DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 13: ti klo 13:00-15:30 ja to 1.4.
|
|
- Saija Niina Hänninen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 DI matematiikan opettajaksi: Täydennyskurssi, kevät Luentorunkoa ja harjoituksia viikolle 3: ti 33 klo 3:-5:3 ja to 4 klo 9:5-: Käydään läpi differentiaaliyhtälöitä Määritelmä Olkoon A R n n (MatLab:ssa expm) (tai C n n ), määritellään exp(a) k Ak k! Olkoon A, B ja T matriiseja, nyt Jos A TBT, niin exp(a) Texp(B)T Jos AB BA, niin exp(a+b) exp(a)exp(b) exp(b)exp(a) 3 (exp(a)) exp( A) 4 d dt exp(at) Aexp(At) exp(at)a Lause (Homogeenisen differentiaaliyhtälön(/systeemin) ratkaisu) Olkoon A C n n matriisi Alkuarvo-tehtävän x Ax ja x() x ratkaisu on x(t) exp(at)x Lisäksi tämä on tehtävän ainoa ratkaisu (Huom! kaikki seuraavat merkinnät tarkoittavat samaa asiaa x, x (t) ja d dt x(t)) Todistus Olkoon x(t) exp(at)x Nyt x d dt x(t) d dt (exp(at)x ) d dt (exp(at))x Aexp(At)x Ax ja x()exp(a)x x, joten x(t)exp(at)x on ko alkuarvo-tehtävän eräs ratkaisu Oletetaan, että alkuarvo-tehtävällä on olemassa myös toinen ratkaisu y(t) Olkoon z(t) exp( At)y(t), nyt ( ) d d dt z(t) dt exp( At) y(t)+exp( At)y (t) exp( At)( A)y(t)+exp( At)y (t) exp( At)( A)y(t) + exp( At)Ay(t) exp( At)( A+A)y(t), joten z(t) on vakio ja koska z() x niin z(t) x Joten z(t) exp( At)y(t) x y(t) exp(at)x x(t) Siis x(t) exp(at)x on tehtävän ainoa ratkaisu
2 Esimerkki Olkoon A µλ µ+ λ, missä µ λ tällöin (MatLab:lla) >> syms mu lambda t >> A ; -(mu*lambda) (mu+lambda); >> expm(a*t) >> latex(ans) % viimeisellä komennolla matriisi saadaan sellaiseen muotoon, % että LaTeX tekstinkäsittelyohjelma ymmärtää sen saadaan exp(at) λexp(µt) µexp(λt) λ µ µλ(exp(µt) exp(λt)) λ µ Ratkaistaan tämän avulla differentiaaliyhtälön exp(λt) exp(µt) λ µ λexp(λt) µexp(µt) λ µ x (t) (λ+µ)x (t)+λµx(t) () x(t) yleinen ratkaisu Olkoon x(t) x, tällöin (t) x x (t) (t) x x (t) (t) (λ+µ)x x(t) (t) λµx(t) λµ λ+µ x (t) Ax(t), missä A µλ µ+ λ ratkaisu on x(t) c exp(at) c, joten lauseen mukaan differentiaaliyhtälön () yleinen c λexp(µt) µexp(λt) λ µ + c exp(λt) exp(µt) λ µ c λ c λ µ exp(µt)+ c c µ λ µ exp(λt) c c Otetaan käyttöön uudet (mielivaltaiset) parametrit Näin c µ λ c voidaan tehdä koska ko kuvaus on bijektio (ko matriisi on kääntyvä, sillä determinantti on λ µ ) Nyt x(t) c λ c λ µ exp(µt)+ c c µ λ µ exp(λt) ( c + c )λ (µ c + λ c ) λ µ c exp(µt)+ c exp(λt) Joten differentiaaliyhtälön () yleinen ratkaisu on exp(µt)+ (µ c + λ c ) ( c + c )µ exp(λt) λ µ x(t) c exp(µt)+ c exp(λt), missä c ja c ovat mielivaltaisia vakioita (ratkaistaan alku- tai reunaehdoista)
