Lyhyiden ja pitkien korkojen tilastollinen vaihtelu

Koko: px
Aloita esitys sivulta:

Download "Lyhyiden ja pitkien korkojen tilastollinen vaihtelu"

Transkriptio

1 Lyhyiden ja pikien korkojen ilasollinen vaihelu Tomi Pekka Juhani Marikainen Joensuun Yliopiso Maemaais-luonnonieeellinen iedekuna / Tieojenkäsielyieeen ja ilasoieeen laios / Tilasoiede Pro Gradu -ukielma

2 Sisällyslueelo 1. JOHDANTO KORKO Euribor Valion obligaaio AIKASARJOJEN OMINAISUUKSIA Sokasinen prosessi Yhden muuujan jakauman unnuslukuja Oosauokorrelaaiokerroin ja korrelogrammi Volailieei KORKOJEN ODOTUSTEORIA KORKOJEN KUVAILUA Aineiso Aikasarjojen arkaselua Volailieein arkaselua YKSIKKÖJUURET JA YHTEISINTEGRAATIO Yksikköjuuriesi Dickeyn ja Fullerin esi Laajenneu Dickeyn ja Fullerin esi Yheisinegraaio Johansenin yheisinegroiuvuus TULOKSIEN TARKASTELUA Yksikköjuuriesin ulokse Yheisinegraaioesin ulokse JOHTOPÄÄTÖKSIÄ...45 LÄHTEET...47

3 1. JOHDANTO Tässä ukielmassa arkasellaan lyhyiden ja pikien korkoaikasarjojen ilasollisia eroavaisuuksia. Esieään pohdinaa siiä minkä akia lyhye ja pikä koro ova erisuuria, sekä siiä mien ne käyäyyvä suheessa oisiinsa. Pohdiaan myös onko koroilla jokin eoreeinen pikän aikavälin asapainosuhde, niin kuin alousieeissä esiinyvä eoria esiävä. Näiä suheia ukiaan arkaselemalla kuvia korkosarjoisa ja raporoimalla niisä mahdollisia yheneväisyyksiä ja eroja. Yrieään löyää myös jonkinlaisia yheyksiä alousieeen eorioihin, esimerkkinä odouseoria. Ensimmäiseksi on kuienkin paneuduava aikasarjojen saionaarisuueen. Korkosarjojen saionaarisuua arkasellaan kuvien avulla sekä yksikköjuuriesillä. Yksikköjuuriesi suorieaan käyämällä Dickeyn ja Fullerin esiä sekä laajenneua Dickeyn ja Fullerin esiä. Jos aikasarjasa löyyy yksikköjuuri, on sarja epäsaionaarinen. Kahden ai useamman epäsaionaarisen muuujan sanoaan olevan yheisinegroiuneia jos niiden välilä löydeään saionaarinen lineaarikombinaaio. Tämä arkoiaa siä, eä nämä yheisinegroiunee muuuja eivä ajaudu kovinkaan kauaksi oisisaan ajan kuluessa, vaan niiden välillä vallisee pikän aikavälin asapainosuhde. Saionaarisuuden arkaselun jälkeen ukiaan käyeyjä korkoaikasarjoja meneelmällä, joa kusuaan yheisinegraaioanalyysiksi. Yheisinegraaioanalyysin lähökohana on, eä aikasarja ova epäsaionaarisia ja samalla aseella inegroiuneia. Ekonomerinen ulkina yheisinegraaiosa on seuraavanlainen: jos kaksi ai useampaa sarjaa ova yheydessä oisiinsa muodosaen pikän aikavälin asapainoila 1, ne uleva liikkumaan oisensa läheisyydessä ja niiden välimaka pysyy sabiilina (saionaarisena), vaikkakin sarja isessään voiva sisälää sokasisia rendejä (epäsaionaarisuus) (Harris, s. 22). Yheisinegraaioanalyysinä käyeään Johansenin meneelmää, missä sovelleaan suurimman uskoavuuden meneelmää vekoriauoregressiiviseen malliin. 1 Yheisinegraaion käsie makii pikänaikavälin asapainoilaa, eli equilibriumia, missä aloudellinen ila konvergoiuu yli ajan. Se on ieynlainen ila, missä ekonomise voima ova balanssissa ja ulkoisen ekijöiden poissa ollessa aloudellisissa muuujissa ei apahdu muuoksia. 1

4 Campbell ja Shiller arkaseleva vuonna 1991 julkaisemassaan paperissaan, voiko pikän ja lyhyen koron erouksella ennusaa ulevia korkoja ja niiden mahdollisa käyöä korkorakeneen odouseorian ulkinnassa. Tässä yössä arkasellaan oimiiko edellä esiey ajaus ja voisiko pikän koron muuoksilla ennusaa ulevia lyhyiä korkoja. Tukielman rakenne on seuraavanlainen: Luvussa kaksi kerroaan lyhyesi koroisa ja esiellään ukielmassa käyeyjen korkoaikasarjojen koro, joka ova Euribor ja valion obligaaio. Kolmannessa luvussa käsiellään aikasarjojen ominaisuuksia ja eoreeisia käsieiä, joihin viiaaan myöhemmissä luvuissa. Neljännessä luvussa kerroaan enemmän odouseoriasa ja mien siä ullaan sovelamaan yheisinegraaiosuheiden ukimisessa. Viidennessä luvussa kuvaillaan käyeyjä korkosarjoja arkemmin. Kuudes luku sisälää käyeyjen meneelmien esielyn. Seisemännessä luvussa esieään esien ja analyysien uloksia. Kahdeksannesa luvusa löyyvä johopääökse. 2

