Silloin voidaan suoraan kirjoittaa spektrin yhtälö käyttämällä hyväksi suorakulmaisen pulssin Fouriermuunnosta sekä viiveen vaikutusta: ( ) (

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Silloin voidaan suoraan kirjoittaa spektrin yhtälö käyttämällä hyväksi suorakulmaisen pulssin Fouriermuunnosta sekä viiveen vaikutusta: ( ) ("

Transkriptio

1 TT/TV Inegraalimuunnokse Fourier-muunnos, ehäviä : Vasauksia Meropolia/. Koivumäki v(. Määriä oheisen signaalin Fourier-muunnos. Vinkki: Superposiio, viive. Voidaan sovelaa superposiioperiaaea, koska signaalin voidaan ajaella olevan kahden pulssin summa. Noilla kahdella suorakulmaisella pulssilla on viivee -T ja T, joen oamalla viivee -T T huomioon ukiavan signaalin aikaason yhälö voidaan kirjoiaa - ( T T v( = Π Π Silloin voidaan suoraan kirjoiaa spekrin yhälö käyämällä hyväksi suorakulmaisen pulssin Fouriermuunnosa sekä viiveen vaikuusa: jπf ( T jπ V ( f = sinc ft ( f e sinc( f e Ensimmäisessä ermissä miinusmerki ieysi kumoava oisensa (siinä on edelleen -T muisuamassa siiä, eä ensimmäisen pulssin viive on negaiivinen jolloin kompleksise eksponeni muodosava sinifunkion. Loppuulos siis on: ( ( jπft j πft f e e = j sinc( f sin( πft ( sinc V f =. Määriä oheisen kolmiopulssin Fourier-muunnos. Vinkki: Derivoini, ehävä. v( Suorakulmainen pulssi merkiään isolla pii-kirjaimella (Π, kuen edellä ehävässä, ja kuvan kolmiopulssille on vasaavanlainen merkinääpa, jossa käyyään isoa lambda-kirjaina: v ( = Λ : Kuvan kolmiopulssi koosuu kahdesa suorasa. Ensin on nouseva suora, jonka kulmakerroin on / ja sien laskeva suora, jonka kulmakerroin on /. Suoran derivaaahan on sama kuin sen kulmakerroin, joen kolmiopulssin derivaaasignaali on oheisen kalainen: x( / Derivaaasignaalin yhälö on ( / / x ( = Π Π, joen derivaaasignaalin Fourier-muunnos on -/ X ( f = sinc jπf ( / jπf / ( f e sinc( f e Kun supiseaan : ja : ja huomioidaan miinusmerki, yhälö saadaan helposi muooon X ( f = j sinc( f sin( πf. Samaan ulokseen päsään käyämällä hyväksi ehävän vasausa. Siinä piää korvaa pulssien korkeus ± ± / ja pulssien viive ± T ± /. Silloin ehävän vasaus anaa X ( f = j sinc( f sin(πf = j sinc( f sin( πf. Eli sama, joka jo saiin.

2 dv( Nyhän koska x( =, on X ( f = jπ f V ( f, joen kolmiopulssin spekri on d V ( f j sinc( f sin( πf V ( f = = jπf jπf Kun supisaa pois j: ja lavenaa :lla (jolloin osoiajassa olevasa sinisä ja nimiäjäsä saa aikaan sincfunkion, ulee loppuulokseksi V ( f = sinc ( f. 3. a Piirrä oheisen signaalin v( derivaaasignaalin x( kuvaaja. b Mikä on ämän derivaaasignaalin x( Fourier-muunnos X(f? c Mikä on siis alkuperäisen signaalin v( Fourier-muunnos V(f? -3T -T T 3T Signaali koosuu suoranpäkisä. Suoran derivaaa on sen kulmakerroin. Siis derivaaasignaali on ällainen: x( v( /T -3T -T -/T T 3T b Derivaaasignaalin x( spekrin voi kirjoiaa sovelamalla ehävässä saaua kahden erimerkkisen pulssin spekrin kaavaa. Siinä piää korvaa pulssien korkeus ± ± / T, pulssien piuus T ja pulssien viive ± T ± T. Saadaan X ( f = j T sinc( f T sin( π f T = j sinc( f T sin( 4π f T T c Koska x( on v(:n derivaaa, on X ( f = jπ f V ( f, jolloin X ( f j sinc( f T sin( 4π f T V ( f = = = 4T sinc( f T sinc( 4 f T jπf jπf Loppuulos saaiin lavenamalla T:llä, jolloin jälkimmäisesä sinisä ja nimiäjäsä saaiin aikaan sinc. 4. Signaalin v( spekri on ohessa. Signaalia inegroidaan. Piirrä inegraalisignaalin V(f ampliudispekri suheellisina arvoina (mikä arkoiaa, eä spekrin maksimiarvo =. f/mhz Spekrin yhälö on -4-4 f / B kun B < f < B V ( f = f / B kun B < f < B muilla aajuuksilla missä on merkiy B = MHz. Merkiään inegroinninn jälkeisen signaalin spekriä X(f:llä. Tällöin. / j4πb kun B < f < B V ( f X ( f = = / j4πb kun B < f < B jπf muilla aajuuksilla Silloin ampliudispekri = /4πB ja vaihespekri = 90 posiiivisella akselilla ja 90 negaiivisella akselilla. Inegraalisignaalin ampliuspekri on siis vakio aajuuskaisalla B f B, joen normalisoiu ampliudispekri on silloin = ällä samalla kaisalla (ja = 0 kaisan ulkopuolella. Kuva:

