Systeemimallit: sisältö

Koko: px
Aloita esitys sivulta:

Download "Systeemimallit: sisältö"

Transkriptio

1 Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -uvaus ja ilayhälömalli, ila Linearisoini Jauva-aiaisen lineaarisen järjeselmän siirofunio, sabiilisuus Laplace-muunnos Disreeiaiaisen lineaarisen järjeselmän pulssinsiirofunio, sabiilisuus z-muunnos Disreoini TKK/SAL Ma Syseemien idenifioini Kai Viranen

2 Joiain malliyyppejä Maemaainen malli: muuujien välise suhee uvau maemaaisesi yhälöin Lohoaaviomalli: syseemin oiminojen looginen jao lohoihin, joiden välisiä vuorovaiuusia uvaaan nuolin u S y u subsysem1 subsysem2 y simulaaiomalli: malli ehä olemassa vain ieooneohjelmana joa on ehä jäsenney maemaaisesa ai lohoaaviomallisa TKK/SAL Ma Syseemien idenifioini Kai Viranen

3 Sisäänmeno, ulosulo ja häiriö Mallin vaio: syseemiparameri suunnieluparameri Mallin muuuja: ulosulo oupu y=[y 1,..., y p ] T sisäänmeno inpu, ohjaus u=[u 1,...,u m ] T voidaan valia häiriö w=[w 1,...,w r ] T ei voida valia Sisäänmenoja ja häiriöiä usuaan uloisisi muuujisi, muia mallin muuujia sisäisisi Dynaamisessa järjeselmässä y riippuu paisi u:sä ja w:sä myös aiisa us ja ws, s< TKK/SAL Ma Syseemien idenifioini Kai Viranen

4 Inpu-oupu -uvaus ja ilayhälömalli Yleinen jauvan ajan inpu-oupu-uvaus on muooa gy n, y n-1,...,y, u m,...,u=0, missä a viiaa a:neen derivaaaan ja g on join epälineaarinen funio SISO Muunneaan 1. eraluvun differeniaaliyhälösyseemisi aseamalla x i :=y i-1, i=1,...,n Saadaan ilayhälömalli x& = y f x, u = h x, u jossa dim x=n, dim u=m, dim y=p x on mallin ila, n on mallin eraluu TKK/SAL Ma Syseemien idenifioini Kai Viranen

5 Tila Aiemmin odeiin, eä syseemin ulosuloon y vaiuava us ja ws, s< Olisi ovin ömpelöä alleaa us ja ws oonaisuudessaan Syseemin ai mallin ila x on sellainen informaaio, jona uneminen yhdessä u:n ja w:n anssa mahdollisaa syseemin ulosulon yτ lasemisen jollein τ> Käyännössä ilalla on äreä meriys esim. simuloinnissa: se on suoraan ullain aia-aselella alleeava informaaio u y u x& = f x, u y S inpu-oupu-uvaus exernal model y = h x, u ilamalli inernal model TKK/SAL Ma Syseemien idenifioini Kai Viranen

6 Esiysen ero Inpu-oupu -uvaus ei oa anaa syseemin sisäiseen raeneeseen Klassisen sääöeorian perusa siirofuniolla ilmaisun lineaarisen inpu-oupu -uvausen analyysi aajuusasossa Tilayhälöesiys moderni lähesymisapa OR:n syny 1950-luvulla mahdollisi mm. ilaaaisinyennän, opimisäädön, monimuuuujasäädön ja epälineaarisen mallien äsielyn seä laajensi lineaarisen järjeselmien eoriaa meriäväsi TKK/SAL Ma Syseemien idenifioini Kai Viranen

7 Tasapainoilan raaisu Valiaan u=u 0 vaio; mihin x ja y aseuva? x 0 : fx 0,u 0 =0 ysi, useia ai ei yhään raaisua x 0,u 0 on asapainopise saionary poin usein oivoavaa saada syseemi asapainoilaan Vasaavasi asapainoilan ulosulo on y 0 =hx 0,u 0 Tasapainopise on asympooisesi sabiili y onvergoi y 0 :aan Konvergenssinopeua uvaa aiavaio usein mieleniinnon annala nopea ila voidaan orvaa saaisilla approsimaaioilla Saainen vahvisus = y 0 :n heryys muuoselle u 0 :ssa eli g u 0 ; y 0 =hx 0 u 0,u 0 =gu 0 TKK/SAL Ma Syseemien idenifioini Kai Viranen

8 g lineaarinen un g. on y:n ja u:n derivaaojen painoeu summa, saadaan y u:n funiona Laplace-muunnosella SISO: m m 1 bms bm 1s... b0 Y s = U s n n 1 n 2 as a s a s... 1 n n 1 Osamäärää usuaan syseemin siirofuniosi Gs Toisaala, oimimalla uen edellä saadaan lineaarinen ilayhälömalli x& = Ax Bu n 2 y = Cx Du ässä dim A=nxn, dim B=nxm, dim C=pxn, dim D=pxm TKK/SAL Ma Syseemien idenifioini Kai Viranen

9 Lineaarisen jauva-aiaisen syseemin sabiilisuus Asympooinen sabiilisuus vs. sabiilisuus: loaali, globaali Lin. järjeselmälle sabiilisuus on syseemin ominaisuus joa ei riipu oimina-alueesa ai ulosuureisa Siirofunion Gs väliämä inpu-oupu -uvaus on globaalisi asympooisesi sabiili joss nimiäjäpolynomin nollaohda so. siirofunion nava sijaiseva aidosi omplesiason vasemmassa puolisossa uvaus on sabiili jos join nava ova im-aselilla ja ne ova ysineraisia Huom. Laplace-muunamalla ilayhälö saadaan Gs=CsI-A -1 BD eli nava yhyvä A:n ominaisarvoihin TKK/SAL Ma Syseemien idenifioini Kai Viranen

