Numeeriset menetelmät

Koko: px
Aloita esitys sivulta:

Download "Numeeriset menetelmät"

Transkriptio

1 Numeeriset menetelmät Luento 6 To Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To p. 1/38 p. 1/38

2 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi numeerisen matematiikan perustehtävistä (kuten lineaariset yhtälöryhmät) Ominaisarvotehtävien numeerinen ratkaiseminen työläämpää kuin lineaaristen yhtälöryhmien ratkaiseminen Saatavana tehokkaita ja hyvin testattuja implementointeja Numeeriset menetelmät Syksy 2011 Luento 6 To p. 2/38 p. 2/38

3 Ominaisarvotehtävät Jos λ R ja x R n, x 0 siten että niin Ax = λx λ on matriisin A R n n ominaisarvo x on sitä vastaava ominaisvektori Ominaisvektori x ei ole yksikäsitteinen: Jos α 0 niin myös αx on ominaisvektori Usein ominaisvektorit skaalataan: x/ x Numeeriset menetelmät Syksy 2011 Luento 6 To p. 3/38 p. 3/38

4 Karakteristinen polynomi Koska Ax = λx (A λi)x = 0 niin ominaisarvot ovat karakteristisen polynomin juuret p n (λ) = det(a λi) n-asteisella polynomilla n juurta C n n-matriisilla n ominaisarvoa C Käytännössä ominaisarvoja ei kannata laskea ratkaisemalla karakteristisen polynomin juuret Numeeriset menetelmät Syksy 2011 Luento 6 To p. 4/38 p. 4/38

5 Ominaisarvot ja -vektorit Vaikka matriisi on reaalinen, ominaisarvot voivat olla kompleksisia Jos reaalinen matriisi on symmetrinen, ominaisarvot ovat reaalisia Ominaisarvon algebrallinen kertaluku: Kuinka moninkertainen karakteristisen polynomin juuri ominaisarvo on Ominaisarvon geometrinen kertaluku: Ominaisarvoon liittyvien lineaarisesti riippumattomien ominaisvektorien lukumäärä Numeeriset menetelmät Syksy 2011 Luento 6 To p. 5/38 p. 5/38

6 Ominaisarvot Matriisi diagonaalimatriisi ala- tai yläkolmiomatriisi reaalinen ja symmetrinen positiivisesti definiitti Ominaisarvot diagonaalialkiot diagonaalialkiot reaaliset aidosti positiiviset Q kääntyvä Matriiseilla A ja Q 1 AQ on samat ominaisarvot A reaalinen ja symmetrinen On olemassa Q T = Q 1 siten, että Q T AQ on diag.matriisi Numeeriset menetelmät Syksy 2011 Luento 6 To p. 6/38 p. 6/38

7 Esimerkki A = λ 1 0 det(a λi) = 1 2 λ λ Numeeriset menetelmät Syksy 2011 Luento 6 To p. 7/38 p. 7/38

8 Esimerkki jatkuu 3 λ λ λ 2 λ 1 = (3 λ) 1 3 λ ( 1) λ = (3 λ)(2 λ)(3 λ) (3 λ) (3 λ) = λ 3 + 8λ 2 19λ + 12 λ 1 = 1, λ 2 = 3, λ 3 = 4 Numeeriset menetelmät Syksy 2011 Luento 6 To p. 8/38 p. 8/38

9 Esimerkki jatkuu λ 1 = x 1 x 2 x 3 = 0 2x 1 x 2 = 0 x 1 + x 2 x 3 = 0 x 2 + 2x 3 = 0 (x 1, x 2, x 3 ) = (a, 2a, a), missä a R Numeeriset menetelmät Syksy 2011 Luento 6 To p. 9/38 p. 9/38

10 Esimerkki jatkuu λ 2 = x 1 x 2 x 3 = 0 x 2 = 0 x 1 x 2 x 3 = 0 x 2 = 0 (x 1, x 2, x 3 ) = (b, 0, b), missä b R Numeeriset menetelmät Syksy 2011 Luento 6 To p. 10/38 p. 10/38

11 Esimerkki jatkuu λ 3 = x 1 x 2 x 3 = 0 x 1 x 2 = 0 x 1 2x 2 x 3 = 0 x 2 x 3 = 0 (x 1, x 2, x 3 ) = (c, c, c), missä c R Numeeriset menetelmät Syksy 2011 Luento 6 To p. 11/38 p. 11/38

