Numeeriset menetelmät

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Numeeriset menetelmät"

Transkriptio

1 Numeeriset menetelmät Luento 6 To Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To p. 1/38 p. 1/38

2 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi numeerisen matematiikan perustehtävistä (kuten lineaariset yhtälöryhmät) Ominaisarvotehtävien numeerinen ratkaiseminen työläämpää kuin lineaaristen yhtälöryhmien ratkaiseminen Saatavana tehokkaita ja hyvin testattuja implementointeja Numeeriset menetelmät Syksy 2011 Luento 6 To p. 2/38 p. 2/38

3 Ominaisarvotehtävät Jos λ R ja x R n, x 0 siten että niin Ax = λx λ on matriisin A R n n ominaisarvo x on sitä vastaava ominaisvektori Ominaisvektori x ei ole yksikäsitteinen: Jos α 0 niin myös αx on ominaisvektori Usein ominaisvektorit skaalataan: x/ x Numeeriset menetelmät Syksy 2011 Luento 6 To p. 3/38 p. 3/38

4 Karakteristinen polynomi Koska Ax = λx (A λi)x = 0 niin ominaisarvot ovat karakteristisen polynomin juuret p n (λ) = det(a λi) n-asteisella polynomilla n juurta C n n-matriisilla n ominaisarvoa C Käytännössä ominaisarvoja ei kannata laskea ratkaisemalla karakteristisen polynomin juuret Numeeriset menetelmät Syksy 2011 Luento 6 To p. 4/38 p. 4/38

5 Ominaisarvot ja -vektorit Vaikka matriisi on reaalinen, ominaisarvot voivat olla kompleksisia Jos reaalinen matriisi on symmetrinen, ominaisarvot ovat reaalisia Ominaisarvon algebrallinen kertaluku: Kuinka moninkertainen karakteristisen polynomin juuri ominaisarvo on Ominaisarvon geometrinen kertaluku: Ominaisarvoon liittyvien lineaarisesti riippumattomien ominaisvektorien lukumäärä Numeeriset menetelmät Syksy 2011 Luento 6 To p. 5/38 p. 5/38

6 Ominaisarvot Matriisi diagonaalimatriisi ala- tai yläkolmiomatriisi reaalinen ja symmetrinen positiivisesti definiitti Ominaisarvot diagonaalialkiot diagonaalialkiot reaaliset aidosti positiiviset Q kääntyvä Matriiseilla A ja Q 1 AQ on samat ominaisarvot A reaalinen ja symmetrinen On olemassa Q T = Q 1 siten, että Q T AQ on diag.matriisi Numeeriset menetelmät Syksy 2011 Luento 6 To p. 6/38 p. 6/38

7 Esimerkki A = λ 1 0 det(a λi) = 1 2 λ λ Numeeriset menetelmät Syksy 2011 Luento 6 To p. 7/38 p. 7/38

8 Esimerkki jatkuu 3 λ λ λ 2 λ 1 = (3 λ) 1 3 λ ( 1) λ = (3 λ)(2 λ)(3 λ) (3 λ) (3 λ) = λ 3 + 8λ 2 19λ + 12 λ 1 = 1, λ 2 = 3, λ 3 = 4 Numeeriset menetelmät Syksy 2011 Luento 6 To p. 8/38 p. 8/38

9 Esimerkki jatkuu λ 1 = x 1 x 2 x 3 = 0 2x 1 x 2 = 0 x 1 + x 2 x 3 = 0 x 2 + 2x 3 = 0 (x 1, x 2, x 3 ) = (a, 2a, a), missä a R Numeeriset menetelmät Syksy 2011 Luento 6 To p. 9/38 p. 9/38

10 Esimerkki jatkuu λ 2 = x 1 x 2 x 3 = 0 x 2 = 0 x 1 x 2 x 3 = 0 x 2 = 0 (x 1, x 2, x 3 ) = (b, 0, b), missä b R Numeeriset menetelmät Syksy 2011 Luento 6 To p. 10/38 p. 10/38

11 Esimerkki jatkuu λ 3 = x 1 x 2 x 3 = 0 x 1 x 2 = 0 x 1 2x 2 x 3 = 0 x 2 x 3 = 0 (x 1, x 2, x 3 ) = (c, c, c), missä c R Numeeriset menetelmät Syksy 2011 Luento 6 To p. 11/38 p. 11/38