3 X(f -4-4 f/mhz 5. Kuvassa on signaalin v( spekri V(f. a Signaalia v( inegroidaan. Piirrä saaavan signaalin suheellinen ampliudispekri. (Suheellinen ampliudispekri arkoiaa siä, eä spekrin suurin arvo =. b Signaalia v( derivoidaan. Piirrä saaavan signaalin suheellinen ampliudispekri. c Signaalia v( viiväseään T:n verran. Piirrä saaavan signaalin suheellinen ampliudispekri. V(f f Tehävän kuvassa olevan spekrin yhälö on -B -B B B kun B f B V ( f = muilla aajuuksilla a Kun signaalia inegroidaan, sen spekri ulee jaeuksi ermillä j πf. Silloin inegraalisignaalin, olkoon se vaikkapa x(, ampliudispekri on kun B f B X ( f = π f muilla aajuuksilla Taajuusvälillä B... B uon suurin arvo on, Suheellinen πb ampliudispekri saadaan jakamalla ylläoleva lauseke uolla suurimmalla arvolla, joen ny ulee B kun B f B X suh ( f = f muilla aajuuksilla Tuon kuvaaja on ällainen: b Kun signaalia derivoidaan, sen spekri ulee -B -B B B kerrouksi ermillä j πf. Silloin derivaaasignaalin (olkoon se vaikkapa x( ampliudispekri on π f kun B f B X ( f = muilla aajuuksilla Taajuusvälillä B... B uon suurin arvo on 4 πb, Suheellinen ampliudispekri saadaan jakamalla ylläoleva lauseke uolla suurimmalla arvolla, joen ny ulee f kun B f B X suh ( f = B muilla aajuuksilla Tuon kuvaaja on ällainen: X(f X(f -B -B B B f f

4 c Signaalin viiväsäminen ei muua sen ampliudispekriä: v( d V ( f e j πf d jπfd jπf d Oikean puolen iseisarvo on V ( f e = V ( f e = V ( f. Viiväseyn signaalin ampliudispekrin kuvaaja on siis äsmälleen samanlainen kuin ehävänannossa oleva spekrin kuva. cos(π c ( c. ( c 6. Todisa: v f V f f + V ( f + f Miä uo arkoiaa? F = j πf c j πfc jπf j π ( f fc jπ ( f + fc [ v( cos(πf ] = v( [ e + e ] e d = v( ( e + e v( e j c π ( f f j ( f f d v e c π + c + ( d Tuossahan kaksi kpl v(:n Fourier-muunnoksia, kuienkin niin eä oisessa on korvau oisessa f f + fc. Lisäksi kumpikin on kerrou :lla. Siispä osiaankin d f f f ja F [ v( cos(πf c ] = V ( f fc + V ( f + fc Tämä arkoiaa siä, eä kun mikä ahansa signaali v( kerroaan f c -aajuisella sinisignaalilla, saadaan signaali, jonka spekri koosuu kahdesa alkuperäisen signaalin spekrisä, joka ova siirynee aajuuksien f ± fc kohdalle. 7. Mikä on oheisen signaalin Fourier-muunnos? Vaaka-akselilla on aika mikrosekuneina. Tämä on suoraan ehävän 6 sovellus. Signaalissa on selväsikin siniä, jonka jaksonpiuus on µs ja jonka ampliudi vaihelee 40 µs piuisen kolmiopulssin mukaisesi. Siis signaalin yhälö on v( = Λ cos( πf c, missä = 40 µs ja f c = 500 khz. Tehävässä saaiin kolmiopulssin spekriksi sinc ( f joen oheisen kolmiopulssimaisesi käyäyyvän sinipurskeen Fouriermuunnos on V ( f = sinc [( f fc ] + sinc [( f + fc ] Spekrin normalisoiu kuvaaja alla. Vaaka-akselilla aajuus saoina khz:nä. c x 0 5

5 8. Johda suorakulmaisen pulssin Fourier-muunnos derivoimalla pulssi. Suorakulmainen pulssi v( ja sen derivaaa x(: v( x( / / / / - Derivaaan yhälö on x ( = δ ( ( / δ ( /. Tämän Fourier-muunnos on jπf ( / jπf / jπf jπf X ( f = e e = ( e e = j sin( πf v( dv( Koska x( =, on X ( f = jπ f V ( f, joen d X ( f jsin( πf sin( πf V ( f = = = = sinc( f. Eli uli se miä piikin ulla. jπf jπf πf 9. Johda kolmiopulssin Fourier-muunnos derivoimalla pulssi. Kolmiopulssi v ( = Λ : Kuvan kolmiopulssi koosuu kahdesa suorasa. Ensin on nouseva suora, jonka kulmakerroin on / ja sien laskeva suora, jonka kulmakerroin on /. Suoran derivaaahan on sama kuin x( dv( sen kulmakerroin, joen kolmiopulssin derivaaasignaali x( = on / d oheisen kalainen: Täsä voi jakaa kahdella avalla. Tapa : Derivaaasignaalin yhälö on ( / / x ( = Π Π, joen derivaaasignaalin spekri -/ on jπf ( / jπf / y( X ( f = sinc( f e sinc( f e / Kun supiseaan : ja : ja huomioidaan miinusmerki, yhälö saadaan helposi dv( muooon X ( f = j sinc( f sin( πf. Nyhän koska x( =, on d X ( f = jπ f V ( f, joen kolmiopulssin spekri on V ( f j sinc( f sin( πf V ( f = = jπf jπf Kun supisaa pois j: ja lavenaa :lla (jolloin osoiajassa olevasa sinisä ja nimiäjäsä saa aikaan sinc-funkion, ulee loppuulokseksi -/ V ( f = sinc ( f, eli sama yhälö kuin kaavakokoelmassa.