10 TKK/SAL Ma Syseemien idenifioini Kai Viranen Linearisoini Tarasellaan epälineaarisa järjeselmää asapainopiseessä x 0,u 0 seä poieamia x=x-x 0, y=y-y 0 ja u=u-u 0 päee: missä laseuna x 0,u 0 :ssa Lisäieoa app. B irjassa ' ' ' ' u D x C y u B x A x d d u h D x h C u f B x f A = = = = ', ', ', '

11 TKK/SAL Ma Syseemien idenifioini Kai Viranen Disreeiaiainen lineaarinen järjeselmä Inpu-oupu -uvausen siirofunioesiys Tilayhälöesiys: oeaan iloisi viiväsey y:n ja u:n arvo Asympooinen sabiilisuus: siirofunion nava A:n ominaisarvo ysiöympyrän sisäpuolella sabiilisuus: napoja ysiöympyrällä 1 Du Cx y Bu Ax x = = z U z a z a z a b z b z b z Y n n n n n n m m m m =

12 Disreoini Oloon anneuna jauva-aiainen malli x& = y f x, u = h x, u ja arasellaan disreeiaiaisa mallia x 1 y, u Mien F ja H ulisi valia, joa disreeiaiainen malli uvaisi disreoinipiseissä jauva-aiaisa mallia mahdollisimman hyvin? Euler, Runge-Kua meneelmä, yms... = F x = H x, u TKK/SAL Ma Syseemien idenifioini Kai Viranen

13 Lineaarisen mallin disreoini Oleeaan ohjaus aia-aselella vaiosi/lineaarisesi ja raaisaan ilayhälö => disreein mallin syseemi- ja ohjausmariisi jouduaan lasemaan mariisiesponeni ja sen inegraali Lue pl 3.9 ja app. A Harjoiusyö 1 ässä puhuun hands on -sovellus TKK/SAL Ma Syseemien idenifioini Kai Viranen

14 Sananen p:sä, s:sä, z:sa, q:sa ja q -1 :sä s on Laplace-ason muuuja - p on derivoinioperaaori aiaasossa sfs=l{f }, pf=f Gs on Laplace-ason olio - Gp on operaaoripolynomi Gs operoi Us:ään, Gp u:hen z on z-ason muuuja q on eeenpäinsiiro-operaaori q -1 on aasepäinsiiro-operaaori aiaasossa z -1 Yz=Z{y -1 }, qy=y 1, q -1 y=y -1 Gz on z-ason olio joa operoi Uz:aan Gq ja Gq -1 ova aiaason operaaoripolynomeja joa operoiva u:hen Huomaa eriyisesi, eä disreeiaiaisen järjeselmän sabiilisuusulos osee z:n ai q:n polynomeja usein äyeään myös merinää G*z -1 ai G*q -1! TKK/SAL Ma Syseemien idenifioini Kai Viranen

Systeemimallit: sisältö

Systeemimallit: sisältö Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -kuvaus ja ilayhälömalli, ila Linearisoini Jakuva-aikaisen lineaarisen järjeselmän siirofunkio, sabiilisuus Laplace-muunnos Diskreeiaikaisen lineaarisen

Lisätiedot

2. Systeemi- ja signaalimallit

2. Systeemi- ja signaalimallit 2. Syseemi- ja signaalimalli Malliyyppejä: maemaainen malli: muuujien välise suhee kuvau maemaaisesi yhälöin lohkokaaviomalli: syseemin oiminojen looginen jako lohkoihin, joiden välisiä vuorovaikuuksia

Lisätiedot

järjestelmät Luento 4

järjestelmät Luento 4 DEE- Lineaarise järjeselmä Lueno 4 Lineaarise järjeselmä Riso Mionen 3.7.4 Lueno 3 - Recap Lineaarisen differenssiyhälöiden raaiseminen Impulssivaseen äsie Impulssivase ja onvoluuiosumma Lineaarise järjeselmä

Lisätiedot

Luento 11. Stationaariset prosessit

Luento 11. Stationaariset prosessit Lueno Soasisen prosessin ehosperi Signaalin suodaus Kaisarajoieu anava 5..6 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan

Lisätiedot

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II Dynaamisten systeemien teoriaa Systeemianalyysilaboratorio II 15.11.2017 Vakiot, sisäänmenot, ulostulot ja häiriöt Mallin vakiot Systeemiparametrit annettuja vakioita, joita ei muuteta; esim. painovoiman

Lisätiedot

Luento 11. Stationaariset prosessit

Luento 11. Stationaariset prosessit Lueno Soasisen prosessin ehosperi Saunnaissignaalin suodaus 5..7 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ) ( ) ( ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt SMG-500 Verolasennan numeerise meneelmä Ehdouse harjoiusen 4 raaisuisi Haeaan ensin ehävän analyyinen raaisu: dx 0 0 0 0 dx 00e = 0 = 00e 00 x = e + = 5e + alueho: x(0 = 0 0 x 0 = 5e + = 0 = 5 0 0 0 5

Lisätiedot

Lineaaristen järjestelmien teoriaa

Lineaaristen järjestelmien teoriaa Lineaarisen järjeselmien eoriaa Saavueavuus, ohjaavuus Tarkkailavuus, havaiavuus Klassisen mekaniikan sabiilisuus vs. syseemiekninen sabiilisuusuus Tilaesimoini Kalman-suodin Mielenkiinoisia kysymyksiä