12 Potenssiinkorotusmenetelmä Oletukset: A:n ominaisarvoille on voimassa λ 1 > λ 2 λ 3 λ n Ominaisvektorit normeerattu ν (j) = 1 kaikilla j = 1, 2,..., n Ominaisvektorit lineaarisesti riippumattomat Alkuarvaus x (0) = n i=1 β iν (i), missä β 1 0 Numeeriset menetelmät Syksy 2011 Luento 6 To p. 12/38 p. 12/38

13 Potenssiinkorotusmenetelmä Iteraatio: y (k) = Ax (k) c k+1 = y (k) j, missä j siten että y (k) j = max 1 p n { y p (k) } x (k+1) = 1 c k+1 y (k) lim x (k) = ν (1) ja lim c k = λ 1 k k (Saadaan itseisarvoltaan suurin ominaisarvo) Numeeriset menetelmät Syksy 2011 Luento 6 To p. 13/38 p. 13/38

14 Pot.kor.men. ominaisuuksia Plussaa: Yksinkertainen ohjelmoida Ei tarvita A:ta kokonaan, riittää että voidaan laskea Ax kaikille x Miinusta: Konvergenssi hidasta, jos λ 2 / λ 1 1 Vaikea tietää etukäteen, ovatko oletukset voimassa Numeeriset menetelmät Syksy 2011 Luento 6 To p. 14/38 p. 14/38

15 Käänteinen pot.kor.men. Ax = λx A 1 x = λ 1 x Jos λ n 1 > λ n, voidaan soveltaa menetelmää matriisille A 1 lim x (k) = ν (n) ja lim c k = λ 1 n k k (Saadaan itseisarvoltaan pienin ominaisarvo) Huom: Käänteismatriisia A 1 ei lasketa, vaan ratkaistaan lin. yhtälöryhmä Ay (k) = x (k) Numeeriset menetelmät Syksy 2011 Luento 6 To p. 15/38 p. 15/38

16 Siirretty käänteinen pot.kor.men. Ax = λx (A σi) 1 x = (λ σ) 1 x Jos λ 1 > λ 2 > > λ n, voidaan soveltaa menetelmää matriisille (A σi) 1 lim x (k) = ν (j) ja lim c k = (λ j σ) 1 k k missä λ j on lukua σ lähimpänä oleva om.arvo Huom: Ratkaistaan (A σi)y (k) = x (k) Numeeriset menetelmät Syksy 2011 Luento 6 To p. 16/38 p. 16/38

17 Similaariset matriisit Matriisit similaarisia, jos niillä on samat om.arvot Olkoon Q kääntyvä Ax = λx AQQ 1 x = λx Q 1 AQQ 1 x = λq 1 x (Q 1 AQ)(Q 1 x) = λ(q 1 x) A ja Q 1 AQ ovat similaarisia Numeeriset menetelmät Syksy 2011 Luento 6 To p. 17/38 p. 17/38

18 QR-hajotelma Jokainen reaalinen matriisi A voidaan esittää tulona A = QR missä Q on ortogonaalinen, ts. Q 1 = Q T R on yläkolmiomatriisi QR-hajotelma voidaan muodostaa Householderja/tai Givens-muunnoksilla (ei käsitellä) Numeeriset menetelmät Syksy 2011 Luento 6 To p. 18/38 p. 18/38

19 QR-menetelmä A (0) = A Q (k) R (k) = A (k) A (k+1) = R (k) Q (k) Koska A (k+1) = R (k) Q (k) = (Q (k) ) 1 A (k) Q (k) A (k+1) ja A (k) similaarisia Kaikki A (k) :t ja A similaarisia Numeeriset menetelmät Syksy 2011 Luento 6 To p. 19/38 p. 19/38

20 QR-menetelmän konvergenssi Jos ominaisarvot reaalisia ja yksinkertaisia lim A (k) = yläkolmiomatriisi k Jos lisäksi A reaalinen ja symmetrinen lim A (k) = diagonaalimatriisi k Molemmissa tapauksissa ominaisarvot diagonaalilla Numeeriset menetelmät Syksy 2011 Luento 6 To p. 20/38 p. 20/38

21 Hessenberg-muoto Yleinen matriisi Hessenbergmuodossa 0 Symmetrinen matriisi Hessenberg-muodossa (tridiagonaalinen) 0 0 Numeeriset menetelmät Syksy 2011 Luento 6 To p. 21/38 p. 21/38

