Insinöörimatematiikka D
|
|
- Annemari Katajakoski
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 12 1 of 24
2 Kertausta Eksakti DY Differentiaaliyhtälö on eksakti, jos f y = g x f (x, y) + g(x, y)y = 0 (ja f ja g ovat riittävän säännöllisiä). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 12 2 of 24
3 Kertausta Ratkaisu käytännössä Eksaktin differentiaaliyhtälön f (x, y) + g(x, y)y = 0 ratkaisun askeleet: Etsitään funktiot c 0 (y) ja c 1 (x), joilla yhtälö f (x, y)dx + c0 (y) = g(x, y)dy + c 1 (x) toteutuu. Valitaan F (x, y) = f (x, y)dx + c 0 (y). Todetaan: F F x = f (x, y) ja y = g(x, y), jolloin f (x, y) + g(x, y)y = 0 d dx F (x, y) = 0. Ratkaisu: F (x, y) = C. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 12 3 of 24
4 Kertausta Huomautus Jos yhtälö f (x, y) + g(x, y)y = 0 ei ole eksakti, on toisinaan mahdollista löytää funktio µ(x, y) (ns. integroiva tekijä), jolla kerrottuna yhtälö on eksakti. f (x, y)µ(x, y) + g(x, y)µ(x, y)y = 0 M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 12 4 of 24
5 Kertausta Sijoitus y/x Jos DY on muotoa y = f (y/x), niin sijoituksella z = y/x se muuttuu separoituvaksi. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 12 5 of 24
6 Kertausta Sijoitus y/x Jos DY on muotoa y = f (y/x), niin sijoituksella z = y/x se muuttuu separoituvaksi. Sijoitus ax + by Jos DY on muotoa y = f (ax + by), niin sijoituksella z = ax + by se muuttuu separoituvaksi. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 12 5 of 24
7 Kertausta Sijoitus y/x Jos DY on muotoa y = f (y/x), niin sijoituksella z = y/x se muuttuu separoituvaksi. Sijoitus ax + by Jos DY on muotoa y = f (ax + by), niin sijoituksella z = ax + by se muuttuu separoituvaksi. Esimerkki 109 Ratkaistaan DY y = x 2 + 2xy + y 2. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 12 5 of 24
8 Sekalaisia menetelmiä Bernoullin DY Bernoullin DY (a 1) y + p(x)y = q(x)y a muuttuu lineaariseksi sijoituksella z = y 1 a. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 12 6 of 24
9 Sekalaisia menetelmiä Bernoullin DY Bernoullin DY (a 1) y + p(x)y = q(x)y a muuttuu lineaariseksi sijoituksella z = y 1 a. Esimerkki Ratkaistaan DY y 5y = 5 2 xy 3. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 12 6 of 24
10 Sekalaisia menetelmiä Eulerin DY Eulerin DY on muotoa missä p ja q ovat vakioita. x 2 y + pxy + qy = f (x), M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 12 7 of 24
11 Sekalaisia menetelmiä Eulerin DY Eulerin DY on muotoa x 2 y + pxy + qy = f (x), missä p ja q ovat vakioita. Tehdään DY:hyn sijoitus t = ln x ja y 1 (t) = y(e t ). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 12 7 of 24
12 Sekalaisia menetelmiä Eulerin DY Eulerin DY on muotoa x 2 y + pxy + qy = f (x), missä p ja q ovat vakioita. Tehdään DY:hyn sijoitus t = ln x ja y 1 (t) = y(e t ). Tällöin DY saadaan muotoon y 1 (t) + (p 1)y 1(t) + qy 1 (t) = f (e t ), joka on lineaarinen vakiokertoiminen DY (ja jonka osaamme aiemman perusteella ratkaista). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 12 7 of 24
13 Sekalaisia menetelmiä Eulerin DY Eulerin DY on muotoa x 2 y + pxy + qy = f (x), missä p ja q ovat vakioita. Tehdään DY:hyn sijoitus t = ln x ja y 1 (t) = y(e t ). Tällöin DY saadaan muotoon y 1 (t) + (p 1)y 1(t) + qy 1 (t) = f (e t ), joka on lineaarinen vakiokertoiminen DY (ja jonka osaamme aiemman perusteella ratkaista). Esimerkki Ratkaistaan DY x 2 y 7xy + 15y = 0. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 12 7 of 24
14 Sekalaisia menetelmiä Käänteisfunktio Toisinaan DY on helpompi ratkaista siirtymällä käänteisfunktioon, jolloin funktion y(x) sijasta ratkaistaan funktio x(y). Tällöin pitää muistaa, että x (y) = 1 y (x). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 12 8 of 24
15 Sekalaisia menetelmiä Käänteisfunktio Toisinaan DY on helpompi ratkaista siirtymällä käänteisfunktioon, jolloin funktion y(x) sijasta ratkaistaan funktio x(y). Tällöin pitää muistaa, että x (y) = 1 y (x). Esimerkin 98 variaatio Ratkaistaan DY y = y 2. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 12 8 of 24
16 Sekalaisia menetelmiä Käänteisfunktio Toisinaan DY on helpompi ratkaista siirtymällä käänteisfunktioon, jolloin funktion y(x) sijasta ratkaistaan funktio x(y). Tällöin pitää muistaa, että x (y) = 1 y (x). Esimerkin 98 variaatio Ratkaistaan DY y = y 2. Huomautus Esimerkin 107 differentiaaliyhtälö (x + y 2 )y y = 0 muuttuisi käänteisfunktiota käyttämällä 1. kertaluvun lineaariseksi differentiaaliyhtälöksi x 1 y x = y 2 M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 12 8 of 24