5 2. KORKO Korko on rahan hina. Se on korvaus siiä ajasa jona lainau pääoma ei ole lainananajan käyössä. Rahoiusmarkkinoilla oimii sijoiaja, joka esii rahalleen uooisaa sijoiuskohdea. Lainan oajalla on aas iedossa hyvä sijoiuskohde, mua hänelä ei löydy pääomaa. Sijoiajan ja lainan oajan arpee kohaava markkinoilla ja niiden soviaminen johaa siihen eä rahalle synyy hina, eli korko. Koro ova maurieeeilaan, eli lainan juoksuajoilaan, erimiaisia ja niiden kesoaja vaiheleva viikosa kymmeniin vuosiin. Koroisa puhuaessa käyeään yleensä ermejä lyhy korko ja pikä korko. Tää korkojen eroelua käyeään läpi ämän yön. Pikällä korolla arkoieaan yleensä yli vuoden miaisia valion liikkeelle laskemia jälkimarkkinoilla noeerauja joukkovelkakirjojen uooja. Joukkovelkakirja ova valion ai yriysen myönämiä arvopapereia. Suomessa liikkeelle laskeaan harvoin alle 3 vuoden joukkovelkakirjoja, ja suurimmillaan niiden maurieei ova 10 vuodessa. Muuama maa, esimerkkeinä Ranska ja Englani, ova laskenee liikkeelle korkoja joiden maurieei ova noussee 30 vuoeen ja joissain apauksissa jopa 50 vuoeen. Lyhyisä koroisa puhuaessa arkoieaan vuoden ja alle vuoden miaisia rahamarkkinarahoieisia korkoja. Lyhyaikaise alleusmarkkina ova lähinnä pankkien välisiä markkinoia. Euribor-korko on hyvä esimerkki lyhyesä korosa. Euriborisa kerron enemmän kohdassa 2.1. Korkosijoiusen uoo voiva perusua joko kiineään korkoon ai vaihuvaan korkoon. Kiineä koro pysyvä samansuuruisina koko soviun ajan, kun aas vaihuva koro määriellään kunkin korkokuukauden aikana. Vaihuvan koron muuokse riippuva josakin oisesa korosa eli viiekorosa. Esimerkiksi suomalaisessa sijoiamisessa useimmien käyeyjä viiekorkoja ova euribor, libor, ja eonia. Tässä yössä arkasellaan arkemmin euriboria, joka on rahamarkkinakorko. Toisena korkosarjana käyeään valion obligaaiokorkoa. Koro esiellään yksiyiskohaisemmin seuraavissa kappaleissa. 3

6 2.1 Euribor Euribor (Euro Inerbank Offered Rae) on Euroopan pankkiyhdisysen liion (European Banking Federaion) noeeraama euron lyhy markkinakorko, jolla ensiluokkainen pankki (prime bank) arjoaa oiselle ensiluokkaiselle pankille pankkien välisiä määräaikaisia euroalleuksia. Korko julkiseaan kello aamupäivällä Keski-Euroopan aikaa. Euribor vahviseiin ensimmäisen kerran ja se korvasi Suomessa käyeyn koimaisen markan rahamarkkinakoron Heliborin. Koron määrielyyn osallisuva euroalueen kaupankäynivolyymilään merkiävimmä panki (Tuhkanen 2006, s. 38) % Euribor 1kk Kuva 1. 1kk Euribor. Euriborin määrielyyn osallisuu ryhmä euroalueen merkiävimpiä pankkeja, joiden noeeraukse edusava siä pankkien välisä lyhyä eurokorkoa, jonka ensiluokkainen pankki noeeraisi oiselle pankille. Euribor noeeraaan spo-arvolla T+2 TARGET päivää ja odellise/360-päivää säännöllä (Tuhkanen 2006). Se esieään kolmen desimaalin arkkuudella. Spo-arvolla arkoieaan änään ehyyn alleukseen liiyvän varojen siirron apahumisa kahden pankkipäivän kuluua TARGET-päiväsä. TARGETpäivänä euron kyseinen maksujenväliysjärjeselmä on auki 23. Paneelin panki laskeva Euriborin 1, 2 ai 3 viikon kesoajalle sekä myös kahdenoisa kuukauden kesoajalle, 2 TARGET-järjeselmä on kiinni lauanain ja sunnunain lisäksi seuraavina päivinä: Uudenvuodenpäivä, Pikäperjanai, 2. pääsiäispäivä, Vappu, Joulupäivä ja Tapaninpäivä. 3 TARGET: Trans-European Auomaed Real-Time Gross Selemen Express Transfer Sysem. 4

7 yhdesä kaheenoisa kuukaueen. Noeeraukse anneaan viimeisään 10:45 Keski- Euroopan aikaa ja jokaisesa maurieeisa poiseaan 15 prosenia ylimmäsä ja alimmasa noeerauksesa. Lopuisa oeaan keskiarvo. 2.2 Valion obligaaio Joukkovelkakirjalaina, eli lyhyemmin joukkolaina, joa kusuaan myös yleisesi obligaaioksi, on usean yksiyisen ai yheisön oama laina, joka jakaanuu useisiin samansisälöisiin halijalle aseeuihin velkakirjoihin. Joukkolainan liikkeellelaskija hakeva markkinoila pikäaikaisa rahoiusa. Obligaaioiden maurieei on vähinään yli vuoden. Suomessa harvoin laskeaan liikkeelle alle kolmen vuoden joukkolainoja, lainaaja ova enimmillään 10 vuoa (Tuhkanen 2006, s. 115). Suomen valion liikkeelle laskema joukkolaina muodosava koimaisen joukkolainamarkkinoiden rungon. Valion obligaaion kasoaan olevan yksi urvallisimmisa sijoiuskoheisa, koska siinä akaisinmaksulle on valion akaus % Valion obligaaio 10v Kuva 2. 10v. Valion obligaaio. 5