Lisätiedot

Lineaaristen järjestelmien teoriaa II

Lineaaristen järjestelmien teoriaa II Lieaarise järjeselmie eoriaa II Ohjaavuus Tarkkailavuus havaiavuus Lisää sabiilisuudesa Tilaesimoii, Kalma-suodi TKK/Syseemiaalyysi laboraorio Mielekiioisia kysymyksiä Oko syseemi rakeeelaa sellaie, eä

Lisätiedot

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi. / Raaisu Aihee: Avaisaa: Momeiemäfuio Sauaismuuujie muuose ja iide jaauma Kovergessiäsiee ja raja-arvolausee Biomijaauma, Espoeijaauma, Geomerie jaauma, Jaaumaovergessi, Jauva asaie jaauma, Kolmiojaauma,

Lisätiedot

Täydennetään teoriaa seuraavilla tuloksilla tapauksista, joissa moninkertaisen ominaisarvon geometrinen kertaluku on yksi:

Täydennetään teoriaa seuraavilla tuloksilla tapauksista, joissa moninkertaisen ominaisarvon geometrinen kertaluku on yksi: 77 Aemmn oleen, eä mars A on dagonalsouva. Tällanen on lanne äsmälleen sllon, un joasen omnasarvon geomernen eraluu on sama un algebrallnen. Täydenneään eoraa seuraavlla uloslla apaussa, jossa monnerasen

Lisätiedot

a. Varsinainen prosessi on tuttua tilaesitysmuotoa:

a. Varsinainen prosessi on tuttua tilaesitysmuotoa: ELEC-C Sääöeniia 7. lauharjoiu Vaaue. r - K u K C y a. Varinainen proei on uua ilaeiymuooa: A Bu y C Kuvaa nähdään, eä ilamallin iäänmenona on u r K. Salaaria ei voi vähenää mariiia, joen un on n -veori,

Lisätiedot

Tehtävä I. Vaihtoehtotehtävät.

Tehtävä I. Vaihtoehtotehtävät. Kem-9.7 Prosessiauomaaion perusee Teni 5.9.5 TÄMÄ PAPERI TÄYTYY EHDOTTOMASTI PALAUTTAA TENTIN MUKANA NIMI: (OS: ) OPINTOKIRJA: VIERAILULUENNOT KUUNNELTU: VALV. LASK: Tehävä I. Vaihoehoehävä. Oikea vasaus

Lisätiedot

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän: ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän

Lisätiedot

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A.

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A. 9. Epäoleellise inegraali; inegraalin derivoini paramerin suheen 9.. Epäoleellise aso- ja avaruusinegraali 27. Olkoon = {(x, y) x, y }. Osoia hajaanuminen ai laske arvo epäoleelliselle asoinegraalille

Lisätiedot

( ) ( ) x t. 2. Esitä kuvassa annetun signaalin x(t) yhtälö aikaalueessa. Laske signaalin Fourier-muunnos ja hahmottele amplitudispektri.

( ) ( ) x t. 2. Esitä kuvassa annetun signaalin x(t) yhtälö aikaalueessa. Laske signaalin Fourier-muunnos ja hahmottele amplitudispektri. ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 1/11 1. Johda anneun pulssin Fourier-muunnos ja hahmoele ampliudispekri. Käyä esim. derivoinieoreemaa, ja älä unohda 1. derivaaan epäjakuvuuskohia!

Lisätiedot

Luoki?elua: tavallinen vs osi?ais. Osa 11. Differen0aaliyhtälöt. Luoki?elua: kertaluku. Luoki?elua: lineaarisuus 4/13/13

Luoki?elua: tavallinen vs osi?ais. Osa 11. Differen0aaliyhtälöt. Luoki?elua: kertaluku. Luoki?elua: lineaarisuus 4/13/13 4/3/3 Osa. Differen0aaliyhtälöt Differen0aaliyhtälö = yhtälö jossa esiintyy jonkin funk0on derivaa?a. Esim: dx = x2 f x + f xy 2 2m d 2 ψ = Eψ dx 2 Luoki?elua: tavallinen vs osi?ais Differen0aaliyhtälöt

Lisätiedot

JLP:n käyttämättömät mahdollisuudet. Juha Lappi

JLP:n käyttämättömät mahdollisuudet. Juha Lappi JLP:n äyämäömä mahdollisuude Juha Lappi LP ehävä p z = a x + b z 0 Max or Min (.) 0 0 = = subjec o he following consrains: c a x + b z C, =,, q p q K r (.2) = = m n i ij K (.3) i= j= ij x xw= 0, =,, p

Lisätiedot

Luento 2. Järjestelmät aika-alueessa Konvoluutio-integraali. tietoverkkotekniikan laitos

Luento 2. Järjestelmät aika-alueessa Konvoluutio-integraali. tietoverkkotekniikan laitos Lueno 2 Järjeselmä aika-alueessa Konvoluuio-inegraali Lueno 2 Lueno 2 Järjeselmä aika alueessa; Konvoluuio inegraali 2.1 Järjeselmien perusominaisuude Oppenheim 1.5. 1.6 Muisillise ja muisioma järjeselmä

Lisätiedot

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5 S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,

Lisätiedot

Tilausohjatun tuotannon karkeasuunnittelu. Tilausohjatun tuotannon karkeasuunnittelu

Tilausohjatun tuotannon karkeasuunnittelu. Tilausohjatun tuotannon karkeasuunnittelu Tilausohjaun uoannon areasuunnielu Tilausohjaussa uoannossa sarjojen muodosaminen ei yleensä ole relevani ongelma, osa uoevaihelu on suura, mä juuri onin peruse MTO-uoannolle Tuoe- ja valmisusraenee ova

Lisätiedot

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k.