17 Sekalaisia menetelmiä Yhtälö y = f (y) Toisen kertaluvun DY y = f (y) saadaan kertomalla ensin puolittain tekijällä 2y muotoon 2y y = 2y f (y), josta puolittain integroimalla saadaan (y ) 2 ) = 2 f (y)dy + C ja edelleen y = 2 f (y)dy + C. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 12 9 of 24
18 Sekalaisia menetelmiä Sarjaratkaisut Joissain tapauksissa voidaan käyttää myös sarjamuotoista yritettä y = a 0 + a 1 x + a 2 x 2 + a 3 x Varsinkin yleisen 2. kertaluvun differentiaaliyhtälön y + a(x)y + b(x)y = c(x) ratkaisussa tämä voi olla käytännöllinen (varsinkin fysiikassa). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
19 Kertausta Vakiokertoiminen lineaarinen homogeeninen DY Vakiokertoimisen homogeenisen DY:n a n y (n) + a n 1 y (n 1) a 2 y + a 1 y + a 0 y = 0 ratkaisuja voidaan löytää yritteellä y = e λt, jonka avulla saadaan karakteristinen yhtälö a n λ n + a n 1 λ n a 2 λ 2 + a 1 λ + a 0 = 0. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
20 Kertausta Vakiokertoiminen lineaarinen homogeeninen DY Vakiokertoimisen homogeenisen DY:n a n y (n) + a n 1 y (n 1) a 2 y + a 1 y + a 0 y = 0 ratkaisuja voidaan löytää yritteellä y = e λt, jonka avulla saadaan karakteristinen yhtälö a n λ n + a n 1 λ n a 2 λ 2 + a 1 λ + a 0 = 0. Algebran peruslauseen mukaan tällä karakteristisella yhtälöllä on ratkaisu. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
21 Kertausta Olkoon karakteristisella yhtälöllä erisuuret ratkaisut λ 1,..., λ k. Tällöin vakiokertoimisella homogeenisella DY:llä on lineaarisesti riippumattomat ratkaisut e λ 1t,..., e λ kt. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
22 Kertausta Olkoon karakteristisella yhtälöllä erisuuret ratkaisut λ 1,..., λ k. Tällöin vakiokertoimisella homogeenisella DY:llä on lineaarisesti riippumattomat ratkaisut e λ 1t,..., e λ kt. Jos karakteristisella yhtälöllä on j-kertainen juuri λ i, on vakiokertoimisella homogeenisella DY:llä lineaarisesti riippumattomat ratkaisut e λ i t, te λ i t, t 2 e λ i t,..., t j 1 e λ i t. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
23 Kertausta Olkoon karakteristisella yhtälöllä erisuuret ratkaisut λ 1,..., λ k. Tällöin vakiokertoimisella homogeenisella DY:llä on lineaarisesti riippumattomat ratkaisut e λ 1t,..., e λ kt. Jos karakteristisella yhtälöllä on j-kertainen juuri λ i, on vakiokertoimisella homogeenisella DY:llä lineaarisesti riippumattomat ratkaisut e λ i t, te λ i t, t 2 e λ i t,..., t j 1 e λ i t. Jos reaalikertoimisella karakteristisella polynomilla on kompleksinen juuri λ, on tämän liittoluku λ myös ratkaisu. Merkitään λ = α + iβ (λ = α iβ). Tällöin ratkaisut e λt ja e λt voidaan korvata reaalisilla ratkaisuilla e αt cos(βt) ja e αt sin(βt). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
24 DY-ryhmät Lineaarinen, vakiokertoiminen DY-ryhmä x 1 = a 11 x a 1n x n + f 1 (t) x 2 = a 21 x a 2x x n + f 2 (t). x n = a n1 x a nn x n + f n (t) Abstrakti muoto: x = Ax + f, missä x = (x 1,..., x n ) ja f = (f 1,..., f n ) sekä x i :t ja f i :t t:n funktioita. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
25 DY-ryhmät Lineaarinen, vakiokertoiminen DY-ryhmä x 1 = a 11 x a 1n x n + f 1 (t) x 2 = a 21 x a 2x x n + f 2 (t). x n = a n1 x a nn x n + f n (t) Abstrakti muoto: x = Ax + f, missä x = (x 1,..., x n ) ja f = (f 1,..., f n ) sekä x i :t ja f i :t t:n funktioita. Lause Lineaarisen, vakiokertoimisen DY-ryhmän yleinen ratkaisu on muotoa x = c 1 y c n y n + y 0, missä y 1,..., y n ovat homogeenisen ryhmän ratkaisut ja y 0 jokin ryhmän yksittäisratkaisu. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
26 DY-ryhmät Lause Olkoon x = Ax homogeeninen DY-ryhmä. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
27 DY-ryhmät Lause Olkoon x = Ax homogeeninen DY-ryhmä. Jos λ on matriisin A ominaisarvo ja v tähän liittyvä ominaisvektori, niin y = e λt v on homogeenisen DY-ryhmän ratkaisu. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
28 DY-ryhmät Lause Olkoon x = Ax homogeeninen DY-ryhmä. Jos λ on matriisin A ominaisarvo ja v tähän liittyvä ominaisvektori, niin y = e λt v on homogeenisen DY-ryhmän ratkaisu. Esimerkki 117 DY-pari { y + 4y + 4z = 0 z + 2y + 6z = 0 voidaan kirjoittaa muodossa ( ) ( y 4 4 z = 2 6 ) ( y z ) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