12 Potenssiinkorotusmenetelmä Oletukset: A:n ominaisarvoille on voimassa λ 1 > λ 2 λ 3 λ n Ominaisvektorit normeerattu ν (j) = 1 kaikilla j = 1, 2,..., n Ominaisvektorit lineaarisesti riippumattomat Alkuarvaus x (0) = n i=1 β iν (i), missä β 1 0 Numeeriset menetelmät Syksy 2011 Luento 6 To p. 12/38 p. 12/38

13 Potenssiinkorotusmenetelmä Iteraatio: y (k) = Ax (k) c k+1 = y (k) j, missä j siten että y (k) j = max 1 p n { y p (k) } x (k+1) = 1 c k+1 y (k) lim x (k) = ν (1) ja lim c k = λ 1 k k (Saadaan itseisarvoltaan suurin ominaisarvo) Numeeriset menetelmät Syksy 2011 Luento 6 To p. 13/38 p. 13/38

14 Pot.kor.men. ominaisuuksia Plussaa: Yksinkertainen ohjelmoida Ei tarvita A:ta kokonaan, riittää että voidaan laskea Ax kaikille x Miinusta: Konvergenssi hidasta, jos λ 2 / λ 1 1 Vaikea tietää etukäteen, ovatko oletukset voimassa Numeeriset menetelmät Syksy 2011 Luento 6 To p. 14/38 p. 14/38

15 Käänteinen pot.kor.men. Ax = λx A 1 x = λ 1 x Jos λ n 1 > λ n, voidaan soveltaa menetelmää matriisille A 1 lim x (k) = ν (n) ja lim c k = λ 1 n k k (Saadaan itseisarvoltaan pienin ominaisarvo) Huom: Käänteismatriisia A 1 ei lasketa, vaan ratkaistaan lin. yhtälöryhmä Ay (k) = x (k) Numeeriset menetelmät Syksy 2011 Luento 6 To p. 15/38 p. 15/38

16 Siirretty käänteinen pot.kor.men. Ax = λx (A σi) 1 x = (λ σ) 1 x Jos λ 1 > λ 2 > > λ n, voidaan soveltaa menetelmää matriisille (A σi) 1 lim x (k) = ν (j) ja lim c k = (λ j σ) 1 k k missä λ j on lukua σ lähimpänä oleva om.arvo Huom: Ratkaistaan (A σi)y (k) = x (k) Numeeriset menetelmät Syksy 2011 Luento 6 To p. 16/38 p. 16/38

17 Similaariset matriisit Matriisit similaarisia, jos niillä on samat om.arvot Olkoon Q kääntyvä Ax = λx AQQ 1 x = λx Q 1 AQQ 1 x = λq 1 x (Q 1 AQ)(Q 1 x) = λ(q 1 x) A ja Q 1 AQ ovat similaarisia Numeeriset menetelmät Syksy 2011 Luento 6 To p. 17/38 p. 17/38

18 QR-hajotelma Jokainen reaalinen matriisi A voidaan esittää tulona A = QR missä Q on ortogonaalinen, ts. Q 1 = Q T R on yläkolmiomatriisi QR-hajotelma voidaan muodostaa Householderja/tai Givens-muunnoksilla (ei käsitellä) Numeeriset menetelmät Syksy 2011 Luento 6 To p. 18/38 p. 18/38

19 QR-menetelmä A (0) = A Q (k) R (k) = A (k) A (k+1) = R (k) Q (k) Koska A (k+1) = R (k) Q (k) = (Q (k) ) 1 A (k) Q (k) A (k+1) ja A (k) similaarisia Kaikki A (k) :t ja A similaarisia Numeeriset menetelmät Syksy 2011 Luento 6 To p. 19/38 p. 19/38

20 QR-menetelmän konvergenssi Jos ominaisarvot reaalisia ja yksinkertaisia lim A (k) = yläkolmiomatriisi k Jos lisäksi A reaalinen ja symmetrinen lim A (k) = diagonaalimatriisi k Molemmissa tapauksissa ominaisarvot diagonaalilla Numeeriset menetelmät Syksy 2011 Luento 6 To p. 20/38 p. 20/38

21 Hessenberg-muoto Yleinen matriisi Hessenbergmuodossa 0 Symmetrinen matriisi Hessenberg-muodossa (tridiagonaalinen) 0 0 Numeeriset menetelmät Syksy 2011 Luento 6 To p. 21/38 p. 21/38

22 QR-menetelmän soveltaminen Käytännössä QR-menetelmää ei sovelleta täydelle matriisille Yleiselle matriisille: Similaarimuunnos Hessenberg-matriisiksi QR-iteraatio Hessenberg-matriisille Symmetriselle matriisille: Similaarimuunnos tridiagonaalimatriisiksi QR-iteraatio tridiagonaalimatriisille Numeeriset menetelmät Syksy 2011 Luento 6 To p. 22/38 p. 22/38