3 Esimerkki Tutkitaan vaimennettua harmonista värähtelijää Värähtelijän paikkaa kuvaa differentiaaliyhtälö x (t)+cx (t)+kx(t), () missä c R (c ) (kakkonen on otettu kertoimeksi ihan mukavuus syistä) on vaimennuskerroin ja k R + on jousen jousivakio Vaimennuskerroin johtuu esim ilmanvastuksesta ja on näin ollen pieni Pieni tarkoittaa tässä sitä, että c < k Olkoon λ c+ c k ja µ c c k, nyt differentiaaliyhtälö () tulee muotoon x (t) (λ+µ)x (t)+λµx(t), (3) joka on siis yhtälön () muotoa Tällöin ko yhtälön yleinen ratkaisu on x(t) c exp(µt)+ c exp(λt) Koska λ / R ja µ / R niin nämä voidaan kirjoittaa muotoon λ c+i k c c+iβ ja µ c i k c c iβ, missä β k c R + Nyt yleinen ratkaisu voidaan kirjoittaa muotoon x(t) c exp(µt)+ c exp(λt) c exp( ct iβt)+ c exp( ct + iβt) c exp( ct)exp( iβt)+ c exp( ct)exp(iβt) c exp( ct)(cos( βt)+isin( βt))+ c exp( ct)(cos(βt)+isin(βt)) ( c + c )exp( ct)cos(βt)+i( c c )exp( ct)sin(βt) Otetaan käyttöön uudet (mielivaltaiset) parametrit c i i c Näin c c voidaan tehdä koska ko kuvaus on bijektio (ko matriisin käänteismatriisi lasketaan tehtävässä 5) Nyt x(t) ( c + c )exp( ct)cos(βt)+i( c c )exp( ct)sin(βt) c exp( ct)cos(βt)+c exp( ct)sin(βt) Joten differentiaaliyhtälön () yleinen ratkaisu on x(t) c exp( ct)cos(βt)+c exp( ct)sin(βt) missä c ja c ovat mielivaltaisia vakioita
4 Lause (Epähomogeenisen differentiaaliyhtälön(/systeemin) ratkaisu) Olkoon A vakiomatriisi ja b(t) jatkuva funktio Epähomogeenisen yhtälön alkuarvo-tehtävän x (t) Ax(t)+b(t) ja x() x ratkaisu on Lisäksi tämä on tehtävän ainoa ratkaisu Z t x(t) exp(at)x + exp(a(t s))b(s)ds Huom! Epähomogeenisen differentiaaliyhtälön yleinen ratkaisu on vastaavan homogeenisen yhtälön yleinen ratkaisu plus epähomogeenisen yhtälön jokin ratkaisu Lause 3 (Ensimmäisen kertaluvun separoituva differentiaaliyhtälö) Ensimmäisen kertaluvun separoituva differentiaaliyhtälö on muotoa x (t) h(t)g(x(t)), jos g(x(t)), niin ratkaisu saadaan muotoon Z x Z (t) g(x(t)) dt Z g(y) dy h(t)dt +C Esimerkki 3 Ratkaistaan alkuarvo-tehtävä x t x ja x() x Kyseessä on separoituva differentiaaliyhtälö, jossa h(t) t ja g(x) x Seuraavassa eräs muistisääntö johtaa ratkaisukaava (oletetaan, että g(x) ) dx dt t x Z x dx t dt x dx Z t dt +C x 3 t3 +C x(t) 3 t3 +C, lisäksi mikäli g(x(t )) jollakin ajanhetkellä t niin x(t )niin silloin myös x (t ) joten x(t) kaikilla ajan hetkillä t Tätä kutsutaan ko yhtälön erikoisratkaisuksi Nyt alkuarvo-tehtävän ratkaisu on x(t), x 3 t3 kun x < ja t, kun x ja t, 3 t3 x kun x > ja t < 3 3x x(t) 3 4 t - -
5 Tehtäviä µ Olkoon A µ 4 6 Esitä matriisi A 6 3 Laske tämän avulla exp(a), laske exp(a) muodossa A T BT, missä B on diagonaalimatriisi 3 Radioaktiivisen aineen hajoamisnopeus on suoraan verrannollinen radioaktiivisuuden määrään x(t) eli x (t) kx(t), missä k on vakio Oletetaan, että radioaktiivisen aineen määrä on vähentynyt % ensimmäisten vuoden aikana Mikä on ko aineen puoliintumisaika? (milloin aineen määrä on vähentynyt puoleen alkuperäisestä) 4 * Olkoon A α, todista että exp(at) sin(αt) cos(αt) α α sin(αt) cos(αt) 5 Olkoon λ a+ a 4b ja µ a a 4b Mihin muotoon tällöin yhtälö () muuttuu? Ratkaise tämän avulla differentiaaliyhtälön x (t)+5x (t)+4x(t), yleinen ratkaisu 6 Laske matriisin i i käänteismatriisi Vihje: i i 7 Tiedetään: >> syms t mu >> A ;-mu^ *mu; >> latex(expm(a*t)) missä A yleinen ratkaisu µ µ exp(at) e tµ tµe tµ te tµ tµ e tµ e tµ +tµe tµ Ratkaise tämän avulla differentiaaliyhtälön x (t) µx (t)+µ x(t), 8 Tutkitaan vaimennetun värähtelijää, jolla c 5 ja k, olkoon annetut alkuarvot x() h ja x () Ratkaise vaimennetun värähtelijän paikka ajan funktiona 9 Ratkaise alkuarvo-tehtävä x (t) exp( t)(x(t)+) ja x() x,
