MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
|
|
- Ada Nurminen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt. osa 2 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto / 1 R. Kangaslampi Matriisihajotelmista
2 Tarkastellaan lähemmin homogeenista vakiokertoimista yhtälöä x (t) = A x(t), missä A R n n. Olkoon λ A :n ominaisarvo ja v 0 vastaava ominaisvektori. Etsitään DY:lle ratkaisua muodossa x(t) = η(t)v, missä η on skalaarifunktio. Sijoittamalla yhtälöön saadaan η (t)v = A ( η(t)v ) = η(t)av = λη(t)v. Toisin sanoen yhtälö toteutuu, jos η on differentiaaliyhtälön η (t) = λη(t) ratkaisu. Tämä tunnetaan: η(t) = ce λt, missä c on mielivaltainen vakio. 2 / 1 R. Kangaslampi Matriisihajotelmista
3 Saatiin: Av = λv = c e λt v on DY:n ratkaisu. Olkoon A :lla ominaisarvot λ 1, λ 2,..., λ k ja ominaisvektorit v 1, v 2,..., v k. Tällöin funktiot c 1 e λ1t v 1,..., c k e λkt v k ovat yhtälön x (t) = A x(t) ratkaisuja, joten edellisen lauseen mukaan myös x(t) = c 1 e λ1t v 1 + c 2 e λ2t v c k e λkt v k on yhtälön ratkaisu. 3 / 1 R. Kangaslampi Matriisihajotelmista
4 Jos nyt k = n ja jos vektorit v 1, v 2,..., v n ovat lineaarisesti riippumattomat, niin alkuehdosta x(0) = x 0 saadaan yhtälö: c 1 v c n v n = x 0 eli c = V 1 x 0, missä c = (c 1,..., c n ), V = [ v 1 v 2... v n]. Näin saadaan ratkaisulle esitys [ ] e x(t) = V λ 1 t... V 1 x 0. e λnt Ominaisvektoreiden avulla esitetyn ratkaisun etuna on se, että siitä nähdään ratkaisun kulkusuunta, kun t. 4 / 1 R. Kangaslampi Matriisihajotelmista
5 Esimerkki 1 Differentiaaliyhtälölle x (t) = [ ] x(t), x(0) = [ ] 1 [ ] 1 saatiin aiemmin ratkaisu x(t) = e ta x(0) = 2e t e 2t. Koska matriisin A e 2t ominaisarvot ovat 1 ja 2 ja niitä vastaavat ominaisvektorit v 1 = [ 1 0 ] ja v 2 = [ 1 1 ], ratkaisu voidaan kirjoittaa myös muodossa x(t) = c 1 e t v 1 + c 2 e 2t v 2. Kertoimet c i määräytyvät alkuehdosta, mutta jo ilman alkuehtoa nähdään, että x(t), kun t, koska molemmat ominaisarvot ovat positiivisia. Ratkaisukäyrät karkaavat nopeammin v 2 :n suuntaan, koska sitä vastaa suurempi ominaisarvo. 5 / 1 R. Kangaslampi Matriisihajotelmista
6 Esimerkki 2 (Lähde) Tarkastellaan edellistä tehtävää x (t) = [ ] x(t), x(0) = [ 1 alkuarvolla x(0) = (a 1, a 2 ) T. Edellä saatiin [ ] [ ] [ ] [ e t A = V e Λt V e t e t e = e 2t = 2t e t ] e 2t 1 ]. Alkuarvotehtävän x = Ax, x(0) = (a 1, a 2 ) T ratkaisu on siten [ e t e x(t) = 2t e t ] [ ] [ a1 e 0 e 2t = t (a 1 a 2 ) + e 2t ] a 2 a 2 e 2t. a 2 = (a 1 a 2 )e t v 1 + a 2 e 2t v 2 A :n ominaisarvot ovat positiiviset, joten kaikki ratkaisut kulkevat origosta poispäin. Tätä kutsutaan lähteeksi. 6 / 1 R. Kangaslampi Matriisihajotelmista