23 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion arvot tietyissä pisteissä Tavoite: Arvioidaan funktion arvoja myös muissa pisteissä Korvataan f funktiolla p : R R, jonka lauseke tunnetaan, ja approksimoidaan f(x) p(x) Taulukoidut pisteet: (x i, y i ), missä y i = f(x i ) Interpolantti: p(x i ) = y i kaikilla i = 0, 1,..., n Numeeriset menetelmät Syksy 2011 Luento 6 To p. 23/38 p. 23/38

24 Interpolointi Interpolointi: Piste x, jossa arvo halutaan, on jossain havaintopisteiden x i ja x j välissä Ekstrapolointi: Piste x on havaintopisteiden ulkopuolella (x < min{x i } tai x > max{x i }) Approksimointi eli yleinen käyränsovitus: Ei vaadita, että p(x i ) = y i, vaan yleisemmin p(x) f(x) koko välillä Pisteiden ei tarvitse olla järjestyksessä x 0 < x 1 < < x n, mutta se voi olla hyvä ominaisuus esimerkiksi visualisoitaessa Numeeriset menetelmät Syksy 2011 Luento 6 To p. 24/38 p. 24/38

25 Interpolantti Interpolantti valitaan jostain yksinkertaisesta funktioluokasta Esimerkiksi: Polynomit, paloittaiset polynomit, rationaalifunktiot Lisäksi voi olla vaatimuksia mm. derivoituvuudesta Numeeriset menetelmät Syksy 2011 Luento 6 To p. 25/38 p. 25/38

26 Polynomi-interpolaatio Datapisteet: (x i, y i ), i = 0, 1,..., n, siten että x i x j kun i j Kantafunktiot: ϕ 0, ϕ 1,..., ϕ n Interpolantti kantafunktioiden lineaarikombinaationa: n p(x) = a j ϕ j (x) j=0 missä a 0, a 1,..., a n vapaita parametreja Numeeriset menetelmät Syksy 2011 Luento 6 To p. 26/38 p. 26/38

27 Polynomi-interpolaatio Interpolaatioehto: p(x i ) = y i i = 0, 1,..., n Lineaarinen yhtälöryhmä n j=0 a j ϕ j (x i ) = y i, i = 0, 1,..., n Xa = y missä a = [a 0, a 1,..., a n ] T, y = [y 0, y 1,..., y n ] T ja X = (ϕ j (x i )) i,j Numeeriset menetelmät Syksy 2011 Luento 6 To p. 27/38 p. 27/38

28 Vandermonden interpolaatiopol. Valitaan kantafunktioiksi monomit: ϕ j (x) = x j p on n-asteinen polynomi ja Vandermonden matriisi on 1 x 0 x 2 0 x x n 0 1 x 1 x 2 1 x x n 1 X = 1 x 2 x 2 2 x x n x n x 2 n x 3 n... x n n Numeeriset menetelmät Syksy 2011 Luento 6 To p. 28/38 p. 28/38

29 Interpolaatiopolynomi Lause: Olkoot datapisteet (x i, y i ), i = 0, 1,..., n, siten että x i x j kun i j On olemassa enintään astetta n oleva polynomi p, jolle p(x i ) = y i i = 0, 1,..., n ja polynomi p on yksikäsitteinen korkeintaan astetta n olevien polynomien joukossa Numeeriset menetelmät Syksy 2011 Luento 6 To p. 29/38 p. 29/38

30 Todistus Olkoon z R n+1 siten että Xz = 0 p(x i ) = n j=0 z j x j i = 0 i = 0, 1,..., n p korkeintaan astetta n oleva polynomi, jolla on n + 1 nollakohtaa p 0 z 0 Yhtälöryhmällä Xa = y yksikäs. ratkaisu Interpolaatiopolynomin olemassaolo Numeeriset menetelmät Syksy 2011 Luento 6 To p. 30/38 p. 30/38

31 Todistus jatkuu Olkoot p ja q kaksi korkeintaan astetta n olevia interpolaatiopolynomeja Olkoon r = p q r(x i ) = p(x i ) q(x i ) = 0 i = 0, 1,..., n r korkeintaan astetta n oleva polynomi, jolla on n + 1 nollakohtaa r 0 p = q Interpolaatiopolynomin yksikäsitteisyys Numeeriset menetelmät Syksy 2011 Luento 6 To p. 31/38 p. 31/38

32 Interpolaatiopol. muodostaminen Vandermonden matriisi häiriöaltis Tarvitaan lineaarisen yhtälöryhmän ratkaiseminen Käytännössä interpolaatiopolynomia ei muodosteta Vandermonden matriisin avulla Lause Interpolaatiopolynomi on aina sama riippumatta siitä miten kantafunktiot on valittu Numeeriset menetelmät Syksy 2011 Luento 6 To p. 32/38 p. 32/38

