma-2.442 Oimoinioin seminaari Elise Kolola 8.4.2008 S yseemianalyysin Laboraorio Esielmä 4 Elise Kolola Oimoinioin seminaari - Kevä 2008 Esiyksen

Lisätiedot

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET TRAN TyL:n MUKASN AKUUTUKSN RTYSPRUSTT Tässä peruseessa kaikki suuree koskea eraa, ellei oisin ole määriely. Tässä peruseessa käyey lyhenee: LL Lyhyaikaisissa yösuheissa oleien yönekijäin eläkelaki TaL

Lisätiedot

2. Systeemi- ja signaalimallit

2. Systeemi- ja signaalimallit 2. Syseemi- ja signaalimalli Malliyyppejä: maemaainen malli: muuujien välise suhee kuvau maemaaisesi yhälöin lohkokaaviomalli: syseemin oiminojen looginen jako lohkoihin, joiden välisiä vuorovaikuuksia

Lisätiedot

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus Tieonhakumeneelmä Helsingin yliopiso / TKTL.4.04 Toennäköisyyeen perusuva rankkaus Tieonhakumeneelmä Toennäköisyyspohjainen rankkaus Dokumenien haussa ongelmana on löyää käyäjän kyselynä ilmaiseman ieoarpeen

Lisätiedot

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s). DEE- Piirianalyysi Ykkösharkan ehävien rakaisuehdoukse. askeaan ensin, kuinka paljon äyeen ladaussa akussa on energiaa. Tämä saadaan laskeua ehäväpaperissa anneujen akun ieojen 8.4 V ja 7 mah avulla. 8.4

Lisätiedot

Tiedekunta/Osasto Fakultet/Sektion Faculty. Laitos/Institution Department. Matemaattis-luonnontieteellinen tiedekunta Tekijä/Författare Author

Tiedekunta/Osasto Fakultet/Sektion Faculty. Laitos/Institution Department. Matemaattis-luonnontieteellinen tiedekunta Tekijä/Författare Author Tiedekuna/Osaso Fakule/Sekion Faculy Maemaais-luonnonieeellinen iedekuna Tekijä/Förfaare Auhor Laios/Insiuion Deparmen Maemaiikan ja ilasoieeen laios Tommi Hyvärinen Työn nimi / Arbees iel Tile Burgersin

Lisätiedot

A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat!

A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat! MAA Koe 7..03 A-osio. Ei laskina! Valise seuraavisa kolmesa ehäväsä vain kaksi joihin vasaa! A. a) Mikä on funkion f(x) määrieljoukko, jos f( x) x b) Muua ulomuooon: 4a 8a 4 A. a) Rakaise hälö: x 4x b)

Lisätiedot

1 Excel-sovelluksen ohje

1 Excel-sovelluksen ohje 1 (11) 1 Excel-sovelluksen ohje Seuraavassa kuvaaan jakeluverkonhalijan kohuullisen konrolloiavien operaiivisen kusannusen (SKOPEX 1 ) arvioimiseen arkoieun Excel-sovelluksen oimina, mukaan lukien sovelluksen

Lisätiedot

Koska yhteys tavalliseen eksponenttifunktion sarjakehitelmään on selvä, asetetaan seuraava määritelmä.

Koska yhteys tavalliseen eksponenttifunktion sarjakehitelmään on selvä, asetetaan seuraava määritelmä. Ma-.433/433/45 Mariisiksponnifunkio, K3/P3/V3, syksy 22 Pkka Alsalo/(Hikki Apiola) Pkan ysävällissi käyööni anamaan lähkooiin oln hny omia lisäyksiäni, HA Viiiä [TE] Timo Eirola: Linaarialgbra, lunomonis

Lisätiedot

Öljyn hinnan ja Yhdysvaltojen dollarin riippuvuussuhde

Öljyn hinnan ja Yhdysvaltojen dollarin riippuvuussuhde Öljyn hinnan ja Yhdysvalojen dollarin riippuvuussuhde Kansanalousiede Pro gradu -ukielma Talousieeiden laios Tampereen yliopiso Toukokuu 2010 Jari Hännikäinen TIIVISTLMÄ Tampereen yliopiso Talousieeiden

Lisätiedot

Antti Majaniemi MATEMATIIKKA II. Differentiaali- ja integraalilaskentaa sekä differentiaaliyhtälöitä. t = 0 U C. i = i (t) u 3 ISBN

Antti Majaniemi MATEMATIIKKA II. Differentiaali- ja integraalilaskentaa sekä differentiaaliyhtälöitä. t = 0 U C. i = i (t) u 3 ISBN Ani Majaniemi MATEMATIIKKA II Differeniaali- ja inegraalilaskenaa sekä differeniaaliyhälöiä = u R U C L u i = i () u 6 ISBN 978-95-9-868-5 Tämä eos on lisensoiu Creaive Commons Nimeä-EiKaupallinen Kansainvälinen