7 Edellisen esimerkin ratkaisukäyriä eri alkuarvoilla. Huomaa pakeneminen ominaisvektorisuunnissa. x x / 1 R. Kangaslampi Matriisihajotelmista
8 Esimerkki 3 (Nielu) Matriisilla A = [ ] on ominaisarvot λ1 = 3 ja λ 2 = 1 ja ominaisvektorit v 1 = ( 1, 1 ), v 2 = ( 1, 1 ). Kuten edellisessä esimerkissä saamme e t A = [ ] [ ] [ ] 1 1 e 3t 0 1/2 1/2 1 1 = 1 0 e t 1/2 1/2 2 [ e t + e 3t e t + e 3t ] e t + e 3t ja alkuarvotehtävälle x = Ax, x(0) = (a 1, a 2 ) T ratkaisun [ x(t) = 1 e t (a 1 a 2 ) + e 3t ] (a 1 + a 2 ) 2 e t (a 1 a 2 ) + e 3t. (a 1 + a 2 ) Tällä systeemillä ominaisarvot ovat negatiiviset, joten kaikki ratkaisut kulkevat origoon päin. Tätä kutsutaan nieluksi. e t + e 3t 8 / 1 R. Kangaslampi Matriisihajotelmista
9 Edellisen esimerkin ratkaisukäyriä. Ominaisvektorisuunnissa liikutaan suoraan kohti origoa. x x / 1 R. Kangaslampi Matriisihajotelmista
10 Esimerkki 4 (Satula) Matriisilla A = [ ] on erimerkkiset ominaisarvot λ1 = 2 ja λ 2 = 3 ja ominaisvektorit v 1 = ( 1, 4 ), v 2 = ( 1, 1 ). Kuten edellä, saamme [ e 2t + 4e 3t e 2t e 3t ] e t A = 1 5 4e 2t 4e 3t 4e 2t + e 3t ja alkuehto x(0) = (a 1, a 2 ) T, antaa ratkaisun [ x(t) = 1 e 2t (a 1 + a 2 ) + e 3t ] (4a 1 a 2 ) 5 e 2t (4a 1 + 4a 2 ) + e 3t. ( 4a 1 + a 2 ) Tällä systeemillä ratkaisut kulkevat origoon päin v 1 :n suuntaista suoraa pitkin ja etääntyvät asymptoottisesti v 2 :n suuntaan. 10 / 1 R. Kangaslampi Matriisihajotelmista
11 Edellisen esimerkin ratkaisukäyriä. Toisen om.vektorin suunnassa paetaan, toisen lähestytään origoa. x x / 1 R. Kangaslampi Matriisihajotelmista
12 Kompleksiset ominaisarvoparit Reaalisella matriisilla A saattaa olla kompleksisia ominaisarvoja. Ne esiintyvät liittolukupareina α ± iβ. Jos w = u + i v on ominaisarvoa λ = α + iβ vastaava ominaisvektori, niin Aw = λw, joten w = u i v vastaa ominaisarvoa λ = α iβ. Tehtävän x = Ax eräs ratkaisu on x(t) = d 1 e λt w + d 2 e λt w. 12 / 1 R. Kangaslampi Matriisihajotelmista
13 Yleensä halutaan kuitenkin reaalinen ratkaisu. Yhtälön A(u + iv) = (α + iβ)(u + iv) reaali ja imaginaariosista saadaan Au = αu βv Av = βu + αv [ ] α β eli A [u v] = [u v]. β α Tällöin ratkaisu voidaan kirjoittaa reaalisessa muodossa x(t) = d 1 e λt w + d 2 e λt w =... [ ] = e αt cos(βt) sin(βt) [u v] c sin(βt) cos(βt) jollain (alkuehdosta määräytyvällä) vakiovektorilla c. 13 / 1 R. Kangaslampi Matriisihajotelmista
14 Ratkaisusta [ ] x(t) = e αt cos(βt) sin(βt) [u v] c sin(βt) cos(βt) nähdään, että jos kompleksiset ominaisarvot α ± βi ovatkin aidosti imaginaariset, eli α = 0, niin ratkaisu jää kiertämään kehää origon ympärille. Jos taas reaaliosat ovat positiiviset, ratkaisut etääntyvät origosta. Vastaavasti ominaisarvojen reaaliosien ollessa negatiiviset, ratkaisukäyrät lähestyvät origoa. 14 / 1 R. Kangaslampi Matriisihajotelmista