33 Lagrangen muoto Valitaan kantafunktioiksi n ( x xk ) l j (x) = x j x k k=0 k j = (x x 0)...(x x j 1 )(x x j+1 )...(x x n ) (x j x 0 )...(x j x j 1 )(x j x j+1 )...(x j x n ) { 1, i = j l j (x i ) = δ ij = 0, i j Numeeriset menetelmät Syksy 2011 Luento 6 To p. 33/38 p. 33/38

34 Lagrangen muoto jatkuu X = (l j (x i )) i,j = δ ij X = I a = y p(x) = n j=0 y j l j (x) Numeeriset menetelmät Syksy 2011 Luento 6 To p. 34/38 p. 34/38

35 Esimerkki n = 1: l j (x) = n k=0 k j ( x xk x j x k ) l 0 (x) = x x 1 x 0 x 1, l 1 (x) = x x 0 x 1 x 0 p 1 (x) = y 0 x x 1 x 0 x 1 + y 1 x x 0 x 1 x 0 Numeeriset menetelmät Syksy 2011 Luento 6 To p. 35/38 p. 35/38

36 Esimerkki n = 2: l 0 (x) = (x x 1)(x x 2 ) (x 0 x 1 )(x 0 x 2 ) l 1 (x) = (x x 0)(x x 2 ) (x 1 x 0 )(x 1 x 2 ) l 2 (x) = (x x 0)(x x 1 ) (x 2 x 0 )(x 2 x 1 ) p 2 (x) = y 0 l 0 (x) + y 1 l 1 (x) + y 2 l 2 (x) Numeeriset menetelmät Syksy 2011 Luento 6 To p. 36/38 p. 36/38

37 Esimerkki jatkuu n = 2: Datapisteet (0, 1), ( 1, 2), (1, 3) (x ( 1))(x 1) p 2 (x) = 1 (0 ( 1))(0 1) (x 0)(x 1) + 2 (( 1) 0)(( 1) 1) (x 0)(x ( 1)) + 3 (1 0)(1 ( 1)) = x x2 Numeeriset menetelmät Syksy 2011 Luento 6 To p. 37/38 p. 37/38

38 Lagrangen muoto Kertoimien a j laskeminen triviaalia (a j = y j ) Kantafunktiot l j melko monimutkaisia Jos tunnetaan p n 1, siitä ei ole mitään apua p n :ää laskettaessa Kaikki l j :t joudutaan laskemaan uudestaan Jos halutaan parempi tasapaino kertoimien ja kantafunktioiden vaatiman laskennan välillä Newtonin muoto Numeeriset menetelmät Syksy 2011 Luento 6 To p. 38/38 p. 38/38

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Esimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt

Esimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt Esimerkki 4.4. Määrää matriisin 2 2 1 A = 1 3 1 2 4 3 ominaisarvot ja -vektorit. Ratk. Nyt det(a λi ) = 1 + 2 λ 2 1 + 1 λ 1 λ 1 3 λ 1 = 1 3 λ 1 2 4 3 λ 2 4 3 λ 1 λ = 1 4 λ 1 = (1 λ)( 1)1+1 4 λ 1 2 6 3

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on? Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

(0 desimaalia, 2 merkitsevää numeroa).

(0 desimaalia, 2 merkitsevää numeroa). NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx

Lisätiedot

Paikannuksen matematiikka MAT

Paikannuksen matematiikka MAT TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y M a t h e m a t i c s Paikannuksen matematiikka MAT-45800 4..008. p.1/4 Käytännön järjestelyt Kotisivu: http://math.tut.fi/courses/mat-45800/ Luennot:

Lisätiedot

6. OMINAISARVOT JA DIAGONALISOINTI

6. OMINAISARVOT JA DIAGONALISOINTI 0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos

Lisätiedot

Funktioiden approksimointi ja interpolointi

Funktioiden approksimointi ja interpolointi Funktioiden approksimointi ja interpolointi Keijo Ruotsalainen Division of Mathematics interpolaatio-ongelma 8 Eksponenttifunktion exp(x) interpolointi 3.5 Funktion e^{0.25x} \sin(x) interpolointi 7 3

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:

Lisätiedot

6 MATRIISIN DIAGONALISOINTI

6 MATRIISIN DIAGONALISOINTI 6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b

Lisätiedot

5 Differentiaaliyhtälöryhmät

5 Differentiaaliyhtälöryhmät 5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 9 Ti 4.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 9 Ti 4.10.2011 p. 1/44 p. 1/44 Funktion approksimointi Etsitään p siten, että p f, mutta ei vaadita, että