29 DY-ryhmät Esimerkki 117 (esimerkki 97) ( ) ( y 4 4 z = 2 6 ) ( y z ) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
30 DY-ryhmät Esimerkki 117 (esimerkki 97) ( ) ( y 4 4 z = 2 6 ) ( y z Matriisin ominaisarvot ovat 8 ja 2, sekä näitä vastaavat ominaisvektorit (1, 1) ja ( 2, 1). ) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
31 DY-ryhmät Esimerkki 117 (esimerkki 97) ( ) ( y 4 4 z = 2 6 ) ( y z Matriisin ominaisarvot ovat 8 ja 2, sekä näitä vastaavat ominaisvektorit (1, 1) ja ( 2, 1). Yleinen ratkaisu on siis ( y z ) ( = C 1 e 8t 1 1 ) ) + C 2 e 2t ( 2 1 ) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
32 DY-ryhmät Esimerkki 117 (esimerkki 97) ( ) ( y 4 4 z = 2 6 ) ( y z Matriisin ominaisarvot ovat 8 ja 2, sekä näitä vastaavat ominaisvektorit (1, 1) ja ( 2, 1). Yleinen ratkaisu on siis ( y z ) ( = C 1 e 8t 1 1 ) ) + C 2 e 2t ( 2 1 Esimerkki Ratkaistaan edelleen DY-pari { y + 4y + 4z + 4 = 0 z + 2y + 6z 2 = 0 ) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
33 DY-ryhmät Derivaattaoperaattori Merkitään D = d dx, jolloin y = Dy, y = D 2 y, y = D 3 y ja yleisesti y (n) = D n y. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
34 DY-ryhmät Derivaattaoperaattori Merkitään D = d dx, jolloin y = Dy, y = D 2 y, y = D 3 y ja yleisesti y (n) = D n y. Esimerkki (D + 1)(3D 2)y = M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
35 DY-ryhmät Derivaattaoperaattori Merkitään D = d dx, jolloin y = Dy, y = D 2 y, y = D 3 y ja yleisesti y (n) = D n y. Esimerkki (D + 1)(3D 2)y = (3D 2 + D 2)y = 3y + y 2y M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
36 DY-ryhmät Esimerkki 119 DY-pari { x = 3x 2y +t y = 2x 2y +3e t voidaan kirjoittaa muotoon { (D 3)x +2y = t 2x +(D + 2)y = 3e t M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
37 DY-ryhmät Esimerkki 119 DY-pari { x = 3x 2y +t y = 2x 2y +3e t voidaan kirjoittaa muotoon { (D 3)x +2y = t 2x +(D + 2)y = 3e t Kertomalla ylempi luvulla 2 ja alempi operaattorilla D 3 saadaan { 2(D 3)x +4y = 2t (D 3)( 2x) +(D 3)(D + 2)y = (D 3)3e t, M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
38 DY-ryhmät Esimerkki 119 DY-pari { x = 3x 2y +t y = 2x 2y +3e t voidaan kirjoittaa muotoon { (D 3)x +2y = t 2x +(D + 2)y = 3e t Kertomalla ylempi luvulla 2 ja alempi operaattorilla D 3 saadaan { 2(D 3)x +4y = 2t (D 3)( 2x) +(D 3)(D + 2)y = (D 3)3e t, josta (D 2 D 2)y = 2t 6e t. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
39 DY-ryhmät Esimerkki 119 Operaattoriyhtälö (D 2 D 2)y = 2t 6e t tarkoittaa tavallista yhtälöä y y 2y = 2t 6e t, M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
40 DY-ryhmät Esimerkki 119 Operaattoriyhtälö (D 2 D 2)y = 2t 6e t tarkoittaa tavallista yhtälöä y y 2y = 2t 6e t, jonka yksittäisratkaisu voidaan löytää Laplace-muunnoksilla: y = 1 2 t + 3et M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
41 DY-ryhmät Esimerkki 119 Operaattoriyhtälö (D 2 D 2)y = 2t 6e t tarkoittaa tavallista yhtälöä y y 2y = 2t 6e t, jonka yksittäisratkaisu voidaan löytää Laplace-muunnoksilla: y = 1 2 t + 3et Edelleen saadaan yhtälöstä 2x + (D + 2)y = 3e t x = 1 2 ((D + 2)y 3et ), M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
42 DY-ryhmät Esimerkki 119 Operaattoriyhtälö (D 2 D 2)y = 2t 6e t tarkoittaa tavallista yhtälöä y y 2y = 2t 6e t, jonka yksittäisratkaisu voidaan löytää Laplace-muunnoksilla: y = 1 2 t + 3et Edelleen saadaan yhtälöstä 2x + (D + 2)y = 3e t x = 1 2 ((D + 2)y 3et ), josta sijoittamalla saadaan x = 3 2 (et 1). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
43 Autonomiset DY-parit Määritelmä DY-pari { x (t) = f 1 (x, y) y (t) = f 2 (x, y) on autonominen, jos muuttuja t ei esiinny oikean puolen termeissä. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
44 Autonomiset DY-parit Määritelmä DY-pari { x (t) = f 1 (x, y) y (t) = f 2 (x, y) on autonominen, jos muuttuja t ei esiinny oikean puolen termeissä. Ratakäyrät Autonomiselle parille on voimassa dy dy dx = dt dx dt = y (t) x (t) = f 1(x, y) f 2 (x, y) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
45 Autonomiset DY-parit Määritelmä DY-pari { x (t) = f 1 (x, y) y (t) = f 2 (x, y) on autonominen, jos muuttuja t ei esiinny oikean puolen termeissä. Ratakäyrät Autonomiselle parille on voimassa dy dy dx = dt dx dt = y (t) x (t) = f 1(x, y) f 2 (x, y) Tämän differentiaaliyhtälön ratkaisuja sanotaan ratakäyriksi. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