22 QR-menetelmän soveltaminen Käytännössä QR-menetelmää ei sovelleta täydelle matriisille Yleiselle matriisille: Similaarimuunnos Hessenberg-matriisiksi QR-iteraatio Hessenberg-matriisille Symmetriselle matriisille: Similaarimuunnos tridiagonaalimatriisiksi QR-iteraatio tridiagonaalimatriisille Numeeriset menetelmät Syksy 2011 Luento 6 To p. 22/38 p. 22/38

23 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion arvot tietyissä pisteissä Tavoite: Arvioidaan funktion arvoja myös muissa pisteissä Korvataan f funktiolla p : R R, jonka lauseke tunnetaan, ja approksimoidaan f(x) p(x) Taulukoidut pisteet: (x i, y i ), missä y i = f(x i ) Interpolantti: p(x i ) = y i kaikilla i = 0, 1,..., n Numeeriset menetelmät Syksy 2011 Luento 6 To p. 23/38 p. 23/38

24 Interpolointi Interpolointi: Piste x, jossa arvo halutaan, on jossain havaintopisteiden x i ja x j välissä Ekstrapolointi: Piste x on havaintopisteiden ulkopuolella (x < min{x i } tai x > max{x i }) Approksimointi eli yleinen käyränsovitus: Ei vaadita, että p(x i ) = y i, vaan yleisemmin p(x) f(x) koko välillä Pisteiden ei tarvitse olla järjestyksessä x 0 < x 1 < < x n, mutta se voi olla hyvä ominaisuus esimerkiksi visualisoitaessa Numeeriset menetelmät Syksy 2011 Luento 6 To p. 24/38 p. 24/38

25 Interpolantti Interpolantti valitaan jostain yksinkertaisesta funktioluokasta Esimerkiksi: Polynomit, paloittaiset polynomit, rationaalifunktiot Lisäksi voi olla vaatimuksia mm. derivoituvuudesta Numeeriset menetelmät Syksy 2011 Luento 6 To p. 25/38 p. 25/38

26 Polynomi-interpolaatio Datapisteet: (x i, y i ), i = 0, 1,..., n, siten että x i x j kun i j Kantafunktiot: ϕ 0, ϕ 1,..., ϕ n Interpolantti kantafunktioiden lineaarikombinaationa: n p(x) = a j ϕ j (x) j=0 missä a 0, a 1,..., a n vapaita parametreja Numeeriset menetelmät Syksy 2011 Luento 6 To p. 26/38 p. 26/38

27 Polynomi-interpolaatio Interpolaatioehto: p(x i ) = y i i = 0, 1,..., n Lineaarinen yhtälöryhmä n j=0 a j ϕ j (x i ) = y i, i = 0, 1,..., n Xa = y missä a = [a 0, a 1,..., a n ] T, y = [y 0, y 1,..., y n ] T ja X = (ϕ j (x i )) i,j Numeeriset menetelmät Syksy 2011 Luento 6 To p. 27/38 p. 27/38

28 Vandermonden interpolaatiopol. Valitaan kantafunktioiksi monomit: ϕ j (x) = x j p on n-asteinen polynomi ja Vandermonden matriisi on 1 x 0 x 2 0 x x n 0 1 x 1 x 2 1 x x n 1 X = 1 x 2 x 2 2 x x n x n x 2 n x 3 n... x n n Numeeriset menetelmät Syksy 2011 Luento 6 To p. 28/38 p. 28/38

29 Interpolaatiopolynomi Lause: Olkoot datapisteet (x i, y i ), i = 0, 1,..., n, siten että x i x j kun i j On olemassa enintään astetta n oleva polynomi p, jolle p(x i ) = y i i = 0, 1,..., n ja polynomi p on yksikäsitteinen korkeintaan astetta n olevien polynomien joukossa Numeeriset menetelmät Syksy 2011 Luento 6 To p. 29/38 p. 29/38

30 Todistus Olkoon z R n+1 siten että Xz = 0 p(x i ) = n j=0 z j x j i = 0 i = 0, 1,..., n p korkeintaan astetta n oleva polynomi, jolla on n + 1 nollakohtaa p 0 z 0 Yhtälöryhmällä Xa = y yksikäs. ratkaisu Interpolaatiopolynomin olemassaolo Numeeriset menetelmät Syksy 2011 Luento 6 To p. 30/38 p. 30/38