15 Esimerkki 5 (Epästabiili fokus) [ ] 9 8 Matriisilla A = on kompleksinen ominaisarvopari 16 7 λ 1,2 = 1 ± 8i. Kompleksisten ominaisvektorien reaali- ja imaginaariosista muodostetut vektorit ovat u = [ 1 0 ] ja v = [ ] 1 2 ja yhtälön x (t) = Ax(t) ratkaisu on siis yleisesti [ ] [ ] x(t) = e t 1 1 cos(8t) sin(8t) c. 1 2 sin(8t) cos(8t) Alkuarvon x(0) = (a 1, a 2 ) T toteuttavaksi ratkaisuksi saadaan [ ] x(t) = e t a1 cos(8t) + (a 1 a 2 ) sin(8t). a 2 cos(8t) + (2a 1 a 2 ) sin(8t) Ratkaisut kulkevat spiraalimaisesti origosta poispäin. 15 / 1 R. Kangaslampi Matriisihajotelmista
16 Edellisen esimerkin ratkaisukäyrät kahdesta eri alkuarvosta lähtien. Systeemiä kutsutaan epästabiiliksi fokukseksi. A :n ominaisarvojen reaaliosat ovat positiiviset. x x / 1 R. Kangaslampi Matriisihajotelmista
17 Esimerkki 6 (Stabiili fokus) [ ] 3 2 Matriisilla A = on kompleksinen ominaisarvopari 1 1 λ 1,2 = 2 ± i ja ja vektorit u = [ 1 1 ] ja v = [ 1 0 ]. Alkuarvotehtävän x (t) = Ax(t), x(0) = (a 1, a 2 ) T, ratkaisu voidaan kirjoittaa muodossa [ ] x(t) = e 2t a1 cos t + ( a 1 + 2a 2 ) sin t. a 2 cos t + ( a 1 + a 2 ) sin t Tällä systeemillä ratkaisut kulkevat spiraalimaisesti origoon päin. Systeemiä kutsutaan stabiiliksi fokukseksi. Nyt A :n ominaisarvojen reaaliosat ovat negatiiviset. 17 / 1 R. Kangaslampi Matriisihajotelmista
18 Edellisen esimerkin ratkaisukäyriä 11 eri alkuarvosta lähtien. Ratkaisut kulkevat spiraalimaisesti origoon päin. 1 x x / 1 R. Kangaslampi Matriisihajotelmista
19 Huomaa, että tällä systeemillä Imλ / Reλ = 1/2 on paljon pienempi kuin edellisessä esimerkissä epästabiilille fokukselle, missä vastaava suhde oli 8. Tästä johtuen ratkaisut kiertävät vähemmän. Kerrataan sitten erilaiset tyyppitapaukset mahdollisimman yksinkertaisille matriiseille: 19 / 1 R. Kangaslampi Matriisihajotelmista
20 Tyyppitapauksia yhtälöstä x = Ax avaruudessa R 2 : Nimi A x(t) Λ(A) Kuva Lähde [ ] e t x(0) {1, 1} Nielu [ ] e t x(0) { 1, 1} 20 / 1 R. Kangaslampi Matriisihajotelmista
21 Nimi A x(t) Λ(A) Kuva Satula [ ] [ e t 0 0 e t ] x(0) { 1, 1} Degener.lähde [ ] [ e t te t 0 e t ] x(0) {1, 1} 21 / 1 R. Kangaslampi Matriisihajotelmista
22 Nimi A x(t) Λ(A) Keskus [ 0 1 ] [ ] cos(t) sin(t) 1 0 x(0) { i, i} sin(t) cos(t) Epästab. fokus Stabiili fokus [ 1 1 ] 1 1 [ 1 1 ] 1 1 sin(t) sin(t) cos(t) e t [ cos(t) sin(t) sin(t) cos(t) e t [ cos(t) ] x(0) {1 ± i} ] x(0) { 1 ± i} 22 / 1 R. Kangaslampi Matriisihajotelmista
23 Keskus Epästab. fokus Stabiili fokus 23 / 1 R. Kangaslampi Matriisihajotelmista