46 Ratakäyrät Esimerkki DY-pari { x (t) = x y y (t) = x + y on autonominen. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
47 Ratakäyrät Esimerkki DY-pari { x (t) = x y y (t) = x + y on autonominen. Ratakäyrien DY on dy dx = x + y x y = 1 + y x 1 y. x M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
48 Ratakäyrät Esimerkki DY-pari { x (t) = x y y (t) = x + y on autonominen. Ratakäyrien DY on dy dx = x + y x y = 1 + y x 1 y. x Voidaan ratkaista sijoituksella z = y/x. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
49 DY-parit Lotka-Volterra -malli Alfred J. Lotka ( ) Vito Volterra ( ) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
50 Lotka-Volterra -malli Mallin DY-pari Saaliseläinten kantaa merkitään x:llä ja petoeläinten y:llä. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
51 Lotka-Volterra -malli Mallin DY-pari Saaliseläinten kantaa merkitään x:llä ja petoeläinten y:llä. { x (t) = αx βxy y (t) = γy + δxy M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
52 Lotka-Volterra -malli Mallin DY-pari Saaliseläinten kantaa merkitään x:llä ja petoeläinten y:llä. { x (t) = αx βxy y (t) = γy + δxy Tasapainopisteet: (0, 0) ja ( γ δ, α β ) M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
53 Lotka-Volterra -malli Mallin DY-pari Saaliseläinten kantaa merkitään x:llä ja petoeläinten y:llä. { x (t) = αx βxy y (t) = γy + δxy Tasapainopisteet: (0, 0) ja ( γ δ, α β ) Ratakäyrien DY dy dx = y x δx γ α βy = y α βy δx γ x M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
54 Lotka-Volterra -malli Mallin DY-pari Saaliseläinten kantaa merkitään x:llä ja petoeläinten y:llä. { x (t) = αx βxy y (t) = γy + δxy Tasapainopisteet: (0, 0) ja ( γ δ, α β ) Ratakäyrien DY dy dx = y δx γ x α βy = y α βy δx γ x α ln y βy = δx γ ln x + C M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
55 Lotka-Volterra -malli Mallin DY-pari Saaliseläinten kantaa merkitään x:llä ja petoeläinten y:llä. { x (t) = αx βxy y (t) = γy + δxy Tasapainopisteet: (0, 0) ja ( γ δ, α β ) Ratakäyrien DY dy dx = y δx γ x α βy = y α βy δx γ x α ln y βy = δx γ ln x + C Ratkaisut syklisiä: On olemassa T, jolle (x(t ), y(t )) = (x(0), y(0)). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
56 Lotka-Volterra -malli Populaation keskiarvo { x (t) = αx βxy y (t) = γy + δxy M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
57 Lotka-Volterra -malli Populaation keskiarvo { x (t) = αx βxy y (t) = γy + δxy Ylemmästä yhtälöstä saadaan x (t) x(t) = α βy, M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
58 Lotka-Volterra -malli Populaation keskiarvo { x (t) = αx βxy y (t) = γy + δxy Ylemmästä yhtälöstä saadaan josta 0 = ln x(t ) T x(0) = 0 x x dt = x (t) x(t) = α βy, T 0 T (α βy) dt = αt β y dt, 0 M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
59 Lotka-Volterra -malli Populaation keskiarvo { x (t) = αx βxy y (t) = γy + δxy Ylemmästä yhtälöstä saadaan josta 0 = ln x(t ) T x(0) = 0 x x dt = x (t) x(t) = α βy, T joten populaation y keskiarvo jakson T aikana on 0 T (α βy) dt = αt β y dt, 0 E(y) = 1 T T 0 y dt = α β. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
60 Lotka-Volterra -malli Populaation keskiarvot E(x) = γ δ E(y) = α β M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
61 Lotka-Volterra -malli Populaation keskiarvot E(x) = γ δ E(y) = α β DY-pari + ulkopuolinen toimija { x (t) = αx βxy ex y (t) = γy + δxy ey M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
62 Lotka-Volterra -malli Populaation keskiarvot E(x) = γ δ E(y) = α β DY-pari + ulkopuolinen toimija { x (t) = αx βxy ex y (t) = γy + δxy ey Uudet keskiarvot { E(x) = γ+e δ E(y) = α e β M. Hirvensalo V. Junnila A. Lepistö Luentokalvot of 24
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotMatematiikka B3 - Avoin yliopisto
2. heinäkuuta 2009 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Lisäharjoitustehtävä Kurssin sisältö (1/2) 1. asteen Differentiaali yhtälöt (1.DY) Separoituva Ratkaisukaava Bernoyulli
LisätiedotInsinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 406 6 laskuharjoituksien esimerkkiratkaisut Ratkaistaan differentiaaliyhtälö y = y () Tässä = d dy eli kyseessä on lineaarinen kertaluvun differentiaaliyhtälö: Yhtälön () homogenisoidulle
LisätiedotDierentiaaliyhtälöistä
Dierentiaaliyhtälöistä Markus Kettunen 17. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................
LisätiedotInsinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 5.4.06 5. laskuharjoituksien esimerkkiratkaisut. Etsitään homogeenisen vakiokertoimisen lineaarisen differentiaaliyhtälön kaikki ratkaisut (reaalisessa muodossa). y (5) +4y (4)
Lisätiedot3 TOISEN KERTALUVUN LINEAARISET DY:T
3 TOISEN KERTALUVUN LINEAARISET DY:T Huomautus epälineaarisista. kertaluvun differentiaaliyhtälöistä Epälineaarisen DY:n ratkaisemiseen ei ole yleismenetelmää. Seuraavat erikoistapaukset voidaan ratkaista
Lisätiedota 1 y 1 (x) + a 2 y 2 (x) = 0 vain jos a 1 = a 2 = 0
6. Lineaariset toisen kertaluvun yhtälöt Toisen kertaluvun differentiaaliyhtälöt ovat tuntuvasti hankalampia ratkaista kuin ensimmäinen. Käsittelemmekin tässä vain tärkeintä erikoistapausta, toisen kertaluvun
LisätiedotMS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos
LisätiedotDierentiaaliyhtälöistä
Dierentiaaliyhtälöistä Markus Kettunen 14. helmikuuta 2011 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun olemassaolosta ja yksikäsitteisyydestä...........
Lisätiedot4 Korkeamman kertaluvun differentiaaliyhtälöt
Differentiaaliyhtälöt c Pekka Alestalo 2015 Tässä monisteessa käydään läpi tavallisiin differentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Luennolla lasketaan esimerkkitehtäviä
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotDierentiaaliyhtälöistä
Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................
LisätiedotHarjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:
Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien
Lisätiedot3 Toisen kertaluvun lineaariset differentiaaliyhtälöt
3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)
Lisätiedot5 Differentiaaliyhtälöryhmät
5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =
Lisätiedot1 Peruskäsitteet. Dierentiaaliyhtälöt
Teknillinen korkeakoulu Matematiikka Dierentiaaliyhtälöt Alestalo Tässä monisteessa käydään läpi tavallisiin dierentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Esimerkkejä luennoilla
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lisätiedot13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y
Lisätiedot2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.
2. kl:n DY:t Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.) Lause Olkoon f(x 2, x 1, t) funktio, ja oletetaan, että f, f/ x 1 ja f/ x
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /
Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / 16. 18.5. Lineaariset differentiaaliyhtälöt, homogeeniset differentiaaliyhtälöt Tehtävä 1: a) Määritä differentiaaliyhtälön y 3y = 14e 4x
LisätiedotEnsimmäisen ja toisen kertaluvun differentiaaliyhtälöistä
1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa
Lisätiedot4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä
1 Laaja matematiikka 5 Kevät 010 4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on differentiaaliyhtälö.
LisätiedotDifferentiaaliyhtälöt
Differentiaaliyhtälöt Differentiaaliyhtälöksi (lyh. DY) sanotaan yhtälöä, jossa on tuntemattomana jokin funktio y(x) ja jossa esiintyy sen derivaattoja y, y, y, y (4),... Esimerkiksi y + y = x, y y + y
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista
Lisätiedoty (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x
BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen
LisätiedotLineaarinen toisen kertaluvun yhtälö
Lineaarinen toisen kertaluvun yhtälö Keijo Ruotsalainen Mathematics Division Lineaarinen toisen kertaluvun differentiaaliyhtälö Toisen kertaluvun täydellinen lineaarinen yhtälö muotoa p 2 (x)y + p 1 (x)y
Lisätiedot6. Toisen ja korkeamman kertaluvun lineaariset
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt. osa 2 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 1 R. Kangaslampi Matriisihajotelmista
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotMatemaattinen Analyysi
Vaasan yliopisto, syksy 2016 / ORMS1010 Matemaattinen Analyysi 8. harjoitus, viikko 49 R1 to 12 14 F453 (8.12.) R2 to 14 16 F345 (8.12.) R3 ke 8 10 F345 (7.11.) 1. Määritä funktion f (x) = 1 Taylorin sarja
Lisätiedot2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre.