6 µ Ratkaisu tehtävään : Koska A k k µ k exp(a) k µ k k! k µ k k!, missä k N, niin exp(µ ) exp(µ ) 4 6 Ratkaisu tehtävään : Matriisi A on symmetrinen reaalimatriisi, 6 3 joten se on ortogonaalisesti diagonalisoituva (Lause 45, s 44 Lama ) Lasketaan ensimmäiseksi matriisin ominaisarvot (lasketaan polynomin det(a λi) nollakohdat) ( ) 4 λ 6 det(a λi) det (4 λ)(3 λ) λ λ 7λ+6 (λ 7 ) λ 7 ± 5 λ tai λ 6, lasketaan näitä ominaisarvoja vastaavat ominaisvektorit ( ) ( ) ( ) 3 6 N (A I) N N span 5 6 ( ) ( ) 6 N (A 6 I) N N span( ) Olkoon T 5 T 5 T T T Ominaisarvohajotelman mukaan 4 6 A missä B 6, joten 6 exp(a) Texp(B)T exp() T exp() exp(6) 5 exp() exp(6) 4exp()+exp(6) 5 exp()+exp(6) 5 exp(6) T TBT, exp()+exp(6) exp()+4exp(6)
7 Ratkaisu tehtävään 3: Olkoon ainetta aluksi x verran Tällöin lauseen mukaan aineen määrä ajanhetkellä t on x(t) exp(kt)x Tiedetään, että x() exp(k)x 9 x joten k yhtälö x(t) x exp(kt)x x kt ln ln( 9 ( ) t ln ( ) ln 9 ) Ratkaistaan ( ) 658, joten kysytty puoliintumisaika on noin 658 vuotta Ratkaisu tehtävään 4: Lasketaan aluksi mitä on A k, kun k N A, A α, A α α, A 3 α α 4, A 4 α 4 α 4, A 5 α 4 α 6, A 6 α 6 α 6, A 7 α 6 α 8, A 8 α 8 α 8, A 9 α 8 α, A α α, A α α, Tästä voidaan päätellä yleinen muoto { A k ( ) k α k I, kun k on parillinen ( ) k α k A, kun k on pariton Asian voi todistaa induktiolla, alku-askel on selvä yllä olevien laskujen nojalla, lisäksi kun huomataan että A α I niin sen avulla voi tehdä induktio-askeleen erikseen parillisille ja parittomille k:n arvoille (jätetään lukijalle) Yllä olevan perusteella ja määritelmän mukaan saadaan exp(at) ( ) k α k t k k k ( ) k! k ( ) k α k ( α )t k k! k ( ) n (αt) n n (n)! α ( ) n (αt) n+ n (n+)! n cos(αt) α sin(αt) α sin(αt) cos(αt) k α k t k k! ( ) k α k t k k! α ( ) n (αt) n+ n (n+)! ( ) n (αt) n (n)! Sinin ja kosinin sarjakehitelmät on annettu esim Lama prujun "sivulla"49 Ratkaisu tehtävään 5: Olkoon λ a+ a 4b ja µ a a 4b Nyt (λ+µ) a ja λµ b, joten yhtälö () muuttuu muotoon x (t)+ax (t)+b Ratkaise tämän avulla differentiaaliyhtälön x (t)+5x (t)+4x(t), yleinen ratkaisu Nyt λ a+ a 4b µ a a 4b ja 4
8 Joten esimerkin mukaan yleinen ratkaisu on x(t) c exp( 4t)+c exp( t), missä c ja c ovat mielivaltaisia vakioita MatLab:ssa tehtävän voi ratkaista seuraavasti: >> syms x >> dsolve( Dx+5*Dx+4*x ) ans C*exp(-t)+C*exp(-4*t) Ratkaisu tehtävään 6: Koska i R ( i) i i i R ( ) R () i i, i i R (i) i i i joten i i i i Ratkaisu tehtävään 7: Tiedetään: e tµ tµe tµ te tµ missä A µ µ exp(at) yleinen ratkaisu Olkoon x(t) x (t) x (t) x (t) x (t) Ax(t), tµ e tµ e tµ +tµe tµ Ratkaistaan tämän avulla differentiaaliyhtälön x (t) µx (t)+µ x(t), x(t) x (t), tällöin x (t) µx (t) µ x(t), µ x(t) µ joten lauseen mukaan differentiaaliyhtälön () yleinen ratkaisu on x(t) c exp(at) c c (exp(tµ) tµexp(tµ))+c t exp(tµ) c exp(tµ)+( c µ+ c )t exp(tµ)
9 c c Otetaan käyttöön uudet (mielivaltaiset) parametrit c µ c Näin voidaan tehdä koska ko kuvaus on bijektio (ko matriisi on kääntyvä, sillä determinantti on ) Joten differentiaaliyhtälön yleinen ratkaisu on x(t) c exp(tµ)+ c t exp(tµ), missä c ja c ovat mielivaltaisia vakioita Vertaa ratkaisua lisälukemistoon sivuun 7 kohtaan Ratkaisu tehtävään 8: Vaimennetun värähtelijän yleinen ratkaisu on muotoa x(t) c exp( ct)cos(βt)+c exp( ct)sin(βt) x (t) cc exp( ct)cos(βt) βc exp( ct)sin(βt) x() c h cc exp( ct)sin(βt)+βc exp( ct)cos(βt) x () cc + βc c ch k c Joten vaimennetun värähtelijän paikka ajan funktiona on x(t) hexp( ct)cos(βt)+ missä β k c 5 ja c 5 ch k c exp( ct)sin(βt), Ratkaisu tehtävään 9: Ratkaistaan alkuarvo-tehtävä x (t) exp( t)(x(t)+) ja x() x Kyseessä on separoituva differentiaaliyhtälö, jossa h(t) exp( t) ja g(x) (x+) (oletetaan, että g(x) ) dx dt exp( t)(x+) dx exp( t)dt (x+) Z Z (x+) dx exp( t) dt +C x+ exp( t)+c x(t) exp( t) C x(t) exp( t)+c exp( t) C lisäksi mikäli g(x(t )) jollakin ajanhetkellä t niin x(t ) niin silloin myös x (t ) joten x(t) kaikilla ajan hetkillä t Nyt alkuarvo-tehtävän ratkaisu on exp( t)+ x, kun x < ja t +x, kun x ja t x(t) exp( t)+ x, kun < x ja t +x ( ) exp( t)+ x, kun < x ja t < ln x + x +x
Ominaisarvo-hajoitelma ja diagonalisointi
Ominaisarvo-hajoitelma ja a 1 Lause 1: Jos reaalisella n n matriisilla A on n eri suurta reaalista ominaisarvoa λ 1,λ 2,...,λ n, λ i λ j, kun i j, niin vastaavat ominaisvektorit x 1, x 2,..., x n muodostavat
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotOminaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.
Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (
LisätiedotOminaisarvo ja ominaisvektori
Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
Lisätiedot5 Differentiaaliyhtälöryhmät
5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =
LisätiedotLineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut
MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A
LisätiedotSimilaarisuus. Määritelmä. Huom.
Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP
LisätiedotOminaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
LisätiedotMat Dynaaminen optimointi, mallivastaukset, kierros 1
Mat-214 Dynaaminen optimointi, mallivastaukset, kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A, säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB ja säiliöstä
LisätiedotMatriisialgebra harjoitukset, syksy 2016
Matriisialgebra harjoitukset, syksy 6 MATRIISIALGEBRA, s. 6, Ratkaisuja/ M.Hamina & M. Peltola 8. Olkoon 4 A 6. 4 Tutki, onko A diagonalisoituva. Jos on, niin määrää matriisi D T AT ja siihen liittyvä
Lisätiedot4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä
1 Laaja matematiikka 5 Kevät 010 4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on differentiaaliyhtälö.
LisätiedotEnsimmäisen ja toisen kertaluvun differentiaaliyhtälöistä
1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa
LisätiedotMatriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?
Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotEsimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt
Esimerkki 4.4. Määrää matriisin 2 2 1 A = 1 3 1 2 4 3 ominaisarvot ja -vektorit. Ratk. Nyt det(a λi ) = 1 + 2 λ 2 1 + 1 λ 1 λ 1 3 λ 1 = 1 3 λ 1 2 4 3 λ 2 4 3 λ 1 λ = 1 4 λ 1 = (1 λ)( 1)1+1 4 λ 1 2 6 3
LisätiedotEsimerkki 1 Ratkaise differentiaaliyhtälö
Esimerkki 1 Ratkaise differentiaaliyhtälö x 2 y xy =1/x. 1 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 1/20 20 Esimerkki 2 Ratkaise differentiaaliyhtälö x(ln y)y y ln x =0. 2 / K. Tuominen kimmo.i.tuominen@helsinki.fi
Lisätiedotv AB q(t) = q(t) v AB p(t) v B V B ṗ(t) = q(t) v AB Φ(t, τ) = e A(t τ). e A = I + A + A2 2! + A3 = exp(a D (t τ)) (I + A N (t τ)), A N = =
Mat-214 Dynaaminen optimointi Mitri Kitti Mallivastaukset kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB
LisätiedotOsoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
LisätiedotMS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos
Lisätiedoty (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x
BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen
LisätiedotJohdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö
Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen
LisätiedotOrtogonaalisen kannan etsiminen
Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,
Lisätiedot1 Di erentiaaliyhtälöt
Taloustieteen mat.menetelmät syksy 2017 materiaali II-5 1 Di erentiaaliyhtälöt 1.1 Skalaariyhtälöt Määritelmä: ensimmäisen kertaluvun di erentiaaliyhtälö on muotoa _y = F (y; t) oleva yhtälö, missä _y
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotMatematiikka B2 - Avoin yliopisto
6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
Lisätiedot(1.1) Ae j = a k,j e k.
Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim
Lisätiedot2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.
2. kl:n DY:t Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.) Lause Olkoon f(x 2, x 1, t) funktio, ja oletetaan, että f, f/ x 1 ja f/ x
LisätiedotHarjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:
Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien
Lisätiedot13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y
LisätiedotMatematiikka B3 - Avoin yliopisto
2. heinäkuuta 2009 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Lisäharjoitustehtävä Kurssin sisältö (1/2) 1. asteen Differentiaali yhtälöt (1.DY) Separoituva Ratkaisukaava Bernoyulli
LisätiedotMS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).
LisätiedotInsinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 406 6 laskuharjoituksien esimerkkiratkaisut Ratkaistaan differentiaaliyhtälö y = y () Tässä = d dy eli kyseessä on lineaarinen kertaluvun differentiaaliyhtälö: Yhtälön () homogenisoidulle
LisätiedotLineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
LisätiedotMatematiikka B2 - TUDI
Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt. osa 2 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 1 R. Kangaslampi Matriisihajotelmista
LisätiedotOminaisarvot ja ominaisvektorit 140 / 170
Ominaisarvot ja ominaisvektorit 140 / 170 Seuraavissa luvuissa matriisit ja vektori ajatellaan kompleksisiksi, ts. kertojakuntana oletetaan olevan aina kompleksilukujoukko C Huomaa, että reaalilukujoukko
Lisätiedot6 MATRIISIN DIAGONALISOINTI
6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
LisätiedotNeliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja
7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C340 Lineaarialgebra ja differentiaaliyhtälöt Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 205 / 3 R. Kangaslampi Matriisihajotelmista Differentiaaliyhtälöitä ratkaistaessa
LisätiedotMS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48
MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?
LisätiedotDI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30
DI matematiikan opettajaksi: Tädennskurssi, kevät Luentorunkoa ja harjoituksia viikolle : ti 6 klo :-5: Kädään läpi: funktioita f : D f R n R m ja integrointia R n :ssä Oletetaan, että, R n ovat mielivaltaisia
LisätiedotOminaisvektoreiden lineaarinen riippumattomuus
Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin
Lisätiedot(0 desimaalia, 2 merkitsevää numeroa).
NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotMatriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Antti Rasila 2016 Ominaisarvot ja ominaisvektorit 1/5 Määritelmä Skalaari λ C on matriisin A C n n ominaisarvo ja vektori v C n sitä
Lisätiedot(a) Järjestellään yhtälöitä siten, että vasemmalle puolelle jää vain y i ja oikealle puolelle muut
BM0A5830 Differentiaalihtälöiden peruskurssi Harjoitus 7, Kevät 07 Päivitksiä: Tehtävän b tehtävänantoa korjattu, tehtävän 5 vastaus korjattu. b tehtävänantoa sujuvoitettu. Vastauksia lisätt.. Monasti
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotDierentiaaliyhtälöistä
Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................
LisätiedotDierentiaaliyhtälöistä
Dierentiaaliyhtälöistä Markus Kettunen 17. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotMatriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41
MS-A0004/MS-A0006 Matriisilaskenta, I/06 Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 4 Tehtävä 5 (L): a) Oletetaan, että λ 0 on kääntyvän matriisin A ominaisarvo. Osoita, että /λ on matriisin A
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /
Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / 16. 18.5. Lineaariset differentiaaliyhtälöt, homogeeniset differentiaaliyhtälöt Tehtävä 1: a) Määritä differentiaaliyhtälön y 3y = 14e 4x
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
Lisätiedot5 OMINAISARVOT JA OMINAISVEKTORIT
5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön
Lisätiedot1 Matriisit ja lineaariset yhtälöryhmät
1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n
Lisätiedoty = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
LisätiedotKanta ja Kannan-vaihto
ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
LisätiedotHarjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,
Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä
Lisätiedot2 dy dx 1. x = y2 e x2 2 1 y 2 dy = e x2 xdx. 2 y 1 1. = ex2 2 +C 2 1. y =
BM20A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 2, Kevät 207 Päivityksiä: Tehtävän 4b tehtävänanto korjattu ja vastauksia lisätty.. Ratkaise y, kun 2y x = y 2 e x2. Jos y () = 0 niin mikä on ratkaisu
Lisätiedot2v 1 = v 2, 2v 1 + 3v 2 = 4v 2.. Vastaavasti ominaisarvoa λ 2 = 4 vastaavat ominaisvektorit toteuttavat. v 2 =
TKK, Matematiikan laitos Pikkarainen/Tikanmäki Mat-1.1320 Matematiikan peruskurssi K2 Harjoitus 12, A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä 21. 25.4.2008, viikko
LisätiedotMatematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 28 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 a) A + B b) AB BA d) A 2 e) A T f) A T B g) 3A ja B = 2 1 6 3 1 2. Laske seuraavat determinantit
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.
LisätiedotDifferentiaaliyhtälöt II, kevät 2017 Harjoitus 5
Differentiaaliyhtälöt II, kevät 27 Harjoitus 5 Heikki Korpela 26. huhtikuuta 27 Tehtävä 2. Määrää seuraavan autonomisen systeemin kriittiset pisteet, ratakäyrät ja luonnostele systeemin aikakehitys: (t)
LisätiedotMS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
Lisätiedot6. Toisen ja korkeamman kertaluvun lineaariset
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia
LisätiedotTehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin
LisätiedotMatemaattinen Analyysi
Vaasan yliopisto, kevät 01 / ORMS1010 Matemaattinen Analyysi. harjoitus, viikko 1 R1 ke 1 16 D11 (..) R to 10 1 D11 (..) 1. Määritä funktion y(x) MacLaurinin sarjan kertoimet, kun y(0) = ja y (x) = (x
Lisätiedot[xk r k ] T Q[x k r k ] + u T k Ru k. }.
Mat-2.48 Dynaaminen optimointi Mitri Kitti/Ilkka Leppänen Mallivastaukset, kierros 3. Johdetaan lineaarisen aikainvariantin seurantatehtävän yleinen ratkaisu neliöllisellä kustannuksella. Systeemi: x k+
LisätiedotKäänteismatriisi 1 / 14
1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella
Lisätiedot3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
LisätiedotMS-A0003/A Matriisilaskenta Laskuharjoitus 6
MS-A3/A - Matriisilaskenta Laskuharjoitus 6 Ratkaisuehdotelmia. Diagonalisointi on hajotelma A SΛS, jossa diagonaalimatriisi Λ sisältää matriisin A ominaisarvot ja matriisin S sarakkeet ovat näitä ominaisarvoja
LisätiedotInsinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 06 laskuharjoituksien esimerkkiratkaisut Alla olevat esimerkkiratkaisut ovat melko ksitiskohtaisia Tenttivastauksissa ei leensä tarvitse muistaa lauseiden, määritelmien, esimerkkien
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /
MS-A3/A5 Matriisilaskenta, II/27 MS-A3/A5 Matriisilaskenta Laskuharjoitus 3 / 3. 7..27 Tehtävä (L): Etsi kaikki yhtälön Ax = b ratkaisut, kun 3 5 4 A = 3 2 4 ja b = 6 8 7 4. Ratkaisu : Koetetaan ratkaista
Lisätiedot10. Toisen kertaluvun lineaariset differentiaaliyhtälöt
37. Toisen kertaluvun lineaariset differentiaalihtälöt Tarkastelemme muotoa () ( x) + a( x) ( x) + a( x) ( x) = b( x) olevia htälöitä, missä kerroinfunktiot ja oikea puoli ovat välillä I jatkuvia. Edellisen
Lisätiedot. Mitä olisivat y 1 ja y 2, jos tahdottaisiin y 1 (0) = 2 ja y 2 (0) = 0? x (1) = 0,x (2) = 1,x (3) = 0. Ratkaise DY-ryhmä y = Ay.
BMA583 Differentiaaliyhtälöiden peruskurssi Harjoitus 6, Kevät 7. Oletetaan että saaliskalapopulaation lisääntymisnopeus (ilman kuolemia on suoraan verrannollinen kalapopulaation (merkataan tätä symbolilla
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
Lisätiedotja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) A =
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 211 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 ja B = 2 1 6 3 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A. 2. Laske seuraavat determinantit
LisätiedotVakiokertoiminen lineaarinen normaaliryhmä
1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 29 Vakiokertoiminen lineaarinen normaaliryhmä Todetaan ensin ilman todistuksia (tulos on syvällinen) ratkaisujen
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille
LisätiedotMatemaattinen Analyysi / kertaus
Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen
Lisätiedot0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä
Lisätiedotominaisvektorit. Nyt 2 3 6
Esimerkki 2 6 8 Olkoon A = 40 0 6 5. Etsitäänmatriisinominaisarvotja 0 0 2 ominaisvektorit. Nyt 2 0 2 6 8 2 6 8 I A = 40 05 40 0 6 5 = 4 0 6 5 0 0 0 0 2 0 0 2 15 / 172 Täten c A ( )=det( I A) =( ) ( 2)
LisätiedotKonjugaattigradienttimenetelmä
Konjugaattigradienttimenetelmä Keijo Ruotsalainen Division of Mathematics Konjugaattigradienttimenetelmä Oletukset Matriisi A on symmetrinen: A T = A Positiivisesti definiitti: x T Ax > 0 kaikille x 0
Lisätiedot13. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä
187 13. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on differentiaaliyhtälö. Se on yleisessä muodossaan
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 3 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 28 R. Kangaslampi Matriisihajotelmista
LisätiedotLuento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään
Lisätiedotja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e)
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 214 1. Tutki seuraavia jonoja a) (a n )=(3n 1) ( ) 2 b) (a n )= 3 n ( ) 1 c) (a n )= (n + 1)(n +2) 2. Tutki seuraavia sarjoja a) (3k 1)
LisätiedotRatkaisuehdotukset LH 10 / vko 48
MS-C134 Lineaarialgebra, II/017 Ratkaisuehdotukset LH 10 / vko 48 Tehtävä 1: Olkoot A R n n symmetrinen ja positiividefiniitti matriisi. Näytä, että (i T A n (λ iα i (ii A n (λ i α i jossa α i on siten,
Lisätiedot2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre.
2. Viikko Keskeiset asiat ja tavoitteet: 1. Peruskäsitteet: kertaluku, lineaarisuus, homogeenisuus. 2. Separoituvan diff. yhtälön ratkaisu, 3. Lineaarisen 1. kl yhtälön ratkaisu, CDH: luvut 19.1.-19.4.
Lisätiedot6. OMINAISARVOT JA DIAGONALISOINTI
0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos
LisätiedotLuento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään
LisätiedotHY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden
Lisätiedotf(x) f(y) x y f f(x) f(y) (x) = lim
Y1 (Matematiikka I) Haastavampia lisätehtäviä Syksy 1 1. Funktio h määritellään seuraavasti. Kuvan astiaan lasketaan vettä tasaisella nopeudella 1 l/min. Astia on muodoltaan katkaistu suora ympyräkartio,
Lisätiedot