31 Todistus jatkuu Olkoot p ja q kaksi korkeintaan astetta n olevia interpolaatiopolynomeja Olkoon r = p q r(x i ) = p(x i ) q(x i ) = 0 i = 0, 1,..., n r korkeintaan astetta n oleva polynomi, jolla on n + 1 nollakohtaa r 0 p = q Interpolaatiopolynomin yksikäsitteisyys Numeeriset menetelmät Syksy 2011 Luento 6 To p. 31/38 p. 31/38

32 Interpolaatiopol. muodostaminen Vandermonden matriisi häiriöaltis Tarvitaan lineaarisen yhtälöryhmän ratkaiseminen Käytännössä interpolaatiopolynomia ei muodosteta Vandermonden matriisin avulla Lause Interpolaatiopolynomi on aina sama riippumatta siitä miten kantafunktiot on valittu Numeeriset menetelmät Syksy 2011 Luento 6 To p. 32/38 p. 32/38

33 Lagrangen muoto Valitaan kantafunktioiksi n ( x xk ) l j (x) = x j x k k=0 k j = (x x 0)...(x x j 1 )(x x j+1 )...(x x n ) (x j x 0 )...(x j x j 1 )(x j x j+1 )...(x j x n ) { 1, i = j l j (x i ) = δ ij = 0, i j Numeeriset menetelmät Syksy 2011 Luento 6 To p. 33/38 p. 33/38

34 Lagrangen muoto jatkuu X = (l j (x i )) i,j = δ ij X = I a = y p(x) = n j=0 y j l j (x) Numeeriset menetelmät Syksy 2011 Luento 6 To p. 34/38 p. 34/38

35 Esimerkki n = 1: l j (x) = n k=0 k j ( x xk x j x k ) l 0 (x) = x x 1 x 0 x 1, l 1 (x) = x x 0 x 1 x 0 p 1 (x) = y 0 x x 1 x 0 x 1 + y 1 x x 0 x 1 x 0 Numeeriset menetelmät Syksy 2011 Luento 6 To p. 35/38 p. 35/38

36 Esimerkki n = 2: l 0 (x) = (x x 1)(x x 2 ) (x 0 x 1 )(x 0 x 2 ) l 1 (x) = (x x 0)(x x 2 ) (x 1 x 0 )(x 1 x 2 ) l 2 (x) = (x x 0)(x x 1 ) (x 2 x 0 )(x 2 x 1 ) p 2 (x) = y 0 l 0 (x) + y 1 l 1 (x) + y 2 l 2 (x) Numeeriset menetelmät Syksy 2011 Luento 6 To p. 36/38 p. 36/38

37 Esimerkki jatkuu n = 2: Datapisteet (0, 1), ( 1, 2), (1, 3) (x ( 1))(x 1) p 2 (x) = 1 (0 ( 1))(0 1) (x 0)(x 1) + 2 (( 1) 0)(( 1) 1) (x 0)(x ( 1)) + 3 (1 0)(1 ( 1)) = x x2 Numeeriset menetelmät Syksy 2011 Luento 6 To p. 37/38 p. 37/38

38 Lagrangen muoto Kertoimien a j laskeminen triviaalia (a j = y j ) Kantafunktiot l j melko monimutkaisia Jos tunnetaan p n 1, siitä ei ole mitään apua p n :ää laskettaessa Kaikki l j :t joudutaan laskemaan uudestaan Jos halutaan parempi tasapaino kertoimien ja kantafunktioiden vaatiman laskennan välillä Newtonin muoto Numeeriset menetelmät Syksy 2011 Luento 6 To p. 38/38 p. 38/38

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28 Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Esimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt

Esimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt Esimerkki 4.4. Määrää matriisin 2 2 1 A = 1 3 1 2 4 3 ominaisarvot ja -vektorit. Ratk. Nyt det(a λi ) = 1 + 2 λ 2 1 + 1 λ 1 λ 1 3 λ 1 = 1 3 λ 1 2 4 3 λ 2 4 3 λ 1 λ = 1 4 λ 1 = (1 λ)( 1)1+1 4 λ 1 2 6 3

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on? Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

(0 desimaalia, 2 merkitsevää numeroa).