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k. ehtävä. x( + ) x( y x( + e ( y x( + e ( E v E e ( ) e ( R E[ v v ] E e e e e e e e e 6 estimointivirhe: ~ x( x( x$( x( - b y ( - b y ( estimointivirheen odotusarvo: x( - b x( - b e ( - b x( - b e ( ( -

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin

Lisätiedot

Osa 11. Differen-aaliyhtälöt

Osa 11. Differen-aaliyhtälöt Osa 11. Differen-aaliyhtälöt Differen-aaliyhtälö = yhtälö jossa esiintyy jonkin funk-on derivaa

Lisätiedot

Derivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan

Derivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan 87 5. Eliminoinimeneely Tarkaellaan -kokoia vakiokeroimia yeemiä + x a a x a x + a x b() x = = = +. a a x a x a x b () (3) b() x + Derivoimalla enimmäinen komponeni, ijoiamalla jälkimmäien derivaaa iihen

Lisätiedot

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002 Matlab tehtäviä 1. Muodosta seuraavasta differentiaaliyhtälöstä siirtofuntio. Tämä differentiaaliyhtälö saattaisi kuvata esimerkiksi yksinkertaista vaimennettua jousi-massa systeemiä, johon on liitetty

Lisätiedot

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän

Lisätiedot

9. Parametriset mallit, estimointi

9. Parametriset mallit, estimointi 9. Paramerise malli, esimoini Rakeneellise malli paramereillä a priori ulkina & merkiys Black box-malli parameri vain laskennan/soviuksen apuvälineiä Tarkasellaan pääosin diskreeiaikaisia malleja 3. harjoiusyössä

Lisätiedot

5. Vakiokertoiminen lineaarinen normaaliryhmä

5. Vakiokertoiminen lineaarinen normaaliryhmä 1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa

Lisätiedot

Kuulasimulaattori. Annemari Auvinen Milla Törhönen. Jyväskylän yliopisto. Tietotekniikan laitos. TIE374 Fysikaaliset mallit tietokoneanimaatioissa

Kuulasimulaattori. Annemari Auvinen Milla Törhönen. Jyväskylän yliopisto. Tietotekniikan laitos. TIE374 Fysikaaliset mallit tietokoneanimaatioissa Annemari Auvinen Milla Törönen Kuulasimulaaori TIE374 Fysiaalise malli ieooneanimaaioissa Harjoiusyörapori 8.4.13 Jyväsylän yliopiso Tieoeniian laios Sisälö 1 KUULAT JA LIIKEYHTÄLÖT... 1 1.1 KUULA... 1

Lisätiedot

Diskreetillä puolella impulssi oli yksinkertainen lukujono:

Diskreetillä puolella impulssi oli yksinkertainen lukujono: DEE-00 ineaarise järjeselmä Harjoius 5, rakaisuehdoukse [johdano impulssivaseeseen] Jakuva-aikaisen järjeselmän impulssivase on vasaavanlainen järjeselmäyökalu kuin diskreeillä puolellakin: impulssivase

Lisätiedot

(s 2 + 9)(s 2 + 2s + 5) ] + s + 1. s 2 + 2s + 5. Tästä saadaan tehtävälle ratkaisu käänteismuuntamalla takaisin aikatasoon:

(s 2 + 9)(s 2 + 2s + 5) ] + s + 1. s 2 + 2s + 5. Tästä saadaan tehtävälle ratkaisu käänteismuuntamalla takaisin aikatasoon: TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2429 Systeemien Identifiointi 2 harjoituksen ratkaisut Yhtälö voitaisiin ratkaista suoraankin, mutta käytetään Laplace-muunnosta tehtävän ratkaisemisessa

Lisätiedot

Luento 9. Epälineaarisuus

Luento 9. Epälineaarisuus Lueno 9 Epälineaarisuus 8..6 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!

Lisätiedot

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä

Lisätiedot

Juuri 13 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. K1. A: III, B: I, C: II ja IV.

Juuri 13 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. K1. A: III, B: I, C: II ja IV. Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 Keraus K. A: III, B: I, C: II ja IV Kuvaaja: I II III IV Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 K. a) lim ( ) Nimiäjä ( ) o aia

Lisätiedot

Luento 11. tietoverkkotekniikan laitos

Luento 11. tietoverkkotekniikan laitos Lueno Lueno Sokasise signaali ja prosessi II. Sokasise prosessi Pruju Saionaarisuus, ergodisuus Auo ja risikorrelaaio ehospekri.3 Kohinan suodaaminen Sokasinen raja arvo ja derivaaa Winer Khinchin eoreema.3

Lisätiedot

joka on separoituva yhtälö, jolla ei ole reaalisia triviaaliratkaisuja. Ratkaistaan: z z(x) dx =

joka on separoituva yhtälö, jolla ei ole reaalisia triviaaliratkaisuja. Ratkaistaan: z z(x) dx = HY / Maemaiikan ja ilasoieeen laios Differeniaalihälö I kevä 09 Harjois 4 Rakaisehdoksia. Rakaise differeniaalihälö = (x + + Rakais: Tehdään differeniaalihälöön lineaarinen mnnos z(x = x + (x + jolloin

Lisätiedot

Harjoitus 5: Simulink

Harjoitus 5: Simulink Harjoitus 5: Simulink Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Simulinkiin Differentiaaliyhtälöiden

Lisätiedot

ELEC-C1230 Säätötekniikka (5 op)

ELEC-C1230 Säätötekniikka (5 op) ELEC-C1230 Sääöekniikka (5 op) Kevä 2016 hps://mycourses.aalo.fi/course/view.php?id=5073 Luku 1: Esiely, johdano, dynaamise malli ja rakenee, lohkokaavio, säädön periaaee ELEC-C1230 Sääöekniikka (5 op)

Lisätiedot

RAPORTTI MPC-SÄÄTÖALGORITMIN SIMULOINTI MATLABILLA

RAPORTTI MPC-SÄÄTÖALGORITMIN SIMULOINTI MATLABILLA RAPORTTI MPC-SÄÄTÖALGORITMIN SIMULOINTI MATLABILLA Teemu Saarelainen, DI LTY, KyAMK eemu.saarelainen@pp.ine.fi 31.5.2006 SISÄLLYSLUETTELO 1 JOHDANTO 3 2 MPC-SÄÄTÖ JA PAPERIKONE 4 2.1 MPC:N PERUSTEET 4

Lisätiedot

W dt dt t J.