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 14 To 20.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 14 To 20.10.2011 p. 1/39 p. 1/39 Nopeat Fourier-muunnokset Diskreetti Fourier-muunnos ˆf k = 1 N 1 N

Lisätiedot

OMINAISARVOISTA JA OMINAISVEKTOREISTA

OMINAISARVOISTA JA OMINAISVEKTOREISTA 1 OMINAISARVOISTA JA OMINAISVEKTOREISTA Olkoon x = (x 1,..., x n ) avaruuden R n piste (l. vektori). Vektori x samaistetaan n 1-matriisin (x 1 x 2... x n ) T kanssa, ts. voidaan yhtä hyvin kirjoittaa x1

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 4. Kirsi Valjus. Jyväskylän yliopisto. Luento 4 () Numeeriset menetelmät / 44

Numeeriset menetelmät TIEA381. Luento 4. Kirsi Valjus. Jyväskylän yliopisto. Luento 4 () Numeeriset menetelmät / 44 Numeeriset menetelmät TIEA381 Luento 4 Kirsi Valjus Jyväskylän yliopisto Luento 4 () Numeeriset menetelmät 21.3.2013 1 / 44 Luennon 4 sisältö Lineaarisen yhtälöryhmän ratkaisemisesta: Choleskyn menetelmä

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot

Ortogonaaliset matriisit, määritelmä 1

Ortogonaaliset matriisit, määritelmä 1 , määritelmä 1 Määritelmä (a). Neliömatriisi Q on ortogonaalinen, jos Q T Q = I. Määritelmästä voidaan antaa samaa tarkoittavat, mutta erilaiselta näyttävät muodot: Määritelmä (b). n n neliömatriisi Q,

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

Similaarisuus. Määritelmä. Huom.

Similaarisuus. Määritelmä. Huom. Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP

Lisätiedot

Iteratiiviset ratkaisumenetelmät

Iteratiiviset ratkaisumenetelmät Iteratiiviset ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Yleinen iteraatio Lineaarisen yhtälöryhmän iteratiivinen ratkaisumenetelmä voidaan esittää muodossa: Anna alkuarvaus: x 0 R n

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 3. Kirsi Valjus. Jyväskylän yliopisto. Luento 3 () Numeeriset menetelmät / 45

Numeeriset menetelmät TIEA381. Luento 3. Kirsi Valjus. Jyväskylän yliopisto. Luento 3 () Numeeriset menetelmät / 45 Numeeriset menetelmät TIEA381 Luento 3 Kirsi Valjus Jyväskylän yliopisto Luento 3 () Numeeriset menetelmät 20.3.2013 1 / 45 Luennon 3 sisältö Luku 2: Epälineaarisen yhtälön ratkaiseminen Polynomin reaaliset

Lisätiedot

Pienimmän neliösumman menetelmä

Pienimmän neliösumman menetelmä Pienimmän neliösumman menetelmä Keijo Ruotsalainen Division of Mathematics Funktion sovitus Datapisteet (x 1,...,x n ) Annettu data y i = f(x i )+η i, missä f(x) on tuntematon funktio ja η i mittaukseen

Lisätiedot

Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi).

Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi). Liukuluvut Tietokonelaskuissa käytetään liukulukuja: mikä esittää lukua ± α α α M β k ± ( M α i β i )β k, i= β on järjestelmän kantaluku, α α M liukuluvun mantissa, α,, α M lukuja,,,, β, siten että α Esimerkki

Lisätiedot

Milloin A diagonalisoituva?

Milloin A diagonalisoituva? Milloin A diagonalisoituva? ) Oletus: A on diagonalisoituva eli D = TAT, jollakin D = diag(λ, λ 2,..., λ n ). A:n ja D:n ominaisarvot ovat samat λ, λ 2,..., λ n ovat myös A:n ominaisarvot... D e i = D

Lisätiedot

BM20A1501 Numeeriset menetelmät 1 - AIMO

BM20A1501 Numeeriset menetelmät 1 - AIMO 6. marraskuuta 2014 Opetusjärjestelyt Luennot + Harjoitukset pe 7.11.2014 10-14 2310, 14-17 7337 la 8.11.2014 9-12 2310, 12-16 7337 pe 14.11.2014 10-14 2310, 14-17 6216 la 15.11.2014 9-12 2310, 12-16 7337

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

4 Korkeamman kertaluvun differentiaaliyhtälöt

4 Korkeamman kertaluvun differentiaaliyhtälöt Differentiaaliyhtälöt c Pekka Alestalo 2015 Tässä monisteessa käydään läpi tavallisiin differentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Luennolla lasketaan esimerkkitehtäviä