(0 desimaalia, 2 merkitsevää numeroa). NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx

Lisätiedot

Paikannuksen matematiikka MAT

Paikannuksen matematiikka MAT TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y M a t h e m a t i c s Paikannuksen matematiikka MAT-45800 4..008. p.1/4 Käytännön järjestelyt Kotisivu: http://math.tut.fi/courses/mat-45800/ Luennot:

Lisätiedot

Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104

Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104 Lineaarialgebra (muut ko) p. 1/104 Ensi viikolla luennot salissa X Torstaina 7.12. viimeiset demot (12.12. ja 13.12. viimeiset luennot). Torstaina 14.12 on välikoe 2, muista ilmoittautua! Demorastitiedot

Lisätiedot

Funktioiden approksimointi ja interpolointi

Funktioiden approksimointi ja interpolointi Funktioiden approksimointi ja interpolointi Keijo Ruotsalainen Division of Mathematics interpolaatio-ongelma 8 Eksponenttifunktion exp(x) interpolointi 3.5 Funktion e^{0.25x} \sin(x) interpolointi 7 3

Lisätiedot

6. OMINAISARVOT JA DIAGONALISOINTI

6. OMINAISARVOT JA DIAGONALISOINTI 0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 8 To 29.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 8 To 29.9.2011 p. 1/36 p. 1/36 Interpolointi kuutiosplinillä Osavälit: I i = [t i 1,t i ], i = 1,2,...,n

Lisätiedot

6 MATRIISIN DIAGONALISOINTI

6 MATRIISIN DIAGONALISOINTI 6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

5 Differentiaaliyhtälöryhmät

5 Differentiaaliyhtälöryhmät 5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 9 Ti 4.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 9 Ti 4.10.2011 p. 1/44 p. 1/44 Funktion approksimointi Etsitään p siten, että p f, mutta ei vaadita, että

Lisätiedot

OMINAISARVOISTA JA OMINAISVEKTOREISTA

OMINAISARVOISTA JA OMINAISVEKTOREISTA 1 OMINAISARVOISTA JA OMINAISVEKTOREISTA Olkoon x = (x 1,..., x n ) avaruuden R n piste (l. vektori). Vektori x samaistetaan n 1-matriisin (x 1 x 2... x n ) T kanssa, ts. voidaan yhtä hyvin kirjoittaa x1

Lisätiedot

Matemaattinen Analyysi / kertaus

Matemaattinen Analyysi / kertaus Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 14 To 20.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 14 To 20.10.2011 p. 1/39 p. 1/39 Nopeat Fourier-muunnokset Diskreetti Fourier-muunnos ˆf k = 1 N 1 N

Lisätiedot

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3. Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 4. Kirsi Valjus. Jyväskylän yliopisto. Luento 4 () Numeeriset menetelmät / 44

Numeeriset menetelmät TIEA381. Luento 4. Kirsi Valjus. Jyväskylän yliopisto. Luento 4 () Numeeriset menetelmät / 44 Numeeriset menetelmät TIEA381 Luento 4 Kirsi Valjus Jyväskylän yliopisto Luento 4 () Numeeriset menetelmät 21.3.2013 1 / 44 Luennon 4 sisältö Lineaarisen yhtälöryhmän ratkaisemisesta: Choleskyn menetelmä

Lisätiedot

Matematiikka B2 - TUDI

Matematiikka B2 - TUDI Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Alkeismuunnokset matriisille, sivu 57

Alkeismuunnokset matriisille, sivu 57 Lineaarialgebra (muut ko) p. 1/88 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot

Ortogonaaliset matriisit, määritelmä 1

Ortogonaaliset matriisit, määritelmä 1 , määritelmä 1 Määritelmä (a). Neliömatriisi Q on ortogonaalinen, jos Q T Q = I. Määritelmästä voidaan antaa samaa tarkoittavat, mutta erilaiselta näyttävät muodot: Määritelmä (b). n n neliömatriisi Q,

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

Iteratiiviset ratkaisumenetelmät

Iteratiiviset ratkaisumenetelmät Iteratiiviset ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Yleinen iteraatio Lineaarisen yhtälöryhmän iteratiivinen ratkaisumenetelmä voidaan esittää muodossa: Anna alkuarvaus: x 0 R n

Lisätiedot

Similaarisuus. Määritelmä. Huom.