8 3. AIKASARJOJEN OMINAISUUKSIA Aikasarjan sanoaan olevan jakuva (coninuous) silloin kun havainno ova peräkkäisiä havainoja, ja aikasarjan havainojoukko on ajan suheen jakuva. Diskreei (diccree) aikasarja on aas sarja, jonka mahdollisen havainojen joukko on äärellinen ja havainno on saau äsmällisinä ajanhekinä. Tässä yössä korkoaikasarja ova diskreeejä luoneelaan, koska havainno korkosarjoihin saadaan ennala iedossa olevina ajanhekinä, kuen luvussa 2 mainiiin. Suuri osa ilasoieeen eorioisa käsielee saunnaisooksia josain ieysä riippumaomien havainojen ryhmäsä. Aikasarjaanalyysin kohdalla ämä ei oimi, koska havaino riippuu aina jossain määrin sarjan edeläväsä havainnosa. Koska peräkkäise havainno ova riippuvia oisisaan, voidaan menneillä arvoilla ennusaa ulevaa. Jos menneillä havainnoilla voidaan ennusaa aikasarjan ulevia havainoja virheeä, sen sanoaan olevan deerminisinen. Suurin osa sarjoisa on kuienkin sokasisia luoneelaan ja niiden ulevia arvoja voi ennusaa vain osaksi menneillä havainnoilla. Koska sokasisesa aikasarjasa ei voida ehdä virheeömiä ennusuksia, käyeään menneiden havainojen iedolla ehdolliseua odennäköisyysjakaumaa, jolla ulevaisuua ennuseaan. (Chafield 2004, s. 5) Taloudellinen aikasarja voi sisälää neljä komponenia, joka jaoellaan seuraaviin määrielmiin. Trendi kuvaa sarjassa näkyvää pikän aikavälin muuosa. Suhdannesyklillä ai suhdannevaihelulla arkoieaan aikasarjassa esiinyvää vaihelua, joka johuu esimerkiksi alouden nousu- ai laskusuhdaneisa. Suhdannesyklin muuokse ova keskipikän aikavälin vaiheluia ja niiä voi olla hankala eroaa rendisä. Kolmanena komponenina on kausivaihelu. Kausivaihelu on vuoden/kauden sisällä esiinyvää säännöllisä vaihelua. Viimeisenä aikasarjan komponenina on saunnaisvaihelu (Chafield 2004, s. 12). Ennen varsinaisen empiirisen ukimuksen aloiamisa on hyödyllisä ukia käyämämme sarjan ominaisuuksia. Tukiaan, minkälaisia oleamuksia voidaan ehdä aikasarjasa, kuen pysyykö siinä joain muuumaomana vai apahuuko sen rakeneessa 6

9 vaiheluia. Seuraavaksi kerroaan hieman enemmän sokasisisa prosesseisa ja aikasarjan saionaarisuus-ominaisuuksisa. 3.1 Sokasinen prosessi Merkiään aikasarjaa (ai sokasisa prosessia) y,..., 2, 1,0,1,2,.... Tarkaseluissa rajoiuaan diskreeiaikaisiin sokasisiin prosesseihin. Jakossa aikasarjaa merkiään yksinkeraisemmin y :llä. Tässä yössä käyey aikasarja ova yksiuloeisia, eli skalaariarvoise havainno on saau samasa ilmiösä peräkkäisinä ajanhekinä. Korkosarjoissa jokaiseen ajanhekeen liiyvää koron arvoa merkiään y :llä. Aikasarja on kovarianssisaionaarinen jos sen keskiarvo, varianssi ja kovarianssi ova ajasa riippumaomia, eli aikasarjalla on seuraava kolme ominaisuua (Harris 1995, s. 15): 1. E y = = vakio kaikilla ajan hekillä, 2. Var y = 2 = vakio kaikilla ajan hekillä ja 3. Cov y y, k = k ajanhekien väliajasa k. = kovarianssi eivä riipu ajanhekisä +k ja, vaan Tarkemmin sanoen aikasarja y on siis kovarianssisaionaarinen, jos edellä oleva ehdo piävä. Lisäksi odousarvo ja varianssi oleeaan äärellisiksi. Kohda 1. ja 2. vaaiva, eä prosessilla on vakio odousarvo ja varianssi, kun aas kolmas koha riippuu havainojen y k ja y välisesä erouksesa. Jos arkaselava sarja ei äyä edellä mainiuja ehoja, se on epäsaionaarinen. Epäsaionaarisen aikasarjan käyäminen regressioanalyyseissä anaa joissain apauksissa virheellisiä uloksia. 7

10 3.2 Yhden muuujan jakauman unnuslukuja Tässä kappaleessa kerroaan käyeyisä jakauman unnusluvuisa. Näiä arviaan korkoaikasarjojen perusunnuslukujen ulkinnassa luvussa 5. Vinous (skewness) on jakauman muooa kuvaava käsie. Jakauman sanoaan olevan vino, jos suurin osa sen havainnoisa on keskiarvoa suurempia ai pienempiä. Jos suuri osa havainnoisa on keskiarvoa pienempiä, niin jakauman sanoaan olevan oikealle vino ja jos havainno ova keskiarvoa suurempia, jakauma on vasemmalle vino. Vinouskerroin laskeaan kaavalla: s 3 1 N y i y, (1) i 1 N ˆ missä ˆ on esimaaori normaalijakaumalle, joka perusuu varianssin harhaiselle esimaaorille ( ˆ s ( N 1) / N ). Normaalijakauuneen muuujan vinousarvo on 0 (EViews manuaali, s. 299). Huipukkuus on myös jakauman muooa kuvaava käsie. Se kuvaa jakauman hänien piuua ja paksuua. Huipukkuuden (kurosis) laskemiselle käyeään seuraavaa kaava: K 4 1 N y i y, (2) i 1 N ˆ missä ˆ on, kuen vinouden apauksessakin, varianssin harhainen esimaaori (EViews manuaali, s. 300). 8

11 3.3 Oosauokorrelaaiokerroin ja korrelogrammi Oosauokorrelaaio kuvaa aikasarjan havainojen välisä samankalaisuuden asea eli korrelaaioa. Oosauokorrelaaiokerroin viiveellä k kuvaa siis n-1 kappaleen havainoparin x x, x, x,...,, 1, x n 1 x n välisä korrelaaioa. Laskeaan ooskovarianssi ˆ k viiveellä k, ja oosvarianssi 0 ˆ, joille määrielmä seuraavaksi: Y Y Y k Y ˆ k, (3) n 2 Y Y ˆ0, (4) n missä n on ooskoko ja Y on ooskeskiarvo. Ny voidaan kirjoiaa oosauokorrelaaiofunkio seuraavaan muooon: ˆ k ˆ k, (5) ˆ0 mikä on ooskovarianssi jaeuna oosvarianssilla (Chafield 2004, s. 23). Oosauokorrelaaiokeroimien ulkinnassa on hyvä käyää apuna niiden graafisa esiysä eli korrelogrammia, missä pisee k ˆk,, k 0,1,2,... piirreään asoon. Korrelogrammissa esieään yleensä vain ensimmäise oosauokorrelaaiokerroina riippuen havainojen määräsä (Chafield 2004, s. 24). Luvussa viisi esieään kaksi korrelogrammia, joiden avulla ulkiaan korkoaikasarjojen saionaarisuusominaisuuksia. 9