6 Tapa : Derivoidaan derivaaasignaali x(. Tulos kuvassa. Derivoiavassa x(:ssa on kolme askelmaisa muuosa, joen sen derivaaa koosuu kolmesa impulssisa. y(:n yhälö on y( = δ ( ( δ ( + δ ( Tämän Fourier-muunnos voidaan kirjoiaa suoraan: j πf ( jπf j πf jπf Y ( f = e + e = ( e + e 4 = [ cos( πf ] = sin ( πf jx jx x = e + e cos x = sin x. Tässä käyeiin näiä: ( cos( ja ( ( dx( d v( Koska y ( = =, on Y ( f = jπf X ( f = jπf jπf V ( f = 4π f V ( f, joen d d Y( f sin ( πf sin ( πf V ( f = = = = sinc ( f. 4π f π f π f 0. Laske "Fourier-muunnos, ehäviä " kokoelman (iedoso 09.Fourier-muunnos.ehäviä_.pdf ehävä derivoinnin kaua. Tämä menee periaaeessa ihan samalla avalla kuin ehävän 9 koha "Tapa ".. Signaali v( koosuu kolmesa impulssisa: v( = δ ( + 5 ms + 4δ ( + δ ( 5 ms. a Piirrä signaalin v( kuvaaja. b Määriä signaalin ampliudispekrin V(f (eli spekrin iseisarvon yhälö. c Piirrä ampliudispekrin V(f kuvaaja. a v( 4-5 b Merkiään T = 5 ms. Tällöin V ( f = e = 5 /ms j πf ( T j πf T e = 4 + cos( πft [ + cos( πft ] = [ + cos( π 5 ms f ] Koska hakasulkulauseke ei voi mennä negaiiviseksi, on siis ampliudispekri [ + cos( 5 f ] V ( f = π ms c Kuvaajan piirämisessä auaa, kun oivalaa, eä lausekkeessa esiinyvän kosinin jaksonpiuus aajuusakselilla on /(5 ms = 00 Hz. Tulee ällainen kuvaaja:

7 6 V(f 4 f/hz Määriä neljä aajuua, joilla oheisen pulssin spekri = 0. v( -T T Π Signaalin yhälö on v( = + Λ T T Spekrin yhälö on siis V ( f = T sinc( ft + T sinc ( ft V(f = 0 ainakin kaikilla niillä aajuuksilla f, joilla sekä sinc ( ft = 0 eä sinc ( ft = 0. sinc( ft = 0 ft = n f = n T sinc( ft = 0 ft = n f = n T Noissa molemmissa n on mikä ahansa kokonaisluku (mua n 0. Joen V(f = 0 ainakin kun 3 4 = ±, ±, ±,, L T T T T 3. Määriä kaikki aajuude, joilla oheisen kahdesa suorakulmaisesa pulssisa koosuvan signaalin spekri = 0. 0 v( /ms -0 ( T T Jos merkiään = 0 ja T = 4 ms, niin signaalin yhälö on v( = Π + Π T T jπft jπft Spekrin yhälö on siis V ( f = T sinc( ft ( e + e = j4t sinc( ft sin( πft Nollakohda uleva sinc:n nollakohdisa ja sinin nollakohdisa: sinc( ft = 0 ft = n f = n = n 5 Hz, n = ±, ±, ± 3,L T sin( πft = 0 ft = n f = n = n 5 Hz, n = 0, ±, ±, ± 3,L T Eli yhdiseynä f = n 5 Hz, missä n on mikä ahansa kokonaisluku.

8 4. Onko kukin seuraavisa väieisä oikein vai väärin? a Signaalin v( = δ ( T + B δ ( T ampliudispekri = + B. jπft j 4πfT Väärin. V ( f = e + Be. Yksi vasaesimerkki riiää kumoamaan väieen: Jos T = 0 ja = B, on v( = 0, ja ieysi myös V(f = 0. Kuienkin väieessä esiey + B =, joka on 0, jos 0. b Jos signaali x( on signaalin v( inegraalisignaali, niin signaaleilla v( ja x( on erilaise ampliudispekri, mua samanlaise vaihespekri. V ( f Väärin. Jos signaali x( on signaalin v( inegraalisignaali, niin X ( f =, joen sekä ampliudispekri jπf eä vaihespekri ova erilaise. c Jos signaali x( on signaalin v( derivaaasignaali, niin X(0 = 0. Oikein. Jos signaali x( on signaalin v( derivaaasignaali, niin X ( f = jπ f V ( f, joen X(0 on pakosakin = 0. Tämähän arkoiaa siä, eä derivoini häviää signaalisa asasähkökomponenin. d Signaalin v ( = cos(π f + ϕ keskimääräinen eho = /. (Oleeaan eä on reaalinen. Oikein. Jos sinijännieen ampiudi eli huippuarvo =, niin sen ehollisarvo = /. Silloin sen eho on ehollisarvon oinen poenssi (jaeuna jollakin resisanssilla, joka meidän ieoliikennesignaaliarkaselussamme oleeaan Ω:n suuruiseksi, eli P = /. j πf e Signaalin v( = c e keskimääräinen eho = c. Oikein. Parsevalin kaavan mukaan P = c n n=, ja ny noia cn -keroimia on vain uo yksi, eli c. f Jos jaksollisen signaalin jaksonpiuus lyhenee, mua aalomuoo säilyy muuen samana, niin spekriviivojen määrä signaalin spekrissä vähenee. Väärin. Jos aalomuoo säilyy samana, ei spekriviivojen määrä muuu. Sen sijaan spekriviiva eäänyvä oisisaan, kun jaksonpiuus lyhenee. g Jos suorakulmaisen pulssin keso lyhenee, pulssin spekrin nollakohda eäänyvä oisisaan. Oikein. Nollakohien eäisyys oisisaan on pulssin kesoajan kääneisluku. h Jos signaalia inegroidaan ajan suheen, signaalin spekri ulee jaeuksi ermillä jπf. Oikein. i Jos signaali siiryy aalomuoonsa säilyäen aika-akselilla paikasa oiseen, niin sen ampliudispekri pysyy samana, mua vaihespekri muuuu. jπft Oikein. Viive T aiheuaa spekriin keroimen e, jonka iseisarvo =, joen ampliudispekri ei muuu. j Jos kaksi signaalia summaaan oisiinsa, uloksena saaavan signaalin ampliudispekri on alkuperäisen signaalien ampliudispekrien summa. Väärin. Koko kompleksinen spekri on alkuperäisen spekrien summa. Silloin ampliudispekri on alkuperäisen ampliudispekrien summa vain jos alkuperäisen spekrien kaikki arvo ova posiiivisia reaalilukuja.