Similaarisuus. Määritelmä. Huom. Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Pienimmän neliösumman menetelmä

Pienimmän neliösumman menetelmä Pienimmän neliösumman menetelmä Keijo Ruotsalainen Division of Mathematics Funktion sovitus Datapisteet (x 1,...,x n ) Annettu data y i = f(x i )+η i, missä f(x) on tuntematon funktio ja η i mittaukseen

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 3. Kirsi Valjus. Jyväskylän yliopisto. Luento 3 () Numeeriset menetelmät / 45

Numeeriset menetelmät TIEA381. Luento 3. Kirsi Valjus. Jyväskylän yliopisto. Luento 3 () Numeeriset menetelmät / 45 Numeeriset menetelmät TIEA381 Luento 3 Kirsi Valjus Jyväskylän yliopisto Luento 3 () Numeeriset menetelmät 20.3.2013 1 / 45 Luennon 3 sisältö Luku 2: Epälineaarisen yhtälön ratkaiseminen Polynomin reaaliset

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi).

Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi). Liukuluvut Tietokonelaskuissa käytetään liukulukuja: mikä esittää lukua ± α α α M β k ± ( M α i β i )β k, i= β on järjestelmän kantaluku, α α M liukuluvun mantissa, α,, α M lukuja,,,, β, siten että α Esimerkki

Lisätiedot

Milloin A diagonalisoituva?

Milloin A diagonalisoituva? Milloin A diagonalisoituva? ) Oletus: A on diagonalisoituva eli D = TAT, jollakin D = diag(λ, λ 2,..., λ n ). A:n ja D:n ominaisarvot ovat samat λ, λ 2,..., λ n ovat myös A:n ominaisarvot... D e i = D

Lisätiedot

BM20A1501 Numeeriset menetelmät 1 - AIMO

BM20A1501 Numeeriset menetelmät 1 - AIMO 6. marraskuuta 2014 Opetusjärjestelyt Luennot + Harjoitukset pe 7.11.2014 10-14 2310, 14-17 7337 la 8.11.2014 9-12 2310, 12-16 7337 pe 14.11.2014 10-14 2310, 14-17 6216 la 15.11.2014 9-12 2310, 12-16 7337

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

4 Korkeamman kertaluvun differentiaaliyhtälöt

4 Korkeamman kertaluvun differentiaaliyhtälöt Differentiaaliyhtälöt c Pekka Alestalo 2015 Tässä monisteessa käydään läpi tavallisiin differentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Luennolla lasketaan esimerkkitehtäviä

Lisätiedot

Lineaarialgebra, kertausta aiheita

Lineaarialgebra, kertausta aiheita Lineaarialgebra, kertausta aiheita Matriisitulo käänteismatriisi determinantin kehittäminen determinantin ominaisuudet adjungaatti ja Cramerin kaavat yhtälöryhmän eri esitystavat Gauss-Jordan -algoritmi

Lisätiedot

Matriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 48, , c)

Matriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 48, , c) Matriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 48, 2017 R Alkuviikko TEHTÄVÄ J1 Laske Gaussin algoritmilla ja Sarrus n säännöllä seuraavat determinantit: 2 3 1 a) 1 2 0 1 4 3, b) 0 2

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Matematiikka B3 - Avoin yliopisto

Matematiikka B3 - Avoin yliopisto 2. heinäkuuta 2009 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Lisäharjoitustehtävä Kurssin sisältö (1/2) 1. asteen Differentiaali yhtälöt (1.DY) Separoituva Ratkaisukaava Bernoyulli

Lisätiedot

Luento 9: Yhtälörajoitukset optimoinnissa

Luento 9: Yhtälörajoitukset optimoinnissa Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille

Lisätiedot

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja

Lisätiedot

2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.

2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2. 2. kl:n DY:t Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.) Lause Olkoon f(x 2, x 1, t) funktio, ja oletetaan, että f, f/ x 1 ja f/ x

Lisätiedot

Matriisilaskenta Luento 8: LU-hajotelma

Matriisilaskenta Luento 8: LU-hajotelma Matriisilaskenta Luento 8: LU-hajotelma Antti Rasila 2016 Matriisihajotelmat 1/2 Usein matriisiyhtälön Ax = y ratkaiseminen on epäkäytännöllistä ja hidasta. Siksi numeerisessa matriisilaskennassa usein

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 3

Inversio-ongelmien laskennallinen peruskurssi Luento 3 Inversio-ongelmien laskennallinen peruskurssi Luento 3 Kevät 2011 1 Singulaariarvohajotelma (Singular Value Decomposition, SVD) Olkoon A R m n matriisi 1. Tällöin A voidaan esittää muodossa A = UΣV T,

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa

Lisätiedot

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma

Lisätiedot

Esimerkki 19. Esimerkissä 16 miniminormiratkaisu on (ˆx 1, ˆx 2 ) = (1, 0).