W dt dt t J. DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan

Lisätiedot

Parametriset mallit. parametreillä a priori tulkinta & merkitys. parametrit vain laskennan/sovituksen apuvälineitä

Parametriset mallit. parametreillä a priori tulkinta & merkitys. parametrit vain laskennan/sovituksen apuvälineitä Paramerise malli Rakeneellise malli paramereillä a priori ulkina & merkiys Black box-malli parameri vain laskennan/soviuksen apuvälineiä Tarkasellaan pääosin lineaarisia diskreeiaikaisia blackbox-malleja

Lisätiedot

8 USEAN VAPAUSASTEEN SYSTEEMIN VAIMENEMATON PAKKOVÄRÄHTELY

8 USEAN VAPAUSASTEEN SYSTEEMIN VAIMENEMATON PAKKOVÄRÄHTELY Värähelymeaa 8. 8 USEAN VAPAUSASEEN SYSEEMIN VAIMENEMAON PAKKOVÄRÄHELY 8. Normaalmuoomeeelmä Usea vapausasee syseem leyhälöde (7.) raaseme vaa aava (7.7) a (7.8) homogeese yhälö ylese raasu { } lsäs paovomaveora

Lisätiedot

Luento 6. Järjestelmät

Luento 6. Järjestelmät Lueno 6 Järjeelmän (yeemin) äie ja luoiue Lineaarinen aia invariani järjeelmä Impulivae Siirofunio Sabiiliuu Järjeelmien ooaminen oia..7 Järjeelmä Järjeelmä / Syeemi / Proei on objei, joa määriää relaaio

Lisätiedot

ELEC-C1230 Säätötekniikka (5 op)

ELEC-C1230 Säätötekniikka (5 op) ELEC-C1230 Sääöekniikka (5 op) Kevä 2017 hps://mycourses.aalo.fi/course/view.php?id=13390 Luku 1: Esiely, johdano, dynaamise malli ja rakenee, lohkokaavio, säädön periaaee ELEC-C1230 Sääöekniikka (5 op)

Lisätiedot

S Signaalit ja järjestelmät Tentti

S Signaalit ja järjestelmät Tentti S-7. Signaali ja järjeselmä eni..6 Vasaa ehävään, ehävisä 7 oeaan huomioon neljä parhaien suorieua ehävää.. Vasaa lyhyesi seuraaviin osaehäviin, käyä arviaessa kuvaa. a) Mikä kaksi ehoa kanaunkioiden φ

Lisätiedot

Y (z) = z-muunnos on lineaarinen kuten Laplace-muunnoskin

Y (z) = z-muunnos on lineaarinen kuten Laplace-muunnoskin Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Mat-2.429 Systeemien Identifiointi 3. harjoituksen ratkaisut. Vapaan vasteen löytämiseksi asetetaan ohjaukseksi u(t)

Lisätiedot

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015 Ene-59.4130, Kuivaus- ja haihduusprosessi eollisuudessa, asuharjoius 5, sysy 2015 Tehävä 4 on ähiehävä Tehävä 1. eijuerrosilassa poleaan rinnain uora ja urvea. Kuoren oseus on 54% ja uiva-aineen ehollinen

Lisätiedot

5 YHDEN VAPAUSASTEEN YLEINEN PAKOTETTU LIIKE

5 YHDEN VAPAUSASTEEN YLEINEN PAKOTETTU LIIKE Värähelymeaiia 5. 5 YHDEN VAPAUSASTEEN YLEINEN PAKOTETTU LIIKE 5. Johao Luvussa 4 araselii yhe vapausasee syseemii harmoisesa heräeesä aiheuuvaa vasea ja havaiii se riippuva pääasiassa syseemi vaimeusesa

Lisätiedot

11. Jatkuva-aikainen optiohinnoittelu

11. Jatkuva-aikainen optiohinnoittelu . Jauva-aiainen opiohinnoielu Sijoiusoheien hinojen ehiymisä voiaan arasella myös jauva-aiaisina prosesseina Iô-prosessi erisuuruise perioiohaise hinnanmuuose mahollisia voiaan oisinaan raaisa analyyisesi.

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali

VÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali 7/ VÄRÄHTELYMEKANIIKKA SESSIO 7: Yhn vapausasn paovärähly, impulssiuormius ja Duhamlin ingraali IMPULSSIKUORMITUS Maanisn sysmiin ohisuva jasoon hrä on usin ajasa riippuva lyhyaiainn uormius. Ysinraisin

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen

DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen D-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Johdanto differenssiyhtälöiden rataisemiseen Differenssiyhtälöillä uvataan disreettiaiaisten järjestelmien toimintaa. Disreettiaiainen taroittaa

Lisätiedot

Yhden vapausasteen värähtely - harjoitustehtäviä

Yhden vapausasteen värähtely - harjoitustehtäviä Dynaiia 1 Liie luuun 8. g 8.1 Kuvan jousi-assa syseeissä on = 10 g ja = 2,5 N/. Siiryä iaaan saaisesa asapainoaseasa lähien. luheellä = 0 s assa on saaisessa asapainoaseassaan ja sillä on nopeus 0,5 /