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Matematiikka B3 - Avoin yliopisto

Matematiikka B3 - Avoin yliopisto 2. heinäkuuta 2009 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Lisäharjoitustehtävä Kurssin sisältö (1/2) 1. asteen Differentiaali yhtälöt (1.DY) Separoituva Ratkaisukaava Bernoyulli

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

Luento 9: Yhtälörajoitukset optimoinnissa

Luento 9: Yhtälörajoitukset optimoinnissa Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon

Lisätiedot

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja

Lisätiedot

Matriisilaskenta Luento 8: LU-hajotelma

Matriisilaskenta Luento 8: LU-hajotelma Matriisilaskenta Luento 8: LU-hajotelma Antti Rasila 2016 Matriisihajotelmat 1/2 Usein matriisiyhtälön Ax = y ratkaiseminen on epäkäytännöllistä ja hidasta. Siksi numeerisessa matriisilaskennassa usein

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

Matriisihajotelmat. MS-A0007 Matriisilaskenta. 5.1 Diagonalisointi. 5.1 Diagonalisointi

Matriisihajotelmat. MS-A0007 Matriisilaskenta. 5.1 Diagonalisointi. 5.1 Diagonalisointi MS-A0007 Matriisilaskenta 5. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 25.11.2015 Laskentaongelmissa käsiteltävät matriisit ovat tyypillisesti valtavia.

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Keijo Ruotsalainen Division of Mathematics Kurssitiedot Luennot alkavat ke 11.1.2012 Ke 12-14 L3 To 14-16 L6 Kurssin viimeinen luento To 22.3 2012 Kurssin suorittaminen välikokein:

Lisätiedot

1 Peruskäsitteet. Dierentiaaliyhtälöt

1 Peruskäsitteet. Dierentiaaliyhtälöt Teknillinen korkeakoulu Matematiikka Dierentiaaliyhtälöt Alestalo Tässä monisteessa käydään läpi tavallisiin dierentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Esimerkkejä luennoilla

Lisätiedot

6. Differentiaaliyhtälösysteemien laadullista teoriaa.

6. Differentiaaliyhtälösysteemien laadullista teoriaa. 1 MAT-13450 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 2010 6. Differentiaaliyhtälösysteemien laadullista teoriaa. Olemme keskittyneet tässä kurssissa ensimmäisen kertaluvun

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita

Lisätiedot

17. Differentiaaliyhtälösysteemien laadullista teoriaa.

17. Differentiaaliyhtälösysteemien laadullista teoriaa. 99 17. Differentiaaliyhtälösysteemien laadullista teoriaa. Differentiaaliyhtälön x'(t) = f(x(t),t), x(t) n määrittelemän systeemin sanotaan olevan autonominen, jos oikea puoli ei eksplisiittisesti riipu

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

Matriisialgebra harjoitukset, syksy 2016

Matriisialgebra harjoitukset, syksy 2016 Matriisialgebra harjoitukset, syksy 6 MATRIISIALGEBRA, s. 6, Ratkaisuja/ M.Hamina & M. Peltola 8. Olkoon 4 A 6. 4 Tutki, onko A diagonalisoituva. Jos on, niin määrää matriisi D T AT ja siihen liittyvä

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 10 To 6.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 10 To 6.10.2011 p. 1/35 p. 1/35 Numeerinen integrointi Puolisuunnikassääntö b a f(x)dx = h 2 (f 0 + f

Lisätiedot

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162 Tällä viikolla viimeiset luennot ja demot Lineaarialgebra (muut ko) p. 1/162 Lineaarialgebra (muut ko) p. 2/162 Kertausta Vektorin u = (u 1,u 2 ) R 2 pituus u = u 2 1 +u2 2 Vektorien u ja v = (v 1,v 2

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Matriisilaskentaa tilastotieteilijöille

Matriisilaskentaa tilastotieteilijöille Matriisilaskentaa tilastotieteilijöille Ilkka Mellin 3.. Cholesky-hajotelma ja QR-hajotelma 3.. Yleistetyt käänteismatriisit 3.3. Singulaariarvohajotelma 3.4. Matriisien kääntäminen 3.5. Matriisien derivointi

Lisätiedot

4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt

4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt 4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt 4.1 Homogeeniset lineaariset differentiaaliyhtälöt Homogeeninen yhtälö on muotoa F(x, y,, y (n) ) = 0. (1) Yhtälö on lineaarinen, jos se voidaan