12 3.4 Volailieei Volailieeia miaaan yleensä uoojen keskihajonnalla. Hisoriallisella volailieeilla arkoieaan sijoiushyödykkeen hisoriallisisa hinahavainnoisa laskeua uoojen keskihajonaa. Tarkaselavan ajanjakson piuuden valina riippuu volailieei-esimaain käyöarkoiuksesa. Lyhy ajanjakso ei välämää sisällä riiäväsi havainoja, jolloin uloksen luoeavuus kärsii. Toisaala, koska volailieei muuuu ajassa, saaaa hyvin pikälä ajala laskeu uoojen keskihajona sisälää vanhenunua informaaioa, joka ei ole relevania ämänhekisen volailieein arvioinnissa. Tarkaselavan ajanjakson piuuden valina riippuu volailieei-esimaain käyöarkoiuksesa. Tässä vaiheessa on myös hyvä selvenää volailieein eroa keskihajonnasa. Keskihajona kuvaa havainoarvojen keskimääräisa poikkeamaa keskiarvosa. Volailieei on aas annualisoiu keskihajona, joka miaa uoojen keskihajonaa. On olemassa kaha erilaisa volailieeia, hisoriallisa sekä implisiiisä volailieeia. Hisoriallinen volailieei laskeaan usein kuluneen viikon, kuukauden ai puolen vuoden ajala, ja se keroo kuinka nopeasi esimerkiksi uoo on muuunu. Volailieein ajaellaan usein synyvän markkinoille saapuvan uuden informaaion johdosa. Yksinkeraisesi volailieei on määrielmä rahoiusinsrumenin, koron, heilunnalle ieyllä aikavälillä. Tässä yössä volailieein arkaseluun käyeään hisoriallisa volailieeia. Volailieein laskena aloieaan laskemalla logariminen hinnanmuuos eli uoo y u i ln, (6) y 1 missä ln on luonnollinen logarimi (Riskglossary.com). Kaavassa 6 osaa, y y 1, kusuaan yksinkeraiseksi bruouooksi. Hisoriallinen volailieei voidaan laskea keskihajonnankaavasa: 10

13 n 1 2. (7) n 1 i 1 u i u Kaavassa 7 on keskihajonnan esimaai ja u on keskimääräinen uoo periodilla. Joa voidaan verraa volailieeeja eri aikaväleille, niin kerroaan hisoriallinen volailieei vielä annualisoinifakorilla. Koska käyämme ässä yössä korkoaikasarjojen kuukausihavainoja, niin ulemme käyämään arvoa h=12. h 100. (8) an Edellä esieyssä kaavassa an annualisoinifakrorilla kerrou keskihajona. Volailieei on kerrou 100:lla proseniluvun saamiseksi. Esimoiaessa kuukausikohaisa volailieeia uoojen hisoriallisiin ieoihin perusuen jouduaan väisämää arkaselemaan yhä kuukaua pidempää ajanjaksoa, sillä keskihajonnan laskemiseksi arviaan useampia havainoja. Tässä yössä volailieeisa puhuaessa arkoieaan markkinoiden volailieeia, eli korkojen heilahelua. Markkinoiden volailieei on yksi korkorakeneiden hinaan vaikuava ekijä. Korkosarjojen ämänhekisesä volailieein asosa kerroaan enemmän luvussa 5. 11

14 4. KORKOJEN ODOTUSTEORIA Yksi suosiu eoria alousieeen puolella korkokäyrän aikarakeneen ulkinnalle on odouseoria. Odouseorian mukaan pikäaikaise koro määräyyvä ulevia lyhyaikaisia korkoja koskevien odousen peruseella (Niemelä 1995, s. 1). Nouseva korkokäyrä siis ennusaa siä, eä ulevaisuudessa lyhye koro uleva nousemaan ja laskeva uookäyrä ennusaa vasaavasi lyhyiden korkojen ulevaa laskua. Mikäli markkinoilla odoeaan lyhyiden korkojen nousua, se johaa odousen peruseella siihen, eä pikän koron odoeaan olevan korkeampi kuin lyhy korko (Niemelä 1995, s. 1). Niemelä esiää ukimusraporissaan kaavan odoushypoeesille, joka perusuu Campbellin ja Shillerin kirjoiamaan paperiin vuodela Se lähee ajauksesa, eä pikäaikaisen vaaeen uoo määräyyy nykyisen sekä ulevien odoeujen lyhyiden korkojen arimeeisena keskiarvona. R k 1 n, (, c i 0 1/ k) ERm mi, k n / m, (9) missä R, on pikä n:n periodin korko hekellä ja n R m, on lyhy korko, missä n>m. E on rahamarkkinoilla oimivien ahojen raionaalisia odouksia ehdolla ajanhekenä iedossa olevalla informaaiolla. Vakioermi c on riski- ai likvidieeipreemio, joka riippuu kyseessä olevien vaaeiden maurieeien välisesä erouksesa (Campbell & Shiller 1991, s. 496). Yhälöä (9) arkaselemalla huomaaan, eä jos pikä korko hekellä on korkeampi kuin lyhy korko, niin lyhyiden korkojen odoeaan nousevan ulevaisuudessa, joka aas johaa siihen eä uookäyrä on nouseva. Seuraavaksi määriellään muuuja, joka kuvaa uookäyrän muooa. Muuuja on lyhyen ja pikän koron erous: S n, m: Rn, Rm,, missä S n, m : on n:n ja m:n periodin erous ajanhekellä. Vähenneään yhälön (9) molemmila R, niin saadaan seuraavanlainen kaava korkoerolle. m 12

