f x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d)

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "f x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d)"

Transkriptio

1 Tehävä 1. Oleeaan, eä on käössä jakuva kuva, jossa (,, ) keroo harmaasävn arvon paikassa (, ) ajanhekenä. Dnaaminen kuva voidaan esiää Talor sarjana: d d d d d d O ( +, +, + ) = (,, ) ( ). (4a) Kun apahuu pieni siirros (d,d) pienellä aikavälillä d, voidaan oleaa korkeampien poenssien ermin O ( ) häviävän. Saadaan hälö (pise siirn, sama arvo) ( + d, + d, + d) = (,, ), (4b) kun on samanaikaisesi voimassa seuraava eho d d = +. (4c) d d Yllä on käe merkinöjä =, = ja =. d d Tavoie on laskea nopeus (opinen viraus) c =, = ( u, v). ja voidaan d d laskea kuvasa (,, ) ja kuvaparisa (,, ) ja (,, +1) seuraavasi (, ) = ( + 1,, ) (, ) = (, + 1, ) (, ) = (,, + 1) (,, ), (,, ) ja (,, ). (4d) Opinen viraus voidaan esimoida osiain hälösä = u + v = grad( ) c (piseulo), (4e) missä grad() on kaksidimensioinen harmaasävgradieni. Ylläolevasa hälösä saamme ainoasaan nopeusvekorin c = (u,v) komponenin harmaasävgradienin suunaan. Nopeusvekori c = (u,v) voidaan rakaisa ieraiivisesi minimoimalla neliövirhehälö ( ) ( u + v + ) + ( u + u + v v ) E, + = λ, (4)

2 missä λ Lagrange-kerroin ja u on u:n paikkaderivaaa :n suheen jne.... Jälkimmäinen osa on opisen virran sileskrieeri (smoohing crierion), jonka mukaanoo mahdollisaa nopeusvekorin c = (u,v) rakaisemisen. Sileskrieerin sisälö on se, eä nopeusvekorikenä muuuu hiaasi anneussa naapurusossa. Nopeusvekorin komponeni saadaan rakaisuksi diereniaalihälörhmasä ( λ + ) u + v = λ u u + ( λ + ) v = λ v, (4g) missä u, v ova nopeuden keskiarvoja - ja -suunaan iessä naapurusossa (,). Nopeusvekori c = (u,v) voidaan n rakaisa ieraiivisesi kaikille pikseleille (i, seuraavisa hälöisä u v k k k 1 = u k 1 = v (, P D i, P i, j D i, j ( ) ( ) (4h) (4i) missä P = u + v + λ +. (4, D = + Harmaasävgradienin vaikuus häviää, kun se on kohisuorassa nopeuden keskiarvon suheen P = c = 0. Muussa apauksessa lisäään ie osuus harmaasävgradienisa nopeuden keskiarvoon. Jos naapurusoa ei oea huomioon, niin opinen viraus on aina samansuunainen paikallisen harmaasävgradienin kanssa. Yllä oleva meneelmä (Horn, Schunck) on kombinaaio keskimääräisesä nopeudesa iessä naapurusossa ja lokaalin harmaasävgradienin osasa. (kaso kuva).

3 Sisärajan jäljismeneelmä kahdeksalla naapurilla (inner boundar racing algorihm wih 8-connecivi) knnsen kuvaan on seuraava: 1. Esiään lävasemmala lähien rajapise P 0. P 0 :lla on pienin sarakearvo niisä piseisä joilla on pienin riviarvo. Määriellään lisäksi muuuja dir, joka keroo edellisen siirron suunnan. Alkuarvo on dir = 7. (numeroidu suunna). Esiään nkisen kuvapiseen (pielin) 3 3 naapurusosa uusi rajapise alkaen kuvapiseesä, jonka suuna (paikka) saadaan alla olevalla säännöllä (dir+7) mod 8 jos dir on parillinen (dir+6) mod 8 jos dir on parion. Kulkusuuna on päinvasainen kellonkulkusuuna. Merkiään uua rajapiseä P n :llä ja päivieään dir. 3. Jos uusin rajapise P n on sama kuin P 1 ja rajapise P n 1 on sama kuin P 0, niin, lopeeaan esiminen, muussa apauksessa oiseaan vaihe. 4. Havaiu sisäraja koosuu pieleisä P 0 KP n. Algorimi löää sisärajan jos alue suurempi kuin ksi pieli. Alueen sisällä olevia reikiä meneelmä ei lödä. Tehävän. rakaisu vaiheiain: 1. Aloiuspieli P 0 = 0 lö lävasemmala. Määriellään dir = 7.. Aloieaan esinä 3 3 naapurusosa kulkusuunana päinvasainen kellonsuuna. Aloiussuuna dir(7+6) mod (jakojäänös) 8 = 5. Rajapise löi suunnasa 6. Merkiään piseä P 1 = 1 ja päivieään dir dir = Aloieaan esinä suunnasa dir(6+7) mod 8 = 5. P =, dir = Aloieaan esinä suunnasa dir(7+6) mod 8 = 5. P 3 = 3, dir = Aloieaan esinä suunnasa dir(5+6) mod 8 = 3. P 4 =, dir = 1.