Esimerkki 19. Esimerkissä 16 miniminormiratkaisu on (ˆx 1, ˆx 2 ) = (1, 0). Esimerkki 9 Esimerkissä 6 miniminormiratkaisu on (ˆx, ˆx (, 0 Seuraavaksi näytetään, että miniminormiratkaisuun siirtyminen poistaa likimääräisongelman epäyksikäsitteisyyden (mutta lisääntyvän ratkaisun

Lisätiedot

1 Ominaisarvot ja lineaariset di erenssiyhtälöt

1 Ominaisarvot ja lineaariset di erenssiyhtälöt Taloustieteen mat.menetelmät syksy 27 materiaali II-4 Ominaisarvot ja lineaariset di erenssiyhtälöt. Idea a b Ajatellaan di erenssiyhtälöä z k+ Az k, A : Jos A olisi diagonaalimatriisi, eli b c, niin muuttujat

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 2 To 8.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 2 To 8.9.2011 p. 1/33 p. 1/33 Lukujen tallennus Kiintoluvut (integer) tarkka esitys aritmeettiset operaatiot

Lisätiedot

Matriisihajotelmat. MS-A0007 Matriisilaskenta. 5.1 Diagonalisointi. 5.1 Diagonalisointi

Matriisihajotelmat. MS-A0007 Matriisilaskenta. 5.1 Diagonalisointi. 5.1 Diagonalisointi MS-A0007 Matriisilaskenta 5. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 25.11.2015 Laskentaongelmissa käsiteltävät matriisit ovat tyypillisesti valtavia.

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

1 Peruskäsitteet. Dierentiaaliyhtälöt

1 Peruskäsitteet. Dierentiaaliyhtälöt Teknillinen korkeakoulu Matematiikka Dierentiaaliyhtälöt Alestalo Tässä monisteessa käydään läpi tavallisiin dierentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Esimerkkejä luennoilla

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Keijo Ruotsalainen Division of Mathematics Kurssitiedot Luennot alkavat ke 11.1.2012 Ke 12-14 L3 To 14-16 L6 Kurssin viimeinen luento To 22.3 2012 Kurssin suorittaminen välikokein:

Lisätiedot

6. Differentiaaliyhtälösysteemien laadullista teoriaa.

6. Differentiaaliyhtälösysteemien laadullista teoriaa. 1 MAT-13450 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 2010 6. Differentiaaliyhtälösysteemien laadullista teoriaa. Olemme keskittyneet tässä kurssissa ensimmäisen kertaluvun

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita

Lisätiedot

17. Differentiaaliyhtälösysteemien laadullista teoriaa.

17. Differentiaaliyhtälösysteemien laadullista teoriaa. 99 17. Differentiaaliyhtälösysteemien laadullista teoriaa. Differentiaaliyhtälön x'(t) = f(x(t),t), x(t) n määrittelemän systeemin sanotaan olevan autonominen, jos oikea puoli ei eksplisiittisesti riipu

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

Matriisialgebra harjoitukset, syksy 2016

Matriisialgebra harjoitukset, syksy 2016 Matriisialgebra harjoitukset, syksy 6 MATRIISIALGEBRA, s. 6, Ratkaisuja/ M.Hamina & M. Peltola 8. Olkoon 4 A 6. 4 Tutki, onko A diagonalisoituva. Jos on, niin määrää matriisi D T AT ja siihen liittyvä

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Lineaarinen toisen kertaluvun yhtälö

Lineaarinen toisen kertaluvun yhtälö Lineaarinen toisen kertaluvun yhtälö Keijo Ruotsalainen Mathematics Division Lineaarinen toisen kertaluvun differentiaaliyhtälö Toisen kertaluvun täydellinen lineaarinen yhtälö muotoa p 2 (x)y + p 1 (x)y

Lisätiedot

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162 Tällä viikolla viimeiset luennot ja demot Lineaarialgebra (muut ko) p. 1/162 Lineaarialgebra (muut ko) p. 2/162 Kertausta Vektorin u = (u 1,u 2 ) R 2 pituus u = u 2 1 +u2 2 Vektorien u ja v = (v 1,v 2

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 10 To 6.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 10 To 6.10.2011 p. 1/35 p. 1/35 Numeerinen integrointi Puolisuunnikassääntö b a f(x)dx = h 2 (f 0 + f