15 S E S, missä (10) S * n, m: n, m: m ( 1 i k Rm im, k 1 i k 1 * m n m k R, : 1/ ) m, jm /, i 1 j 1 i 1 missä m R m, im Rm, m Rm,. Kaavassa (10) esiinyvää ermiä S kusuaan * n, m: eoreeiseksi korkoeroksi. Jos koro ova asomuodossaan epäsaionaarisia ja niiden ensimmäise eroukse ova saionaarisia, niin edellä esieyn kaavan oikean puolen ermi ova inegroiuneia aseella 0, eli ne ova I(0)-prosesseja. Täsä seuraa eä kaavan oikea puoli on myös saionaarinen. Korkojen ollessa inegroiuneia aseella 1 niiden on olava myös yheisinegroiuneia, joa niiden erous olisi saionaarinen. Korkoeron inegraaion ase on siis 0. Yheisinegraaio vekori on muooa 1, 1, koska ' 1 1 R S, missä R R R ja ~ I(0) on korkoerous. Odouseorian mukaan n m S sarja ova siis yheisinegroiuneia YI-vekorilla 1, 1, jolloin korkoerous on saionaarinen pikänajan asapainoila, joka vallisee kahden korkoaikasarjan välillä. Kun arkasellaan korkosyseemiä, missä esiinyy p kappalea korkosarjoja, niin odoushypoeesin valliessa on löydyävä p-1 kappalea yheisinegroiuvuusvekoria (Shea 1992, s. 358). Tämä arkoiaa siä, eä p:ä kappaleesa korkovekoreia voidaan muodosaa p-1 kappalea korkoerouksia lyhyiden ja pikien korkojen välille % % Eu3kk-Eu1kk Eu12kk-Eu1kk Kuva 3. Kolmen kuukauden Euriborkoron erous yhden kuukauden Euriboriin. Kuva 4. Kahdenoisa kuukauden Euriborkoron erous yhden kuukauden Euriboriin. 13

16 Kuvassa 4 näkyy hyvin kuinka uookäyrässä esiinyy posiiivisia sekä negaiivisia korkoeroja. Kuen kuvioisa huomaaan uookäyrä elävä jakuvasi. Täsä voidaan ajaella, eei markkinoilla ole selkeää näkemysä oikeasa korkoerosa lyhyiden ja pikien korkojen välillä. Miä suurempi uooero on, siä jyrkemmin se ilmenee uookäyrän muodossa. Jos uookäyrä on nouseva, niin koro sisälävä jonkin aseisen odouksen lyhyiden korkojen ulevasa kasvusa (Tuhkanen 2006, s. 61). Kun lyhyen ja pikän koron välillä ei ole korkoeroa, niin se näkyy uookäyrässä asaisena käyrän muoona. Kuvassa 3 näkyy ällainen selkeä asaisempi jakso jo aiemmin mainiulla vuoden 2003 alusa alkaneella ajanjaksolla. 14

17 5. KORKOJEN KUVAILUA 5.1 Aineiso Korkojen arkaseluun käyeään Euribor-korkoja ja valion obligaaiokorkoja. Aineiso on keräy korkosarjojen osala inerneisä. Euribor-koro sekä valion obligaaio löyyivä Suomen Pankin inernesivuila osiosa ilaso. Sarjassa on kaikki havainno Euribor-koron ilmesymisen jälkeen vuoden 1999 alusa saakka sekä valion obligaaiosa kaksi sarjaa samala ajala. Käyössä on kuusi eri korkosarjaa. Kaikissa sarjoissa on 102 havainoa. Neljän Euribor-sarjan maurieei ova 1, 3, 6 ja 12 kuukaua. Valion obligaaioissa sarjoja edusaa 5 ja 10 vuoden korkosarja. Koska aineison havainno ova kuukausien keskiarvoja, nousee esiin ongelma, kuinka paljon ja mien merkiävissä määrin meneeään informaaioa aineisosa. Koroisa olisi myös ollu mahdollisa saada päivähavainoihin perusuva aikasarja, mua mahdollisien esimoiniongelmien välämiseksi on päädyy kuukausihavainoihin. Eräänä esimoiniongelmana mainiakoon sarjoissa mahdollisesi esiinyvien poikkeavien havainojen vaikuus esimoiniuloksiin. 6 % Euribor 1kk Euribor 12kk Valion obligaaio 5v Valion obligaaio 10v Kuva 5. Korkosarjoja ajala 1/99-6/07. 15

18 Kuvasa 5 löyyy neljä ukielmassa käyeyä korkoaikasarjaa. Kaikki yössä käyey Euribor-korkosarja eivä ole eduseuina kuvassa, koska niiden piirämä käyrä olisiva samanmuooise kuin kuvassa esiinyvän kuukauden Euriborin käyrä. Euribori edusava kuvassa lyhyiä korkoja ja valion obligaaio pikiä korkoja. Tää yllä olevassa kuvassa esiinyvää korkokäyrää kusuaan usein myös uookäyräksi. Tuookäyrä kuvaa ieyn heken korkorakennea graafisessa muodossa (Tuhkanen 2006, s. 55). Normaalisi uookäyrä on loivasi oikealle nouseva, jossa pikä koron uoo ova suurempia kuin lyhyesä makseava, mua oisenkinlaise käyrän muodo ova mahdollisia. Tämän yön pääajaus on arkasella maurieeeilaan eripiuisen korkojen käyäyymisä. 5.2 Aikasarjojen arkaselua Taloudellisissa aikasarjoissa on ieyjä ominaispiireiä. Sarjoisa löyyy useimmien rendi, joa voisi määriellä esimerkiksi pikän aikavälin vaiheluna keskiarvossa (Chafield 2004, s.12). Trendi voi olla kasvava ai laskeva. Poikkeava havainno, oulierien rypää ja epälineaarisuus ova myös yypillisiä finanssisarjan ominaispiireiä (Franses & van Dijk s. 3). Kuen kuvasa 5 huomaaan, niin korkosarjoisa ei löydy pelkäsään kasvavaa ai laskevaa rendiä, vaan niissä esiinyy saunnaiskulkua muisuavaa käyäyymisä. Välillä sarjasa löyyy nouseva rendi kunnes se muuuu laskevaksi aloudessa apahuvien muuoksien johdosa. Eräs ällainen muuos Euroopan rahapoliiikassa näkyy lyhyiden rahamarkkinakorkojen sarjoissa vuoden 2002 vaiheessa. Silloin Suomi liiyi yhdenoisa muun maan kanssa Euroopan alueen yheiseen rahaliioon. 1kk ja 3kk Euribor-sarjoissa ällainen asainen kausi näkyy selväsi. Syy siihen miksi ällainen sarjan kehiys näkyy vain lyhyissä koroissa, johuu oleeavasi siiä eä Keskuspankki voi rahapoliiikallaan vaikuaa vain lyhyihin korkoihin. Käyeyissä korkosarjoissa ei löydy selkeiä poikkeavia havainoja, koska aineison havainno ova kuukausikeskiarvoja. Mahdollise suure poikkeama ova keskiarvon laskemisen johdosa asoiunee ja niiden havaiseminen käyeyisä sarjoisa on hankalaa. 16