24 Ratkaisujen luonne määräytyy siis A :n ominaisarvoista. Erityisesti: Reaaliset ominaisarvot: Ovatko positiiviset, negatiiviset vai erimerkkiset? Onko ei-triviaaleja Jordan lohkoja? Kompleksiset ominaisarvot: Onko reaaliosa positiivinen, negatiivinen vai nolla? 24 / 1 R. Kangaslampi Matriisihajotelmista
25 Tarkemmin: Tarkastellaan yleistä 2 2 matriisia A. Tämän ominaisarvot saadaan yhtälöstä λ 2 (a 11 +a 22 )λ+a 11 a 22 a 12 a 21 = 0 eli λ 2 tr(a)λ+det(a) = 0, missä tr(a) = a 11 + a 22 on A :n jälki (trace) = A :n lävistäjäalkioiden summa = A :n ominaisarvojen summa ja det(a) = a 11 a 22 a 12 a 21 on A :n determinantti = A :n ominaisarvojen tulo. 25 / 1 R. Kangaslampi Matriisihajotelmista
26 Ominaisarvot ovat siis λ 1,2 = 1 2 tr(a) ± 1 4 tr(a)2 det(a). Ominaisarvot ovat kompleksiset, kun diskriminantti D = 1 4 tr(a)2 det(a) on negatiivinen, muuten reaaliset. Ominaisarvo on kaksinkertainen, kun D = 0. Matriisin determinantin ja jäljen avulla voidaan siis luokitella yhtälön x (t) = Ax(t) ratkaisuiden käytöstä. Seuraava kuva pyrkii selittämään näiden yhteyksiä. Stabiili tarkoittaa tässä, että ratkaisut eivät pakene origosta. 26 / 1 R. Kangaslampi Matriisihajotelmista
27 Ratkaisuiden luonne determinantin ja jäljen avulla: det(a) D=0 stabiili fokus epastabiili fokus D<0 nielu stabiili epastabiili lahde tr(a) D>0 satula 27 / 1 R. Kangaslampi Matriisihajotelmista
28 Otetaan vielä yksi esimerkki, tällä kertaa avaruudessa R 3. Esimerkki 7 Tutki differentiaaliyhtälön x (t) = Ax(t) ratkaisuiden käyttäytymistä, kun A = / 1 R. Kangaslampi Matriisihajotelmista
29 Ratkaisu: Matriisilla A on kompleksinen ominaisarvopari λ 1,2 = 6 ± 180i, joita vastaavia kompleksisia ominaisvektoreita kuvaavat reaaliset vektorit u = ( 1, 1, 1) ja v = (1, 1, 0), sekä yksi reaalinen ominaisarvo λ 3 = 3 ja vastaava ominaisvektori w = (0, 1, 4). Voidaan siis arvata, että ratkaisut lähestyvät origoa w:n suunnassa ja pyörivät u:n ja v:n määräämän ominaistason suunnassa. Yhtälö voidaa ratkaista esim. tekemällä A:lle Jordan-hajotelma ja laskemalla e At sen avulla. Alkuarvolla x(0) = (a 1, a 2 ) tehtävän ratkaisuksi x(t) = e At x(0) saadaan x(t) = [ a 1 e 6t ( cos(180t) sin(180t))+a 2 e 6t (cos(180t) sin(180t)) a 1 e 6t (cos(180t) sin(180t))+a 2 e 6t (cos(180t)+sin(180t)) a 3 e 3t e 6t (a 1 cos(180t)+a 2 sin(180t))+4a 3 e 3t ]. 29 / 1 R. Kangaslampi Matriisihajotelmista
30 Ratkaisut käyttäytyvätkin spiraalin tavoin: 30 / 1 R. Kangaslampi Matriisihajotelmista
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto DY-teoriaa DY-teoriaa Käsitellään seuraavaksi
Lisätiedot17. Differentiaaliyhtälösysteemien laadullista teoriaa.