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

x 0 x 1 x 2... x n y 0 y 1 y 2... y n Taulukko 1:

x 0 x 1 x 2... x n y 0 y 1 y 2... y n Taulukko 1: [?, Luku 10], interpolaatio.tex 6.7.04 1 Interpolaatio Olkoon annettu taulukko x 0 x 1 x 2... x n y 0 y 1 y 2... y n Taulukko 1: Voidaan ajatella, että kyse on annetun funktion taulukoiduista arvoista

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C340 Lineaarialgebra ja differentiaaliyhtälöt Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 205 / 3 R. Kangaslampi Matriisihajotelmista Differentiaaliyhtälöitä ratkaistaessa

Lisätiedot

Konjugaattigradienttimenetelmä

Konjugaattigradienttimenetelmä Konjugaattigradienttimenetelmä Keijo Ruotsalainen Division of Mathematics Konjugaattigradienttimenetelmä Oletukset Matriisi A on symmetrinen: A T = A Positiivisesti definiitti: x T Ax > 0 kaikille x 0

Lisätiedot

ja F =

ja F = MATRIISIALGEBRA Harjoitustehtäviä syksy 2016 Tehtävissä 1 ja 2a käytetään seuraavia matriiseja: ( ) 6 2 3 A =,B = 7 1 2 2 3,C = 4 4 2 5 3,E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1.

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Inversio-ongelmien laskennallinen peruskurssi Luento 2 Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että

Lisätiedot

Luento 9: Newtonin iteraation sovellus: optimointiongelma

Luento 9: Newtonin iteraation sovellus: optimointiongelma Luento 9: Newtonin iteraation sovellus: optimointiongelma ilman rajoitusehtoja Optimointiongelmassa tehtävänä on löytää annetun reaaliarvoisen jatkuvan funktion f(x 1,x,,x n ) maksimi tai minimi jossain

Lisätiedot

12. Hessen matriisi. Ääriarvoteoriaa

12. Hessen matriisi. Ääriarvoteoriaa 179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä

Lisätiedot

Singulaariarvohajotelma ja pseudoinverssi

Singulaariarvohajotelma ja pseudoinverssi HELSINGIN YLIOPISTO Pro gradu -tutkielma Niko Kaitarinne Singulaariarvohajotelma ja pseudoinverssi Matematiikan ja tilastotieteen laitos Matematiikka Helmikuu 01 Helsingin yliopisto Matematiikan ja tilastotieteen

Lisätiedot

Taustatietoja ja perusteita

Taustatietoja ja perusteita Taustatietoja ja perusteita Vektorit: x R n pystyvektoreita, transpoosi x T Sisätulo: x T y = n i=1 x i y i Normi: x = x T x = ni=1 x 2 i Etäisyys: Kahden R n :n vektorin välinen etäisyys x y 1 Avoin pallo:

Lisätiedot

Reuna-arvotehtävien ratkaisumenetelmät

Reuna-arvotehtävien ratkaisumenetelmät Reuna-arvotehtävien ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Malliprobleema Kahden pisteen reuna-arvotehtävä u (x) = f (x) (1) u() = u(1) = Jos u C ([,1]) ratkaisu, niin missä x u(x)

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt. osa 2 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 1 R. Kangaslampi Matriisihajotelmista

Lisätiedot

1 Singulaariarvohajoitelma

1 Singulaariarvohajoitelma 1 Singulaariarvohajoitelma Tähän mennessä on tutkittu yhtälöryhmän Ax = y ratkaisuja ja törmätty tapauksiin joissa yhtälöryhmällä on yksikäsitteinen ratkaisu ("helppo"tapaus) yhtälöryhmällä on ääretön

Lisätiedot

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi 7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x

Lisätiedot

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Seuraavassa esitetään optimointitehtävien numeerisia ratkaisumenetelmiä, eli optimointialgoritmeja, keittokirjamaisesti.

Lisätiedot

Neliömuodoista, matriisin ominaisarvoista ja avaruuden kierroista

Neliömuodoista, matriisin ominaisarvoista ja avaruuden kierroista Neliömuodoista matriisin ominaisarvoista ja avaruuden kierroista Marko Moisio 1 Neliömuodoista ja matriisin ominaisarvoista Tarkastellaan toisen asteen tasokäyrän määräävää yhtälöä a + by 2 + 2cxy = d

Lisätiedot

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0.