19 Taulukko 1. Käyeyjen korkosarjojen unnuslukuja. EUR1KK EUR3KK EUR6KK EUR12KK VAOB5V VAOB10V Keskiarvo 3,08 3,13 3,18 3,30 3,92 4,44 Mediaani 3,02 3,10 3,10 3,23 3,71 4,26 Maksimi 4,94 5,10 5,13 5,25 5,48 5,75 Minimi 2,04 2,03 2,02 2,01 2,64 3,04 Keskihajona 0,89 0,90 0,91 0,92 0,80 0,72 Vinous 0,56 0,51 0,45 0,39 0,31 0,05 Huipukkuus 2,21 2,14 2,11 2,04 1,89 1,90 Taulukosa 1 löyyy aikasarjojen perusunnuslukuja. Tunnusluvu on oeu korkosarjan koko ajala ja niiden arkoius on valaisa sarjojen ominaisuuksia. Aikasarjojen keskihajonnoisa huomaaan Euriborien omaavan hieman suuremman keskihajonnan verrauna valion obligaaioihin ja ämä johuu siiä, eä vuosien välillä Euribori oliva maalalla ja yleensäkin kyseisissä sarjoissa esiinyi enemmän asaisia kausia verrauna valionobligaaioihin. Kun arkasellaan korkosarjojen käyrien muooja lyhyemmissä osissa, niin huomaaan valion obligaaioiden sarjoissa suurempaa vaihelua verrauna Euriboreihin. Vinouskeroimesa nähdään, eä lyhye koro ova jakaumalaan oikealle vinoja, niiden frekvenssijakauman oikeanpuoleinen hänä on piempi, ja valion obligaaion 10 vuoden korosa huomaaan, eä sen vinousarvo on lähellä normaalijakauman vinousarvoa. Kymmenen vuoden valion obligaaiossa on siis asaisesi posiiivisia sekä negaiivisia koronnousuja. Kaikki korkosarja saiva siis vinous esisuureen arvoksi posiiivisen luvun, josa voidaan veää johopääös eä koroissa esiinyy enemmän posiiivisia koron nousuja kuin negaiivisia. Huipukkuus arvoisa huomaaan, eä korkosarjojen arvo ova kaikki pienempiä kuin kolme, joka keroo muuujien olevan jakauman muodolaan pikähänäisiä (long-ailed). Seuraavaksi arkasellaan muuaman korkosarjan jakaumien muooja kuvien avulla. Alla esieään neljän eri korkosarjan jakauma kuvina. Kuvissa esiinyvä yhenäinen viiva esiää normaalijakauman käyrää. 17

20 Kuva 6. Euriborin jakauma (1kk). Kuva 7. Valion obligaaion jakauma (5v). Kuva 8. Euriborin jakauma (3kk). Kuva 9. Valion obligaaion jakauma (10v). Kuvisa 6 ja 8 huomaaan kuinka Euriboreissa vuonna 2003 alkanu asainen kausi näkyy korkeimpana pylväänä kuviossa. Muuen Euribori ja Valion obligaaio ova jakauman muodolaan samansuunaisia ja jakauman kuvisa huomaaan, eä korkosarjojen jakaumissa ilmenee kaksi huippua. Selvemmin ämän huomaa valion obligaaioiden jakaumien kuvisa. Tämä keroo, eä koro ova ollee ajanjakson kuluessa kaheen oeeseen ieyllä asolla piemmän aikaa. Ajanjakson ensimmäisellä puoliskolla obligaaion arvo pysyi siellä 4% ieämillä ja sarjan jälkimmäisellä puoliskolla reilussa viidessä prosenissa. 18

21 Liieessä 1 on esiey Euribor-korkojen ja valion obligaaioiden aikasarja erillisinä kuvina. Kuvisa huomaaan, eä korkosarja eivä ole saionaarisia. Kyseisen sarjojen epäsaionaarisuueen viiaa niiden saunnaiskulkua muisuava käyäyyminen ajassa. Sarjoissa ei esiinny myöskään miään selvää asoa, jolle sarja palaisiva. Epäsaionaarisuueen viiaa myös auokorrelaaiofunkioiden hidas kuoleenuminen, kuen huomaaan alla olevisa korrelogrammeisa. Kuva 10. Euriborin 1kk Kuva 11. Valion obligaaion 5v. korrelogrammi. korrelogrammi. Tämä saionaarisuuden ulkiseminen perusuu siis siihen, eä korkosarjoja arkasellaan korrelogrammien avulla ja korrelogrammeisa nähdään mahdollinen epäsaionaarisuus. Yleensä aikasarjan auokovarianssi ja auokorrelaaionfunkioia ei unnea, joen ne jouduaan esimoimaan ooksesa. Kaava auokorrelaaiokeroimen laskemiselle esieiin luvussa kolme. Kuva 10 ja 11 siis esiävä korrelogrammeja käyämisäni korkoaikasarjoisa. Saionaarisuuden ukiminen aloieaan arkaselemalla korrelogrammin arvoja eri viiveillä. Huomaaan, eä viiveellä 1 auokorrelaaionfunkion arvo on suuri (lähellä 1:sä) ja nähdään myös, eä arvo laskeva hiaasi alaspäin. Tämä johuu siiä, eä sarjan havainno ova pikään sarjan keskiarvon yläpuolella, ai alapuolella, johuen sarjan sen hekisesä rendisä (Chafield 2004, s. 26). Viiveellä yksioisa huomaaan keroimen olevan vielä 0,5 luokkaa. Tämän yyppinen korrelogrammi keroo siiä, eä sarja on epäsaionaarinen. Vasaavanlaise korrelogrammien ulkinna on ehy kaikille käyeyille sarjoille ja ne osoiava kaikkien sarjojen olevan epäsaionaarisia. 19