99 17. Differentiaaliyhtälösysteemien laadullista teoriaa. Differentiaaliyhtälön x'(t) = f(x(t),t), x(t) n määrittelemän systeemin sanotaan olevan autonominen, jos oikea puoli ei eksplisiittisesti riipu
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 3 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 28 R. Kangaslampi Matriisihajotelmista
LisätiedotVakiokertoiminen lineaarinen normaaliryhmä
1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 29 Vakiokertoiminen lineaarinen normaaliryhmä Todetaan ensin ilman todistuksia (tulos on syvällinen) ratkaisujen
Lisätiedot6. Differentiaaliyhtälösysteemien laadullista teoriaa.
1 MAT-13450 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 2010 6. Differentiaaliyhtälösysteemien laadullista teoriaa. Olemme keskittyneet tässä kurssissa ensimmäisen kertaluvun
LisätiedotMS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
LisätiedotDifferentiaaliyhtälöt II, kevät 2017 Harjoitus 5
Differentiaaliyhtälöt II, kevät 27 Harjoitus 5 Heikki Korpela 26. huhtikuuta 27 Tehtävä 2. Määrää seuraavan autonomisen systeemin kriittiset pisteet, ratakäyrät ja luonnostele systeemin aikakehitys: (t)
LisätiedotMatriisin eksponenttifunktio ja differentiaaliyhtälöryhmät
Matriisin eksponenttifunktio ja differentiaaliyhtälöryhmät Petra Maaskola Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 203 Tiivistelmä: Petra Maaskola, Matriisin
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:
LisätiedotOminaisarvo-hajoitelma ja diagonalisointi
Ominaisarvo-hajoitelma ja a 1 Lause 1: Jos reaalisella n n matriisilla A on n eri suurta reaalista ominaisarvoa λ 1,λ 2,...,λ n, λ i λ j, kun i j, niin vastaavat ominaisvektorit x 1, x 2,..., x n muodostavat
Lisätiedot3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä
Lisätiedot5 OMINAISARVOT JA OMINAISVEKTORIT
5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön
LisätiedotMatriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Antti Rasila 2016 Ominaisarvot ja ominaisvektorit 1/5 Määritelmä Skalaari λ C on matriisin A C n n ominaisarvo ja vektori v C n sitä
Lisätiedot5 Differentiaaliyhtälöryhmät
5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =
Lisätiedot5 DIFFERENTIAALIYHTÄLÖRYHMÄT
5 DIFFERENTIAALIYHTÄLÖRYHMÄT 5. Ensimmäisen kl:n DY-ryhmät Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Useimmat voidaan mallintaa ensimmäisen kertaluvun DY-ryhmien avulla. Ensimmäisen kl:n
LisätiedotDifferentiaaliyhtälösysteemit sekä niiden tasapainopisteiden stabiilisuus
TAMPEREEN YLIOPISTO Luonnontieteiden Pro gradu -tutkielma Ilkka Niemi-Nikkola Differentiaaliyhtälösysteemit sekä niiden tasapainopisteiden stabiilisuus Luonnontieteiden tiedekunta Matematiikka Tammikuu
LisätiedotHarjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,
Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus
LisätiedotMS-A0003/A Matriisilaskenta Laskuharjoitus 6
MS-A3/A - Matriisilaskenta Laskuharjoitus 6 Ratkaisuehdotelmia. Diagonalisointi on hajotelma A SΛS, jossa diagonaalimatriisi Λ sisältää matriisin A ominaisarvot ja matriisin S sarakkeet ovat näitä ominaisarvoja
Lisätiedoty (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x
BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen
Lisätiedot1 Di erentiaaliyhtälöt
Taloustieteen mat.menetelmät syksy 2017 materiaali II-5 1 Di erentiaaliyhtälöt 1.1 Skalaariyhtälöt Määritelmä: ensimmäisen kertaluvun di erentiaaliyhtälö on muotoa _y = F (y; t) oleva yhtälö, missä _y
LisätiedotMS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).