4 6. Aloieaan esinä suunnasa dir(1+6) mod 8 = 7. P 5 = 4, dir = Aloieaan esinä suunnasa dir(7+6) mod 8 = 5. P 6 = 5, dir =. 8. Aloieaan esinä suunnasa dir(+7) mod 8 = 1. P 7 = 6, dir =. 9. Aloieaan esinä suunnasa dir(+7) mod 8 = 1. P 8 = 7, dir =. 10. Aloieaan esinä suunnasa dir(+7) mod 8 = 1. P 9 = 8, dir = Aloieaan esinä suunnasa dir(5+6) mod 8 = 3. P 10 = 0, dir = Aloieaan esinä suunnasa dir(3+6) mod 8 = 1. P 11 = 1, dir = Lopeeaan esiminen, koska P n on sama kuin P 1 ja P n 1 on sama kuin P 0, Havaiu sisäraja koosuu pieleisä: P0 = 0, P1 = 1, P =, P3 = 3, P4 =, P = 4, P = 5, P = 6, P = 7, P = 8 (kaso kuva)

5 Tehävä 3. Ymprän hälö, joia esiään kuvasa on ( ) ( ), a + b = r missä (a,b) on mprän keskuspise ja r mprän on säde. Paramerejä on kolme, joen parameriavaruus on kolmiuloeinen ( visuaalisesi särmiö). Kuuio on särmiön erikoisapaus, jossa kaikki sivu saman suuruisia. Houghin muunnoksessa siirrään -avaruudesa (ämä apaus) parameriavaruueen (a,b,r), jossa jokainen parameriakseli jaeaan pienempiin osiin haluulla avalla. Näin sn aliavaruuksien joukko (esim. jos kaikki parameriakseli jaeaan kmmeneen osaan, niin sn uha aliavaruua("pikku särmiöä"). Alkuperäinen kuva suodaeaan ja knnseään sien, eä vain reuna (harmaasävn muuos suuri) näkvä. Jokainen reunapise suodaeusa ja knnsesä (reuna = 1, muu = 0) kuvasa piirreään kaikilla eri paramerien diskreeeillä arvoilla diskreeiin kolmiuloeiseen parameriavaruueen. Näin saau kärä kulkee monen "pikku särmiön" kaua parameriavaruudessa. Nämä kauakulu laskeaan. Kun kaikki suodaeun kuvan reunapisee on piirre parameriavaruueen, niin kasoaan missä "pikku särmiöissä" on lokaalisi enien kauakulkuja. Näiden "pikku särmiöiden" paramerien arvo vasaava mpröiä alkuperäisessä kuvassa.

x v1 y v2, missä x ja y ovat kokonaislukuja.

x v1 y v2, missä x ja y ovat kokonaislukuja. Digiaalinen videonkäsiel Harjoius, vasaukse ehäviin 4-0 Tehävä 4. Emämariisi a: V A 0 V B 0 Hila saadaan kanavekorien (=emämariisin sarakkee) avulla. Kunkin piseen paikka hilassa on kokonaisluvulla kerroujen

Lisätiedot

W dt dt t J.

W dt dt t J. DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,

Lisätiedot

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä

Lisätiedot

5. Vakiokertoiminen lineaarinen normaaliryhmä

5. Vakiokertoiminen lineaarinen normaaliryhmä 1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa

Lisätiedot

S Signaalit ja järjestelmät Tentti

S Signaalit ja järjestelmät Tentti S-7. Signaali ja järjeselmä eni..6 Vasaa ehävään, ehävisä 7 oeaan huomioon neljä parhaien suorieua ehävää.. Vasaa lyhyesi seuraaviin osaehäviin, käyä arviaessa kuvaa. a) Mikä kaksi ehoa kanaunkioiden φ

Lisätiedot

Ratkaisu. Virittäviä puita on kahdeksan erilaista, kun solmut pidetään nimettyinä. Esitetään aluksi verkko kaaviona:

Ratkaisu. Virittäviä puita on kahdeksan erilaista, kun solmut pidetään nimettyinä. Esitetään aluksi verkko kaaviona: Diskreei maemaiikka, sks 00 Harjoius 0, rakaisuisa. Esi viriävä puu suunaamaomalle verkolle G = (X, E, Ψ), kun X := {,,, }, E := { {, }, {, }, {, }, {, }, {, }}, ja Ψ on ieninen kuvaus. Rakaisu. Viriäviä

Lisätiedot

2. Matemaattinen malli ja funktio 179. a) f (-2) = -2 (-2) = = -6 b) f (-2) = 2 (-2) 2 - (-2) = (-8) + 7 = = 23

2. Matemaattinen malli ja funktio 179. a) f (-2) = -2 (-2) = = -6 b) f (-2) = 2 (-2) 2 - (-2) = (-8) + 7 = = 23 LISÄTEHTÄVÄT. Maemaainen malli ja funkio 9. a) f (-) = - (-) + = - + = -6 b) f (-) = (-) - (-) + = - (-8) + = 8 + 8 + = 80. a) f ( ) = + f ( ) = 0 + = 0 ( ) = ± = ± = ai = Vasaus: = - ai = b) + = + = 0

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista Rahoiusriski ja johdannaise Mai Esola lueno Sokasisisa prosesseisa . Markov ominaisuus Markov -prosessi on sokasinen prosessi, missä ainoasaan muuujan viimeinen havaino on relevani muuujan seuraavaa arvoa

Lisätiedot

Luento 4. Fourier-muunnos

Luento 4. Fourier-muunnos Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:

Lisätiedot

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s). DEE- Piirianalyysi Ykkösharkan ehävien rakaisuehdoukse. askeaan ensin, kuinka paljon äyeen ladaussa akussa on energiaa. Tämä saadaan laskeua ehäväpaperissa anneujen akun ieojen 8.4 V ja 7 mah avulla. 8.4

Lisätiedot

2. Suoraviivainen liike

2. Suoraviivainen liike . Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus

Lisätiedot

Tasaantumisilmiöt eli transientit

Tasaantumisilmiöt eli transientit uku 12 Tasaanumisilmiö eli ransieni 12.1 Kelan kykeminen asajännieeseen Kappaleessa 11.2 kykeiin reaalinen kela asajännieeseen ja ukiiin energian varasoiumisa kelan magneeikenään. Tilanne on esiey uudelleen

Lisätiedot

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän

Lisätiedot

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5 S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,

Lisätiedot

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014 MAT-45 Fourier n meneelmä Merja Laaksonen, TTY 4..4 Sisälö Johano 3. Peruskäsieiä................................... 4.. Parillinen ja parion funkio....................... 7.. Heavisien funkio............................