22 Erilaise daan muunnokse ova suosiuja aloudellisen aineisojen käsielyssä. Differoini on eräs apa poisaa rendin vaikuus sellaisesa aineisosa, jossa ei esiinny kausivaihelua. Ensimmäinen erous on yleensä riiävä saionaarisuuden saavuamiseen edellä mainiussa apauksessa (Chafield 2004, s.19) D1EU1KK D1EU12KK Kuva 12. Ensimmäinen erous 1kk Euriborin korkosarjasa. Kuva 13. Ensimmäinen erous 12kk Euriborin korkosarjasa. Kuen liieessä 1 olevisa Euriborien ja valion obligaaioiden korkosarjoisa huomaaan, niissä ei esiinny selvää sysemaaisa kausivaihelua. Oleeaan eä meillä on uusi sarja 2 y N, joka muodoseu alkuperäisesä sarjasa x,..., x N y,..., 1 seuraavalla avalla y x x 1 x, missä 2,3,..., N. Merkinä arkoiaa ensimmäisä differoinia. Toisen aseen differoini, eli oeaan erous ensimmäisesä erouksesa, merkiäisiin Differoiujen muuujien käyöllä voimme välää näennäisregression 4 ongelman, mua samalla meneeään myös pikän ajan ieoa käyeysä sarjasa. Kuvissa 12 ja 13 on esimerki korkosarjoisa, joisa on oeu ensimmäinen erous. Näisä kuvisa huomaaan jo saionaariselle sarjalle ominaisia piireiä. Aikasarjan sanoaan olevan saionaarinen kun sen keskiarvossa ja varianssissa ei ole miään sysemaaisa muuosa ja kausiaise 2. 4 Aikasarjan epäsaionaarisuuden seurauksena voi ilmeä näennäisregressioa, kun käyeään aikasarjoja, joka ova inegroiuneia samalla aseella. Näennäisregressiossa muuujien välille saaaa löyyä merkisevä korrelaaio, vaikka odellisa kausaalisuhdea ei olekaan. 20

23 vaihelu on poiseu. Toisin sanouna ämä arkoiaa siä, eä daan eri osien ominaisuude ova samanlaisia. Differenssisarjojen arvo vaiheleva hekellisesi nollaason kummallakin puolella, mua niillä on aipumus palauua akaisin kyseiselle asolle. Kuvisa kylläkin huomaaan eä korkosarjoissa vaihelu on ollu suurempaa sarjojen alkuvaiheessa kuin loppupäässä. Luonnollisen logarimin oaminen aikasarjasa on oinen yleisesi käyey aineison muunnosoperaaio, millä pyriään myös pienenämään rendin vaikuusa. Jos varianssi kasvaa keskiarvon mukana, on ällainen daan muunaminen järkevää (Chafield 2004, s. 14). Vasausa siihen, kasvaako varianssi mahdollisesi keskiarvon mukana, ukiaan jakamalla 3kk Euribor korkosarja 5 segmeniin, ja arkaselemalla sien segmenien unnuslukuja. Tunnusluvu ja frekvenssikuva löyyvä liieesä 2. Segmenien unnuslukuja arkaselemalla huomaaan, eä osa 1-3 ja 5 ova keskiarvoilaan ja keskihajonnoilaan samaa kokoluokkaa. Edellä mainiujen osioien unnusluvuisa huomaaan, eä miä suurempi on keskiarvo sen heken sarjassa, niin siä suurempi on myös varianssi. Tämän peruseella olisi järkevää oaa logarimi käyeyisä korkosarjoisa. Segmenissä 4 huomaaan selviä eroja verrauna muihin osioihin. Keskihajona on lähellä nollaa ja syy siihen huomaaan kun kasoaan vuoden 2004 ja 2005 havainoja. Sinä aikana lyhyissä koroissa ei apahunu suuria muuoksia vaan ne pysyivä hisoriansa alimmalla asolla. Seuraavaksi arkasellaan korkosarjojen ensimmäisen erousen logarimisia sarjoja erään alousieeen eorian nojalla. Teoria on odouseoria, jonka mukaan pikä koro määräyyisivä ulevia lyhyiä korkoja koskevien odousen peruseella. Pohdiaan asiaa kuvia arkaselemalla ja veraamalla niiden käyösä edellä mainiun eorian periaaeisiin. Kuen alla olevia kuvia arkkailemalla huomaaan, koroissa apahuva nousu ja lasku eivä apahdu samoina ajanhekinä. Koro, joka omaava piemmän maurieein, nouseva ja laskeva ennen korkoja, joilla on lyhempi maurieei. Tämä huomaaan kasomalla kuvaa 14, missä nähdään 1 kk ja 12 kk ensimmäisen erousen logarimise sarja. Kuvassa 12kk Euriborin käyrä on merkiy symbolilla * ja kuukauden Euriboria merkiään ympyrällä. Nousu apahuu aikaisemmin 12kk korkosarjassa kuin kuukauden 21

Kokonaishedelmällisyyden sekä hedelmällisyyden keski-iän vaihtelu Suomessa vuosina 1776 2005

Kokonaishedelmällisyyden sekä hedelmällisyyden keski-iän vaihtelu Suomessa vuosina 1776 2005 Kokonaishedelmällisyyden sekä hedelmällisyyden keski-iän vaihelu Suomessa vuosina 1776 2005 Heli Elina Haapalainen (157 095) 26.11.2007 Joensuun Yliopiso Maemaais- luonnonieeiden iedekuna Tieojenkäsielyieeen