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Ax, y = x, A y. A = A A hermiittinen. Jokainen reaalinen ja symmetrinen matriisi on määritelmän mukaan myös hermiittinen. A =, HARJOITUSTEHTÄVIÄ

Ax, y = x, A y. A = A A hermiittinen. Jokainen reaalinen ja symmetrinen matriisi on määritelmän mukaan myös hermiittinen. A =, HARJOITUSTEHTÄVIÄ X.. Matriisialgebra Esimerkki 4 Jos niin x =[i, +i, 2 i ] T C 3, y =[ 2i, 2i, i ] T C 3, x, x = x 2 =+(+)+(4+)=8, y, y =(+4)+4+(+)=, x, y = i( + 2i)+(+i)( 2i)+(2 i)( +i) = +3i. Matriisia A = ĀT sanotaan

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt

4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt 4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt 4.1 Homogeeniset lineaariset differentiaaliyhtälöt Homogeeninen yhtälö on muotoa F(x, y,, y (n) ) = 0. (1) Yhtälö on lineaarinen, jos se voidaan

Lisätiedot

Matriisilaskentaa tilastotieteilijöille

Matriisilaskentaa tilastotieteilijöille Matriisilaskentaa tilastotieteilijöille Ilkka Mellin 3.. Cholesky-hajotelma ja QR-hajotelma 3.. Yleistetyt käänteismatriisit 3.3. Singulaariarvohajotelma 3.4. Matriisien kääntäminen 3.5. Matriisien derivointi

Lisätiedot

MATRIISIN HESSENBERGIN MUOTO. Niko Holopainen

MATRIISIN HESSENBERGIN MUOTO. Niko Holopainen MATRIISIN HESSENBERGIN MUOTO Niko Holopainen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Syksy 2013 Tiivistelmä: Niko Holopainen, Matriisin Hessenbergin muoto Matematiikan

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa. LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,

Lisätiedot

x 0 x 1 x 2... x n y 0 y 1 y 2... y n Taulukko 1:

x 0 x 1 x 2... x n y 0 y 1 y 2... y n Taulukko 1: [?, Luku 10], interpolaatio.tex 6.7.04 1 Interpolaatio Olkoon annettu taulukko x 0 x 1 x 2... x n y 0 y 1 y 2... y n Taulukko 1: Voidaan ajatella, että kyse on annetun funktion taulukoiduista arvoista

Lisätiedot

Neliömatriisit A ja B ovat similaareja toistensa suhteen, A B, jos on olemassa kääntyvä matriisi P, jolle pätee A = PBP 1.

Neliömatriisit A ja B ovat similaareja toistensa suhteen, A B, jos on olemassa kääntyvä matriisi P, jolle pätee A = PBP 1. Similaarisuus 1 (Kreyszig 8.4, Lay 5.2) Aalto MS-C1340, 2014, Kari Eloranta Määritelmä Neliömatriisit A ja B ovat similaareja toistensa suhteen, A B, jos on olemassa kääntyvä matriisi P, jolle pätee A

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C340 Lineaarialgebra ja differentiaaliyhtälöt Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 205 / 3 R. Kangaslampi Matriisihajotelmista Differentiaaliyhtälöitä ratkaistaessa

Lisätiedot

Konjugaattigradienttimenetelmä

Konjugaattigradienttimenetelmä Konjugaattigradienttimenetelmä Keijo Ruotsalainen Division of Mathematics Konjugaattigradienttimenetelmä Oletukset Matriisi A on symmetrinen: A T = A Positiivisesti definiitti: x T Ax > 0 kaikille x 0

Lisätiedot

ja F =

ja F = MATRIISIALGEBRA Harjoitustehtäviä syksy 2016 Tehtävissä 1 ja 2a käytetään seuraavia matriiseja: ( ) 6 2 3 A =,B = 7 1 2 2 3,C = 4 4 2 5 3,E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1.

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Luento 11: Rajoitusehdot. Ulkopistemenetelmät

Luento 11: Rajoitusehdot. Ulkopistemenetelmät Luento 11: Rajoitusehdot. Ulkopistemenetelmät ja sisäpistemenetelmät Lagrangen välttämättömien ehtojen ratkaiseminen Newtonin menetelmällä Jos tehtävässä on vain yhtälörajoituksia, voidaan minimipistekandidaatteja

Lisätiedot