LisätiedotOminaisarvot ja ominaisvektorit 140 / 170
Ominaisarvot ja ominaisvektorit 140 / 170 Seuraavissa luvuissa matriisit ja vektori ajatellaan kompleksisiksi, ts. kertojakuntana oletetaan olevan aina kompleksilukujoukko C Huomaa, että reaalilukujoukko
Lisätiedot13. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä
187 13. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on differentiaaliyhtälö. Se on yleisessä muodossaan
Lisätiedot10. Toisen kertaluvun lineaariset differentiaaliyhtälöt
37. Toisen kertaluvun lineaariset differentiaalihtälöt Tarkastelemme muotoa () ( x) + a( x) ( x) + a( x) ( x) = b( x) olevia htälöitä, missä kerroinfunktiot ja oikea puoli ovat välillä I jatkuvia. Edellisen
LisätiedotLineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
LisätiedotYhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
Lisätiedot13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y
Lisätiedot6. Toisen ja korkeamman kertaluvun lineaariset
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
LisätiedotYhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
Lisätiedot3 Toisen kertaluvun lineaariset differentiaaliyhtälöt
3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)
Lisätiedot2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.
2. kl:n DY:t Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.) Lause Olkoon f(x 2, x 1, t) funktio, ja oletetaan, että f, f/ x 1 ja f/ x
LisätiedotEnsimmäisen ja toisen kertaluvun differentiaaliyhtälöistä
1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma
LisätiedotMatemaattinen Analyysi
Vaasan yliopisto, 009-010 / ORMS1010 Matemaattinen Analyysi 8. harjoitus 1. Ratkaise y + y + y = x. Kommentti: Yleinen työlista ratkaistaessa lineaarista, vakiokertoimista toisen kertaluvun differentiaaliyhtälöä
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotLineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut
MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotMatematiikka B3 - Avoin yliopisto
2. heinäkuuta 2009 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Lisäharjoitustehtävä Kurssin sisältö (1/2) 1. asteen Differentiaali yhtälöt (1.DY) Separoituva Ratkaisukaava Bernoyulli
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma
LisätiedotMatemaattinen Analyysi
Vaasan yliopisto, kevät 01 / ORMS1010 Matemaattinen Analyysi. harjoitus, viikko 1 R1 ke 1 16 D11 (..) R to 10 1 D11 (..) 1. Määritä funktion y(x) MacLaurinin sarjan kertoimet, kun y(0) = ja y (x) = (x