Lisätiedot

PUTKIKAKSOISNIPPA MUSTA

PUTKIKAKSOISNIPPA MUSTA Takorauta Tuote LVI-numero Pikakoodi 0753007 RU33 KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS DN 65 KESKIRASKAS 0 KESKIRASKAS 0 KESKIRASKAS SK/UK SK/UK

Lisätiedot

KOMISSION KERTOMUS. Suomi. Perussopimuksen 126 artiklan 3 kohdan nojalla laadittu kertomus

KOMISSION KERTOMUS. Suomi. Perussopimuksen 126 artiklan 3 kohdan nojalla laadittu kertomus EUROOPAN KOMISSIO Bryssel 27.2.205 COM(205) 4 final KOMISSION KERTOMUS Suomi Perussopimuksen 26 ariklan 3 kohdan nojalla laadiu keromus FI FI KOMISSION KERTOMUS Suomi Perussopimuksen 26 ariklan 3 kohdan

Lisätiedot

Tuottavuustutkimukset 2010 -menetelmäseloste

Tuottavuustutkimukset 2010 -menetelmäseloste Meneelmäselose 1(11) Tuoavuusuimuse 2010 -meneelmäselose ANSANTALOUDEN TILINPIDON TUOTTAVUUSMITTARIT 2 Toimialoen oonaisuooseen perusuva oonaisuoavuuden muuos 2 Toimialoen oonaisuooseen perusuva yön uoavuuden

Lisätiedot

6 JÄYKÄN KAPPALEEN TASOKINETIIKKA

6 JÄYKÄN KAPPALEEN TASOKINETIIKKA Dyamiia 6. 6 JÄYKÄN KAPPALEEN TASKINETIIKKA 6. Yleisä Jäyä appalee ieiiassa arasellaa appaleesee aiuaie uloise oimie ja seurausea olea liiee (raslaaio ja roaaio) älisiä yheysiä. Voimie äsielyssä ariaa

Lisätiedot

AS Automaation signaalinkäsittelymenetelmät. Laskuharjoitus 8. Ackermannin algoritmi Sumea säätö

AS Automaation signaalinkäsittelymenetelmät. Laskuharjoitus 8. Ackermannin algoritmi Sumea säätö AS-84.2161 Automaation signaalinkäsittelymenetelmät Laskuharjoitus 8 Ackermannin algoritmi Sumea säätö Tilasäätö Prosessia säädetään tilojen mukaan Suljetun järjestelmän siirtofunktion navat asetellaan

Lisätiedot

12. ARKISIA SOVELLUKSIA

12. ARKISIA SOVELLUKSIA MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina

Lisätiedot

b) Ei ole. Todistus samaan tyyliin kuin edellinen. Olkoon C > 0 ja valitaan x = 2C sekä y = 0. Tällöin pätee f(x) f(y)

b) Ei ole. Todistus samaan tyyliin kuin edellinen. Olkoon C > 0 ja valitaan x = 2C sekä y = 0. Tällöin pätee f(x) f(y) Maemaiikan ja ilasoieeen osaso/hy Differeniaaliyhälö II Laskuharjoius 1 malli Kevä 19 Tehävä 1. Ovako seuraava funkio Lipschiz-jakuvia reaaliakselilla: a) f(x) = x 1/3, b) f(x) = x, c) f(x) = x? a) Ei

Lisätiedot

ACKERMANNIN ALGORITMI. Olkoon järjestelmä. x(k+1) = Ax(k) + Bu(k)

ACKERMANNIN ALGORITMI. Olkoon järjestelmä. x(k+1) = Ax(k) + Bu(k) ACKERMANNIN ALGORITMI Olkoon järjestelmä x(k+1) = Ax( + Bu( jossa x( = tilavektori (n x 1) u( = ohjaus (skalaari) A (n x n matriisi) B (n x 1 matriisi) Oletetaan, että ohjaus u( = Kx( on rajoittamaton.

Lisätiedot

2. Suoraviivainen liike

2. Suoraviivainen liike . Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset DEE- Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille taroitetut rataisuehdotuset Tämän harjoitusen ideana on opetella -muunnosen äyttöä differenssiyhtälöiden rataisemisessa Lisäsi äytetään

Lisätiedot

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6 MATRIISILASKENTA(TFM) MALLIT AV 6 J (II.6.9) Päättele, että avaruusvetorit a, b ja c ovat lineaarisesti riippuvat täsmälleen un vetoreiden virittämän suuntaissärmiön tilavuus =. Tuti tällä riteerillä ovato

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial

Lisätiedot

Nopea kertolasku, Karatsuban algoritmi

Nopea kertolasku, Karatsuban algoritmi Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi 02/1 VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi VAPAUSASTEET Valittaessa systeeille lasentaallia tulee yös sen vapausasteiden luuäärä äärätysi. Tää taroittaa seuraavaa: Lasentaallin

Lisätiedot

H(s) + + _. Ymit(s) Laplace-tason esitykseksi on saatu (katso jälleen kalvot):

H(s) + + _. Ymit(s) Laplace-tason esitykseksi on saatu (katso jälleen kalvot): ELEC-C3 Säätötekniikka 5. laskuharjoitus Vastaukset Quiz: Luennon 4 luentokalvojen (luku 4) lopussa on esimerkki: Sähköpiiri (alkaa kalvon 39 tienoilla). Lue esimerkki huolellisesti ja vastaa seuraavaan:

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A3/A5 Matriisilaskenta Laskuharjoitus 2 / vko 45 Tehtävä (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 2i = 2, b) z 2i < 2, c) /z

Lisätiedot

6 Lineaarisen ennustuksen sovelluksia

6 Lineaarisen ennustuksen sovelluksia 6 Lineaarisen ennustusen sovellusia Lineaarisella ennustusella on hyvin täreä asema monessa puheenäsittelyn sovellusessa. Seuraavassa on esitetty esimerejä siitä miten lineaarista ennustusta voidaan hyödyntää.