Lisätiedot

Lyhyiden ja pitkien korkojen tilastollinen vaihtelu

Lyhyiden ja pitkien korkojen tilastollinen vaihtelu Lyhyiden ja pikien korkojen ilasollinen vaihelu Tomi Pekka Juhani Marikainen Joensuun Yliopiso Maemaais-luonnonieeellinen iedekuna / Tieojenkäsielyieeen ja ilasoieeen laios / Tilasoiede Pro Gradu -ukielma

Lisätiedot

Suunnitteluharjoitus s-2016 (...k-2017)

Suunnitteluharjoitus s-2016 (...k-2017) 1 Suunnieluharjoius s-2016 (...k-2017) HAKKURITEHOLÄHDE Seuraavan push-pull-yyppisen hakkurieholäheen komponeni ulisi valia (muunajaa lukuunoamaa). V1 iin 230 V ± 10 % 50 Hz V3 Perusieoja kykennäsä Verkkoasasuunauksen

Lisätiedot

4 Korkeamman kertaluvun differentiaaliyhtälöt

4 Korkeamman kertaluvun differentiaaliyhtälöt Differentiaaliyhtälöt c Pekka Alestalo 2015 Tässä monisteessa käydään läpi tavallisiin differentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Luennolla lasketaan esimerkkitehtäviä

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin

Lisätiedot

SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA 1 SÄHKÖTKNIIKKA JA LKTONIIKKA X-2 2017, Kimmo Silvonen Osa II, 25.9.2017 1 Muuosilmiö ja differeniaaliyhälö Tässä luvussa rajoiuaan pääasiassa asajännieläheisiin liiyviin muuosilmiöihin, vaikka samanlainen

Lisätiedot

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi Rakennusosien rakennusfysikaalinen oimina Ralf Lindber Professori, Tampereen eknillinen yliopiso ralf.lindber@u.fi Rakenneosien rakennusfysikaalisen oiminnan ymmärämiseksi on välämäönä piirää kolme eri

Lisätiedot

Laskelmia verotuksen painopisteen muuttamisen vaikutuksista dynaamisessa yleisen tasapainon mallissa

Laskelmia verotuksen painopisteen muuttamisen vaikutuksista dynaamisessa yleisen tasapainon mallissa Laskelmia verouksen painopiseen muuamisen vaikuuksisa dynaamisessa yleisen asapainon mallissa Juha Kilponen ja Jouko Vilmunen TTässä arikkelissa esieään laskelmia siiä, mien verouksen painopiseen siiräminen

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

S Signaalit ja järjestelmät Tentti

S Signaalit ja järjestelmät Tentti S-7. Signaali ja järjeselmä eni..6 Vasaa ehävään, ehävisä 7 oeaan huomioon neljä parhaien suorieua ehävää.. Vasaa lyhyesi seuraaviin osaehäviin, käyä arviaessa kuvaa. a) Mikä kaksi ehoa kanaunkioiden φ

Lisätiedot

6. Toisen ja korkeamman kertaluvun lineaariset

6. Toisen ja korkeamman kertaluvun lineaariset SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia

Lisätiedot

Luento 7 Järjestelmien ylläpito

Luento 7 Järjestelmien ylläpito Luno 7 Järjslmin ylläpio Ahi Salo Tknillinn korkakoulu PL, 5 TKK Järjslmin ylläpidosa Priaallisia vaihohoja Uusiminn rplacmn Ennalahkäisvä huolo mainnanc Korjaaminn rpair ❶ Uusiminn Vioiun komponni korvaaan

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

Systeemimallit: sisältö

Systeemimallit: sisältö Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -uvaus ja ilayhälömalli, ila Linearisoini Jauva-aiaisen lineaarisen järjeselmän siirofunio, sabiilisuus Laplace-muunnos Disreeiaiaisen lineaarisen järjeselmän

Lisätiedot

Termiinikurssi tulevan spot-kurssin ennusteena

Termiinikurssi tulevan spot-kurssin ennusteena TAMPEREEN YLIOPISTO Talousieeiden laios Termiinikurssi ulevan spo-kurssin ennuseena Kansanalousiede Pro gradu-ukielma Talousieeiden laios Tampereen yliopiso 28.2.2006 Ville Kivelä 1 TIIVISTELMÄ Tampereen

Lisätiedot

a 1 y 1 (x) + a 2 y 2 (x) = 0 vain jos a 1 = a 2 = 0

a 1 y 1 (x) + a 2 y 2 (x) = 0 vain jos a 1 = a 2 = 0 6. Lineaariset toisen kertaluvun yhtälöt Toisen kertaluvun differentiaaliyhtälöt ovat tuntuvasti hankalampia ratkaista kuin ensimmäinen. Käsittelemmekin tässä vain tärkeintä erikoistapausta, toisen kertaluvun

Lisätiedot

STOKASTISIA MALLEJA SÄHKÖN HINNOITTELUUN. Sanni Sieviläinen

STOKASTISIA MALLEJA SÄHKÖN HINNOITTELUUN. Sanni Sieviläinen HELSINGIN YLIOPISTO Maemaais-Luonnonieeellinen iedekuna Maemaiikan ja ilasoieeen laios STOKASTISIA MALLEJA SÄHKÖN HINNOITTELUUN Sanni Sieviläinen Pro Gradu-ukielma Ohjaaja: Dario Gasbarra 3. syyskuua 215

Lisätiedot

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän

Lisätiedot

Viitteet. Viitteet. Viitteet

Viitteet. Viitteet. Viitteet Vii Vii Vii 1 2 1. Mariisiksponnifunkio Hikki Apiola Sisälää Pkka Alsalon ja Timo Eirolan mariaalia myös. Viiiä TE Timo Eirola: Linaarialgbra, lunomonis EN EirolaNvanlinna: Diyhälösysmi, lunomonis LAODEGolubiskyDllniz:

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 14. helmikuuta 2011 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun olemassaolosta ja yksikäsitteisyydestä...........