Lisätiedot

Diskreetillä puolella impulssi oli yksinkertainen lukujono:

Diskreetillä puolella impulssi oli yksinkertainen lukujono: DEE-00 ineaarise järjeselmä Harjoius 5, rakaisuehdoukse [johdano impulssivaseeseen] Jakuva-aikaisen järjeselmän impulssivase on vasaavanlainen järjeselmäyökalu kuin diskreeillä puolellakin: impulssivase

Lisätiedot

Tuotannon suhdannekuvaajan menetelmäkuvaus

Tuotannon suhdannekuvaajan menetelmäkuvaus 1(15) Tuoannon suhdannekuvaajan meneelmäkuvaus Luku 1 Luku 2 Luku 3 Luku 4 Tuoannon suhdannekuvaajan yleiskuvaus Tuoannon suhdannekuvaajan julkaisuaikaaulu, revisoinikäyännö ja jakelu Tuoannon suhdannekuvaajan

Lisätiedot

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän: ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.4 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vasausen piireiden, sisälöjen ja piseiysen luonnehdina ei sido ylioppilasukinolauakunnan arvoselua. Lopullisessa arvoselussa

Lisätiedot

2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t

2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t Tilasollinen ennusaminen Seppo Pynnönen Tilasoieeen professori, Meneelmäieeiden laios, Vaasan yliopiso. Tausaa Tulevaisuuden ennusaminen on ehkä yksi luoneenomaisimpia piireiä ihmiselle. On ilmeisesi aina

Lisätiedot

1 Excel-sovelluksen ohje

1 Excel-sovelluksen ohje 1 (11) 1 Excel-sovelluksen ohje Seuraavassa kuvaaan jakeluverkonhalijan kohuullisen konrolloiavien operaiivisen kusannusen (SKOPEX 1 ) arvioimiseen arkoieun Excel-sovelluksen oimina, mukaan lukien sovelluksen

Lisätiedot

Luento 2. Järjestelmät aika-alueessa Konvoluutio-integraali. tietoverkkotekniikan laitos

Luento 2. Järjestelmät aika-alueessa Konvoluutio-integraali. tietoverkkotekniikan laitos Lueno 2 Järjeselmä aika-alueessa Konvoluuio-inegraali Lueno 2 Lueno 2 Järjeselmä aika alueessa; Konvoluuio inegraali 2.1 Järjeselmien perusominaisuude Oppenheim 1.5. 1.6 Muisillise ja muisioma järjeselmä

Lisätiedot

A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat!

A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat! MAA Koe 7..03 A-osio. Ei laskina! Valise seuraavisa kolmesa ehäväsä vain kaksi joihin vasaa! A. a) Mikä on funkion f(x) määrieljoukko, jos f( x) x b) Muua ulomuooon: 4a 8a 4 A. a) Rakaise hälö: x 4x b)

Lisätiedot

Monisilmukkainen vaihtovirtapiiri

Monisilmukkainen vaihtovirtapiiri Monisilmukkainen vaihovirapiiri Oeaan arkaselun koheeksi RLC-vaihovirapiiri jossa on käämejä, vasuksia ja kondensaaoreia. Kykenä Tarkasellaan virapiiriä, jossa yksinkeraiseen RLC-piiriin on kodensaaorin

Lisätiedot

Tietoliikennesignaalit

Tietoliikennesignaalit ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime

Lisätiedot

Suunnitteluharjoitus s-2016 (...k-2017)

Suunnitteluharjoitus s-2016 (...k-2017) 1 Suunnieluharjoius s-2016 (...k-2017) HAKKURITEHOLÄHDE Seuraavan push-pull-yyppisen hakkurieholäheen komponeni ulisi valia (muunajaa lukuunoamaa). V1 iin 230 V ± 10 % 50 Hz V3 Perusieoja kykennäsä Verkkoasasuunauksen

Lisätiedot

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi Rakennusosien rakennusfysikaalinen oimina Ralf Lindber Professori, Tampereen eknillinen yliopiso ralf.lindber@u.fi Rakenneosien rakennusfysikaalisen oiminnan ymmärämiseksi on välämäönä piirää kolme eri

Lisätiedot

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A.

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A. 9. Epäoleellise inegraali; inegraalin derivoini paramerin suheen 9.. Epäoleellise aso- ja avaruusinegraali 27. Olkoon = {(x, y) x, y }. Osoia hajaanuminen ai laske arvo epäoleelliselle asoinegraalille

Lisätiedot

Toistoleuanvedon kilpailusäännöt

Toistoleuanvedon kilpailusäännöt 1.0 Yleisä Toisoleuanvedossa kilpailija suoriaa häjaksoisesi mahdollisimman mona leuanveoa omalla kehonpainollaan. Kilpailijalla on käössään ksi kilpailusuorius sekä asauloksen sauessa mahdollise uusinakierrokse

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015 Ene-59.4130, Kuivaus- ja haihduusprosessi eollisuudessa, asuharjoius 5, sysy 2015 Tehävä 4 on ähiehävä Tehävä 1. eijuerrosilassa poleaan rinnain uora ja urvea. Kuoren oseus on 54% ja uiva-aineen ehollinen

Lisätiedot

OH CHOOH (2) 5. H2O. OH säiliö. reaktori 2 erotus HCOOCH 3 11.

OH CHOOH (2) 5. H2O. OH säiliö. reaktori 2 erotus HCOOCH 3 11. Kemian laieekniikka 1 Koilasku 1 4.4.28 Jarmo Vesola Tuoee ja reakio: hiilimonoksidi, meanoli, meyyliformiaai C HC (1) vesi, meyyliformiaai, meanoli, muurahaishappo HC CH (2) hiilimonoksi, vesi, muurahaishappo

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 8 (viikko 14) Tehävä 1 LAD-käyrä siiryy ylöspäin. Ulkomaisen hinojen nousessa oman maan reaalinen vaihokurssi heikkenee 1 vaihoase vahvisuu IS-käyrä

Lisätiedot

Systeemimallit: sisältö

Systeemimallit: sisältö Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -kuvaus ja ilayhälömalli, ila Linearisoini Jakuva-aikaisen lineaarisen järjeselmän siirofunkio, sabiilisuus Laplace-muunnos Diskreeiaikaisen lineaarisen

Lisätiedot

Puolijohdekomponenttien perusteet A Ratkaisut 2, Kevät 2017

Puolijohdekomponenttien perusteet A Ratkaisut 2, Kevät 2017 OY/PJKOMP R 017 Puolijohdekomoeie erusee 571A Rakaisu, Kevä 017 1. Massavaikuuslai mukaisesi eemmisö- ja vähemmisövarauksekuljeajie ulo o vakio i, joka riiuu uolijohdemaeriaalisa ja lämöilasa. Kuvasa 1

Lisätiedot

PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd

PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd PK-YRITYKSEN ARVONMÄÄRITYS KTT, DI TOIVO KOSKI elearning Communiy Ld Yriyksen arvonmääriys 1. Yriyksen ase- eli subsanssiarvo Arvioidaan yriyksen aseen vasaavaa puolella olevan omaisuuden käypäarvo, josa

Lisätiedot

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET TRAN TyL:n MUKASN AKUUTUKSN RTYSPRUSTT Tässä peruseessa kaikki suuree koskea eraa, ellei oisin ole määriely. Tässä peruseessa käyey lyhenee: LL Lyhyaikaisissa yösuheissa oleien yönekijäin eläkelaki TaL

Lisätiedot

VATT-KESKUSTELUALOITTEITA VATT DISCUSSION PAPERS. JULKISEN TALOUDEN PITKÄN AIKAVÄLIN LASKENTAMALLIT Katsaus kirjallisuuteen

VATT-KESKUSTELUALOITTEITA VATT DISCUSSION PAPERS. JULKISEN TALOUDEN PITKÄN AIKAVÄLIN LASKENTAMALLIT Katsaus kirjallisuuteen VATT-KESKUSTELUALOITTEITA VATT DISCUSSION PAPERS 445 JULKISEN TALOUDEN PITKÄN AIKAVÄLIN LASKENTAMALLIT Kasaus kirjallisuueen Juho Kosiainen Valion aloudellinen ukimuskeskus Governmen Insiue for Economic

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 3, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 3, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset DEE- ineaarise järjeselmä Harjoius 3, harjoiusenpiäjille arkoieu rakaisuehdoukse Ennen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu Piirianalyysin juuri suorianee

Lisätiedot

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt SMG-500 Verolasennan numeerise meneelmä Ehdouse harjoiusen 4 raaisuisi Haeaan ensin ehävän analyyinen raaisu: dx 0 0 0 0 dx 00e = 0 = 00e 00 x = e + = 5e + alueho: x(0 = 0 0 x 0 = 5e + = 0 = 5 0 0 0 5

Lisätiedot

ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +.

ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +. Diffrniaaliyhälö II, harjoius 3, 8 228, rakaisu JL, kuusi sivua a On muunnava linaarinn oisn kraluvun diffrniaaliyhälö ẍ qx f yhäpiäväksi nsimmäisn kraluvun linaarisksi kahdn skalaariyhälön sysmiksi Rak

Lisätiedot

Mittaustekniikan perusteet, piirianalyysin kertausta

Mittaustekniikan perusteet, piirianalyysin kertausta Miausekniikan perusee, piirianalyysin kerausa. Ohmin laki: =, ai = Z ( = ännie, = resisanssi, Z = impedanssi, = vira). Kompleksiluvu Kompleksilukua arviaan elekroniikassa analysoiaessa piireä, oka sisälävä

Lisätiedot

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus Tieonhakumeneelmä Helsingin yliopiso / TKTL.4.04 Toennäköisyyeen perusuva rankkaus Tieonhakumeneelmä Toennäköisyyspohjainen rankkaus Dokumenien haussa ongelmana on löyää käyäjän kyselynä ilmaiseman ieoarpeen

Lisätiedot

KOMISSION KERTOMUS. Suomi. Perussopimuksen 126 artiklan 3 kohdan nojalla laadittu kertomus

KOMISSION KERTOMUS. Suomi. Perussopimuksen 126 artiklan 3 kohdan nojalla laadittu kertomus EUROOPAN KOMISSIO Bryssel 27.2.205 COM(205) 4 final KOMISSION KERTOMUS Suomi Perussopimuksen 26 ariklan 3 kohdan nojalla laadiu keromus FI FI KOMISSION KERTOMUS Suomi Perussopimuksen 26 ariklan 3 kohdan

Lisätiedot

Tehtävä I. Vaihtoehtotehtävät.

Tehtävä I. Vaihtoehtotehtävät. Kem-9.7 Prosessiauomaaion perusee Teni 5.9.5 TÄMÄ PAPERI TÄYTYY EHDOTTOMASTI PALAUTTAA TENTIN MUKANA NIMI: (OS: ) OPINTOKIRJA: VIERAILULUENNOT KUUNNELTU: VALV. LASK: Tehävä I. Vaihoehoehävä. Oikea vasaus

Lisätiedot

Silloin voidaan suoraan kirjoittaa spektrin yhtälö käyttämällä hyväksi suorakulmaisen pulssin Fouriermuunnosta sekä viiveen vaikutusta: ( ) (

Silloin voidaan suoraan kirjoittaa spektrin yhtälö käyttämällä hyväksi suorakulmaisen pulssin Fouriermuunnosta sekä viiveen vaikutusta: ( ) ( TT/TV Inegraalimuunnokse Fourier-muunnos, ehäviä : Vasauksia Meropolia/. Koivumäki v(. Määriä oheisen signaalin Fourier-muunnos. Vinkki: Superposiio, viive. Voidaan sovelaa superposiioperiaaea, koska signaalin

Lisätiedot

Laskelmia verotuksen painopisteen muuttamisen vaikutuksista dynaamisessa yleisen tasapainon mallissa

Laskelmia verotuksen painopisteen muuttamisen vaikutuksista dynaamisessa yleisen tasapainon mallissa Laskelmia verouksen painopiseen muuamisen vaikuuksisa dynaamisessa yleisen asapainon mallissa Juha Kilponen ja Jouko Vilmunen TTässä arikkelissa esieään laskelmia siiä, mien verouksen painopiseen siiräminen

Lisätiedot

7.1. Suurimman uskottavuuden estimointimenetelmä: Johdanto

7.1. Suurimman uskottavuuden estimointimenetelmä: Johdanto Ma-1.361 Tilasollie pääely 7. Suurimma uskoavuude meeelmä ja asympooie eoria Tilasollie pääely 7. Suurimma uskoavuude meeelmä ja asympooie eoria 7.1. Suurimma uskoavuude esimoiimeeelmä: Johdao Aikasarja,

Lisätiedot

12. ARKISIA SOVELLUKSIA

12. ARKISIA SOVELLUKSIA MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina

Lisätiedot

Luento 9. Epälineaarisuus

Luento 9. Epälineaarisuus Lueno 9 Epälineaarisuus 8..6 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!

Lisätiedot

EDE Introduction to Finite Element Method

EDE Introduction to Finite Element Method Tampere Universiy of Technology EDE- Inroducion o Finie Elemen ehod.. Eercise 7 A We divide he srucure o hree beam elemens wih wo nodal degrees of freedom. The nodes, elemens and global degrees of freedom

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin

Lisätiedot

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen Soimukseneon dynamiikka: johdano ja haiallinen valikoiuminen Ma-2.442 Oimoinioin seminaari Elise Kolola 8.4.2008 S yseemianalyysin Laboraorio Esielmä 4 Elise Kolola Oimoinioin seminaari - Kevä 2008 Esiyksen

Lisätiedot

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA S I G N A A L I T E O R I A, O S A I I I TL98Z SIGNAALITEORIA, OSA III 44 3 Signaalin suodaus...44 3. Sysmin vas aikaasossa... 44 3. Kausaalisuus a sabiilisuus... 46 3.3 Vas aauusasossa... 46 3.4 Ampliudivas

Lisätiedot

Lisäpainoleuanvedon kilpailusäännöt

Lisäpainoleuanvedon kilpailusäännöt 1.0 Yleisä Lisäpainoleuanvedossa kilpailija suoriaa hden leuanvedon mahdollisimman suurella lisäpainolla. Kilpailijalla on käössään kolme kilpailusuoriusa sekä voiajalla mahdollinen limääräinen SE-ris.

Lisätiedot

Kokonaishedelmällisyyden sekä hedelmällisyyden keski-iän vaihtelu Suomessa vuosina 1776 2005

Kokonaishedelmällisyyden sekä hedelmällisyyden keski-iän vaihtelu Suomessa vuosina 1776 2005 Kokonaishedelmällisyyden sekä hedelmällisyyden keski-iän vaihelu Suomessa vuosina 1776 2005 Heli Elina Haapalainen (157 095) 26.11.2007 Joensuun Yliopiso Maemaais- luonnonieeiden iedekuna Tieojenkäsielyieeen

Lisätiedot

Tässä harjoituksessa käsitellään Laplace-muunnosta ja sen hyödyntämistä differentiaaliyhtälöiden ratkaisemisessa.

Tässä harjoituksessa käsitellään Laplace-muunnosta ja sen hyödyntämistä differentiaaliyhtälöiden ratkaisemisessa. DEE-00 Lneaare järjeelmä Harjou 0, rakauehdouke Tää harjoukea käellään Laplace-muunnoa ja en hyödynämä dfferenaalyhälöden rakaemea Tehävä Laplace-muunno on käevä yökalu dfferenaalyhälöryhmen rakaemea,

Lisätiedot

338 LASKELMIA YRITYS- JA PÄÄOMAVERO- UUDISTUKSESTA

338 LASKELMIA YRITYS- JA PÄÄOMAVERO- UUDISTUKSESTA VATT-KESKUSTELUALOITTEITA VATT DISCUSSION PAPERS 338 LASKELMIA YRITYS- JA PÄÄOMAVERO- UUDISTUKSESTA Harri Hieala Seppo Kari Timo Rauhanen Hanna Ulvinen Valion aloudellinen ukimuskeskus Governmen Insiue

Lisätiedot

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN KULMMODULOITUJEN SIGNLIEN SPEKTRIN LSKEMINEN 1 (3) (3) Spekri laskeie siisaoalle Kulaoduloidu sigaali spekri johaie o yöläsä epälieaarisuudesa johue (epälieaarise aalyysi ova yleesä hakalia). Se voidaa

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial

Lisätiedot

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia 6.4 Variaaiolaskennan oleusen rajoiukse Sivu ss. 27 31 läheien Kirk, ss. 13 143] ja KS, Ch. 5] pohjala Lähökoha oli: jos J:llä on eksremaali (), niin J:n variaaio δj( (), δ()) ():ä pikin on nolla. 1. Välämäön

Lisätiedot

XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA

XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA II ADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA Laskenaaajuus akiivisuus Määrieäessä radioakiivisen näyeen akiivisuua (A) uloksena saadaan käyeyn miausyseemin anama laskenaaajuus (). = [II.I] jossa =

Lisätiedot

Ratkaisut FYS02: Lämpö

Ratkaisut FYS02: Lämpö Rakaisu FYS0: Lämpö 6.4.007. Seliä lyhyesi seuraava käsiee. a) absluuinen nllapise ( p) b) höyrysymislämpö ( p) c) sisäenergia ( p) d) faasidiagrammi ( p) Rakaisu a) Kelvinaseikn peruspise, 0 K. Absluuinen

Lisätiedot

Suomen kalamarkkinoiden analyysi yhteisintegraatiomenetelmällä

Suomen kalamarkkinoiden analyysi yhteisintegraatiomenetelmällä KALA- JA RIISTARAPORTTEJA nro 374 Jukka Laiinen Jari Seälä Kaija Saarni Suomen kalamarkkinoiden analyysi yheisinegraaiomeneelmällä Helsinki 006 Julkaisija Riisa- ja kalaalouden ukimuslaios KUVAILULEHTI

Lisätiedot

a. Varsinainen prosessi on tuttua tilaesitysmuotoa:

a. Varsinainen prosessi on tuttua tilaesitysmuotoa: ELEC-C Sääöeniia 7. lauharjoiu Vaaue. r - K u K C y a. Varinainen proei on uua ilaeiymuooa: A Bu y C Kuvaa nähdään, eä ilamallin iäänmenona on u r K. Salaaria ei voi vähenää mariiia, joen un on n -veori,

Lisätiedot

OSINKOJEN JA PÄÄOMAVOITTOJEN VEROTUKSEN VAIKUTUKSET OSAKKEEN ARVOON

OSINKOJEN JA PÄÄOMAVOITTOJEN VEROTUKSEN VAIKUTUKSET OSAKKEEN ARVOON AMPN YLIOPISO Kauppaieeien laios OSINKOJN JA PÄÄOMAVOIOJN VOUKSN VAIKUUKS OSAKKN AVOON Laskenaoimi Seminaariukielma Helmikuu 2004 Ohjaaja: Ismo Vuorinen apani Höök 3 SISÄLLYS JOHDANO... 4. ukielman ausaa...4.2

Lisätiedot

ELEC-E8419 Sähkönsiirtojärjestelmät 1: Kulmastabiilius, taajuusstabiilius, roottorin nopeusstabiilius

ELEC-E8419 Sähkönsiirtojärjestelmät 1: Kulmastabiilius, taajuusstabiilius, roottorin nopeusstabiilius ELEC-E8419 Sähkönsiirojärjeselmä 1: Kulmasabiilius, aajuussabiilius, rooorin nopeussabiilius Kurssi syksyllä 015 erioi I-II, 5 opinopiseä Liisa Haarla Luenojen yinasia Kulmasabiilius, pina-alakrieeri,

Lisätiedot

Luento 9. Epälineaarisuus

Luento 9. Epälineaarisuus Lueno 9 Epälineaarisuus 9..7 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!

Lisätiedot

Asuntojen huomiointi varallisuusportfolion valinnassa ja hinnoittelussa

Asuntojen huomiointi varallisuusportfolion valinnassa ja hinnoittelussa TAMPEREEN YLIOPISTO Johamiskorkeakoulu Asunojen huomioini varallisuusporfolion valinnassa ja hinnoielussa Kansanalousiede Pro gradu -ukielma Elokuu 2012 Ohjaaja: Hannu Laurila Tuomo Sola TIIVISTELMÄ Tampereen

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 12: Yhden vapausasteen vaimenematon pakkovärähtely, harmoninen

VÄRÄHTELYMEKANIIKKA SESSIO 12: Yhden vapausasteen vaimenematon pakkovärähtely, harmoninen / VÄRÄHTELYMEKANIIKKA SESSIO : Yhden vapausaseen vaieneaon pakkoväähely, haoninen kuoiusheäe JOHDANTO Ulkoisisa kuoiuksisa aiheuuvaa väähelyä sanoaan pakkoväähelyksi. Jos syseeissä on vaiennusa, on kyseessä

Lisätiedot

Lyhyiden ja pitkien korkojen tilastollinen vaihtelu

Lyhyiden ja pitkien korkojen tilastollinen vaihtelu Lyhyiden ja pikien korkojen ilasollinen vaihelu Tomi Pekka Juhani Marikainen Joensuun Yliopiso Maemaais-luonnonieeellinen iedekuna / Tieojenkäsielyieeen ja ilasoieeen laios / Tilasoiede Pro Gradu -ukielma

Lisätiedot

Seinämien risteyskohdat

Seinämien risteyskohdat CAE DS Painevalukappaleen suunnielu Sefan Fredriksson Seinämien riseyskohda Sefan Fredriksson SweCas Käännös: Pekka Savolainen ja Tuula Höök Tampereen eknillinen yliopiso Riseyskoha muodosuu kun kaksi

Lisätiedot

KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN

KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN YYSILMIÖ J SILÄ VÄLYMIE YYSE SIIRO LJEUS HYVÄSI ÄYÄE ieoliikenneekniikka I 559 ari ärkkäinen Osa 5 4 MILLOI? Milloin ja missä kynnysilmiö esiinyy? un vasaanoimen ulon SR siis esi-ilmaisusuodaimen lähdössä

Lisätiedot

Seinämien risteyskohdat

Seinämien risteyskohdat CAE DS Painevalukappaleen suunnielu Seinämien riseyskohda Sefan Fredriksson - SweCas Käännös: Pekka Savolainen ja Tuula Höök - Tampereen eknillinen yliopiso Riseyskoha muodosuu kun kaksi kappaleen seinämää

Lisätiedot

Lasin karkaisun laatuongelmat

Lasin karkaisun laatuongelmat Rakeneiden Mekaniikka Vol. 44, Nro, 11, s. 14-155 Lasin karkaisun laauongelma Ani Aronen Tiiviselmä. Karkaisula lasila vaadiaan hyvää lujuua sekä visuaalisa laaua. Näihin voidaan vaikuaa lasin karkaisuprosessin

Lisätiedot

Tiedekunta/Osasto Fakultet/Sektion Faculty. Laitos/Institution Department. Matemaattis-luonnontieteellinen tiedekunta Tekijä/Författare Author

Tiedekunta/Osasto Fakultet/Sektion Faculty. Laitos/Institution Department. Matemaattis-luonnontieteellinen tiedekunta Tekijä/Författare Author Tiedekuna/Osaso Fakule/Sekion Faculy Maemaais-luonnonieeellinen iedekuna Tekijä/Förfaare Auhor Laios/Insiuion Deparmen Maemaiikan ja ilasoieeen laios Tommi Hyvärinen Työn nimi / Arbees iel Tile Burgersin

Lisätiedot

ÅLANDSBANKEN DEBENTUURILAINA 2/2010 LOPULLISET EHDOT

ÅLANDSBANKEN DEBENTUURILAINA 2/2010 LOPULLISET EHDOT ÅLANDSBANKEN DEBENTUURILAINA 2/200 LOPULLISET EHDOT Ålandsbanken Debenuurilaina 2/200 (ISIN: FI400003875) lopullise ehdo on 9. heinäkuua 200 vahviseu seuraavasi: - Lainan pääoma 9 980 000 euroa Maarianhamina

Lisätiedot

SUOMEN PANKIN KANSANTALOUSOSASTON TYÖPAPEREITA

SUOMEN PANKIN KANSANTALOUSOSASTON TYÖPAPEREITA SUOMEN PANKIN KANSANTALOUSOSASTON TYÖPAPEREITA 10.10.2004 1/2004 Hannes Kaadu Kuluajahinainflaaion miaaminen Yhdysvalloissa 2 Kuluajahinainflaaion miaaminen Yhdysvalloissa Kansanalousosason yöpapereia

Lisätiedot

STOKASTISIA MALLEJA SÄHKÖN HINNOITTELUUN. Sanni Sieviläinen

STOKASTISIA MALLEJA SÄHKÖN HINNOITTELUUN. Sanni Sieviläinen HELSINGIN YLIOPISTO Maemaais-Luonnonieeellinen iedekuna Maemaiikan ja ilasoieeen laios STOKASTISIA MALLEJA SÄHKÖN HINNOITTELUUN Sanni Sieviläinen Pro Gradu-ukielma Ohjaaja: Dario Gasbarra 3. syyskuua 215

Lisätiedot

PALLON PUTOAMINEN VÄLIAINEISSA

PALLON PUTOAMINEN VÄLIAINEISSA PALLON PUTOAMINEN VÄLIAINEISSA Tieokonesimulaaio ja siihen liiyä kokeellinen ukimus Joosa Kurinen ja Heidi Juuinen Mikkelin Lyseon lukio ysiikka 30..007 TIIVISTELMÄ Viksu-iedekilpailuprojekimme aiheena

Lisätiedot

JYVÄSKYLÄN YLIOPISTO Taloustieteiden tiedekunta TARJONTA SUOMEN ASUNTOMARKKINOILLA

JYVÄSKYLÄN YLIOPISTO Taloustieteiden tiedekunta TARJONTA SUOMEN ASUNTOMARKKINOILLA JYVÄSKYLÄN YLIOPISTO Talousieeiden iedekuna TARJONTA SUOMEN ASUNTOMARKKINOILLA Kansanalousiede Pro gradu -ukielma Helmikuu 2006 Laaia: Janne Lilavuori Ohaaa: Professori Kari Heimonen JYVÄSKYLÄN YLIOPISTO

Lisätiedot

2. Systeemi- ja signaalimallit

2. Systeemi- ja signaalimallit 2. Syseemi- ja signaalimalli Malliyyppejä: maemaainen malli: muuujien välise suhee kuvau maemaaisesi yhälöin lohkokaaviomalli: syseemin oiminojen looginen jako lohkoihin, joiden välisiä vuorovaikuuksia

Lisätiedot

Pyramidi 3 Geometria tehtävien ratkaisut sivu 168. h = 16,5 cm = 1,65 dm 1 = = :100. 2,5dm 1, dm. Vastaus 30 cm. = 2,

Pyramidi 3 Geometria tehtävien ratkaisut sivu 168. h = 16,5 cm = 1,65 dm 1 = = :100. 2,5dm 1, dm. Vastaus 30 cm. = 2, Pyramidi Geomeria eävien rakaisu sivu 68 00,5 l,5 dm 6,5 cm,65 dm Apoja π r π r r π,5dm,08... dm r ( ± ) π π, 65 dm 00 l dm 000 cm Ap 000 0 000 00 :00 000 0 ( cm) 00 asaus 0 cm d r,057... dm cm asaus cm

Lisätiedot

JÄYKÄN KAPPALEEN TASOKINEMATIIKKA

JÄYKÄN KAPPALEEN TASOKINEMATIIKKA JÄYKÄN KLEEN TSKINEMTIIKK TSLIIKKEEN LUKITTELU Liikkee yyppi Esimerkki ( Suoriiie rslio (b Käyräiiie rslio (c Roio (d Yleie soliike TRNSLTI Trslioss kikki pisee liikku smll ll eli kpplee liikeil uemisee

Lisätiedot

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka IMA- Exurso: Kompleksluvu ja radosgnaal / KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT Tausaa IMA- Exurso: Kompleksluvu ja radosgnaal / Kakk langaon vesnä ja radoeolkenne (makapuhelme, WLAN, ylesrado

Lisätiedot

Tekes tänään (ja huomenna?) Pekka Kahri Palvelujohtaja, Tekes Fortune seminaari 21.8.2013

Tekes tänään (ja huomenna?) Pekka Kahri Palvelujohtaja, Tekes Fortune seminaari 21.8.2013 Tekes änään (ja huomenna?) Pekka Kahri Palvelujohaja, Tekes Forune seminaari 21.8.2013 Rahoiamme sellaisen innovaaioiden kehiämisä, joka ähäävä kasvun ja uuden liikeoiminnan luomiseen Yriysen kehiysprojeki

Lisätiedot

Kuntaeläkkeiden rahoitus ja kunnalliset palvelut

Kuntaeläkkeiden rahoitus ja kunnalliset palvelut Kunaeläkkeiden rahoius ja kunnallise palvelu I LA Rapori LA Repors 30.1.2013 No 4 Kunaeläkkeiden rahoius ja kunnallise palvelu Jukka Lassila * Niku Määänen ** armo Valkonen *** * LA linkeinoelämän ukimuslaios,

Lisätiedot

I L M A I L U L A I T O S

I L M A I L U L A I T O S I L M A I L U L A I T O S 2005 Ympärisökasaus Lenoasemien ympärisölupahankkee sekä ympärisövaikuusen ja -vahinkoriskien selviäminen hallisiva Ilmailulaioksen ympärisöyöä koimaassa. Kansainvälisillä foorumeilla

Lisätiedot

Luento 11. tietoverkkotekniikan laitos

Luento 11. tietoverkkotekniikan laitos Lueno Lueno Sokasise signaali ja prosessi II. Sokasise prosessi Pruju Saionaarisuus, ergodisuus Auo ja risikorrelaaio ehospekri.3 Kohinan suodaaminen Sokasinen raja arvo ja derivaaa Winer Khinchin eoreema.3

Lisätiedot

MÄNTTÄ-VILPPULAN KAUPUNKI. Mustalahden asemakaava Liikenneselvitys. Työ: E23641. Tampere 18.5.2010

MÄNTTÄ-VILPPULAN KAUPUNKI. Mustalahden asemakaava Liikenneselvitys. Työ: E23641. Tampere 18.5.2010 MÄNÄ-VLPPULAN KAUPUNK Musalahden asemakaava Liikenneselviys yö: E ampere 8..00 ARX Ympärisö Oy PL 0 ampere Puhelin 00 000 elefax 00 00 www.airix.fi oimiso: urku, ampere, Espoo ja Oulu Mänä-Vilppulan kaupunki,

Lisätiedot

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Analttinen geometria Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Analttinen geometria (MAA) Pikatesti ja Kertauskokeet Tehtävien

Lisätiedot

Luento 7 Järjestelmien ylläpito

Luento 7 Järjestelmien ylläpito Luno 7 Järjslmin ylläpio Ahi Salo Tknillinn korkakoulu PL, 5 TKK Järjslmin ylläpidosa Priaallisia vaihohoja Uusiminn rplacmn Ennalahkäisvä huolo mainnanc Korjaaminn rpair ❶ Uusiminn Vioiun komponni korvaaan

Lisätiedot

LUKU 7 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN A Tietoliikennetekniikka I Osa 24 Kari Kärkkäinen Kevät 2015

LUKU 7 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN A Tietoliikennetekniikka I Osa 24 Kari Kärkkäinen Kevät 2015 1 LUKU 7 KOHINAN VAIKUUS ANALOGISEN MODULAAIOIDEN SUORIUSKYKYYN 51357A ieoliikeeekiikka I Osa 4 Kari Kärkkäie Kevä 15 LUKU 7 KOHINA ANALOGISISSA MODULAAIOISSA Johdao aalyysieeelii Sigaali-kohiasuhee ääriäie

Lisätiedot

LUKU 6 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN

LUKU 6 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN LUKU 6 KOHINN VIKUUS NLOGISEN MOULIOIEN SUORIUSKYKYYN ieoliikeeekiikka I 5359 Kari Kärkkäie Osa 6 Luku 6 Kohia vaikuus aalogisii odulaaioihi Johdao aalyysieeelii Sigaali-kohiasuhee ääriäie Kaaaajuie järjeselä

Lisätiedot

SIGNAALITEORIAN KERTAUSTA 2. Tietoliikennetekniikka I A Kari Kärkkäinen Osa 3

SIGNAALITEORIAN KERTAUSTA 2. Tietoliikennetekniikka I A Kari Kärkkäinen Osa 3 SIGNAALITEORIAN KERTAUSTA 2 Tieoliikenneekniikka I 521359A Kari Kärkkäinen Osa 3 Konvoluuio ja kerolasku ajassa ja aajuudessa Kanaaajuussignaali baseband sanomasignaali sellaisenaan ilman modulaaioa Kaisanpääsösignaali

Lisätiedot

10 VALON INTERFERENSSI

10 VALON INTERFERENSSI 5 VALON INTRFRNSSI Monivärise heijasukse esimerkiksi öljyisesä veden pinnasa, saippuakuplasa, cd-levysä, perhosen siivisä ja värikkäiden linujen sulisa ova seurausa valon inerferenssisä. Inerferenssi synyy,

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli

Yhden selittäjän lineaarinen regressiomalli Moimuuujameeelmä Yhde seliäjä lieaarie regressiomalli Moimuuujameeelmä: Yhde seliäjä lieaarie regressiomalli Ilkka Melli. Yhde seliäjä lieaarie regressiomalli, se esimoii ja esaus.. Yhde seliäjä lieaarie

Lisätiedot

PET-perusteita 1.2.1999. Tavallisimmat PET-tutkimuksissa käytetyt mallit

PET-perusteita 1.2.1999. Tavallisimmat PET-tutkimuksissa käytetyt mallit Turku PET Cenre / Vesa Oikonen PET-peruseia 1.2.1999 Tavallisimma PET-ukimuksissa käyey malli Auoradiografia MBF-sovius Palak-analyysi Logan-analyysi ja Referenssikudosmalli Auoradiografia: Perusoleukse

Lisätiedot

Derivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan

Derivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan 87 5. Eliminoinimeneely Tarkaellaan -kokoia vakiokeroimia yeemiä + x a a x a x + a x b() x = = = +. a a x a x a x b () (3) b() x + Derivoimalla enimmäinen komponeni, ijoiamalla jälkimmäien derivaaa iihen

Lisätiedot