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille
Lisätiedot4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä
1 Laaja matematiikka 5 Kevät 010 4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on differentiaaliyhtälö.
Lisätiedot1 Avaruuksien ja lineaarikuvausten suora summa
MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C340 Lineaarialgebra ja differentiaaliyhtälöt Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 205 / 3 R. Kangaslampi Matriisihajotelmista Differentiaaliyhtälöitä ratkaistaessa
Lisätiedot2v 1 = v 2, 2v 1 + 3v 2 = 4v 2.. Vastaavasti ominaisarvoa λ 2 = 4 vastaavat ominaisvektorit toteuttavat. v 2 =
TKK, Matematiikan laitos Pikkarainen/Tikanmäki Mat-1.1320 Matematiikan peruskurssi K2 Harjoitus 12, A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä 21. 25.4.2008, viikko
Lisätiedot4 Korkeamman kertaluvun differentiaaliyhtälöt
Differentiaaliyhtälöt c Pekka Alestalo 2015 Tässä monisteessa käydään läpi tavallisiin differentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Luennolla lasketaan esimerkkitehtäviä
Lisätiedot4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt
4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt 4.1 Homogeeniset lineaariset differentiaaliyhtälöt Homogeeninen yhtälö on muotoa F(x, y,, y (n) ) = 0. (1) Yhtälö on lineaarinen, jos se voidaan
Lisätiedotx = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
Lisätiedotx = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
LisätiedotMS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila
Lisätiedot1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen
LisätiedotPäättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1
Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon
LisätiedotLineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi
Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja
LisätiedotMatriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?
Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi
Lisätiedot4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =
BMA58 Funktiot, lineaarialgebra ja vektorit Harjoitus 6, Syksy 5. Olkoon [ 6 6 A =, B = 4 [ 3 4, C = 4 3 [ 5 Määritä matriisien A ja C ominaisarvot ja ominaisvektorit. Näytä lisäksi että matriisilla B
LisätiedotMS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos
Lisätiedot. Mitä olisivat y 1 ja y 2, jos tahdottaisiin y 1 (0) = 2 ja y 2 (0) = 0? x (1) = 0,x (2) = 1,x (3) = 0. Ratkaise DY-ryhmä y = Ay.
BMA583 Differentiaaliyhtälöiden peruskurssi Harjoitus 6, Kevät 7. Oletetaan että saaliskalapopulaation lisääntymisnopeus (ilman kuolemia on suoraan verrannollinen kalapopulaation (merkataan tätä symbolilla
LisätiedotMS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin
LisätiedotEsimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt
Esimerkki 4.4. Määrää matriisin 2 2 1 A = 1 3 1 2 4 3 ominaisarvot ja -vektorit. Ratk. Nyt det(a λi ) = 1 + 2 λ 2 1 + 1 λ 1 λ 1 3 λ 1 = 1 3 λ 1 2 4 3 λ 2 4 3 λ 1 λ = 1 4 λ 1 = (1 λ)( 1)1+1 4 λ 1 2 6 3
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /
Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / 16. 18.5. Lineaariset differentiaaliyhtälöt, homogeeniset differentiaaliyhtälöt Tehtävä 1: a) Määritä differentiaaliyhtälön y 3y = 14e 4x
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Kompleksiluvut Riikka Korte (muokannut Riikka Kangaslammen materiaalin pohjalta) Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.11.2015 1 /
LisätiedotOminaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
LisätiedotOletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan
LisätiedotSeuraavaksi tarkastellaan ensimmäisen kertaluvun lineaarista, vakiokertoimista differentiaaliyhtälösysteemiä
Differentiaaliyhtälösysteemit 1 (Kreyszig 40-2 Mat-11132/1332, 8/2013, Kari Eloranta Seuraavaksi tarkastellaan ensimmäisen kertaluvun lineaarista, vakiokertoimista differentiaaliyhtälösysteemiä dx 1 dt
LisätiedotMat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ
Mat-48 Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ L ẋ = x ẋ = g L sin x rx Epälineaarisen systeemin tasapainotiloja voidaan
Lisätiedota 1 y 1 (x) + a 2 y 2 (x) = 0 vain jos a 1 = a 2 = 0
6. Lineaariset toisen kertaluvun yhtälöt Toisen kertaluvun differentiaaliyhtälöt ovat tuntuvasti hankalampia ratkaista kuin ensimmäinen. Käsittelemmekin tässä vain tärkeintä erikoistapausta, toisen kertaluvun
LisätiedotLineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg
Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 14 R. Kangaslampi matriisiteoriaa Matriisinormi
LisätiedotDI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 13: ti klo 13:00-15:30 ja to 1.4.