Lisätiedot

Helpompaa korjausrakentamista HB-Priimalla s. 7 NEWS

Helpompaa korjausrakentamista HB-Priimalla s. 7 NEWS Helpompaa orjausraenamisa HB-Priimalla s. 7 NEWS Tuu ja urvallinen HB-PRIIMA -väliseinälevy Hiljaisuus vaiona HB-PRIIMA Silence -uoeperhe Laaduas ja miaara Turvallinen Edullinen Nopea ja helppo asenaa

Lisätiedot

Luento 7 Järjestelmien ylläpito

Luento 7 Järjestelmien ylläpito Luno 7 Järjslmin ylläpio Ahi Salo Tknillinn korkakoulu PL, 5 TKK Järjslmin ylläpidosa Priaallisia vaihohoja Uusiminn rplacmn Ennalahkäisvä huolo mainnanc Korjaaminn rpair ❶ Uusiminn Vioiun komponni korvaaan

Lisätiedot

Työ 2: 1) Sähkönkulutuksen ennustaminen SARIMAX-mallin avulla 2) Sähkön hankinnan optimointi

Työ 2: 1) Sähkönkulutuksen ennustaminen SARIMAX-mallin avulla 2) Sähkön hankinnan optimointi Ma-2.3132 Syseemianalyysilaboraorio I Työ 2: 1) Sähkönkuluuksen ennusaminen SARIMAX-mallin avulla 2) Sähkön hankinnan opimoini 1 yö 2 Aikasarjamalli erään yriyksen sähkönkuluukselle SARIMAX-malli: kausivaihelu,

Lisätiedot

2. kierros. 2. Lähipäivä

2. kierros. 2. Lähipäivä 2. kierros 2. Lähipäivä Viikon aihe Vahvistimet, kohina, lineaarisuus Siirtofunktiot, tilaesitys Tavoitteet: tietää Yhden navan vasteen ekvivalentti kohinakaistaleveys Vastuksen terminen kohina Termit

Lisätiedot

ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +.

ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +. Diffrniaaliyhälö II, harjoius 3, 8 228, rakaisu JL, kuusi sivua a On muunnava linaarinn oisn kraluvun diffrniaaliyhälö ẍ qx f yhäpiäväksi nsimmäisn kraluvun linaarisksi kahdn skalaariyhälön sysmiksi Rak

Lisätiedot

YMPJåoSTÖ 2?.5.14 J Ub,

YMPJåoSTÖ 2?.5.14 J Ub, YMPJåoSTÖ 2?.5.14 J Ub, ),II1 1 SATAMA ILMOITTAMIE YMPÄRISTÖ- SUOJELU TIETOJÄRJESTELMÄÄ JA SATAMA JÄTEHUOLTOSUUITELMA ranomaisen yheysiedo Merkiy ympärisönsuojelun ieojärjeselmään A. SATAMA TOIMITAA VALVOVA

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO

802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 Sisältö 1 KERTOMAT, BINOMIKERTOIMET 2 1.0.1 Kertoma/Factorial......................

Lisätiedot

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset / Rataisut Aiheet: Avainsanat: Satunnaismuuttujat ja todennäöisyysjaaumat Kertymäfuntio

Lisätiedot

Missä mennään. systeemi. identifiointi. mallikandidaatti. validointi. malli. (fysikaalinen) mallintaminen. mallin mallin käyttötarkoitus, reunaehdot

Missä mennään. systeemi. identifiointi. mallikandidaatti. validointi. malli. (fysikaalinen) mallintaminen. mallin mallin käyttötarkoitus, reunaehdot Missä mennään systeemi mallin mallin käyttötarkoitus, reunaehdot käyttö- (fysikaalinen) mallintaminen luonnonlait yms. yms. identifiointi kokeita kokeita + päättely päättely vertailu mallikandidaatti validointi

Lisätiedot

1 Di erentiaaliyhtälöt

1 Di erentiaaliyhtälöt Taloustieteen mat.menetelmät syksy 2017 materiaali II-5 1 Di erentiaaliyhtälöt 1.1 Skalaariyhtälöt Määritelmä: ensimmäisen kertaluvun di erentiaaliyhtälö on muotoa _y = F (y; t) oleva yhtälö, missä _y

Lisätiedot

Tässä harjoituksessa käsitellään Laplace-muunnosta ja sen hyödyntämistä differentiaaliyhtälöiden ratkaisemisessa.

Tässä harjoituksessa käsitellään Laplace-muunnosta ja sen hyödyntämistä differentiaaliyhtälöiden ratkaisemisessa. DEE-00 Lneaare järjeelmä Harjou 0, rakauehdouke Tää harjoukea käellään Laplace-muunnoa ja en hyödynämä dfferenaalyhälöden rakaemea Tehävä Laplace-muunno on käevä yökalu dfferenaalyhälöryhmen rakaemea,

Lisätiedot

MS-C2132 Systeemianalyysilaboratorio I Laboratoriotyö 2. Sähkönkulutuksen ennustaminen aikasarjamallin avulla & Sähkön hankinnan optimointi

MS-C2132 Systeemianalyysilaboratorio I Laboratoriotyö 2. Sähkönkulutuksen ennustaminen aikasarjamallin avulla & Sähkön hankinnan optimointi MS-C2132 Syeemianalyyilaboraorio I Laboraorioyö 2 Sähkönkuluuken ennuaminen aikaarjamallin avulla & Sähkön hankinnan opimoini Laboraorioyö 2 Aikaarjamalli erään yriyken ähkönkuluukelle SARIMAX-malli: kauivaihelu,

Lisätiedot

Alipäästösuodatuksesta jää kuitenkin pieni vaihtovirtakomponentti, joka summautuu tasajännitteen päälle:

Alipäästösuodatuksesta jää kuitenkin pieni vaihtovirtakomponentti, joka summautuu tasajännitteen päälle: . Saainen analyyi.. Buck-opoloia Käiellään enin buck-yyppiä hakkurieholähdeä (kuva 2.2a ja 3.). ää eimerkiä kuorma on puhaai reiiivinen (R), mua yleiei e on yöeävien laieiden ominaiuukia muodouva impedani.

Lisätiedot

Tietoliikennesignaalit

Tietoliikennesignaalit ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime

Lisätiedot

Luento 9. Epälineaarisuus

Luento 9. Epälineaarisuus Lueno 9 Epälineaarisuus 9..7 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!

Lisätiedot

2 Taylor-polynomit ja -sarjat

2 Taylor-polynomit ja -sarjat 2 Taylor-polynomit ja -sarjat 2. Taylor-polynomi Taylor-polynomi P n (x; x 0 ) funtion paras n-asteinen polynomiapprosimaatio (derivoinnin annalta) pisteen x 0 lähellä. Maclaurin-polynomi: tapaus x 0 0.

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

a) Ortogonaalinen, koska kantafunktioiden energia 1

a) Ortogonaalinen, koska kantafunktioiden energia 1 S-7.060 Signaali ja järjeselmä Teni 14.5.001 1. Vasaa lyhyesi seuraaviin saehäviin, käyä arviaessa kuvaa. a) Mikä minaisuuksisa rgnaalinen ja rnrmaalinen kuvaa paremmin Furier-sarjaa ja miksi? b) Esiä

Lisätiedot

x v1 y v2, missä x ja y ovat kokonaislukuja.

x v1 y v2, missä x ja y ovat kokonaislukuja. Digiaalinen videonkäsiel Harjoius, vasaukse ehäviin 4-0 Tehävä 4. Emämariisi a: V A 0 V B 0 Hila saadaan kanavekorien (=emämariisin sarakkee) avulla. Kunkin piseen paikka hilassa on kokonaisluvulla kerroujen

Lisätiedot

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa Pyramidi Analyyttinen geometria tehtävien rataisut sivu 9 Päivitetty 9..6 4 a) 4 Suplementtiulmille on voimassa b) a) α + β 8 α + β 8 β 6 c) b) c) α 6 6 + β 8 β 8 6 β 45 β 6 9 α 9 9 + β 8 β 8 + 9 β 7 Pyramidi

Lisätiedot

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia 6.4 Variaaiolaskennan oleusen rajoiukse Sivu ss. 27 31 läheien Kirk, ss. 13 143] ja KS, Ch. 5] pohjala Lähökoha oli: jos J:llä on eksremaali (), niin J:n variaaio δj( (), δ()) ():ä pikin on nolla. 1. Välämäön

Lisätiedot

z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0

z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0 TKK, Matematiian laitos v.pfaler/pursiainen Mat-.33 Matematiian perusurssi KP3-i sysy 2007 Lasuharjoitus 4 viio 40 Tehtäväsarja A viittaa aluviion ja L loppuviion tehtäviin. Valmistauu esittämään nämä

Lisätiedot

1 Excel-sovelluksen ohje

1 Excel-sovelluksen ohje 1 (11) 1 Excel-sovelluksen ohje Seuraavassa kuvaaan jakeluverkonhalijan kohuullisen konrolloiavien operaiivisen kusannusen (SKOPEX 1 ) arvioimiseen arkoieun Excel-sovelluksen oimina, mukaan lukien sovelluksen

Lisätiedot

1. Todista/Prove (b) Lause 2.4. käyttäen Lausetta 2.3./by using Theorem b 1 ; 1 b + 1 ; 1 b 1 1

1. Todista/Prove (b) Lause 2.4. käyttäen Lausetta 2.3./by using Theorem b 1 ; 1 b + 1 ; 1 b 1 1 KETJUMURTOLUVUT Harjoiuksia 209. Todisa/Prove Lause 2.2. käyäen Lausea 2.3./by using Theorem 2.3. Lause 2.4. käyäen Lausea 2.3./by using Theorem 2.3. 2. Määrää Canorin kehielmä luvuille 0,, 2, 3, 4, 5,

Lisätiedot

S Piirianalyysi 2 1. Välikoe

S Piirianalyysi 2 1. Välikoe S-55.0 Piirianalyyi. Välioe.3.0 ae ehävä eri paperille uin ehävä 3 5. Muia irjoiaa joaieen paperiin elväi nimi, opielijanumero, urin nimi ja oodi. Tehävä laeaan oreaoulun oepaperille. Muia papereia ei

Lisätiedot

SÄÄTÖJÄRJESTELMIEN SUUNNITTELU

SÄÄTÖJÄRJESTELMIEN SUUNNITTELU ENSO IKONEN PYOSYS 1 SÄÄTÖJÄRJESTELMIEN SUUNNITTELU Enso Ikonen professori säätö- ja systeemitekniikka http://cc.oulu.fi/~iko Oulun yliopisto Älykkäät koneet ja järjestelmät, Systeemitekniikka Feb 2019

Lisätiedot

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen Soimukseneon dynamiikka: johdano ja haiallinen valikoiuminen Ma-2.442 Oimoinioin seminaari Elise Kolola 8.4.2008 S yseemianalyysin Laboraorio Esielmä 4 Elise Kolola Oimoinioin seminaari - Kevä 2008 Esiyksen

Lisätiedot