Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
|
|
- Pauli Ahonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1
2 Momenttiemäfunktio ja karakteristinen funktio >> Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita Jatkuvien jakaumien momenttiemäfunktioita Karakteristinen funktio TKK (c) Ilkka Mellin (7)
3 Momenttiemäfunktio Momenttiemäfunktion määritelmä Olkoon X satunnaismuuttuja. Oletetaan, että odotusarvo m X (t) = E(e tx ) on olemassa kaikille t ( h, +h) jossa h > on vakio. Tällöin funktiota m X (t) kutsutaan satunnaismuuttujan X ja sen jakauman momenttiemäfunktioksi eli momentit generoivaksi funktioksi (mgf). TKK (c) Ilkka Mellin (7) 3
4 Momenttiemäfunktio Momenttiemäfunktion määritelmä: Kommentteja 1/ Satunnaismuuttujan momenttiemäfunktio eli momentit generoiva funktio ei välttämättä ole olemassa. Momenttiemäfunktion m X (t) = E(e tx ) olemassaolo tarkoittaa sitä, että odotusarvo E(e tx ) on äärellinen. TKK (c) Ilkka Mellin (7) 4
5 Momenttiemäfunktio Momenttiemäfunktion määritelmä: Kommentteja / Satunnaismuuttujan X momenttiemäfunktio m X (t) = E(e tx ) on argumentin t funktio. Jos satunnaismuuttujan X momenttiemäfunktio m X (t) on olemassa, niin m X () = E(e ) = E(1) = 1 TKK (c) Ilkka Mellin (7) 5
6 Momenttiemäfunktio Diskreettien satunnaismuuttujien momenttiemäfunktio Olkoon X diskreetti satunnaismuuttuja, jonka pistetodennäköisyysfunktio on f(x) =Pr(X = x) Jos satunnaismuuttujan X momenttiemäfunktio on olemassa, niin se saadaan kaavalla tx tx m () t E( e ) e f( x) X = = x TKK (c) Ilkka Mellin (7) 6
7 Momenttiemäfunktio Jatkuvien satunnaismuuttujien momenttiemäfunktio Olkoon X jatkuva satunnaismuuttuja, jonka tiheysfunktio on f(x) Jos satunnaismuuttujan X momenttiemäfunktio on olemassa, niin se saadaan kaavalla + () E( tx tx mx t = e ) = e f( x) dx TKK (c) Ilkka Mellin (7) 7
8 Momenttiemäfunktio Momenttiemäfunktion yksikäsitteisyys Jos satunnaismuuttujan X momenttiemäfunktio m X (t) = E(e tx ) on olemassa jossakin pisteen t = ympäristössä, se on yksikäsitteinen ja määrää täysin satunnaismuuttujan X todennäköisyysjakauman. Tämä merkitsee seuraavaa: Jos satunnaismuuttujilla U ja V on sama momenttiemäfunktio, satunnaismuuttujat U ja V noudattavat samaa todennäköisyysjakaumaa. TKK (c) Ilkka Mellin (7) 8
9 Momenttiemäfunktio Momenttiemäfunktion yksikäsitteisyys: Seuraus 1/ Momenttiemäfunktion yksikäsitteisyyttä käytetään usein hyväksi todennäköisyyslaskennassa ja matemaattisessa tilastotieteessä seuraavassa tilanteessa: Tehtävänä on selvittää, mikä on satunnaismuuttujan U jakauma. TKK (c) Ilkka Mellin (7) 9
10 Momenttiemäfunktio Momenttiemäfunktion yksikäsitteisyys: Seuraus / Oletetaan, että voimme todistaa, että satunnaismuuttujan U momenttiemäfunktio m U (t) yhtyy pisteen t = ympäristössä satunnaismuuttujan V momenttiemäfunktioon m V (t) jonka todennäköisyysjakauma tunnetaan. Tällöin momenttiemäfunktion yksikäsitteisyydestä seuraa, että satunnaismuuttuja U noudattaa samaa jakaumaa kuin satunnaismuuttuja V. TKK (c) Ilkka Mellin (7) 1
11 Momenttiemäfunktio Momenttiemäfunktio ja satunnaismuuttujan momentit Olkoon m X (t) = E(e tx ) satunnaismuuttujan X momenttiemäfunktio eli momentit generoiva funktio. Momentit generoivalla funktiolla m X (t) on kaikkien kertalukujen derivaatat pisteessä t = ja k dmx() t k = E( X ) = αk, k = 1,,3, k dt jossa α k = E(X k ) on satunnaismuuttujan X k. (origo-) momentti. TKK (c) Ilkka Mellin (7) 11
12 Momenttiemäfunktio Momenttiemäfunktio ja satunnaismuuttujan momentit: Perustelu Olkoon m X (t) = E(e tx ) satunnaismuuttujan X momentit generoiva funktio. Tällöin k dmx() t d = k dt dt k k tx E( e ) k d tx = E k e dt k tx = E( X e ) k = E( X ) = α k TKK (c) Ilkka Mellin (7) 1
13 Momenttiemäfunktio Momenttiemäfunktio ja satunnaismuuttujan momenttien määrääminen Satunnaismuuttujan ja sen jakauman momentit voidaan johtaa kätevästi käyttämällä hyväksi jakauman momentit generoivan funktion derivaattoja; ks. edellisiä kalvoja. TKK (c) Ilkka Mellin (7) 13
14 Momenttiemäfunktio Momenttiemäfunktio ja satunnaismuuttujan odotusarvo ja varianssi Satunnaismuuttujan X odotusarvo µ,. momentti α ja varianssi σ saadaan seuraavilla kaavoilla: dmx () t µ = α1 = E( X ) = dt α dmx() t = E( X ) = dt = Var( X) = E[( X ) ] = 1 σ µ α α TKK (c) Ilkka Mellin (7) 14
15 Momenttiemäfunktio Momenttiemäfunktion Taylorin sarjakehitelmä Olkoon m X (t) = E(e tx ) satunnaismuuttujan X momenttiemäfunktio. Momenttiemäfunktio m X (t) voidaan kehittää Taylorin sarjaksi k k t k t mx() t = E( X ) = k k k! k k! α = = jossa k α k = E( X ) on satunnaismuuttujan Xk.momentti. TKK (c) Ilkka Mellin (7) 15
16 Momenttiemäfunktio Momenttiemäfunktion Taylorin sarjakehitelmä: Johto Olkoon m X (t) = E(e tx ) satunnaismuuttujan X momenttiemäfunktio. Kehitetään eksponenttifunktio e tx Taylorin sarjaksi: k tx ( tx ) e = k! k= Ottamalla tästä sarjakehitelmästä odotusarvo saadaan: k tx ( tx ) mx () t = E( e ) = E k= k! k t k = E( X ) k= k! k t = k k! α k= TKK (c) Ilkka Mellin (7) 16
17 Momenttiemäfunktio Momenttiemäfunktion Taylorin sarjakehitelmä ja satunnaismuuttujan momentit Olkoon j j tx t j t mx() t = E( e ) = E( X ) = j j j! j j! α = = satunnaismuuttujan X momenttiemäfunktion Taylorin sarjakehitelmä. Derivoidaan tämä sarjakehitelmä termeittäin t:n suhteen: k j j dmx() t t j+ k t = E( X ) = j k, k 1,,3, k dt j! j! α + = j= j= Valitsemalla tässä t =, saadaan tulos: k dmx() t k = E( X ) = αk, k = 1,,3, k dt TKK (c) Ilkka Mellin (7) 17
18 Momenttiemäfunktio Satunnaismuuttujan lineaarimuunnoksen momenttiemäfunktio Olkoon m X (t) = E(e tx ) satunnaismuuttujan X momenttiemäfunktio. Olkoon Y = a + bx jossa a ja b ovat ei-satunnaisia vakioita. Satunnaismuuttujan Y momenttiemäfunktio on m Y (t) = e at m X (bt) Erityisesti, jos a =, niin m Y (t) = m X (bt) TKK (c) Ilkka Mellin (7) 18
19 Momenttiemäfunktio Satunnaismuuttujan lineaarimuunnoksen momenttiemäfunktio: Perustelu Olkoon satunnaismuuttujan X momenttiemäfunktio mx () t = E[exp( tx)] ja olkoon Y = a + bx jossa a ja b ovat ei-satunnaisia vakio. Tällöin satunnaismuuttujan Y momenttiemäfunktio on muotoa my () t = E[exp( ty)] = E[exp( ta ( + bx))] = E[exp( ta)exp( tbx )] = exp( at)e[exp(( bt) X )] = exp( at) m ( bt) X TKK (c) Ilkka Mellin (7) 19
20 Momenttiemäfunktio Satunnaismuuttujien summan momenttiemäfunktio Olkoot X 1, X,, X n riippumattomia satunnaismuuttujia, joiden momenttiemäfunktiot ovat m 1 (t), m (t),, m n (t) Tällöin summan X = X 1 + X + + X n momenttiemäfunktio on satunnaismuuttujien X 1, X,, X n momenttiemäfunktioiden tulo: m X (t) = m 1 (t)m (t) m n (t) TKK (c) Ilkka Mellin (7)
21 Momenttiemäfunktio Satunnaismuuttujien summan momenttiemäfunktio: Perustelu 1/ Olkoot X 1, X,, X n riippumattomia satunnaismuuttujia, joiden momenttiemäfunktiot ovat m 1 (t), m (t),, m n (t) Määritellään satunnaismuuttuja X = X 1 + X + + X n Käytämme hyväksi sitä, että riippumattomien satunnaismuuttujien tulon odotusarvo on tulon tekijöiden odotusarvojen tulo (ks. lukua Moniulotteiset satunnaismuuttujat ja jakaumat). TKK (c) Ilkka Mellin (7) 1
22 Momenttiemäfunktio Satunnaismuuttujien summan momenttiemäfunktio: Perustelu / Siten m () t = E[exp( tx)] X = E[exp( t( X + X + + X ))] 1 1 = E[exp( tx + tx + + tx )] 1 = E[exp( tx )exp( tx ) exp( tx )] 1 = E[exp( tx )]E[exp( tx )] E[exp( tx )] 1 = m () t m () t m () t X X X n n n n n TKK (c) Ilkka Mellin (7)
23 Momenttiemäfunktio Samoin jakautuneiden satunnaismuuttujien summan momenttiemäfunktio Olkoot X 1, X,, X n riippumattomia ja samoin jakautuneita satunnaismuuttujia, joiden momenttiemäfunktio on m(t) Tällöin summan X = X 1 + X + + X n momenttiemäfunktio on muotoa: m X (t) = [m(t)] n TKK (c) Ilkka Mellin (7) 3
24 Momenttiemäfunktio Samoin jakautuneiden satunnaismuuttujien summan momenttiemäfunktio: Perustelu Olkoot X 1, X,, X n riippumattomia ja samoin jakautuneita satunnaismuuttujia, joiden momenttiemäfunktio on m(t) Määritellään satunnaismuuttuja X = X 1 + X + + X n Riippumattomien satunnaismuuttujien summan momenttiemäfunktiota koskevasta yleisestä tuloksesta seuraa välittömästi, että mx () t = E[exp( tx)] = mtmt () () mt () ( nkpl) = [ mt ( )] n TKK (c) Ilkka Mellin (7) 4
25 Momenttiemäfunktio Samoin jakautuneiden satunnaismuuttujien aritmeettisen keskiarvon momenttiemäfunktio Olkoot X 1, X,, X n riippumattomia ja samoin jakautuneita satunnaismuuttujia, joiden momenttiemäfunktio (mgf) on m(t) Tällöin aritmeettisen keskiarvon X 1 n Xi n i = 1 = momenttiemäfunktio on muotoa: n t m () t = m X n TKK (c) Ilkka Mellin (7) 5
26 Momenttiemäfunktio Samoin jakautuneiden satunnaismuuttujien aritmeettisen keskiarvon mgf: Perustelu 1/ Olkoot X 1, X,, X n riippumattomia ja samoin jakautuneita satunnaismuuttujia, joiden momenttiemäfunktio (mgf) on m(t) Määritellään satunnaismuuttuja X 1 n X i n i = 1 = TKK (c) Ilkka Mellin (7) 6
27 Momenttiemäfunktio Samoin jakautuneiden satunnaismuuttujien aritmeettisen keskiarvon mgf: Perustelu / Koska 1 n X1 X X n X = Xi = n i= 1 n n n riippumattomien ja samoin jakautuneiden satunnaismuuttujien summan momenttiemäfunktiota koskevasta yleisestä tuloksesta ja satunnaismuuttujan lineaarimuunnoksen momenttiemäfunktiota koskevasta tuloksesta seuraa, että m () t = [ m(/ t n)] n X TKK (c) Ilkka Mellin (7) 7
28 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio >> Diskreettien jakaumien momenttiemäfunktioita Jatkuvien jakaumien momenttiemäfunktioita Karakteristinen funktio TKK (c) Ilkka Mellin (7) 8
29 Diskreettien jakaumien momenttiemäfunktioita Diskreettejä todennäköisyysjakaumia 1/ Tarkastelemme seuraavien diskreettien todennäköisyysjakaumien momenttiemäfunktioita eli momentit generoivia funktioita: Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen jakauma Negatiivinen binomijakauma Poisson-jakauma Lisätietoja diskreeteistä todennäköisyysjakaumista: ks. lukua Diskreettejä jakaumia. TKK (c) Ilkka Mellin (7) 9
30 Diskreettien jakaumien momenttiemäfunktioita Diskreettejä todennäköisyysjakaumia / Jokaisen tarkasteltavan jakauman momenttiemäfunktiolle esitetään johto. Johdettua momenttiemäfunktioita sovelletaan jakauman odotusarvon,. momentin ja varianssin määräämiseen. TKK (c) Ilkka Mellin (7) 3
31 Diskreettien jakaumien momenttiemäfunktioita Diskreetti tasainen jakauma Oletetaan, että satunnaismuuttuja X noudattaa diskreettiä tasaista jakaumaa. Tällöin sen pistetodennäköisyysfunktio on 1 f( x) = Pr( X = x) =, x= x k n k = 1,,, n jossa {x 1, x,, x n } on reaaliakselin erillisten pisteiden muodostama joukko. Diskreetin tasaisen jakauman momenttiemäfunktio on n 1 txk mx () t = e n k = 1 TKK (c) Ilkka Mellin (7) 31
32 Diskreettien jakaumien momenttiemäfunktioita Diskreetti tasainen jakauma: Momenttiemäfunktion johto Jos satunnaismuuttuja X noudattaa diskreettiä tasaista jakaumaa, niin sen momenttiemäfunktio on tx tx m () t = E( e ) = e f( x) X = = x n k= 1 n 1 = n e e k= 1 n tx tx k= 1 k k e f( x ) 1 n tx k k TKK (c) Ilkka Mellin (7) 3
33 Diskreettien jakaumien momenttiemäfunktioita Diskreetti tasainen jakauma: Odotusarvo ja varianssi 1/ Diskreetin tasaisen jakauman momenttiemäfunktio on n 1 txk mx () t = e n k = 1 1. derivaatta pisteessä t = : n dmx () t 1 tx 1 k = xe k = dt n k n. derivaatta pisteessä t = : dmx = 1 k= 1 () t 1 1 = = dt n n n x n n txk xe k xk k= 1 k= 1 k TKK (c) Ilkka Mellin (7) 33
34 Diskreettien jakaumien momenttiemäfunktioita Diskreetti tasainen jakauma: Odotusarvo ja varianssi / Siten diskreetin tasaisen jakauman odotusarvo µ,. momentti α ja varianssi σ saadaan seuraavilla kaavoilla: n dmx () t 1 µ = E( X) = α1 = = xk = x dt n α dm () t 1 k= 1 n X = E( X ) = = xk dt n k= 1 n n 1 1 σ = Var( X ) = α α1 = xk xk n k 1 n = k= 1 n 1 = ( xk x) n k= 1 TKK (c) Ilkka Mellin (7) 34
35 Diskreettien jakaumien momenttiemäfunktioita Bernoulli-jakauma Oletetaan, että satunnaismuuttuja X noudattaa Bernoullijakaumaa Ber(p). Tällöin sen pistetodennäköisyysfunktio on x 1 x f( x) = Pr( X = x) = p q,< p< 1, q= 1 p Bernoulli-jakauman momenttiemäfunktio on m () t = q+ pe X x =,1 t TKK (c) Ilkka Mellin (7) 35
36 Diskreettien jakaumien momenttiemäfunktioita Bernoulli-jakauma: Momenttiemäfunktion johto Jos satunnaismuuttuja X noudattaa Bernoulli-jakaumaa Ber(p), niin sen momenttiemäfunktio on tx tx m () t = E( e ) = e f( x) X x = Pr( = ) + Pr( = 1) t t 1 e X e X t = q+ pe TKK (c) Ilkka Mellin (7) 36
37 Diskreettien jakaumien momenttiemäfunktioita Bernoulli-jakauma: Odotusarvo ja varianssi 1/ Bernoulli-jakauman Ber(p) momenttiemäfunktio on t mx () t = q+ pe 1. derivaatta pisteessä t = : dmx () t t = pe = dt. derivaatta pisteessä t = : dmx() t t = pe = p dt p TKK (c) Ilkka Mellin (7) 37
38 Diskreettien jakaumien momenttiemäfunktioita Bernoulli-jakauma: Odotusarvo ja varianssi / Siten Bernoulli-jakauman Ber(p) odotusarvo µ,. momentti α ja varianssi σ saadaan seuraavilla kaavoilla: dmx () t µ = E( X ) = α1 = = p dt α dmx() t = E( X ) = = p dt = Var( X ) = 1 = p p σ α α = pq TKK (c) Ilkka Mellin (7) 38
39 Diskreettien jakaumien momenttiemäfunktioita Binomijakauma Oletetaan, että satunnaismuuttuja X noudattaa binomijakaumaa Bin(n, p). Tällöin sen pistetodennäköisyysfunktio on n x n x f( x) = Pr( X = x) = p q, p 1, q 1 p x < < = x=,1,,, n Binomijakauman momenttiemäfunktio on m () t = ( q+ pe t ) X n TKK (c) Ilkka Mellin (7) 39
40 Diskreettien jakaumien momenttiemäfunktioita Binomijakauma: Momenttiemäfunktion johto 1 Jos satunnaismuuttuja X noudattaa binomijakaumaa Bin(n, p), niin sen momenttiemäfunktio on tx tx m () t = E( e ) = e f( x) X x n n = e p q x x = n n = ( pe ) q x= x t n = ( q+ pe ) tx x n x t x n x TKK (c) Ilkka Mellin (7) 4
41 Diskreettien jakaumien momenttiemäfunktioita Binomijakauma: Momenttiemäfunktion johto Jos satunnaismuuttuja X noudattaa binomijakaumaa Bin(n, p), niin se voidaan esittää riippumattomien, samaa Bernoulli-jakaumaa Ber(p) noudattavien satunnaismuuttujien X 1, X,, X n summana: X = X 1 + X + + X n Koska riippumattomien satunnaismuuttujien summan momenttiemäfunktio on summan tekijöiden momenttiemäfunktioiden tulo (ks. kappaletta Momenttiemäfunktio), niin tx m () t = E( e ) = m () t m () t m () t X 1 n t t t = ( q+ pe ) ( q+ pe ) ( q+ pe ) t = ( q+ pe ) n TKK (c) Ilkka Mellin (7) 41
42 Diskreettien jakaumien momenttiemäfunktioita Binomijakauma: Odotusarvo ja varianssi 1/ Binomijakauman Bin(n, p) momenttiemäfunktio on m () ( t ) n X t = q+ pe 1. derivaatta pisteessä t = : dmx () t dt = + = 1 ( t ) n n q pe pe t np. derivaatta pisteessä t = : dmx() t 1 = nn ( 1)( q+ pe) pepe+ nq ( + pe) pe dt t n t t t n t = npe q + pe n pe + q + pe = np + n( n 1) p t t n t t ( ) ( 1) ( ) TKK (c) Ilkka Mellin (7) 4
43 Diskreettien jakaumien momenttiemäfunktioita Binomijakauma: Odotusarvo ja varianssi / Siten binomijakauman Bin(n, p) odotusarvo µ,. momentti α ja varianssi σ saadaan seuraavilla kaavoilla: dmx () t µ = E( X) = α1 = = np dt α dm () t X = E( X ) = = np+ n( n 1) p dt = Var( X ) = 1 = np + n( n 1) p n p σ α α = npq TKK (c) Ilkka Mellin (7) 43
44 Diskreettien jakaumien momenttiemäfunktioita Geometrinen jakauma Oletetaan, että satunnaismuuttuja X noudattaa geometrista jakaumaa Geom(p). Tällöin sen pistetodennäköisyysfunktio on x 1 f( x) = Pr( X = x) = q p,< p< 1, q= 1 p x = 1,,3, Geometrisen jakauman momenttiemäfunktio on t pe mx () t = t 1 qe TKK (c) Ilkka Mellin (7) 44
45 Diskreettien jakaumien momenttiemäfunktioita Geometrinen jakauma: Momenttiemäfunktion johto Jos satunnaismuuttuja X noudattaa geometrista jakaumaa Geom(p), niin sen momenttiemäfunktio on tx tx m () t = E( e ) = e f( x) X = = = x tx x 1 e pq x= 1 t tx t x 1 pe e q pe x= 1 t t x 1 x= 1 t pe = 1 qe t ( qe ) TKK (c) Ilkka Mellin (7) 45
46 Diskreettien jakaumien momenttiemäfunktioita Geometrinen jakauma: Odotusarvo ja varianssi 1/3 Geometrisen jakauman Geom(p) momenttiemäfunktio on t pe mx () t = 1 qe t 1. derivaatta pisteessä t = : t t t t dmx () t pe (1 qe ) pe ( qe ) = t dt (1 qe ) t pe = t (1 qe ) 1 = p TKK (c) Ilkka Mellin (7) 46
47 Diskreettien jakaumien momenttiemäfunktioita Geometrinen jakauma: Odotusarvo ja varianssi /3 Geometrisen jakauman Geom(p) momenttiemäfunktio on t pe mx () t = 1 qe t. derivaatta pisteessä t = : t t t t t dmx() t pe (1 qe ) pe (1 qe )( qe ) = t 4 dt (1 qe ) = t t pe (1 + qe ) t 3 (1 qe ) 1+ q = p TKK (c) Ilkka Mellin (7) 47
48 Diskreettien jakaumien momenttiemäfunktioita Geometrinen jakauma: Odotusarvo ja varianssi 3/3 Siten geometrisen jakauman Geom(p) odotusarvo µ,. momentti α ja varianssi σ saadaan seuraavilla kaavoilla: dmx () t 1 µ = E( X ) = α1 = = dt p α dmx() t 1+ q = E( X ) = = dt p 1+ q 1 σ = Var( X ) = α α = p p q = p 1 TKK (c) Ilkka Mellin (7) 48
49 Diskreettien jakaumien momenttiemäfunktioita Negatiivinen binomijakauma Oletetaan, että satunnaismuuttuja X noudattaa negatiivista binomijakaumaa NegBin(r, p). Tällöin sen pistetodennäköisyysfunktio on x 1 x r r f( x) = Pr( X = x) = q p, p 1, q 1 p r 1 < < = r = 1,,3, ; x= r, r+ 1, r+, Negatiivisen binomijakauman momenttiemäfunktio on m () t = t r ( pe ) (1 qe ) X t r TKK (c) Ilkka Mellin (7) 49
50 Diskreettien jakaumien momenttiemäfunktioita Negatiivinen binomijakauma: Momenttiemäfunktion johto Jos satunnaismuuttuja X noudattaa negatiivista binomijakaumaa NegBin(r, p), niin sen momenttiemäfunktio on tx tx m () t = E( e ) = e f( x) X x tx x 1 x r r = e q p x r r 1 = r+ x 1 = ( pe ) e q x r 1 = t r t r = ( pe ) (1 qe ) t r ( pe ) = t r (1 qe ) t r tx x TKK (c) Ilkka Mellin (7) 5
51 Diskreettien jakaumien momenttiemäfunktioita Negatiivinen binomijakauma: Odotusarvo ja varianssi 1/3 Negatiivisen binomijakauman NegBin(r, p) momenttiemäfunktio on m () t = t r ( pe ) (1 qe ) X t r 1. derivaatta pisteessä t = : t r 1 t t r t r t r 1 t dmx () t r( pe ) pe (1 qe ) ( pe ) r(1 qe ) ( qe ) = t r dt (1 qe ) t r( pe ) = t (1 qe ) = r p r r+ 1 TKK (c) Ilkka Mellin (7) 51
52 Diskreettien jakaumien momenttiemäfunktioita Negatiivinen binomijakauma: Odotusarvo ja varianssi /3 Negatiivisen binomijakauman NegBin(r, p) momenttiemäfunktio on m () t = t r ( pe ) (1 qe ) X t r. derivaatta pisteessä t = : dmx() t dt r = t r 1 t t r+ 1 t r t r t r ( pe ) pe (1 qe ) r( pe ) ( r+ 1)(1 qe ) ( qe ) = t r+ (1 qe ) t r t r( pe ) ( r+ qe ) = t r+ (1 qe ) + rq p TKK (c) Ilkka Mellin (7) 5
53 Diskreettien jakaumien momenttiemäfunktioita Negatiivinen binomijakauma: Odotusarvo ja varianssi 3/3 Siten negatiivisen binomijakauman NegBin(r, p) odotusarvo µ,. momentti α ja varianssi σ saadaan seuraavilla kaavoilla: dmx () t r µ = E( X ) = α1 = = dt p α dm() t r + rq X = E( X ) = = dt p r + rq r = Var( X ) = 1 = σ α α p rq = p p TKK (c) Ilkka Mellin (7) 53
54 Diskreettien jakaumien momenttiemäfunktioita Poisson-jakauma Oletetaan, että satunnaismuuttuja X noudattaa Poissonjakaumaa Poisson(λ). Tällöin sen pistetodennäköisyysfunktio on x e λ λ f( x) = Pr( X = x) =, λ > x! x =,1,, Poisson-jakauman momenttiemäfunktio on m () t = e λ X t ( e 1) TKK (c) Ilkka Mellin (7) 54
55 Diskreettien jakaumien momenttiemäfunktioita Poisson-jakauma: Momenttiemäfunktion johto Jos satunnaismuuttuja X noudattaa Poisson-jakaumaa Poisson(λ), niin sen momenttiemäfunktio on tx tx m () t = E( e ) = e f( x) X = = e = e = e x λ e x= e t tx x= λ λ ( e 1) λ x e λ x! t ( λe ) x! t λe x TKK (c) Ilkka Mellin (7) 55
56 Diskreettien jakaumien momenttiemäfunktioita Poisson-jakauma: Odotusarvo ja varianssi 1/ Poisson-jakauman Poisson(λ) momenttiemäfunktio on t ( e 1) mx () t = e λ 1. derivaatta pisteessä t = : dm () t t X t λ( e 1) t t+ λ( e 1) = e λe = λe = λ dt t =. derivaatta pisteessä t = : dmx dt () t t = t t+ λ ( e 1) t = λe (1 + λe ) = λ+ λ t = TKK (c) Ilkka Mellin (7) 56
57 Diskreettien jakaumien momenttiemäfunktioita Poisson-jakauma: Odotusarvo ja varianssi / Siten Poisson-jakauman Poisson(λ) odotusarvo µ,. momentti α ja varianssi σ saadaan seuraavilla kaavoilla: dmx () t µ = E( X ) = α1 = = λ dt α dmx() t = E( X ) = = λ dt = Var( X ) = 1 = + σ α α λ λ λ = λ TKK (c) Ilkka Mellin (7) 57
58 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita >> Jatkuvien jakaumien momenttiemäfunktioita Karakteristinen funktio TKK (c) Ilkka Mellin (7) 58
59 Jatkuvien jakaumien momenttiemäfunktioita Jatkuvia todennäköisyysjakaumia 1/ Tarkastelemme seuraavien jatkuvien todennäköisyysjakaumien momenttiemäfunktioita eli momentit generoivia funktioita: Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Lisätietoja jatkuvista todennäköisyysjakaumista: ks. lukua Jatkuvia jakaumia. TKK (c) Ilkka Mellin (7) 59
60 Jatkuvien jakaumien momenttiemäfunktioita Jatkuvia todennäköisyysjakaumia / Jokaisen tarkasteltavan jakauman momenttiemäfunktiolle esitetään johto. Johdettua momenttiemäfunktioita sovelletaan jakauman odotusarvon,. momentin ja varianssin määräämiseen. TKK (c) Ilkka Mellin (7) 6
61 Jatkuvien jakaumien momenttiemäfunktioita Jatkuva tasainen jakauma Oletetaan, että satunnaismuuttuja X noudattaa jatkuvaa tasaista jakaumaa Uniform(a, b). Tällöin sen tiheysfunktio on 1 f ( x) =, a x b b a Jatkuvan tasaisen jakauman momenttiemäfunktio on bt at e e mx () t = tb ( a) TKK (c) Ilkka Mellin (7) 61
62 Jatkuvien jakaumien momenttiemäfunktioita Jatkuva tasainen jakauma: Momenttiemäfunktion johto Jos satunnaismuuttuja X noudattaa jatkuva tasaista jakaumaa Uniform(a, b), niin sen momenttiemäfunktio on tx tx m () t = E( e ) = e f( x) dx X = + b a e tx 1 dx b a tx 1 e = b a t bt at e e = tb ( a) b a TKK (c) Ilkka Mellin (7) 6
63 Jatkuvien jakaumien momenttiemäfunktioita Jatkuva tasainen jakauma: Odotusarvo ja varianssi 1/3 Jatkuvan tasaisen jakauman Uniform(a, b) momenttiemäfunktio on bt at e e mx () t = tb ( a) 1. derivaatta pisteessä t = : bt at bt at dmx () t ( be ae ) t( b a) ( e e )( b a) = dt t ( b a) bt at bt at ( be ae ) t ( e e ) = t ( b a) a+ b = TKK (c) Ilkka Mellin (7) 63
64 Jatkuvien jakaumien momenttiemäfunktioita Jatkuva tasainen jakauma: Odotusarvo ja varianssi /3 Jatkuvan tasaisen jakauman Uniform(a, b) momenttiemäfunktio on bt at e e mx () t = tb ( a). derivaatta pisteessä t = : dmx() t dt bt [( be at ae ) t bt ( be at ae ) bt ( be at ae )] t ( b a) 4 + = t ( b a) bt at bt at [( be ae ) t ( e e )] t( b a) 4 t ( b a) ( be ae ) t ( be ae ) t+ ( e e ) a + ab+ b = = 3 t ( b a) 3 bt at bt at bt at TKK (c) Ilkka Mellin (7) 64
65 Jatkuvien jakaumien momenttiemäfunktioita Jatkuva tasainen jakauma: Odotusarvo ja varianssi 3/3 Siten jatkuvan tasaisen jakauman Uniform(a, b) odotusarvo µ,. momentti α ja varianssi σ saadaan seuraavilla kaavoilla: dmx () t a+ b µ = E( X ) = α1 = = dt α dm() t a + ab+ b X = E( X ) = = dt 3 a + ab+ b ( a+ b) = Var( X ) = 1 = σ α α 3 4 ( b a) = 1 TKK (c) Ilkka Mellin (7) 65
66 Jatkuvien jakaumien momenttiemäfunktioita Eksponenttijakauma Oletetaan, että satunnaismuuttuja X noudattaa eksponenttijakaumaa Exp(λ). Tällöin sen tiheysfunktio on λx f( x) = λe, λ >, x Eksponenttijakauman momenttiemäfunktio on mx () t λ = λ t TKK (c) Ilkka Mellin (7) 66
67 Jatkuvien jakaumien momenttiemäfunktioita Eksponenttijakauma: Momenttiemäfunktion johto Jos satunnaismuuttuja X noudattaa eksponenttijakaumaa Exp(λ), niin sen momenttiemäfunktio on () E( tx tx m t = e ) = e f( x) dx X = + tx λx e e dx = λ e λ ( t λ ) x dx ( t λ ) x e = λ t λ λ = λ t TKK (c) Ilkka Mellin (7) 67
68 Jatkuvien jakaumien momenttiemäfunktioita Eksponenttijakauma: Odotusarvo ja varianssi 1/ Eksponenttijakauman Exp(λ) momenttiemäfunktio on λ mx () t = λ t 1. derivaatta pisteessä t = : dmx () t λ 1 = = dt ( λ t) λ. derivaatta pisteessä t = : dmx() t λ = = 3 dt ( λ t) λ TKK (c) Ilkka Mellin (7) 68
69 Jatkuvien jakaumien momenttiemäfunktioita Eksponenttijakauma: Odotusarvo ja varianssi / Siten eksponenttijakauman Exp(λ) odotusarvo µ,. momentti α ja varianssi σ saadaan seuraavilla kaavoilla: dmx () t 1 µ = E( X ) = α1 = = dt λ α dmx() t = E( X ) = = dt λ 1 σ = Var( X ) = α α1 = λ λ 1 = λ TKK (c) Ilkka Mellin (7) 69
70 Jatkuvien jakaumien momenttiemäfunktioita Normaalijakauma Oletetaan, että satunnaismuuttuja X noudattaa normaalijakaumaa N(µ, σ ). Tällöin sen tiheysfunktio on 1 1 x µ f( x) = exp, < µ <+, σ > σ π σ < x < + Normaalijakauman momenttiemäfunktio on m t t t 1 X ( ) = exp( µ + σ ) TKK (c) Ilkka Mellin (7) 7
71 Jatkuvien jakaumien momenttiemäfunktioita Normaalijakauma: Momenttiemäfunktion johto Jos satunnaismuuttuja X noudattaa normaalijakaumaa N(µ, σ ), niin sen momenttiemäfunktio on tx tx m () t = E( e ) = e f( x) dx X exp( tx) exp ( x µ ) dx σ σ π 1 exp( µ t σ t ) = = + = exp [ ( µ + σ )] σ π σ t t e µ + σ + x t dx TKK (c) Ilkka Mellin (7) 71
72 Jatkuvien jakaumien momenttiemäfunktioita Normaalijakauma: Odotusarvo ja varianssi 1/ Normaalijakauman N(µ, σ ) momenttiemäfunktio on 1 mx () t = exp( µ t+ σ t ) 1. derivaatta pisteessä t = : dm () 1 X t µ t+ σ t = e ( µ + σ t) = µ dt. derivaatta pisteessä t = : dm 1 1 X () t µ t+ σ t µ t+ σ t = e ( µ + σ t) + e σ dt = µ + σ TKK (c) Ilkka Mellin (7) 7
73 Jatkuvien jakaumien momenttiemäfunktioita Normaalijakauma: Odotusarvo ja varianssi / Siten normaalijakauman N(µ, σ ) odotusarvo µ,. momentti α ja varianssi σ saadaan seuraavilla kaavoilla: dmx () t µ = E( X ) = α 1 = = µ dt dm() t α µ σ X = E( X ) = = + dt = Var( X ) = 1 = + σ α α µ σ µ = σ TKK (c) Ilkka Mellin (7) 73
74 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita Jatkuvien jakaumien momenttiemäfunktioita >> Karakteristinen funktio TKK (c) Ilkka Mellin (7) 74
75 Karakteristinen funktio Karakteristisen funktion määritelmä Olkoon X satunnaismuuttuja. Tällöin odotusarvo ϕ () t = E( e itx ), i = X 1 on satunnaismuuttujan X ja sen jakauman karakteristinen funktio. TKK (c) Ilkka Mellin (7) 75
76 Karakteristinen funktio Karakteristisen funktion määritelmä: Kommentteja Satunnaismuuttujan karakteristinen funktio on toisin kuin sen momenttiemäfunktio aina olemassa. Karakteristisen funktion ϕ () t = E( e itx ), i = X 1 olemassaolo tarkoittaa sitä, että odotusarvo E(e itx ) on aina äärellinen. Satunnaismuuttujan X karakteristinen funktio ϕ () t = E( e itx ), i = X 1 riippuu vain argumentista t. TKK (c) Ilkka Mellin (7) 76
77 Karakteristinen funktio Karakteristinen funktio ja momenttiemäfunktio Jos satunnaismuuttujan X momenttiemäfunktio m X (t) = E(e tx ) tunnetaan, saadaan sen karakteristinen funktio ϕ () t = E( e itx ), i = X 1 momenttiemäfunktiosta sijoituksella t it, i = 1 TKK (c) Ilkka Mellin (7) 77
78 Karakteristinen funktio Karakteristisen funktion ominaisuuksia Olkoon ϕ () t = E( e itx ), i = X 1 satunnaismuuttujan X karakteristinen funktio. Aina pätee: (i) ϕ X () = E(e ) = E(1) = 1 (ii) ϕ X (t) 1 kaikille t (, + ). (iii) ϕx( t) = ϕx( t) jossa merkintä z tarkoittaa kompleksiluvun z konjugaattia. (iv) ϕ X (t) on tasaisesti jatkuva kaikille t (, + ). TKK (c) Ilkka Mellin (7) 78
79 Karakteristinen funktio Diskreettien satunnaismuuttujien karakteristinen funktio Olkoon X diskreetti satunnaismuuttuja, jonka pistetodennäköisyysfunktio on f X (x) =Pr(X = x) Satunnaismuuttujan X karakteristinen funktio saadaan kaavalla itx itx ϕ X() t = E( e ) = e fx( x), i = 1 x TKK (c) Ilkka Mellin (7) 79
80 Karakteristinen funktio Jatkuvien satunnaismuuttujien karakteristinen funktio Olkoon X jatkuva satunnaismuuttuja, jonka tiheysfunktio on f X (x) Satunnaismuuttujan X karakteristinen funktio saadaan kaavalla + itx itx ϕ X() t = E( e ) = e fx( x) dx, i = 1 TKK (c) Ilkka Mellin (7) 8
81 Karakteristinen funktio Inversioteoreema 1/ Olkoon F X (x) = Pr(X x) satunnaismuuttujan X kertymäfunktio ja ϕ () t = E( e itx ), i = X 1 sen karakteristinen funktio. Oletetaan, että (a h, a + h) sellainen reaaliakselin väli, että kertymäfunktio F X (x) on jatkuva välin päätepisteissä. TKK (c) Ilkka Mellin (7) 81
82 Karakteristinen funktio Inversioteoreema / Tällöin F ( a+ h) F ( a h) X X + T 1 sin( ht) ita = lim e ϕ X ( t) dt T + π t T TKK (c) Ilkka Mellin (7) 8
83 Karakteristinen funktio Inversioteoreema: Kommentteja Jos jakauman karakteristinen funktio tunnetaan, voidaan jakauman kertymäfunktio määrätä inversioteoreemassa määritellyn rajaprosessin avulla. Myös karakteristisen funktion yksikäsitteisyys voidaan todistaa inversioteoreeman avulla. TKK (c) Ilkka Mellin (7) 83
84 Karakteristinen funktio Inversioteoreema ja jatkuvat jakaumat 1/ Olkoon ϕ () t = E( e itx ), i = X 1 satunnaismuuttujan X karakteristinen funktio. Oletetaan, että ϕ X (t) on integroituva kaikille t (, + ). Tällöin satunnaismuuttuja X on jatkuva ja sen tiheysfunktio f X (x) saadaan kaavalla + 1 itx fx( x) = e ϕ X( t) dt, i = 1 π TKK (c) Ilkka Mellin (7) 84
85 Karakteristinen funktio Inversioteoreema ja jatkuvat jakaumat / Huomaa, että jatkuvan satunnaismuuttujan X karakteristinen funktio + itx ϕ X() t = e fx( x) dx, i = 1 on satunnaismuuttujan X tiheysfunktion Fouriermuunnos ja + 1 itx fx( x) = e ϕ X( t) dt, i = 1 π on sen käänteinen Fourier-muunnos. TKK (c) Ilkka Mellin (7) 85
86 Karakteristinen funktio Karakteristisen funktion yksikäsitteisyys Satunnaismuuttujan X karakteristinen funktio ϕ () t = E( e itx ), i = X 1 on yksikäsitteinen ja määrää täysin satunnaismuuttujan X todennäköisyysjakauman. Tämä merkitsee seuraavaa: Jos satunnaismuuttujilla U ja V on sama karakteristinen funktio, satunnaismuuttujat U ja V noudattavat samaa todennäköisyysjakaumaa. TKK (c) Ilkka Mellin (7) 86
87 Karakteristinen funktio Karakteristisen funktion yksikäsitteisyys: Seuraus 1/ Karakteristisen funktion yksikäsitteisyyttä käytetään usein hyväksi todennäköisyyslaskennassa ja matemaattisessa tilastotieteessä seuraavassa tilanteessa: Tehtävänä on selvittää, mikä on satunnaismuuttujan U jakauma. TKK (c) Ilkka Mellin (7) 87
88 Karakteristinen funktio Karakteristisen funktion yksikäsitteisyys: Seuraus / Oletetaan, että voimme todistaa, että satunnaismuuttujan U karakteristinen funktio ϕ U (t) yhtyy satunnaismuuttujan V karakteristiseen funktioon ϕ V (t) jonka todennäköisyysjakauma tunnetaan. Tällöin karakteristisen funktion yksikäsitteisyydestä seuraa, että satunnaismuuttuja U noudattaa samaa jakaumaa kuin satunnaismuuttuja V. TKK (c) Ilkka Mellin (7) 88
89 Karakteristinen funktio Satunnaismuuttujan momentit ja karakteristisen funktion derivaatat 1/ Olkoon ϕ () t = E( e itx ), i = X 1 satunnaismuuttujan X karakteristinen funktio. Oletetaan, että satunnaismuuttujan X r. (origo-) momentti r α = E( X ) r on olemassa. Tällöin karakteristinen funktio ϕ X (t) on differentioituva kertalukuun r ja k k 1 d ϕ X () t αk = E( X ) =, i = 1, k = 1,,, r k k i dt TKK (c) Ilkka Mellin (7) 89
90 Karakteristinen funktio Satunnaismuuttujan momentit ja karakteristisen funktion derivaatat / Olkoon ϕ () t = E( e itx ), i = X 1 satunnaismuuttujan X karakteristinen funktio. Oletetaan, että satunnaismuuttujan X karakteristinen funktio ϕ X (t) on differentioituva kertalukuun r. Tällöin kaikki momentit k α k = E( X ), k = 1,,, r ovat olemassa, jos r on parillinen ja kaikki momentit k α k = E( X ), k = 1,,, r 1 ovat olemassa, jos r on pariton. TKK (c) Ilkka Mellin (7) 9
91 Karakteristinen funktio Karakteristisen funktion derivaatat ja satunnaismuuttujan momentit: Johto Olkoon ϕ () t = E( e itx ), i = X 1 satunnaismuuttujan X karakteristinen funktio. Jos E(X k ) on olemassa, niin k k d ϕ X () t d itx = E( e ) k k dt dt k d itx = E k e dt k k tx = E( ixe ) = i k k = i α k E( X ) k TKK (c) Ilkka Mellin (7) 91
92 Karakteristinen funktio Karakteristisen funktion derivaatat ja satunnaismuuttujan momentit 1/ Jos satunnaismuuttujan momentit ovat olemassa, niin ne voidaan johtaa kätevästi käyttämällä hyväksi jakauman karakteristisen funktion derivaattoja; ks. edellisiä kalvoja. TKK (c) Ilkka Mellin (7) 9
93 Karakteristinen funktio Karakteristisen funktion derivaatat ja satunnaismuuttujan momentit / Satunnaismuuttujan X odotusarvo µ,. momentti α ja varianssi σ saadaan seuraavista kaavoista: dϕ X () t = ie( X) = iα 1 = iµ dt jossa d ϕ () t X = i E( X ) = α dt = Var( X) = E[( X ) ] = 1 σ µ α α i = 1 TKK (c) Ilkka Mellin (7) 93
94 Karakteristinen funktio Karakteristisen funktion Taylorin sarjakehitelmä Olkoon ϕ () t = E( e itx ), i = X 1 satunnaismuuttujan X karakteristinen funktio. Oletetaan, että satunnaismuuttujan X r. (origo-) momentti r α = E( X ) r on olemassa. Tällöin karakteristinen funktio ϕ X (t) voidaan kehittää Taylorin sarjaksi r k r k ( it) k r ( it) r ϕ X() t = E( X ) + ot ( ) = αk + ot ( ) k= k! k= k! jossa o(t r )/t r, kun t. TKK (c) Ilkka Mellin (7) 94
95 Karakteristinen funktio Riippumattomien satunnaismuuttujien summan karakteristinen funktio Olkoot X 1, X,, X n riippumattomia satunnaismuuttujia, joiden karakteristiset funktiot ovat ϕ 1 (t), ϕ (t),, ϕ n (t) Tällöin summan X = X 1 + X + + X n karakteristinen funktio on satunnaismuuttujien X 1, X,, X n karakterististen funktioiden tulo: ϕ X (t) = ϕ 1 (t)ϕ (t) ϕ n (t) TKK (c) Ilkka Mellin (7) 95
96 Karakteristinen funktio Riippumattomien satunnaismuuttujien summan karakteristinen funktio: Perustelu 1/ Olkoot X 1, X,, X n riippumattomia satunnaismuuttujia, joiden momenttiemäfunktiot ovat ϕ 1 (t), ϕ (t),, ϕ n (t) Määritellään satunnaismuuttuja X = X 1 + X + + X n Käytämme hyväksi sitä, että riippumattomien satunnaismuuttujien tulon odotusarvo on tulon tekijöiden odotusarvojen tulo (ks. lukua Moniulotteiset satunnaismuuttujat ja jakaumat). TKK (c) Ilkka Mellin (7) 96
97 Karakteristinen funktio Riippumattomien satunnaismuuttujien summan karakteristinen funktio: Perustelu / Siten ϕ X ( t) = E[exp( itx )] = E[exp( it( X + X + + X ))] 1 1 = E[exp( itx + itx + + itx )] 1 = E[exp( itx )exp( itx ) exp( itx )] 1 = E[exp( itx )]E[exp( itx )] E[exp( itx )] 1 = ϕ () t ϕ () t ϕ () t X X X n n n n n TKK (c) Ilkka Mellin (7) 97
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
Satunnaismuuttujien muunnokset ja niiden jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja
Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia TKK (c) Ilkka Mellin (2005) 1 Jatkuvia jakaumia Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen raja-arvolause TKK (c) Ilkka Mellin
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia TKK (c) Ilkka Mellin (2006) 1 Jatkuvia jakaumia >> Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen
Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia TKK (c) Ilkka Mellin (2005) 1 Diskreettejä jakaumia Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen jakauma Negatiivinen
Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Diskreettejä jakaumia TKK (c) Ilkka Mellin (2007) 1 Diskreettejä jakaumia >> Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 28. syyskuuta 2007 Antti Rasila () TodB 28. syyskuuta 2007 1 / 20 1 Jatkoa diskreeteille jakaumille Negatiivinen binomijakauma Poisson-jakauma Diskreettien
x 4 e 2x dx Γ(r) = x r 1 e x dx (1)
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1
Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia
Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma
Todennäköisyyslaskun kertaus. Heliövaara 1
Todennäköisyyslaskun kertaus Heliövaara 1 Satunnaismuuttujat ja todennäköisyysjakaumat Heliövaara 2 Stunnaismuuttujat ja todennäköisyysjakaumat Jos satunnaisilmiötä halutaan mallintaa matemaattisesti,
4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia
Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.
Mat-2.090 Sovellettu todeäköisyyslasku A Mat-2.090 Sovellettu todeäköisyyslasku A / Pistetehtävät 2, 4, 6, 8, 0 Aiheet: Avaisaat: Momettiemäfuktio Satuaismuuttujie muuokset ja iide jakaumat Kovergessikäsitteet
Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1
Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen
D ( ) E( ) E( ) 2.917
Mat-2.091 Sovellettu todennäköisyyslasku 4. harjoitukset/ratkaisut Aiheet: Diskreetit jakaumat Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen jakauma, Kertymäfunktio,
Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2007) 1 Jakaumien tunnusluvut >> Odotusarvo Varianssi Markovin ja Tshebyshevin
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
5. laskuharjoituskierros, vko 8, ratkaisut
Mat-.09 Sovellettu todennäköisyyslasku, kevät -05 5. laskuharjoituskierros, vko 8, ratkaisut D. Eräässä maata kiertävällä radalla olevassa satelliitissa on ilmaisin, jonka elinikä X yksikkönä vuosi noudattaa
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin
Tilastomatematiikka Kevät 2008
Tilastomatematiikka Kevät 2008 Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastomatematiikka p.1/19 4.3 Varianssi Satunnaismuuttuja on neliöintegroituva, jos odotusarvo
D ( ) Var( ) ( ) E( ) [E( )]
Mat-.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Diskreettejä jakaumia Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Eksponenttijakauma, Geometrinen jakauma, Hypergeometrinen
Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio
Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio KE (2014) 1 Satunnaismuuttujat ja niiden todennäköisyysjakaumat Satunnaismuuttujat
Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)
Normaalijakaumasta johdettuja jakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma
Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2005) 1 Jakaumien tunnusluvut Odotusarvo Varianssi Markovin ja Tshebyshevin epäyhtälöt Momentit Vinous ja huipukkuus Kvantiilit
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka
JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos)
J. Virtamo 38.3143 Jonoteoria / Jatkuvat jakaumat 1 JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos) Määritelmä Ei-negatiivisen satunnaismuuttujan X 0, jonka tiheysfunktio on f(x), Laplace-muunnos
Todennäköisyysjakaumia
8.9.26 Kimmo Vattulainen Todennäköisyysjakaumia Seuraavassa esitellään kurssilla MAT-25 Todennäköisyyslaskenta esille tulleita diskreettejä todennäköisyysjakaumia Diskreetti tasajakauma Bernoullijakauma
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
Harjoitus 2: Matlab - Statistical Toolbox
Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä
5 Tärkeitä yksiulotteisia jakaumia
5 Tärkeitä yksiulotteisia jakaumia Jakaumista löytyy lisätietoja ja kuvaajia Wikipediasta. Kirjallisuudessa käytetään useille näistä jakaumista monia erilaisia parametrointeja. Kussakin lähteessä käytetty
3. laskuharjoituskierros, vko 6, ratkaisut
Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa
2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2005) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat Kaksiulotteiset todennäköisyysjakaumat
1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 206 Kurssikoe 28.0.206 Ratkaisuehdotuksia. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden
2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet
Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04
Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko
ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma
Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?
TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä
Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3
Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta
MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,
k S P[ X µ kσ] 1 k 2.
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 28 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä
4. laskuharjoituskierros, vko 7, ratkaisut
4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.
Epäyhtälöt ovat yksi matemaatikon voimakkaimmista
6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
TKK @ Ilkka Mellin (2008) 1/5
Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat TKK (c) Ilkka Mellin (2006) 1 Moniulotteiset satunnaismuuttujat ja
Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa
Mat-.6 Sovellettu todennäköisyyslaskenta B Mat-.6 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Verkot ja todennäköisyyslaskenta Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio Jakaumien
4.1 Diskreetin satunnaismuuttujan odotusarvo
4 Odotusarvo Seuraavaksi kertaamme, miten satunnaismuuttujan odotusarvo (sv. väntevärde) määritellään diskreetissä ja jatkuvassa tapauksessa. Odotusarvolle käytetään englannikielisessä kirjallisuudessa
031021P Tilastomatematiikka (5 op) viikko 3
031021P Tilastomatematiikka (5 op) viikko 3 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan
Todennäköisyyden ominaisuuksia
Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset
30A02000 Tilastotieteen perusteet
30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 5 (vko 4/003) (Aihe: jatkuvia satunnaismuuttujia ja jakaumia, sekamalli, Laininen luvut 5.1 5.7, 6.1 6.3)
4. Todennäköisyyslaskennan kertausta
luento04.ppt S-38.1145 - Liikenneteorian perusteet - Kevät 2006 1 Sisältö eruskäsitteet Diskreetit satunnaismuuttujat Diskreetit jakaumat lkm-jakaumat Jatkuvat satunnaismuuttujat Jatkuvat jakaumat aikajakaumat
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset
Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1
Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Normaaliapproksimaatio Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
Osittaisdifferentiaaliyhtälöt
Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,
Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat
Mat-2.09 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Jatkuvat jakaumat Avainsanat: Binomijakauma, Eksponenttijakauma, Jatkuva tasainen jakauma, Kertymäfunktio, Mediaani, Normaaliapproksimaatio, Normaalijakauma,
0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä
8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa
8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen
IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Väliestimointi TKK (c) Ilkka Mellin (2005) 1 Väliestimointi Todennäköisyysjakaumien parametrien estimointi Luottamusväli Normaalijakauman odotusarvon luottamusväli Normaalijakauman
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
Todennäköisyyslaskenta. β versio. Todennäköisyyslaskenta. Ilkka Mellin. Teknillinen korkeakoulu, Matematiikan laboratorio. Ilkka Mellin (2006) I
β versio Todennäköisyyslaskenta Ilkka Mellin Teknillinen korkeakoulu, Matematiikan laboratorio TKK @ Ilkka Mellin (2006) I TKK @ Ilkka Mellin (2006) II Esipuhe Tämä moniste antaa perustiedot todennäköisyyslaskennasta.
5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3
Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,
6. laskuharjoitusten vastaukset (viikot 10 11)
6. laskuharjoitusten vastaukset (viikot 10 11) 1. a) Sivun 102 hypergeometrisen jakauman määritelmästä saadaan µ µ 13 39 13! 13 12 11 10 9 µ 0! 8! 1! 2 2! 2 1 0 49 48! 47!! 14440 120 31187200 120 1287
(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.
Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.
Momentit generoiva funktio
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jessica Glassar Momentit generoiva funktio Informaatiotieteiden yksikkö Matematiikka Joulukuu 212 Tampereen yliopisto Informaatiotieteiden yksikkö GLASSAR, JESSICA:
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 27. syyskuuta 2007 Antti Rasila () TodB 27. syyskuuta 2007 1 / 15 1 Diskreetit jakaumat Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo
Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:
8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?
6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.
Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi
TOD.NÄK JA TILASTOT, MAA0 Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi Kuten tilastojakaumia voitiin esittää tunnuslukujen (keskiarvo, moodi, mediaani, jne.) avulla, niin vastaavasti
Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat
TKK (c) Ilkka Melli (4) Satuaismuuttujie muuokset ja iide jakaumat Satuaismuuttujie muuoste jakaumat Kaksiulotteiste satuaismuuttujie muuoste jakaumat Riippumattomie satuaismuuttujie summa jakauma Riippumattomie
Tilastotieteen kertaus. Kuusinen/Heliövaara 1
Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa
Estimointi. Vilkkumaa / Kuusinen 1
Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman
Poisson-prosessien ominaisuuksia ja esimerkkilaskuja
4B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Tuntitehtävät 4B1 Eksponentiaalisten odotusaikojen toistuva odottaminen. Satunnaisluvun X sanotaan noudattavan Gamma-jakaumaa parametrein k ja λ,
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-2.090 Sovellettu todennäköisyyslasku A Harjoitus 4 (vko 41/2003) (Aihe: diskreettejä satunnaismuuttujia ja jakaumia, Laininen luvut 4.1 4.7) 1. Kone tekee
Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I G. Gripenberg 1 Todennäköisyys Satunnaismuuttujat Keskeinen raja-arvolause Aalto-yliopisto. tammikuuta 015 Kaksiulotteiset satunnaismuuttujat
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I G. Gripenberg Aalto-yliopisto 2. tammikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0502 Todennäköisyyslaskennan ja tilastotieteen
Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle
Tilastollinen päättely II, kevät 2017 Harjoitus 1A
Tilastollinen päättely II, kevät 207 Harjoitus A Heikki Korpela 23. tammikuuta 207 Tehtävä. Kertausta todennäköisyyslaskennasta. Ilmoita satunnaismuuttujan Y jakauman nimi ja pistetodennäköisyys- tai tiheysfunktio
Generointi yksinkertaisista diskreeteistä jakaumista
S-38.148 Tietoverkkojen simulointi / Satunnaismuuttujien generointi 1(18) Generointi yksinkertaisista diskreeteistä jakaumista Seuraavassa U, U 1,..., U n tarkoittavat riippumattomia U(0,1)-jakautuneita
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset 1. Olkoon X satunnaismuuttuja, ja olkoot a R \ {0}, b R ja Y = ax + b. (a) Olkoon X diskreetti ja f sen pistetodennäköisyysfunktio.
Yleistä tietoa kokeesta
Yleistä tietoa kokeesta Kurssikoe on pe 27.10. klo 12.00-14.30 (jossakin auditorioista). Huomaa tasatunti! Seuraava erilliskoe on ke 1.11 klo 16-20, johon ilmoittaudutaan Oodissa (ilmoittautumisaika erilliskokeeseen
Väliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).