DI matematiikan opettajaksi: Täydennyskurssi, kevät Luentorunkoa ja harjoituksia viikolle 3: ti 33 klo 3:-5:3 ja to 4 klo 9:5-: Käydään läpi differentiaaliyhtälöitä Määritelmä Olkoon A R n n (MatLab:ssa
LisätiedotMatriisialgebra harjoitukset, syksy 2016
Matriisialgebra harjoitukset, syksy 6 MATRIISIALGEBRA, s. 6, Ratkaisuja/ M.Hamina & M. Peltola 8. Olkoon 4 A 6. 4 Tutki, onko A diagonalisoituva. Jos on, niin määrää matriisi D T AT ja siihen liittyvä
Lisätiedot3 TOISEN KERTALUVUN LINEAARISET DY:T
3 TOISEN KERTALUVUN LINEAARISET DY:T Huomautus epälineaarisista. kertaluvun differentiaaliyhtälöistä Epälineaarisen DY:n ratkaisemiseen ei ole yleismenetelmää. Seuraavat erikoistapaukset voidaan ratkaista
LisätiedotLineaarinen toisen kertaluvun yhtälö
Lineaarinen toisen kertaluvun yhtälö Keijo Ruotsalainen Mathematics Division Lineaarinen toisen kertaluvun differentiaaliyhtälö Toisen kertaluvun täydellinen lineaarinen yhtälö muotoa p 2 (x)y + p 1 (x)y
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.
Lisätiedot1 Peruskäsitteet. Dierentiaaliyhtälöt
Teknillinen korkeakoulu Matematiikka Dierentiaaliyhtälöt Alestalo Tässä monisteessa käydään läpi tavallisiin dierentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Esimerkkejä luennoilla
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi
LisätiedotDIFFERENTIAALIYHTÄLÖIDEN JATKOKURSSI SYKSY 2014
DIFFERENTIAALIYHTÄLÖIDEN JATKOKURSSI SYKSY 2014 JOUNI PARKKONEN Tämä teksti sisältää syksyn 2014 kurssien Differentiaaliyhtälöiden jatkokurssi 1 ja 2 materiaalin. Ensimmäisellä jatkokurssilla tutustutaan
LisätiedotMS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48
MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /
MS-A3/A5 Matriisilaskenta, II/27 MS-A3/A5 Matriisilaskenta Laskuharjoitus 3 / 3. 7..27 Tehtävä (L): Etsi kaikki yhtälön Ax = b ratkaisut, kun 3 5 4 A = 3 2 4 ja b = 6 8 7 4. Ratkaisu : Koetetaan ratkaista
Lisätiedot1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen
LisätiedotPaikannuksen matematiikka MAT
TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y M a t h e m a t i c s Paikannuksen matematiikka MAT-45800 4..008. p.1/4 Käytännön järjestelyt Kotisivu: http://math.tut.fi/courses/mat-45800/ Luennot:
LisätiedotSisätuloavaruudet. 4. lokakuuta 2006
Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä
LisätiedotNumeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28
Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä
Lisätiedot802320A LINEAARIALGEBRA OSA II
802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen
LisätiedotOsoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
Lisätiedot6 MATRIISIN DIAGONALISOINTI
6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,
LisätiedotLineaariset differentiaaliyhtälöryhmät
Lineaariset differentiaaliyhtälöryhmät Antti Kosonen Matematiikan kandidaatintutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 204 Sisältö Johdanto 2 Differentiaaliyhtälöryhmät
LisätiedotTyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5
MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää
Lisätiedot3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h
HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)
Lisätiedot