Tietoliikennesignaalit

Tietoliikennesignaalit ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime

Lisätiedot

W dt dt t J.

W dt dt t J. DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan

Lisätiedot

S Signaalit ja järjestelmät Tentti

S Signaalit ja järjestelmät Tentti S-7. Signaali ja järjeselmä eni..6 Vasaa ehävään, ehävisä 7 oeaan huomioon neljä parhaien suorieua ehävää.. Vasaa lyhyesi seuraaviin osaehäviin, käyä arviaessa kuvaa. a) Mikä kaksi ehoa kanaunkioiden φ

Lisätiedot

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän: ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän

Lisätiedot

Luento 4. Fourier-muunnos

Luento 4. Fourier-muunnos Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:

Lisätiedot

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s). DEE- Piirianalyysi Ykkösharkan ehävien rakaisuehdoukse. askeaan ensin, kuinka paljon äyeen ladaussa akussa on energiaa. Tämä saadaan laskeua ehäväpaperissa anneujen akun ieojen 8.4 V ja 7 mah avulla. 8.4

Lisätiedot

x v1 y v2, missä x ja y ovat kokonaislukuja.

x v1 y v2, missä x ja y ovat kokonaislukuja. Digiaalinen videonkäsiel Harjoius, vasaukse ehäviin 4-0 Tehävä 4. Emämariisi a: V A 0 V B 0 Hila saadaan kanavekorien (=emämariisin sarakkee) avulla. Kunkin piseen paikka hilassa on kokonaisluvulla kerroujen

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.4 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vasausen piireiden, sisälöjen ja piseiysen luonnehdina ei sido ylioppilasukinolauakunnan arvoselua. Lopullisessa arvoselussa

Lisätiedot

A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat!

A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat! MAA Koe 7..03 A-osio. Ei laskina! Valise seuraavisa kolmesa ehäväsä vain kaksi joihin vasaa! A. a) Mikä on funkion f(x) määrieljoukko, jos f( x) x b) Muua ulomuooon: 4a 8a 4 A. a) Rakaise hälö: x 4x b)

Lisätiedot

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän

Lisätiedot

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5 S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,

Lisätiedot

Aluksi.1. Integrointia

Aluksi.1. Integrointia TT/TV Iegraalimuuokse Meropolia/. Koivumäki Tässä iedosossa ova kaikki uilla esille ullee ehävä. (Tosi iha kaikkia ehäviä ei välämää ole uilla mey läpi kovi arkasi, jos ollekaa.) Esimmäisellä uilla ollee

Lisätiedot

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A.

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A. 9. Epäoleellise inegraali; inegraalin derivoini paramerin suheen 9.. Epäoleellise aso- ja avaruusinegraali 27. Olkoon = {(x, y) x, y }. Osoia hajaanuminen ai laske arvo epäoleelliselle asoinegraalille

Lisätiedot

SATE2140 Dynaaminen kenttäteoria syksy /7 Laskuharjoitus 4 / Sähkömagneettiset aaltojen polarisoituminen

SATE2140 Dynaaminen kenttäteoria syksy /7 Laskuharjoitus 4 / Sähkömagneettiset aaltojen polarisoituminen SATE14 Dnaainen kenäeoia sks 16 1 /7 Laskuhajoius 4 / Sähköagneeise aalojen polaisoiuinen Tehävä 1. Vapaassa ilassa väähelevän piseläheen aiheuaan palloaallon sähkökenän voiakkuus on A V E, sincos k e.

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin

Lisätiedot

Mittaustekniikan perusteet, piirianalyysin kertausta

Mittaustekniikan perusteet, piirianalyysin kertausta Miausekniikan perusee, piirianalyysin kerausa. Ohmin laki: =, ai = Z ( = ännie, = resisanssi, Z = impedanssi, = vira). Kompleksiluvu Kompleksilukua arviaan elekroniikassa analysoiaessa piireä, oka sisälävä

Lisätiedot

SIGNAALITEORIAN KERTAUSTA 2. Tietoliikennetekniikka I A Kari Kärkkäinen Osa 3

SIGNAALITEORIAN KERTAUSTA 2. Tietoliikennetekniikka I A Kari Kärkkäinen Osa 3 SIGNAALITEORIAN KERTAUSTA 2 Tieoliikenneekniikka I 521359A Kari Kärkkäinen Osa 3 Konvoluuio ja kerolasku ajassa ja aajuudessa Kanaaajuussignaali baseband sanomasignaali sellaisenaan ilman modulaaioa Kaisanpääsösignaali

Lisätiedot

2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t

2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t Tilasollinen ennusaminen Seppo Pynnönen Tilasoieeen professori, Meneelmäieeiden laios, Vaasan yliopiso. Tausaa Tulevaisuuden ennusaminen on ehkä yksi luoneenomaisimpia piireiä ihmiselle. On ilmeisesi aina

Lisätiedot

KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN

KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN YYSILMIÖ J SILÄ VÄLYMIE YYSE SIIRO LJEUS HYVÄSI ÄYÄE ieoliikenneekniikka I 559 ari ärkkäinen Osa 5 4 MILLOI? Milloin ja missä kynnysilmiö esiinyy? un vasaanoimen ulon SR siis esi-ilmaisusuodaimen lähdössä

Lisätiedot

Luento 9. Epälineaarisuus

Luento 9. Epälineaarisuus Lueno 9 Epälineaarisuus 8..6 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,

Lisätiedot

5. Vakiokertoiminen lineaarinen normaaliryhmä

5. Vakiokertoiminen lineaarinen normaaliryhmä 1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa

Lisätiedot

Diskreetillä puolella impulssi oli yksinkertainen lukujono:

Diskreetillä puolella impulssi oli yksinkertainen lukujono: DEE-00 ineaarise järjeselmä Harjoius 5, rakaisuehdoukse [johdano impulssivaseeseen] Jakuva-aikaisen järjeselmän impulssivase on vasaavanlainen järjeselmäyökalu kuin diskreeillä puolellakin: impulssivase

Lisätiedot

Tasaantumisilmiöt eli transientit

Tasaantumisilmiöt eli transientit uku 12 Tasaanumisilmiö eli ransieni 12.1 Kelan kykeminen asajännieeseen Kappaleessa 11.2 kykeiin reaalinen kela asajännieeseen ja ukiiin energian varasoiumisa kelan magneeikenään. Tilanne on esiey uudelleen

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

Luento 9. Epälineaarisuus

Luento 9. Epälineaarisuus Lueno 9 Epälineaarisuus 9..7 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 8 (viikko 14) Tehävä 1 LAD-käyrä siiryy ylöspäin. Ulkomaisen hinojen nousessa oman maan reaalinen vaihokurssi heikkenee 1 vaihoase vahvisuu IS-käyrä

Lisätiedot

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df) ELEC-A7 Signaalit ja järjestelmät Syksy 5 Tehtävä 3. a) Suoran tapauksessa ratkaistaan kaksi tuntematonta termiä, A ja B, joten tarvitaan kaksi pistettä, jotka ovat pisteet t = ja t =.. Saadaan yhtälöpari

Lisätiedot

2. Suoraviivainen liike

2. Suoraviivainen liike . Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus

Lisätiedot

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN KULMMODULOITUJEN SIGNLIEN SPEKTRIN LSKEMINEN 1 (3) (3) Spekri laskeie siisaoalle Kulaoduloidu sigaali spekri johaie o yöläsä epälieaarisuudesa johue (epälieaarise aalyysi ova yleesä hakalia). Se voidaa

Lisätiedot

12. ARKISIA SOVELLUKSIA

12. ARKISIA SOVELLUKSIA MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina

Lisätiedot

YKSISIVUKAISTAMODULAATIO (SSB)

YKSISIVUKAISTAMODULAATIO (SSB) YKSISIVUKAISTAODULAATIO SSB ien kaisaa voi sääsää verrauna DSB- a A-modulaaioihin? ikä on Hilber-munnin? 5357A Tieoliikenneekniikka I Osa 9 Kari Kärkkäinen Kevä 05 YKSISIVUKAISTAODULAATION IDEA DSB & A-inormaaio

Lisätiedot

Luento 11. Stationaariset prosessit

Luento 11. Stationaariset prosessit Lueno Soasisen prosessin ehosperi Saunnaissignaalin suodaus 5..7 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ) ( ) ( ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan

Lisätiedot

a) Ortogonaalinen, koska kantafunktioiden energia 1

a) Ortogonaalinen, koska kantafunktioiden energia 1 S-7.060 Signaali ja järjeselmä Teni 14.5.001 1. Vasaa lyhyesi seuraaviin saehäviin, käyä arviaessa kuvaa. a) Mikä minaisuuksisa rgnaalinen ja rnrmaalinen kuvaa paremmin Furier-sarjaa ja miksi? b) Esiä

Lisätiedot

5 Jatkuvan funktion integraali

5 Jatkuvan funktion integraali 5 Jkuvn funkion inegrli Derivlle kääneisä käsieä kusun inegrliksi. Aloien inegrliin uusuminen esimerkillä. Esimerkki 5.. Tuonolioksess on phunu kemiklivuoo. Määriellään funkio V sien, eä V () on vuoneen

Lisätiedot

Derivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan

Derivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan 87 5. Eliminoinimeneely Tarkaellaan -kokoia vakiokeroimia yeemiä + x a a x a x + a x b() x = = = +. a a x a x a x b () (3) b() x + Derivoimalla enimmäinen komponeni, ijoiamalla jälkimmäien derivaaa iihen

Lisätiedot

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt SMG-500 Verolasennan numeerise meneelmä Ehdouse harjoiusen 4 raaisuisi Haeaan ensin ehävän analyyinen raaisu: dx 0 0 0 0 dx 00e = 0 = 00e 00 x = e + = 5e + alueho: x(0 = 0 0 x 0 = 5e + = 0 = 5 0 0 0 5

Lisätiedot

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN 1 KULMMODULOITUEN SIGNLIEN SPEKTRIN LSKEMINEN Mie laskea eroaa lieaarise odulaaioide apauksesa? Milä spekri äyää epälieaarise prosessi jälkee? 51357 Tieoliikeeekiikka I Osa 15 Kari Kärkkäie Kevä 015 SPEKTRIN

Lisätiedot

Luento 3. Fourier-sarja

Luento 3. Fourier-sarja Fourier-muuos Rayleigh eoreema Spekriiheys Lueo 3 4..7 Fourier-sarja Fourier-sarja avulla pysyii esiämää jaksollie sigaali, joka jaksoaika o. Fourier-sarja Fourier-kompoei Eäpä aperiodise sigaali, joilla

Lisätiedot

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen Soimukseneon dynamiikka: johdano ja haiallinen valikoiuminen Ma-2.442 Oimoinioin seminaari Elise Kolola 8.4.2008 S yseemianalyysin Laboraorio Esielmä 4 Elise Kolola Oimoinioin seminaari - Kevä 2008 Esiyksen

Lisätiedot

Tehtävä I. Vaihtoehtotehtävät.

Tehtävä I. Vaihtoehtotehtävät. Kem-9.7 Prosessiauomaaion perusee Teni 5.9.5 TÄMÄ PAPERI TÄYTYY EHDOTTOMASTI PALAUTTAA TENTIN MUKANA NIMI: (OS: ) OPINTOKIRJA: VIERAILULUENNOT KUUNNELTU: VALV. LASK: Tehävä I. Vaihoehoehävä. Oikea vasaus

Lisätiedot

f x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d)

f x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d) Tehävä 1. Oleeaan, eä on käössä jakuva kuva, jossa (,, ) keroo harmaasävn arvon paikassa (, ) ajanhekenä. Dnaaminen kuva voidaan esiää Talor sarjana: d d d d d d O ( +, +, + ) = (,, ) + + + + ( ). (4a)

Lisätiedot

Luento 3. Fourier-sarja

Luento 3. Fourier-sarja Fourier muuos Rayleigh eoreema Spekriiheys Lueo 3 4..6 Fourier-sarja Fourier-sarja avulla pysyii esiämää jaksollie sigaali, joka jaksoaika o. Fourier-sarja Fourier-kompoei Eäpä aperiodise sigaali, joilla

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto Kojemeeorologia Sami Haapaala syksy 03 Fysiika laios, Ilmakehäieeide osaso Mialaieide dyaamise omiaisuude Dyaamise uusluvu määriävä mie mialaie käyäyyy syöeide muuuessa Apua käyeää differeiaaliyhälöiä,

Lisätiedot

Luento 2. Jaksolliset signaalit

Luento 2. Jaksolliset signaalit Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi

Lisätiedot

YKSISIVUKAISTAMODULAATIO (SSB)

YKSISIVUKAISTAMODULAATIO (SSB) YKSISIVUKISTODULTIO SSB Tieoliikenneekniikka I 5359 Kari Kärkkäinen Osa 6 0 Yksisivukaisamodulaaion idea DSB:ssa inormaaio on redundanisesi kaheen keraan, s. LSB & USB. Toisen kaisan läheys riiää, olloin

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial

Lisätiedot

OH CHOOH (2) 5. H2O. OH säiliö. reaktori 2 erotus HCOOCH 3 11.

OH CHOOH (2) 5. H2O. OH säiliö. reaktori 2 erotus HCOOCH 3 11. Kemian laieekniikka 1 Koilasku 1 4.4.28 Jarmo Vesola Tuoee ja reakio: hiilimonoksidi, meanoli, meyyliformiaai C HC (1) vesi, meyyliformiaai, meanoli, muurahaishappo HC CH (2) hiilimonoksi, vesi, muurahaishappo

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte

VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte 4/ VÄRÄHTELYMEKANIIKKA SESSIO 4: Yhden vaausaseen vaieneva akkvärähely, harninen kuriusheräe LIIKEYHTÄLÖN JOHTO JA RATKAISU Kuvassa n esiey visksisi vaienneun yhden vaausaseen harnisen akkvärähelijän erusalli.

Lisätiedot

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014 MAT-45 Fourier n meneelmä Merja Laaksonen, TTY 4..4 Sisälö Johano 3. Peruskäsieiä................................... 4.. Parillinen ja parion funkio....................... 7.. Heavisien funkio............................

Lisätiedot

b) Esitä kilpaileva myötöviivamekanismi a-kohdassa esittämällesi mekanismille ja vertaile näillä mekanismeilla määritettyjä kuormitettavuuksia (2p)

b) Esitä kilpaileva myötöviivamekanismi a-kohdassa esittämällesi mekanismille ja vertaile näillä mekanismeilla määritettyjä kuormitettavuuksia (2p) LUT / Teräsrakenee/Timo Björk BK80A30: Teräsrakenee II:.5.016 Oheismaeriaalin käyö EI salliua, laskimen käyö on salliua, lausekkeia ehäväosion lopussa Vasaukse laadiaan ehäväpaperille, joka palaueava,

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 3, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 3, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset DEE- ineaarise järjeselmä Harjoius 3, harjoiusenpiäjille arkoieu rakaisuehdoukse Ennen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu Piirianalyysin juuri suorianee

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-00 Signaalinkäsittelyn menetelmät, Tentti..005 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja sen

Lisätiedot

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET TRAN TyL:n MUKASN AKUUTUKSN RTYSPRUSTT Tässä peruseessa kaikki suuree koskea eraa, ellei oisin ole määriely. Tässä peruseessa käyey lyhenee: LL Lyhyaikaisissa yösuheissa oleien yönekijäin eläkelaki TaL

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

Luento 11. tietoverkkotekniikan laitos

Luento 11. tietoverkkotekniikan laitos Lueno Lueno Sokasise signaali ja prosessi II. Sokasise prosessi Pruju Saionaarisuus, ergodisuus Auo ja risikorrelaaio ehospekri.3 Kohinan suodaaminen Sokasinen raja arvo ja derivaaa Winer Khinchin eoreema.3

Lisätiedot

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi Rakennusosien rakennusfysikaalinen oimina Ralf Lindber Professori, Tampereen eknillinen yliopiso ralf.lindber@u.fi Rakenneosien rakennusfysikaalisen oiminnan ymmärämiseksi on välämäönä piirää kolme eri

Lisätiedot

MATP153 Approbatur 1B Harjoitus 6 Maanantai

MATP153 Approbatur 1B Harjoitus 6 Maanantai . (Teht. s. 93.) Määrää raja-arvo MATP53 Approbatur B Harjoitus 6 Maanantai 7..5 cos x x. Ratkaisu. Suora sijoitus antaa epämääräisen muodon (ei auta). Laventamalla päädytään muotoon ja päästään käyttämään

Lisätiedot

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe SGN-100 Signaalinkäsittelyn menetelmät Välikoe 6.4.010 Sivuilla 1- on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus Tieonhakumeneelmä Helsingin yliopiso / TKTL.4.04 Toennäköisyyeen perusuva rankkaus Tieonhakumeneelmä Toennäköisyyspohjainen rankkaus Dokumenien haussa ongelmana on löyää käyäjän kyselynä ilmaiseman ieoarpeen

Lisätiedot

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat

Lisätiedot

EPÄLINEAARISET KULMAMODULAATIOT VAIHEMODULAATIO (PM) JA TAAJUUSMODULAATIO (FM)

EPÄLINEAARISET KULMAMODULAATIOT VAIHEMODULAATIO (PM) JA TAAJUUSMODULAATIO (FM) 1 EPÄLINERISET KULMMODULTIOT VIHEMODULTIO PM J TJUUSMODULTIO FM Mien PM a FM eroava oisisaan? Millainen on kapeakaisainen kulmamodulaaori? 521357 Tieoliikenneekniikka I Osa 14 Kari Kärkkäinen Kevä 2015

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ 76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee

Lisätiedot

XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA

XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA II ADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA Laskenaaajuus akiivisuus Määrieäessä radioakiivisen näyeen akiivisuua (A) uloksena saadaan käyeyn miausyseemin anama laskenaaajuus (). = [II.I] jossa =

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,

Lisätiedot

PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd

PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd PK-YRITYKSEN ARVONMÄÄRITYS KTT, DI TOIVO KOSKI elearning Communiy Ld Yriyksen arvonmääriys 1. Yriyksen ase- eli subsanssiarvo Arvioidaan yriyksen aseen vasaavaa puolella olevan omaisuuden käypäarvo, josa

Lisätiedot

Viivaintegraali: "Pac- Man" - tulkinta

Viivaintegraali: Pac- Man - tulkinta Viivaintegraali: "Pac- Man" - tulkinta Otetaan funk6o f(x,y), joka riippuu muu@ujista x ja y. Jokaiselle x,y tason pisteellä funk6olla on siis joku arvo. Tyypillisiä fysikaalis- kemiallisia esimerkkejä

Lisätiedot

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia 6.4 Variaaiolaskennan oleusen rajoiukse Sivu ss. 27 31 läheien Kirk, ss. 13 143] ja KS, Ch. 5] pohjala Lähökoha oli: jos J:llä on eksremaali (), niin J:n variaaio δj( (), δ()) ():ä pikin on nolla. 1. Välämäön

Lisätiedot

Suunnitteluharjoitus s-2016 (...k-2017)

Suunnitteluharjoitus s-2016 (...k-2017) 1 Suunnieluharjoius s-2016 (...k-2017) HAKKURITEHOLÄHDE Seuraavan push-pull-yyppisen hakkurieholäheen komponeni ulisi valia (muunajaa lukuunoamaa). V1 iin 230 V ± 10 % 50 Hz V3 Perusieoja kykennäsä Verkkoasasuunauksen

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan

Lisätiedot

Lorentz-muunnos L(v) on operaatio, joka voidaan esittää myös matriisina

Lorentz-muunnos L(v) on operaatio, joka voidaan esittää myös matriisina Lorenz-muunnos L on operaaio, joka oidaan esiää myös mariisina L / / mariisi L muodosaa ryhmän: kaksi peräkkäisä Lorenz-muunnosa on myös Lorenz-muunnos, ja on olemassa myös kääneinen Lorenz- muunnos 3

Lisätiedot

Differentiaalilaskenta 1.

Differentiaalilaskenta 1. Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,

Lisätiedot

YO Fysiikka. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen. Sanoma Pro Oy Helsinki

YO Fysiikka. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen. Sanoma Pro Oy Helsinki YO Fysiikka Heikki Leho Raimo Havukainen Jukka Maalampi Janna Leskinen Sanoma Pro Oy Helsinki Sisällys Opeajalle ja opiskelijalle 4 1 Kohi fysiikan ylioppilaskoea 5 Yleisä fysiikan ylioppilaskokeesa 6

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

ELEC-A7200 Signaalit ja järjestelmät Laskuharjoitukset. LASKUHARJOITUS 1 Sivu 1/18. Hyvä opiskelija

ELEC-A7200 Signaalit ja järjestelmät Laskuharjoitukset. LASKUHARJOITUS 1 Sivu 1/18. Hyvä opiskelija ELEC-A7 LASKUHARJOIUS Sivu /8 Hyvä opiskelija ässä opeusmoniseessa esieään kurssiin ELEC-A7 liiyviä laskuharjoiusehäviä rakaisuineen. Kaikkia ehäviä ei välämää käsiellä laskuharjoiuksissa, joen voi jouua

Lisätiedot

KULMAMODULOITUJEN SIGNAALIEN ILMAISU DISKRIMINAATTORILLA

KULMAMODULOITUJEN SIGNAALIEN ILMAISU DISKRIMINAATTORILLA 1 KULMMOULOITUJEN SIGNLIEN ILMISU ISKRIMINTTORILL Millaisia keinoja on PM & FM -ilmaisuun? 51357 Tieoliikenneekniikka I Osa 17 Kai Käkkäinen Kevä 015 ISKRIMINTTORIN TOIMINTKÄYRÄ J -YHTÄLÖ FM-signaalin

Lisätiedot

1 Excel-sovelluksen ohje

1 Excel-sovelluksen ohje 1 (11) 1 Excel-sovelluksen ohje Seuraavassa kuvaaan jakeluverkonhalijan kohuullisen konrolloiavien operaiivisen kusannusen (SKOPEX 1 ) arvioimiseen arkoieun Excel-sovelluksen oimina, mukaan lukien sovelluksen

Lisätiedot

Jaksollisen signaalin spektri

Jaksollisen signaalin spektri Jaksollisen signaalin spektri LuK-tutkielma Topi Suviaro 2257699 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 215 Sisältö Johdanto 2 1 Jaksollisuudesta 2 2 Spektristä 3 2.1 Symmetrian vaikutuksesta

Lisätiedot

a) Esitä piirtämällä oheisen kaksoissymmetrisen ulokepalkkina toimivan kotelopalkin kaksi täysin erityyppistä plastista rajatilamekanismia (2p).

a) Esitä piirtämällä oheisen kaksoissymmetrisen ulokepalkkina toimivan kotelopalkin kaksi täysin erityyppistä plastista rajatilamekanismia (2p). LUT / Teräsrakenee/Timo Björk BK80A30: Teräsrakenee II: 9.9.016 Oheismaeriaalin käyö EI salliua, laskimen käyö on salliua, lausekkeia ehäväosion lopussa Vasaukse laadiaan ehäväpaperille, joka palaueava,

Lisätiedot

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77 Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)

Lisätiedot

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008 Mat-.3 / Mat-.33 Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 4, loppuviikko, syksy 8 Ennen malliratkaisuja, muistin virkistämiseksi kaikkien rakastama osittaisintegroinnin kaava: b a u(tv (t

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA S I G N A A L I T E O R I A, O S A I I I TL98Z SIGNAALITEORIA, OSA III 44 3 Signaalin suodaus...44 3. Sysmin vas aikaasossa... 44 3. Kausaalisuus a sabiilisuus... 46 3.3 Vas aauusasossa... 46 3.4 Ampliudivas

Lisätiedot

a) Miksi signaalin jaksollisuus on tärkeä ominaisuus? Miten jaksollisuus vaikuttaa signaalin taajuussisältöön?

a) Miksi signaalin jaksollisuus on tärkeä ominaisuus? Miten jaksollisuus vaikuttaa signaalin taajuussisältöön? L53, Sinaalioria J. Laiinn..5 E3SN, E3SN5Z Väliko, rakaisu Vasaa lyhysi suraaviin kysymyksiin. 6p a Miksi sinaalin aksollisuus on ärkä ominaisuus? Min aksollisuus vaikuaa sinaalin aauussisälöön? b Miä

Lisätiedot

>LTI-järjestelmä. >vaihespektri. >ryhmäviive

>LTI-järjestelmä. >vaihespektri. >ryhmäviive TL53, Signaalioria (J. Laiinn) 9..4 TTESN, TTESN5X, TTESN5Z Väliko, rakaisu Täydnnä ohisn kuvaan > - ai < -mrkiy kohda. Miä arkoiaan idonsiirokanavan kvalisoinnilla? Esiä lausk kvalisaaorin siirofunkioll,

Lisätiedot

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä

Lisätiedot

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali:

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali: BMA57 - INTEGRAALIMUUNNOKSET Harjoitus, viikko 46/5 Fourier-integraali: f(x) A() π B() π [A() cos x + B() sin x]d, () Fourier-muunnos ja käänteismuunnos: f(t) cos tdt, () f(t) sin tdt. (3) F {f(t)} ˆf()

Lisätiedot

spektri taajuus f c f c W f c f c + W

spektri taajuus f c f c W f c f c + W Kaistanpäästösignaalit Monet digitaaliset tiedonsiirtosignaalit ovat keskittyneet jonkin tietyn kantoaaltotaajuuden f c ympäristöön siten, että signaali omaa merkittäviä taajuuskomponetteja vain kaistalla

Lisätiedot

3. Differen*aalilaskenta

3. Differen*aalilaskenta 3. Differen*aalilaskenta Differen*aali "hyvin pieni muutos" Derivaa9a kuvaa funk*on muutosnopeu9a Esim. 1 kertaluvun kemiallinen reak*o A > B Reak*on nopeus on A:n tai B:n konsentraa*on muutosnopeus. Reak*on

Lisätiedot