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0. HARJOITUS 1, RATKAISUEHDOTUKSET, YLE11 2017. 1. Ratkaise (a.) 2x 2 16x 40 = 0 (b.) 4x 2 2x+2 = 0 (c.) x 2 (1 x 2 )(1+x 2 ) = 0 (d.) lnx a = b. (a.) Toisen asteen yhtälön ratkaisukaavalla: x = ( 16)± (

Lisätiedot

1.1. Määritelmiä ja nimityksiä

1.1. Määritelmiä ja nimityksiä 1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x

Lisätiedot

a 1 y 1 (x) + a 2 y 2 (x) = 0 vain jos a 1 = a 2 = 0

a 1 y 1 (x) + a 2 y 2 (x) = 0 vain jos a 1 = a 2 = 0 6. Lineaariset toisen kertaluvun yhtälöt Toisen kertaluvun differentiaaliyhtälöt ovat tuntuvasti hankalampia ratkaista kuin ensimmäinen. Käsittelemmekin tässä vain tärkeintä erikoistapausta, toisen kertaluvun

Lisätiedot

1 Avaruuksien ja lineaarikuvausten suora summa

1 Avaruuksien ja lineaarikuvausten suora summa MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

LINEAARIALGEBRA P. LUENTOMONISTE ja HARJOITUSTEHTÄVÄT

LINEAARIALGEBRA P. LUENTOMONISTE ja HARJOITUSTEHTÄVÄT LINEAARIALGEBRA II 802119P LUENTOMONISTE ja HARJOITUSTEHTÄVÄT syksy 2008 30 V SISÄTULOAVARUUKSISTA 1. Sisätulon määritelmä Tarkastellaan sisätulon määrittelyä varten kompleksilukujen joukkoa C = {x + iy

Lisätiedot

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio, Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä

Lisätiedot

Luento 5: Suurten lineaaristen yhtälöryhmien ratkaiseminen iteratiivisilla menetelmillä

Luento 5: Suurten lineaaristen yhtälöryhmien ratkaiseminen iteratiivisilla menetelmillä Luento 5: Suurten lineaaristen yhtälöryhmien ratkaiseminen iteratiivisilla menetelmillä Matriisit voivat olla kooltaan niin suuria, että LU-hajotelman laskeminen ei ole järkevä tapa ratkaista lineaarista

Lisätiedot

MATEMATIIKAN JAOS NUMEERISET MENETELMÄT

MATEMATIIKAN JAOS NUMEERISET MENETELMÄT MATEMATIIKAN JAOS NUMEERISET MENETELMÄT Harjoitustehtäviä, kevät 2012 1. Tarkastellaan summaa S = 1+0.4+0.3+0.2+0.04+0.03+0.02+0.01. a) Laske summa laskukoneella vasemmalta oikealle käyttäen liukulukuaritmetiikkaa,

Lisätiedot

i=1 Näistä on helppo näyttää ominaisuudet (1)-(4). Ellei toisin mainita, käytetään R n :ssä

i=1 Näistä on helppo näyttää ominaisuudet (1)-(4). Ellei toisin mainita, käytetään R n :ssä Kurssimateriaalia K3/P3-kursille syksyllä 003. 8.0.003 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni.. Normi

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet

Lisätiedot

Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen.

Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Pns ratkaisu (Kr. 20.5, Lay 6.5 C-II/KP-II, 20, Kari Eloranta Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Määritelmä Jos A on

Lisätiedot

1 Perusteita lineaarisista differentiaaliyhtälöistä

1 Perusteita lineaarisista differentiaaliyhtälöistä 1 Perusteita lineaarisista differentiaaliyhtälöistä Johdetaan lineaarisen aikavariantin systeemin ẋ(t) = A(t)x(t) + B(t)u(t), x(t 0 ) = x 0 yleinen ratkaisu. Tarkastellaan ensin homogeenistä yhtälöä. Lause

Lisätiedot

Numeeriset Menetelmät, P. Keijo Ruotsalainen Teknillinen tiedekunta matematiikan jaos

Numeeriset Menetelmät, P. Keijo Ruotsalainen Teknillinen tiedekunta matematiikan jaos Numeeriset Menetelmät, 031022P Keijo Ruotsalainen Teknillinen tiedekunta matematiikan jaos 11. helmikuuta 2009 2 Sisältö 1 Johdanto 7 1.1 Varoitus.............................. 7 1.2 Numeeriset menetelmät

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

3.2.2 Tikhonovin regularisaatio

3.2.2 Tikhonovin regularisaatio 3 Tikhonovin regularisaatio Olkoon x 0 R n tuntematon, M R m n teoriamatriisi ja y Mx + ε R m (316 annettu data Häiriöherkässä ongelmassa pienimmän neliösumman miniminormiratkaisu x M + y Q N (M x + M

Lisätiedot

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. ja kompleksiluvut ja kompleksiluvut. MS-A0004/A0006 Matriisilaskenta. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.205 Reaalinen n-ulotteinen

Lisätiedot