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

Luento 11. tietoverkkotekniikan laitos

Luento 11. tietoverkkotekniikan laitos Lueno Lueno Sokasise signaali ja prosessi II. Sokasise prosessi Pruju Saionaarisuus, ergodisuus Auo ja risikorrelaaio ehospekri.3 Kohinan suodaaminen Sokasinen raja arvo ja derivaaa Winer Khinchin eoreema.3

Lisätiedot

2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.

2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2. 2. kl:n DY:t Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.) Lause Olkoon f(x 2, x 1, t) funktio, ja oletetaan, että f, f/ x 1 ja f/ x

Lisätiedot

Monisilmukkainen vaihtovirtapiiri

Monisilmukkainen vaihtovirtapiiri Monisilmukkainen vaihovirapiiri Oeaan arkaselun koheeksi RLC-vaihovirapiiri jossa on käämejä, vasuksia ja kondensaaoreia. Kykenä Tarkasellaan virapiiriä, jossa yksinkeraiseen RLC-piiriin on kodensaaorin

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

Luoki?elua: tavallinen vs osi?ais. Osa 11. Differen0aaliyhtälöt. Luoki?elua: kertaluku. Luoki?elua: lineaarisuus 4/13/13

Luoki?elua: tavallinen vs osi?ais. Osa 11. Differen0aaliyhtälöt. Luoki?elua: kertaluku. Luoki?elua: lineaarisuus 4/13/13 4/3/3 Osa. Differen0aaliyhtälöt Differen0aaliyhtälö = yhtälö jossa esiintyy jonkin funk0on derivaa?a. Esim: dx = x2 f x + f xy 2 2m d 2 ψ = Eψ dx 2 Luoki?elua: tavallinen vs osi?ais Differen0aaliyhtälöt

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

17. Differentiaaliyhtälösysteemien laadullista teoriaa.

17. Differentiaaliyhtälösysteemien laadullista teoriaa. 99 17. Differentiaaliyhtälösysteemien laadullista teoriaa. Differentiaaliyhtälön x'(t) = f(x(t),t), x(t) n määrittelemän systeemin sanotaan olevan autonominen, jos oikea puoli ei eksplisiittisesti riipu

Lisätiedot

5 Differentiaaliyhtälöryhmät

5 Differentiaaliyhtälöryhmät 5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 17. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Mittaus- ja säätölaitteet IRIS, IRIS-S ja IRIS-M

Mittaus- ja säätölaitteet IRIS, IRIS-S ja IRIS-M Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M KANSIO 4 VÄLI ESITE Lapinleimu Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M IRIS, IRIS-S Rakenne IRIS muodosuu runko-osasa, sääösäleisä, sääömuerisa ai sääökahvasa

Lisätiedot

Luento 11. Stationaariset prosessit

Luento 11. Stationaariset prosessit Lueno Soasisen prosessin ehosperi Signaalin suodaus Kaisarajoieu anava 5..6 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista 29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto DY-teoriaa DY-teoriaa Käsitellään seuraavaksi

Lisätiedot

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen

Lisätiedot

Kokonaishedelmällisyyden sekä hedelmällisyyden keski-iän vaihtelu Suomessa vuosina 1776 2005

Kokonaishedelmällisyyden sekä hedelmällisyyden keski-iän vaihtelu Suomessa vuosina 1776 2005 Kokonaishedelmällisyyden sekä hedelmällisyyden keski-iän vaihelu Suomessa vuosina 1776 2005 Heli Elina Haapalainen (157 095) 26.11.2007 Joensuun Yliopiso Maemaais- luonnonieeiden iedekuna Tieojenkäsielyieeen

Lisätiedot

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5 S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,

Lisätiedot

VATT-KESKUSTELUALOITTEITA VATT DISCUSSION PAPERS. JULKISEN TALOUDEN PITKÄN AIKAVÄLIN LASKENTAMALLIT Katsaus kirjallisuuteen

VATT-KESKUSTELUALOITTEITA VATT DISCUSSION PAPERS. JULKISEN TALOUDEN PITKÄN AIKAVÄLIN LASKENTAMALLIT Katsaus kirjallisuuteen VATT-KESKUSTELUALOITTEITA VATT DISCUSSION PAPERS 445 JULKISEN TALOUDEN PITKÄN AIKAVÄLIN LASKENTAMALLIT Kasaus kirjallisuueen Juho Kosiainen Valion aloudellinen ukimuskeskus Governmen Insiue for Economic

Lisätiedot

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3. Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot