Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28
|
|
- Pauliina Ahonen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät / 28
2 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä Luento 5 () Numeeriset menetelmät / 28
3 Luku 4. Ominaisarvotehtävistä Ominaisarvotehtäviin törmätään monilla tieteenaloilla: rakenneanalyysissä ominaisarvotehtävän ratkaisu antaa rakenteen (laiva tai lentokone) ominaisvärähtelytaajuudet. kvanttifysiikassa systeemejä kuvataan Schrödingerin yhtälöllä, jonka ominaisarvot ovat eri tilojen energiat. makrotalousmalleissa niin sanottujen tasapainotettujen hinnoittelustrategioiden ja tuotantorakenteiden määrittäminen johtaa ominaisarvotehtäviin. Luento 5 () Numeeriset menetelmät / 28
4 4.1 Algebrallinen ominaisarvotehtävä 4.1 Algebrallinen ominaisarvotehtävä Skalaari λ on n n neliömatriisin A ominaisarvo, jos on olemassa vektori x 0, s.e. Ax = λx. (1) Vektoria x sanotaan ominaisvektoriksi. Matriisin ominaisarvojen muodostama joukko on matriisin spektri. Ominaisarvot ovat ne parametrin λ arvot, joilla yhtälöllä (A λi )x = 0 on nollasta poikkeava ratkaisu. Ominaisarvoa vastaava ominaisvektori ei ole yksikäsitteinen: Jos x on ominaisvektori ja α 0 mielivaltainen vakio, niin αx on myös ominaisvektori. Luento 5 () Numeeriset menetelmät / 28
5 4.1 Algebrallinen ominaisarvotehtävä Algebrallinen omin.arvotehtävä jatkuu Ominaisarvot ovat karakteristisen polynomin p n (λ) := det(a λi ) nollakohdat. Koska n-asteisella polynomilla on täsmälleen n kompleksista juurta, on ominaisarvojakin n kappaletta. Niitä merkitään yleensä symboleilla λ 1,..., λ n. Reaalisenkin matriisin ominaisarvot voivat olla kompleksisia. Symmetrisen matriisin ominaisarvot ovat kuitenkin aina reaalisia. Luento 5 () Numeeriset menetelmät / 28
6 4.1 Algebrallinen ominaisarvotehtävä Algebrallinen omin.arvotehtävä jatkuu Ominaisarvon algebrallinen kertaluku kertoo, kuinka moninkertainen karakteristisen polynomin juuri ominaisarvo on. Geometrinen kertaluku on ominaisarvoon liittyvien lineaarisesti riippumattomien ominaisvektoreiden lukumäärä. Jos algebrallinen kertaluku on suurempi kuin geometrinen kertaluku, ominaisarvoa sanotaan defektiiviseksi. Luento 5 () Numeeriset menetelmät / 28
7 Esimerkki 4.1. Luku 4: Ominaisarvotehtvistä 4.1 Algebrallinen ominaisarvotehtävä Tarkastellaan matriisia A: λ 0 0 A = ; λi = 0 λ λ A:n karakteristinen polynomi on det(a λi ) = 3 λ λ 1 = (3 λ) 2 λ λ λ ( 1) λ = = λ 3 + 8λ 2 19λ + 12 = p 3 (λ). Luento 5 () Numeeriset menetelmät / 28
8 Esimerkki 4.1. jatkuu 4.1 Algebrallinen ominaisarvotehtävä Ratkaistaan p 3 (λ) = 0 ja saadaan λ 1 = 1, λ 2 = 3 ja λ 3 = 4. Sijoitetaan λ 1 = 1 yhtälöön (A λ 1 I )x = 0; x 1 2x 1 x 2 = x 2 = 0 x 1 + x 2 x 3 = x 3 x 2 + 2x 3 = 0, mistä saadaan x 2 = 2x 1 ja x 3 = x 1 + 2x 1 = x 1. Siten λ 1 :stä vastaava ominaisvektori on x 1 = (x 1, 2x 1, x 1 ). Merkitään x 1 = a, a R x 1 = (a, 2a, a). Luento 5 () Numeeriset menetelmät / 28
9 Esimerkki 4.1. jatkuu 4.1 Algebrallinen ominaisarvotehtävä Sijoitetaan λ 2 = 3 yhtälöön (A λ 2 I )x = 0; x 1 x 2 = x 2 = 0 x 1 x 2 x 3 = x 3 x 2 = 0, mistä saadaan x 2 = 0 ja x 3 = x 1. Siten λ 2 :stä vastaava ominaisvektori on x 2 = (x 1, 0, x 1 ). Merkitään x 1 = b, b R x 2 = (b, 0, b). Vastaavalla tavalla saadaan λ 3 :sta vastaava ominaisvektori x 3 = (c, c, c). Luento 5 () Numeeriset menetelmät / 28
10 4.1 Algebrallinen ominaisarvotehtävä Esimerkki: 1D Schrödingerin yhtälö Kuvaa kvanttimekaanisten systeemien riippuvuuksia Kun hiukkanen liikkuu potentiaalin U(x) alaisena, niin hiukkasen tilafunktio Ψ(x) toteuttaa Schrödingerin yhtälön { Ψ (x) + au(x)ψ(x) = λψ(x), 0 < x < 1 Ψ(0) = Ψ(1) = 0 Ψ(x) - systeemin tilat λ - tilojen energiat Ajasta riippumaton Schrödingerin yhtälö, ts. systeemin energia ei muutu ajan funktiona vaan paikan x funktiona. Luento 5 () Numeeriset menetelmät / 28
11 4.1 Algebrallinen ominaisarvotehtävä Esimerkki: 1D Schrödingerin yhtälö jatkuu Diskretisoidaan yhtälö differenssimenetelmällä: (i = 1,.., n) Ψ(x i h) + 2Ψ(x i ) Ψ(x i + h) h 2 + au(x i )Ψ(x i ) = λψ(x i ), matriisimuodossa 2 2 h 2 + au(x 1 ) 1 h h 2 h 2 + au(x 2 ) 1 h h h 2 h 2 + au(x n) Algebrallinen ominaisarvotehtävä AΨ = λψ Ψ 1 Ψ 2. Ψ n 1 Ψ n 3 2 = λ Ψ 1 Ψ 2. Ψ n 1 Ψ n Luento 5 () Numeeriset menetelmät / 28
12 4.1 Algebrallinen ominaisarvotehtävä Ominaisarvojen numeerinen laskeminen Ominaisarvojen ja -vektorien numeerinen laskeminen on paljon työläämpää kuin lineaarisen yhtälöryhmän ratkaiseminen. Toisin kuin lineaarisen yhtälöryhmän tapauksessa, yleiset ominaisarvotehtävien ratkaisumenetelmät ovat aina iteratiivisia. Vaikka ominaisarvot voidaan periaatteessa laskea polynomien juurten laskemiseen tarkoitetuilla algoritmeilla, ei näin kannata menetellä juuri koskaan. Päinvastoin, polynomien juuret kannattaa laskea ominaisarvojen laskemiseen tarkoitetuilla algoritmeilla! Luento 5 () Numeeriset menetelmät / 28
13 4.2. Potenssiinkorotusmenetelmät 4.2. Potenssiinkorotusmenetelmät Olkoon matriisin A ominaisarvoille voimassa λ 1 > λ 2 λ 3... λ n. Oletetaan lisäksi, että vastaavat ominaisvektorit on normeerattu siten, että v (j) = 1, j = 1,..., n. Likiarvo itseisarvoltaan suurimmalle ominaisarvolle λ 1 ja sitä vastaavalle ominaisvektorille v (1) voidaan laskea iteratiivisesti seuraavalla tavalla: Luento 5 () Numeeriset menetelmät / 28
14 4.2. Potenssiinkorotusmenetelmät Potenssiinkorotusmenetelmä jatkuu Olkoon x (0) alkuarvaus ominaisvektorille v (1). Muodostetaan jonot {x (k) } ja {c k } seuraavasti: y (k) = Ax (k), c k+1 = y (k) j, missä j valittu s.e. y (k) (k) j = max { y p } 1 p n x (k+1) = 1 y (k). c k+1 Voidaan osoittaa, että lim x (k) = v (1), k lim c k = λ 1. k Luento 5 () Numeeriset menetelmät / 28
15 Osoitetaan, että x (k) v (1) 4.2. Potenssiinkorotusmenetelmät Oletetaan, että alkuarvaus x (0) voidaan esittää normeerattujen ominaisvektorien lineaarikombinaationa x (0) = β 1 v (1) + β 2 v (2) β n v (n) siten, että β 1 0, ts. että ominaisvektorit v (i) muodostavat R n :n kannan. Tällöin saadaan x (k) 1 ( = β1 λ k c 1 c 2... c 1v (1) + β 2 λ k 2v (2) β n λ k nv (n)) k ( ( ) λ k k ( ) ) k 1 = β 1 v (1) λ2 + β 2 v (2) λn β n v (n). c 1 c 2... c k λ 1 λ 1 Luento 5 () Numeeriset menetelmät / 28
16 4.2. Potenssiinkorotusmenetelmät Osoitetaan, että x (k) v (1) (cont.) Edellä saatiin ( ( ) x (k) λ k k ( ) ) k 1 = β 1 v (1) λ2 + β 2 v (2) λn β n v (n). c 1 c 2... c k λ 1 λ 1 Alkuperäisestä oletuksesta seuraa λ i λ 1 < 1, kun i > 1. Siten ( ) k λi lim = 0 k λ 1 ja edelleen lim x (k) = λk 1β 1 v (1). k c 1 c 2... c k Luento 5 () Numeeriset menetelmät / 28
17 4.2. Potenssiinkorotusmenetelmät Osoitetaan, että x (k) v (1) (cont.) Ominaisvektori kerrottuna vakiolla on edelleen samaan ominaisarvoon liittyvä ominaisvektori. x (k) konvergoi λ 1 :een liittyvään ominaisvektoriin. Lisäksi voidaan osoittaa, että lim c k = λ 1. k Luento 5 () Numeeriset menetelmät / 28
18 4.2. Potenssiinkorotusmenetelmät Potenssiinkorotusmenetelmä jatkuu Menetelmä on yksinkertainen. Konvergenssi on hidasta, jos λ 1 λ 2 1. Etukäteen voi olla vaikea tietää, ovatko menetelmän vaatimat oletukset voimassa. (ts. λ 1 > λ i, v (j) lineaarisesti riippumattomia, β 1 0) Luento 5 () Numeeriset menetelmät / 28
19 4.2. Potenssiinkorotusmenetelmät Siirretty käänteinen potenssiinkorotusmenetelmä Samaa ideaa voidaan käyttää muidenkin ominaisarvojen laskemiseen. Tämä perustuu seuraavaan huomioon: Jos (λ, v) on matriisin A ominaispari, niin ((λ σ) 1, v) on matriisin (A σi ) 1 ominaispari. Olkoon A:n ominaisarvot reaaliset ja λ 1 > λ 2 >... > λ n. Lukua σ lähimpänä oleva ominaisarvo voidaan laskea korvaamalla potenssimenetelmän askel y (k) = Ax (k) seuraavalla: y (k) = (A σi ) 1 x (k). Luento 5 () Numeeriset menetelmät / 28
20 4.2. Potenssiinkorotusmenetelmät Siirretty käänteinen potenssiinkorotusmenetelmä Käänteismatriisia ei muodosteta eksplisiittisesti, vaan käytännössä ratkaistaan (A σi )y (k) = x (k) esim. LU-hajotelmaa käyttäen. Matriisien A ja (A σi ) 1 ominaisvektorit ovat samat, ts. algoritmiin ei tarvitse tehdä muita muutoksia. Huomaa, että nyt c k 1, ts. haluttu ominaisarvo saadaan λ σ kaavasta λ = σ + 1 c k. Itseisarvoltaan pienin ominaisarvo λ n, mikäli λ n < λ n 1, saadaan asettamalla σ = 0. Luento 5 () Numeeriset menetelmät / 28
21 4.3. QR-menetelmä 4.3. QR-menetelmä Olkoon Q kääntyvä matriisi. Tällöin matriisit A ja Q 1 AQ ovat similaarisia, eli niillä on samat ominaisarvot. Lisäksi, jos x on matriisin A ominaisvektori, niin Q 1 x on matriisin Q 1 AQ ominaisvektori. Oletetaan, että A:n ominaisarvot ovat reaaliset ja yksinkertaiset. QR-hajotelma: Jokainen matriisi A voidaan esittää ortogonaalimatriisin Q (eli Q 1 = Q T ) ja yläkolmiomatrisin R tulona A = QR. Luento 5 () Numeeriset menetelmät / 28
22 QR-menetelmä jatkuu 4.3. QR-menetelmä Olkoon A (0) := A annettu matriisi. Muodostetaan jono matriiseja {A (k) } seuraavasti: Tehdään QR-hajotelma A (0) :lle: Asetetaan A (0) = Q (0) R (0) (Q (0) ) 1 A (0) = R (0). A (1) = R (0) Q (0) ja sijoitetaan edellä ratkaistu R (0) : A (1) = (Q (0) ) 1 A (0) Q (0). matriisit A (0) ja A (1) ovat similaarisia, eli niillä on samat ominaisarvot. Luento 5 () Numeeriset menetelmät / 28
23 QR-menetelmä jatkuu 4.3. QR-menetelmä Iteraatiolla k + 1: Tehdään QR-hajotelma A (k) :lle: Asetetaan A (k) = Q (k) R (k) (Q (k) ) 1 A (k) = R (k). A (k+1) = R (k) Q (k) = (Q (k) ) 1 A (k) Q (k), ts. matriiseilla A (k) ja A (k+1) on samat ominaisarvot. Nyt matriisien jono {A (k) } lähenee yläkolmiomatriisia (tai diagonaalimatriisia, jos A on symmetrinen), jolla on samat ominaisarvot kuin matriisilla A = A (0). Luento 5 () Numeeriset menetelmät / 28
24 QR-menetelmä jatkuu 4.3. QR-menetelmä Sekä kolmiomatriisin, että diagonaalimatriisin ominaisarvot ovat diagonaalilla, ts. jono {A (k) } lähenee matriisia λ λ 2 jossa A:n ominaisarvot Λ = , sijaitsevat diagonaalilla λ n QR-hajotelman laskeminen täydelle matriisille on työlästä käytännössä A muunnetaan aluksi lähes yläkolmio- matriisiksi, ns. Hessenberg-muotoon, jolle QR-hajotelma on laskennallisesti edullisempi muodostaa. Luento 5 () Numeeriset menetelmät / 28
25 Esimerkki 4.2. Luku 4: Ominaisarvotehtvistä 4.3. QR-menetelmä k 1 m k 2 1 m k 3 2 m 3 Tarkastellaan kuvan yksinkertaista jousi-massa-systeemiä. Jos jätetään kitka huomiotta, niin massojen m i poikkeamat x i (t) vaakasuuntaan lepotilasta voidaan laskea differentiaaliyhtälöryhmästä (k 1 + k 2 )x 1 (t) k 2 x 2 (t) = m 1 x 1 (t) k 2 x 1 (t) + (k 2 + k 3 )x 2 (t) = m 2 x 2 (t) k 3 x 2 (t) + k 3 x 3 (t) = m 3 x 3 (t). Luento 5 () Numeeriset menetelmät / 28
26 Esimerkki 4.2. jatkuu 4.3. QR-menetelmä Etsitään tilannetta, jossa kaikki massat värähtelevät samalla (tuntemattomalla) taajuudella ω. Tehdään yrite x i (t) = v i cos(ωt), i = 1, 2, 3, missä v = (v 1, v 2, v 3 ) on tuntematon vektori. Sijoittamalla yrite ed. kalvon yhtälöihin havaitaan, että ω:n ja v:n on toteutettava yhtälöryhmä (tässä λ = ω 2 ) k 1 +k 2 k 2 m 1 m 1 0 k 2 k 2 +k 3 k 3 m 2 m 2 m 2 k 0 3 k 3 m 3 m 3 v 1 v 2 v 3 = λ Ominaisarvotehtävän ratkaisuksi saadaan jousi massa-systeemin kolme ominaisvärähtelytaajuutta ja ominaismuotoa, jotka vastaavat eo. yhtälön kolmea ominaisparia (λ i, v (i) ), i = 1, 2, 3. Luento 5 () Numeeriset menetelmät / 28 v 1 v 2 v 3.
27 Esimerkki 4.2. jatkuu 4.3. QR-menetelmä Olkoon yksinkertaisuuden vuoksi m i = k i = 1, i = 1, 2, 3. Lasketaan ominaisarvot QR-menetelmällä A (1) = , A (3) = A (6) = , A (9) = Omin.arvojen likiarvot ovat λ , λ , λ Luento 5 () Numeeriset menetelmät / 28
28 Esimerkki 4.2. jatkuu 4.3. QR-menetelmä A symmetrinen A (k) diagonaalimatr. diagonaalilla. omin. arvot Saadaan ominaisvärähtelytaajuudet ω i (λ i = ω 2 i ) Saadaan ominaisvektorit v (i) Systeemin ominaismuodot saadaan sijoittamalla ω i, v (i) x i (t):n lausekkeeseen Kurssin www-sivulla jousi massa-systeemin ominaismuodot esitettynä animaationa ajan suhteen. Luento 5 () Numeeriset menetelmät / 28
Numeeriset menetelmät
Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi
5 OMINAISARVOT JA OMINAISVEKTORIT
5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä
Esimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt
Esimerkki 4.4. Määrää matriisin 2 2 1 A = 1 3 1 2 4 3 ominaisarvot ja -vektorit. Ratk. Nyt det(a λi ) = 1 + 2 λ 2 1 + 1 λ 1 λ 1 3 λ 1 = 1 3 λ 1 2 4 3 λ 2 4 3 λ 1 λ = 1 4 λ 1 = (1 λ)( 1)1+1 4 λ 1 2 6 3
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Antti Rasila 2016 Ominaisarvot ja ominaisvektorit 1/5 Määritelmä Skalaari λ C on matriisin A C n n ominaisarvo ja vektori v C n sitä
Numeeriset menetelmät
Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma
MS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41
MS-A0004/MS-A0006 Matriisilaskenta, I/06 Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 4 Tehtävä 5 (L): a) Oletetaan, että λ 0 on kääntyvän matriisin A ominaisarvo. Osoita, että /λ on matriisin A
Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?
Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi
Matriisilaskenta Luento 8: LU-hajotelma
Matriisilaskenta Luento 8: LU-hajotelma Antti Rasila 2016 Matriisihajotelmat 1/2 Usein matriisiyhtälön Ax = y ratkaiseminen on epäkäytännöllistä ja hidasta. Siksi numeerisessa matriisilaskennassa usein
5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
Numeeriset menetelmät TIEA381. Luento 4. Kirsi Valjus. Jyväskylän yliopisto. Luento 4 () Numeeriset menetelmät / 44
Numeeriset menetelmät TIEA381 Luento 4 Kirsi Valjus Jyväskylän yliopisto Luento 4 () Numeeriset menetelmät 21.3.2013 1 / 44 Luennon 4 sisältö Lineaarisen yhtälöryhmän ratkaisemisesta: Choleskyn menetelmä
Ominaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät
Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:
Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35
Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen
Similaarisuus. Määritelmä. Huom.
Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP
Ominaisarvo-hajoitelma ja diagonalisointi
Ominaisarvo-hajoitelma ja a 1 Lause 1: Jos reaalisella n n matriisilla A on n eri suurta reaalista ominaisarvoa λ 1,λ 2,...,λ n, λ i λ j, kun i j, niin vastaavat ominaisvektorit x 1, x 2,..., x n muodostavat
Ominaisarvot ja ominaisvektorit 140 / 170
Ominaisarvot ja ominaisvektorit 140 / 170 Seuraavissa luvuissa matriisit ja vektori ajatellaan kompleksisiksi, ts. kertojakuntana oletetaan olevan aina kompleksilukujoukko C Huomaa, että reaalilukujoukko
Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden
MS-A0003/A Matriisilaskenta Laskuharjoitus 6
MS-A3/A - Matriisilaskenta Laskuharjoitus 6 Ratkaisuehdotelmia. Diagonalisointi on hajotelma A SΛS, jossa diagonaalimatriisi Λ sisältää matriisin A ominaisarvot ja matriisin S sarakkeet ovat näitä ominaisarvoja
1 Ominaisarvot ja ominaisvektorit
1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).
Numeeriset menetelmät
Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b
Matematiikka B2 - TUDI
Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48
MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?
(0 desimaalia, 2 merkitsevää numeroa).
NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx
Johdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 5. luento.2.27 Lineaarialgebraa - Miksi? Neuroverkon parametreihin liittyvät kaavat annetaan monesti
Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.
Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (
Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja
7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien
Paikannuksen matematiikka MAT
TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y M a t h e m a t i c s Paikannuksen matematiikka MAT-45800 4..008. p.1/4 Käytännön järjestelyt Kotisivu: http://math.tut.fi/courses/mat-45800/ Luennot:
Numeeriset menetelmät TIEA381. Luento 3. Kirsi Valjus. Jyväskylän yliopisto. Luento 3 () Numeeriset menetelmät / 45
Numeeriset menetelmät TIEA381 Luento 3 Kirsi Valjus Jyväskylän yliopisto Luento 3 () Numeeriset menetelmät 20.3.2013 1 / 45 Luennon 3 sisältö Luku 2: Epälineaarisen yhtälön ratkaiseminen Polynomin reaaliset
Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen
Lineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
1 Matriisit ja lineaariset yhtälöryhmät
1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n
Inversio-ongelmien laskennallinen peruskurssi Luento 7 8
Inversio-ongelmien laskennallinen peruskurssi Luento 7 8 Kevät 2011 1 Iteratiivisista menetelmistä Tähän mennessä on tarkasteltu niin sanottuja suoria menetelmiä, joissa (likimääräinen) ratkaisu saadaan
6 MATRIISIN DIAGONALISOINTI
6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,
OMINAISARVOISTA JA OMINAISVEKTOREISTA
1 OMINAISARVOISTA JA OMINAISVEKTOREISTA Olkoon x = (x 1,..., x n ) avaruuden R n piste (l. vektori). Vektori x samaistetaan n 1-matriisin (x 1 x 2... x n ) T kanssa, ts. voidaan yhtä hyvin kirjoittaa x1
Kanta ja Kannan-vaihto
ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V
C = {(x,y) x,y R} joiden joukossa on määritelty yhteen- ja kertolasku seuraavasti
Vaasan yliopiston julkaisuja 189 9 OMINAISARVOTEHTÄVÄ Ch:EigSystem Sec:CMatrix 9.1 Kompleksinen lineaariavaruus 9.1.1 Kompleksiluvut Pian tulemme tarvitsemaan kompleksisen lineaariavaruuden alkeita. Tätä
Milloin A diagonalisoituva?
Milloin A diagonalisoituva? ) Oletus: A on diagonalisoituva eli D = TAT, jollakin D = diag(λ, λ 2,..., λ n ). A:n ja D:n ominaisarvot ovat samat λ, λ 2,..., λ n ovat myös A:n ominaisarvot... D e i = D
Matematiikka B2 - Avoin yliopisto
6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma
Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg
Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
Matemaattinen Analyysi / kertaus
Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen
ominaisvektorit. Nyt 2 3 6
Esimerkki 2 6 8 Olkoon A = 40 0 6 5. Etsitäänmatriisinominaisarvotja 0 0 2 ominaisvektorit. Nyt 2 0 2 6 8 2 6 8 I A = 40 05 40 0 6 5 = 4 0 6 5 0 0 0 0 2 0 0 2 15 / 172 Täten c A ( )=det( I A) =( ) ( 2)
Ortogonaalisen kannan etsiminen
Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,
4 Korkeamman kertaluvun differentiaaliyhtälöt
Differentiaaliyhtälöt c Pekka Alestalo 2015 Tässä monisteessa käydään läpi tavallisiin differentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Luennolla lasketaan esimerkkitehtäviä
Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu
Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma
5 Differentiaaliyhtälöryhmät
5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =
Inversio-ongelmien laskennallinen peruskurssi Luento 3
Inversio-ongelmien laskennallinen peruskurssi Luento 3 Kevät 2011 1 Singulaariarvohajotelma (Singular Value Decomposition, SVD) Olkoon A R m n matriisi 1. Tällöin A voidaan esittää muodossa A = UΣV T,
Inversio-ongelmien laskennallinen peruskurssi Luento 2
Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +
Iteratiiviset ratkaisumenetelmät
Iteratiiviset ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Yleinen iteraatio Lineaarisen yhtälöryhmän iteratiivinen ratkaisumenetelmä voidaan esittää muodossa: Anna alkuarvaus: x 0 R n
Ominaisarvo ja ominaisvektori
Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
Numeeriset menetelmät TIEA381. Luento 7. Kirsi Valjus. Jyväskylän yliopisto. Luento 7 () Numeeriset menetelmät / 43
Numeeriset menetelmät TIEA381 Luento 7 Kirsi Valjus Jyväskylän yliopisto Luento 7 () Numeeriset menetelmät 10.4.2013 1 / 43 Luennon 7 sisältö Interpolointi ja approksimointi Interpolaatiovirheestä Paloittainen
Numeeriset menetelmät
Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
Matematiikka B3 - Avoin yliopisto
2. heinäkuuta 2009 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Lisäharjoitustehtävä Kurssin sisältö (1/2) 1. asteen Differentiaali yhtälöt (1.DY) Separoituva Ratkaisukaava Bernoyulli
Ortogonaaliset matriisit, määritelmä 1
, määritelmä 1 Määritelmä (a). Neliömatriisi Q on ortogonaalinen, jos Q T Q = I. Määritelmästä voidaan antaa samaa tarkoittavat, mutta erilaiselta näyttävät muodot: Määritelmä (b). n n neliömatriisi Q,
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
Matriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 48, , c)
Matriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 48, 2017 R Alkuviikko TEHTÄVÄ J1 Laske Gaussin algoritmilla ja Sarrus n säännöllä seuraavat determinantit: 2 3 1 a) 1 2 0 1 4 3, b) 0 2
Luento 5: Suurten lineaaristen yhtälöryhmien ratkaiseminen iteratiivisilla menetelmillä
Luento 5: Suurten lineaaristen yhtälöryhmien ratkaiseminen iteratiivisilla menetelmillä Matriisit voivat olla kooltaan niin suuria, että LU-hajotelman laskeminen ei ole järkevä tapa ratkaista lineaarista
Luento 9: Newtonin iteraation sovellus: optimointiongelma
Luento 9: Newtonin iteraation sovellus: optimointiongelma ilman rajoitusehtoja Optimointiongelmassa tehtävänä on löytää annetun reaaliarvoisen jatkuvan funktion f(x 1,x,,x n ) maksimi tai minimi jossain
6. OMINAISARVOT JA DIAGONALISOINTI
0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos
Numeeriset menetelmät
Numeeriset menetelmät Luento 12 To 13.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 12 To 13.10.2011 p. 1/38 p. 1/38 Tavalliset differentiaaliyhtälöt Yhtälöissä tuntematon funktio Tavalliset
LU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24
LU-hajotelma 1 / 24 LU-hajotelma Seuravassa tarkastellaan kuinka neliömatriisi voidaan esittää kahden kolmiomatriisin tulona. Käytämme alkeismatriiseja tälläisen esityksen löytämiseen. Edellä mainittua
Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
Lineaarialgebra, kertausta aiheita
Lineaarialgebra, kertausta aiheita Matriisitulo käänteismatriisi determinantin kehittäminen determinantin ominaisuudet adjungaatti ja Cramerin kaavat yhtälöryhmän eri esitystavat Gauss-Jordan -algoritmi
17. Differentiaaliyhtälösysteemien laadullista teoriaa.
99 17. Differentiaaliyhtälösysteemien laadullista teoriaa. Differentiaaliyhtälön x'(t) = f(x(t),t), x(t) n määrittelemän systeemin sanotaan olevan autonominen, jos oikea puoli ei eksplisiittisesti riipu
Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu
Talousmatematiikan perusteet: Luento 14 Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Luennolla 6 Tarkastelimme yhden muuttujan funktion f(x) rajoittamatonta optimointia
Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1
Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016
Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,
Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä
2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.
2. kl:n DY:t Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.) Lause Olkoon f(x 2, x 1, t) funktio, ja oletetaan, että f, f/ x 1 ja f/ x
ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 7, Syksy 206 Tutkitaan yhtälöryhmää x + y + z 0 2x + y + az b ax + y + 2z 0 (a) Jos a 0 ja b 0 niin mikä on yhtälöryhmän ratkaisu? Tulkitse ratkaisu
Matriisihajotelmat. MS-A0007 Matriisilaskenta. 5.1 Diagonalisointi. 5.1 Diagonalisointi
MS-A0007 Matriisilaskenta 5. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 25.11.2015 Laskentaongelmissa käsiteltävät matriisit ovat tyypillisesti valtavia.
1 Peruskäsitteet. Dierentiaaliyhtälöt
Teknillinen korkeakoulu Matematiikka Dierentiaaliyhtälöt Alestalo Tässä monisteessa käydään läpi tavallisiin dierentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Esimerkkejä luennoilla
Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut
MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A
Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
MATRIISIN HESSENBERGIN MUOTO. Niko Holopainen
MATRIISIN HESSENBERGIN MUOTO Niko Holopainen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Syksy 2013 Tiivistelmä: Niko Holopainen, Matriisin Hessenbergin muoto Matematiikan
Lineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä
2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio
x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A
Lineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.
Luento 11: Rajoitusehdot. Ulkopistemenetelmät
Luento 11: Rajoitusehdot. Ulkopistemenetelmät ja sisäpistemenetelmät Lagrangen välttämättömien ehtojen ratkaiseminen Newtonin menetelmällä Jos tehtävässä on vain yhtälörajoituksia, voidaan minimipistekandidaatteja
Ratkaisuehdotukset LH 7 / vko 47
MS-C34 Lineaarialgebra, II/7 Ratkaisuehdotukset LH 7 / vko 47 Tehtävä : Olkoot M R symmetrinen ja positiividefiniitti matriisi (i) Näytä, että m > ja m > (ii) Etsi Eliminaatiomatriisi E R siten, että [
Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104
Lineaarialgebra (muut ko) p. 1/104 Ensi viikolla luennot salissa X Torstaina 7.12. viimeiset demot (12.12. ja 13.12. viimeiset luennot). Torstaina 14.12 on välikoe 2, muista ilmoittautua! Demorastitiedot
Luento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään
Matriisialgebra harjoitukset, syksy 2016
Matriisialgebra harjoitukset, syksy 6 MATRIISIALGEBRA, s. 6, Ratkaisuja/ M.Hamina & M. Peltola 8. Olkoon 4 A 6. 4 Tutki, onko A diagonalisoituva. Jos on, niin määrää matriisi D T AT ja siihen liittyvä
Luento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään
Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
Determinantti 1 / 30
1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon
ja F =
MATRIISIALGEBRA Harjoitustehtäviä syksy 2016 Tehtävissä 1 ja 2a käytetään seuraavia matriiseja: ( ) 6 2 3 A =,B = 7 1 2 2 3,C = 4 4 2 5 3,E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1.
6. Differentiaaliyhtälösysteemien laadullista teoriaa.
1 MAT-13450 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 2010 6. Differentiaaliyhtälösysteemien laadullista teoriaa. Olemme keskittyneet tässä kurssissa ensimmäisen kertaluvun