2. Viikko Keskeiset asiat ja tavoitteet: 1. Peruskäsitteet: kertaluku, lineaarisuus, homogeenisuus. 2. Separoituvan diff. yhtälön ratkaisu, 3. Lineaarisen 1. kl yhtälön ratkaisu, CDH: luvut 19.1.-19.4.
LisätiedotEsimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva).
6 DIFFERENTIAALIYHTÄLÖISTÄ Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva). Newtonin II:n lain (ma missä Yhtälö dh dt m dh dt F) mukaan mg, on kiihtyvyys ja
Lisätiedoty = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
LisätiedotOminaisarvot ja ominaisvektorit 140 / 170
Ominaisarvot ja ominaisvektorit 140 / 170 Seuraavissa luvuissa matriisit ja vektori ajatellaan kompleksisiksi, ts. kertojakuntana oletetaan olevan aina kompleksilukujoukko C Huomaa, että reaalilukujoukko
Lisätiedot4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt
4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt 4.1 Homogeeniset lineaariset differentiaaliyhtälöt Homogeeninen yhtälö on muotoa F(x, y,, y (n) ) = 0. (1) Yhtälö on lineaarinen, jos se voidaan
LisätiedotMatemaattinen Analyysi
Vaasan yliopisto, kevät 01 / ORMS1010 Matemaattinen Analyysi. harjoitus, viikko 1 R1 ke 1 16 D11 (..) R to 10 1 D11 (..) 1. Määritä funktion y(x) MacLaurinin sarjan kertoimet, kun y(0) = ja y (x) = (x
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotEsimerkki 1 Ratkaise differentiaaliyhtälö
Esimerkki 1 Ratkaise differentiaaliyhtälö x 2 y xy =1/x. 1 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 1/20 20 Esimerkki 2 Ratkaise differentiaaliyhtälö x(ln y)y y ln x =0. 2 / K. Tuominen kimmo.i.tuominen@helsinki.fi
Lisätiedoty + 4y = 0 (1) λ = 0
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 6 mallit Kevät 2019 Tehtävä 1. Ratkaise yhtälöt a) y + 4y = x 2, b) y + 4y = 3e x. Ratkaisu: a) Differentiaaliyhtälön yleinen
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotOsoita, että eksponenttifunktio ja logaritmifunktio ovat differentiaaliyhtälön
3. Lineaariset differentiaaliyhtälöt 3.1. Lineaariyhtälöiden teoriaa 99. Onko differentiaaliyhtälö y + x(y y )=y + 1 a) lineaarinen, b) homogeeninen? 100. Olkoot funktiot f (x) ja g(x) jatkuvasti derivoituvia
LisätiedotBM20A0900, Matematiikka KoTiB3
BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt
LisätiedotMatriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Antti Rasila 2016 Ominaisarvot ja ominaisvektorit 1/5 Määritelmä Skalaari λ C on matriisin A C n n ominaisarvo ja vektori v C n sitä
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotMat Matematiikan peruskurssi K2
Mat-.3 Matematiikan peruskurssi K Heikkinen/Tikanmäki Kolmas välikoe 6.5. Kokeessa saa käyttää ylioppilaskirjoituksiin hyväksyttyä laskinta. Sivun kääntöpuolelta löytyy integrointikaavoja.. Olkoon F(x,
Lisätiedot10. Toisen kertaluvun lineaariset differentiaaliyhtälöt
37. Toisen kertaluvun lineaariset differentiaalihtälöt Tarkastelemme muotoa () ( x) + a( x) ( x) + a( x) ( x) = b( x) olevia htälöitä, missä kerroinfunktiot ja oikea puoli ovat välillä I jatkuvia. Edellisen
LisätiedotDI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 13: ti klo 13:00-15:30 ja to 1.4.
DI matematiikan opettajaksi: Täydennyskurssi, kevät Luentorunkoa ja harjoituksia viikolle 3: ti 33 klo 3:-5:3 ja to 4 klo 9:5-: Käydään läpi differentiaaliyhtälöitä Määritelmä Olkoon A R n n (MatLab:ssa
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1
LisätiedotMatemaattinen Analyysi
Vaasan yliopisto, 009-010 / ORMS1010 Matemaattinen Analyysi 8. harjoitus 1. Ratkaise y + y + y = x. Kommentti: Yleinen työlista ratkaistaessa lineaarista, vakiokertoimista toisen kertaluvun differentiaaliyhtälöä
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D Demonstraatio 7, 6.7... Ratkaise dierentiaalihtälöpari = = Vastaus: DY-pari voidaan esittää muodossa ( = Matriisin ominaisarvot ovat i ja i ja näihin kuuluvat ominaisvektorit (
LisätiedotDifferentiaaliyhtälöt I Ratkaisuehdotuksia, 2. harjoitus, kevät Etsi seuraavien yhtälöiden yleiset ratkaisut (Tässä = d
Differentiaaliyhtälöt I Ratkaisuehdotuksia,. harjoitus, kevät 016 1. Etsi seuraavien yhtälöiden yleiset ratkaisut (Tässä = d dx ): (a) y + xy = xe x, (b) (1 + x ) y xy = (1 + x ), (c) y sin x y = 1 cos
Lisätiedotdy dx = y x + 1 dy dx = u+xdu dx, u = y/x, u+x du dx = u+ 1 sinu eli du dx = 1 1 Erotetaan muuttujat ja integroidaan puolittain: y = xln(ln(cx 2 )).
Harjoitus Tehtävä 5. d) Jakamalla annettu yhtälö puolittain xsin(y/x):llä saadaan Sijoitetaan taas jolloin saadaan dy dx = y x + 1 sin ( y). u = y/x, x dy dx = u+xdu dx, u+x du dx = u+ 1 sinu du dx = 1
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lisätiedot5 OMINAISARVOT JA OMINAISVEKTORIT
5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön
LisätiedotDifferentiaaliyhtälösysteemit sekä niiden tasapainopisteiden stabiilisuus
TAMPEREEN YLIOPISTO Luonnontieteiden Pro gradu -tutkielma Ilkka Niemi-Nikkola Differentiaaliyhtälösysteemit sekä niiden tasapainopisteiden stabiilisuus Luonnontieteiden tiedekunta Matematiikka Tammikuu
LisätiedotDifferentiaaliyhtälöt
Informaatiotieteiden yksikkö Differentiaaliyhtälöt Pentti Haukkanen Sisältö Differentiaaliyhtälön käsite 4 2 Joitakin. kertaluvun differentiaaliyhtälöitä 7 2. Separoituva yhtälö........................
LisätiedotNormaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa
Normaaliryhmä Toisen kertaluvun normaaliryhmä on yleistä muotoa x = u(t,x,y), y t I, = v(t,x,y), Funktiot u = u(t,x,y), t I ja v = v(t,x,y), t I ovat tunnettuja Toisen kertaluvun normaaliryhmän ratkaisu
Lisätiedot5 DIFFERENTIAALIYHTÄLÖRYHMÄT
5 DIFFERENTIAALIYHTÄLÖRYHMÄT 5. Ensimmäisen kl:n DY-ryhmät Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Useimmat voidaan mallintaa ensimmäisen kertaluvun DY-ryhmien avulla. Ensimmäisen kl:n
LisätiedotLineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut
MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A
LisätiedotOsa 11. Differen-aaliyhtälöt
Osa 11. Differen-aaliyhtälöt Differen-aaliyhtälö = yhtälö jossa esiintyy jonkin funk-on derivaa
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto DY-teoriaa DY-teoriaa Käsitellään seuraavaksi
LisätiedotJouni Sampo. 15. huhtikuuta 2013
B3 Jouni Sampo 15. huhtikuuta 2013 Sisältö 1 Johdanto 2 1.1 Peruskäsitteitä.................................... 2 1.2 Differentiaaliyhtälöiden ratkaisuista......................... 2 2 Ensimmäisen kertaluvun
LisätiedotSARJAT JA DIFFERENTIAALIYHTÄLÖT
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 43 0.5 0.4 0.3 0.2 0.1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 Kuva 12. Esimerkin 4.26(c kuvauksen
Lisätiedot2 dy dx 1. x = y2 e x2 2 1 y 2 dy = e x2 xdx. 2 y 1 1. = ex2 2 +C 2 1. y =
BM20A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 2, Kevät 207 Päivityksiä: Tehtävän 4b tehtävänanto korjattu ja vastauksia lisätty.. Ratkaise y, kun 2y x = y 2 e x2. Jos y () = 0 niin mikä on ratkaisu
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotBM20A5830 Differentiaaliyhtälöiden peruskurssi
BM20A5830 Differentiaaliyhtälöiden peruskurssi Jouni Sampo 30. maaliskuuta 2015 Sisältö 1 Johdanto 2 1.1 Peruskäsitteitä.................................... 2 1.2 Differentiaaliyhtälöiden ratkaisuista.........................
LisätiedotDifferentiaaliyhtälöt I, kevät 2017 Harjoitus 3
Differentiaaliyhtälöt I, kevät 07 Harjoitus 3 Heikki Korpela. helmikuuta 07 Tehtävä. Ratkaise alkuarvo-ongelmat a) y + 4y e x = 0, y0) = 4 3 b) Vastaus: xy + y = x 3, y) =.. a) Valitaan integroivaksi tekijäksi
Lisätiedot800345A Differentiaaliyhtälöt I. Seppo Heikkilä, Martti Kumpulainen, Janne Oinas
800345A Differentiaaliyhtälöt I Seppo Heikkilä, Martti Kumpulainen, Janne Oinas 2. maaliskuuta 2009 Sisältö 1 Ensimmäisen kertaluvun differentiaaliyhtälöt 2 1.1 Merkintöjä ja nimityksiä...........................
LisätiedotEsimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt
Esimerkki 4.4. Määrää matriisin 2 2 1 A = 1 3 1 2 4 3 ominaisarvot ja -vektorit. Ratk. Nyt det(a λi ) = 1 + 2 λ 2 1 + 1 λ 1 λ 1 3 λ 1 = 1 3 λ 1 2 4 3 λ 2 4 3 λ 1 λ = 1 4 λ 1 = (1 λ)( 1)1+1 4 λ 1 2 6 3
Lisätiedotja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) A =
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 211 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 ja B = 2 1 6 3 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A. 2. Laske seuraavat determinantit
LisätiedotMatematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 28 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 a) A + B b) AB BA d) A 2 e) A T f) A T B g) 3A ja B = 2 1 6 3 1 2. Laske seuraavat determinantit
Lisätiedotja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e)
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 214 1. Tutki seuraavia jonoja a) (a n )=(3n 1) ( ) 2 b) (a n )= 3 n ( ) 1 c) (a n )= (n + 1)(n +2) 2. Tutki seuraavia sarjoja a) (3k 1)
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
Lisätiedot1 Di erentiaaliyhtälöt
Taloustieteen mat.menetelmät syksy 2017 materiaali II-5 1 Di erentiaaliyhtälöt 1.1 Skalaariyhtälöt Määritelmä: ensimmäisen kertaluvun di erentiaaliyhtälö on muotoa _y = F (y; t) oleva yhtälö, missä _y
Lisätiedot17. Differentiaaliyhtälösysteemien laadullista teoriaa.
99 17. Differentiaaliyhtälösysteemien laadullista teoriaa. Differentiaaliyhtälön x'(t) = f(x(t),t), x(t) n määrittelemän systeemin sanotaan olevan autonominen, jos oikea puoli ei eksplisiittisesti riipu
LisätiedotOminaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
Lisätiedot(0 desimaalia, 2 merkitsevää numeroa).
NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx
Lisätiedot5.2.1 Separoituva DY. 5.2 I kertaluvun differentiaaliyhtälöistä
5.2. I kertaluvun differentiaaliyhtälöistä 125 Differentiaaliyhtälön kertaluku on yhtälössä esiintyvän korkeimman derivaatan kertaluku. (Esim. y +x 3 y = 0 on toisen kertaluvun differentiaaliyhtälö ja
Lisätiedot2 Johdanto Tassa esityksessa funktiot ovat - ellei muuta sanota - yhden tai useamman reaalimuuttujan reaaliarvoisia funktioita. Funktion kasitteen tas
Dierentiaaliyhtalot/217 I. Ensimmaisen kertaluvun DY I.1. Lineaarinen DY I.2. Separoituva DY I.3. Eksakti DY I.4. Muita DY:ita I.5. Ratkaisun olemassaolo II. Toisen kertaluvun lineaarinen DY II.1. Perusjarjestelma
Lisätiedotw + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.
Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)
LisätiedotKanta ja Kannan-vaihto
ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotMatemaattiset apuneuvot II, harjoitus 2
Matemaattiset apuneuvot II, harjoitus 2 K. Tuominen 9. marraskuuta 2017 Palauta ratkaisusi Moodlessa.pdf tiedostona maanantaina 13.11. kello 10:15 mennessä. Merkitse vastauspaperiin laskuharjoitusryhmäsi
LisätiedotOminaisarvo-hajoitelma ja diagonalisointi
Ominaisarvo-hajoitelma ja a 1 Lause 1: Jos reaalisella n n matriisilla A on n eri suurta reaalista ominaisarvoa λ 1,λ 2,...,λ n, λ i λ j, kun i j, niin vastaavat ominaisvektorit x 1, x 2,..., x n muodostavat
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot
LisätiedotHarjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,
Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä
LisätiedotOminaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.
Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä
Lisätiedot2v 1 = v 2, 2v 1 + 3v 2 = 4v 2.. Vastaavasti ominaisarvoa λ 2 = 4 vastaavat ominaisvektorit toteuttavat. v 2 =
TKK, Matematiikan laitos Pikkarainen/Tikanmäki Mat-1.1320 Matematiikan peruskurssi K2 Harjoitus 12, A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä 21. 25.4.2008, viikko
LisätiedotVakiokertoiminen lineaarinen normaaliryhmä
1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 29 Vakiokertoiminen lineaarinen normaaliryhmä Todetaan ensin ilman todistuksia (tulos on syvällinen) ratkaisujen
LisätiedotDifferentiaaliyhtälöt II, kevät 2017 Harjoitus 5
Differentiaaliyhtälöt II, kevät 27 Harjoitus 5 Heikki Korpela 26. huhtikuuta 27 Tehtävä 2. Määrää seuraavan autonomisen systeemin kriittiset pisteet, ratakäyrät ja luonnostele systeemin aikakehitys: (t)
Lisätiedot6. Differentiaaliyhtälösysteemien laadullista teoriaa.
1 MAT-13450 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 2010 6. Differentiaaliyhtälösysteemien laadullista teoriaa. Olemme keskittyneet tässä kurssissa ensimmäisen kertaluvun
LisätiedotNumeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen
LisätiedotJohdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö
Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen
Lisätiedot