Lisätiedot

Tuotannon suhdannekuvaajan menetelmäkuvaus

Tuotannon suhdannekuvaajan menetelmäkuvaus 1(15) Tuoannon suhdannekuvaajan meneelmäkuvaus Luku 1 Luku 2 Luku 3 Luku 4 Tuoannon suhdannekuvaajan yleiskuvaus Tuoannon suhdannekuvaajan julkaisuaikaaulu, revisoinikäyännö ja jakelu Tuoannon suhdannekuvaajan

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista Rahoiusriski ja johdannaise Mai Esola lueno Sokasisisa prosesseisa . Markov ominaisuus Markov -prosessi on sokasinen prosessi, missä ainoasaan muuujan viimeinen havaino on relevani muuujan seuraavaa arvoa

Lisätiedot

Suomen kalamarkkinoiden analyysi yhteisintegraatiomenetelmällä

Suomen kalamarkkinoiden analyysi yhteisintegraatiomenetelmällä KALA- JA RIISTARAPORTTEJA nro 374 Jukka Laiinen Jari Seälä Kaija Saarni Suomen kalamarkkinoiden analyysi yheisinegraaiomeneelmällä Helsinki 006 Julkaisija Riisa- ja kalaalouden ukimuslaios KUVAILULEHTI

Lisätiedot

1 Excel-sovelluksen ohje

1 Excel-sovelluksen ohje 1 (11) 1 Excel-sovelluksen ohje Seuraavassa kuvaaan jakeluverkonhalijan kohuullisen konrolloiavien operaiivisen kusannusen (SKOPEX 1 ) arvioimiseen arkoieun Excel-sovelluksen oimina, mukaan lukien sovelluksen

Lisätiedot

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi Rakennusosien rakennusfysikaalinen oimina Ralf Lindber Professori, Tampereen eknillinen yliopiso ralf.lindber@u.fi Rakenneosien rakennusfysikaalisen oiminnan ymmärämiseksi on välämäönä piirää kolme eri

Lisätiedot

Finanssipolitiikan tehokkuudesta Yleisen tasapainon tarkasteluja Aino-mallilla

Finanssipolitiikan tehokkuudesta Yleisen tasapainon tarkasteluja Aino-mallilla BoF Online 3 29 Finanssipoliiikan ehokkuudesa Yleisen asapainon arkaseluja Aino-mallilla Juha Kilponen Tässä julkaisussa esiey mielipiee ova kirjoiajan omia eiväkä välämää edusa Suomen Pankin kanaa. Suomen

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial

Lisätiedot

W dt dt t J.

W dt dt t J. DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan

Lisätiedot

Tietoliikennesignaalit

Tietoliikennesignaalit ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime

Lisätiedot

KOMISSION KERTOMUS. Suomi. Perussopimuksen 126 artiklan 3 kohdan nojalla laadittu kertomus

KOMISSION KERTOMUS. Suomi. Perussopimuksen 126 artiklan 3 kohdan nojalla laadittu kertomus EUROOPAN KOMISSIO Bryssel 27.2.205 COM(205) 4 final KOMISSION KERTOMUS Suomi Perussopimuksen 26 ariklan 3 kohdan nojalla laadiu keromus FI FI KOMISSION KERTOMUS Suomi Perussopimuksen 26 ariklan 3 kohdan

Lisätiedot

Hoivapalvelut ja eläkemenot vuoteen 2050

Hoivapalvelut ja eläkemenot vuoteen 2050 VATT-TUTKIMUKSIA 94 VATT-RESEARCH REPORTS Pekka Parkkinen Hoivapalvelu ja eläkemeno vuoeen 25 Valion aloudellinen ukimuskeskus Governmen Insiue for Economic Research Helsinki 22 ISBN 951-561-425-2 ISSN

Lisätiedot

Painevalukappaleen valettavuus

Painevalukappaleen valettavuus Painevalukappaleen valeavuus Miskolc Universiy Sefan Fredriksson Swecas AB Muokau ja lisäy käännös: Tuula Höök, Pekka Savolainen Tampereen eknillinen yliopiso Painevalukappale äyyy suunniella sien, eä

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 8 (viikko 14) Tehävä 1 LAD-käyrä siiryy ylöspäin. Ulkomaisen hinojen nousessa oman maan reaalinen vaihokurssi heikkenee 1 vaihoase vahvisuu IS-käyrä

Lisätiedot

MÄNTTÄ-VILPPULAN KAUPUNKI. Mustalahden asemakaava Liikenneselvitys. Työ: E23641. Tampere 18.5.2010

MÄNTTÄ-VILPPULAN KAUPUNKI. Mustalahden asemakaava Liikenneselvitys. Työ: E23641. Tampere 18.5.2010 MÄNÄ-VLPPULAN KAUPUNK Musalahden asemakaava Liikenneselviys yö: E ampere 8..00 ARX Ympärisö Oy PL 0 ampere Puhelin 00 000 elefax 00 00 www.airix.fi oimiso: urku, ampere, Espoo ja Oulu Mänä-Vilppulan kaupunki,

Lisätiedot

5. Vakiokertoiminen lineaarinen normaaliryhmä

5. Vakiokertoiminen lineaarinen normaaliryhmä 1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa

Lisätiedot

Suvi Kangasrääsiö MONETAARIMALLIT EUR/USD-VALUUTTAKURSSIN VAIHTELUN SELITTÄJÄNÄ: YHTEISINTEGROITUVUUSANALYYSI ARDL-MALLISSA

Suvi Kangasrääsiö MONETAARIMALLIT EUR/USD-VALUUTTAKURSSIN VAIHTELUN SELITTÄJÄNÄ: YHTEISINTEGROITUVUUSANALYYSI ARDL-MALLISSA OULUN YLIOPISTON KAUPPAKORKEAKOULU Suvi Kangasrääsiö MONETAARIMALLIT EUR/USD-VALUUTTAKURSSIN VAIHTELUN SELITTÄJÄNÄ: YHTEISINTEGROITUVUUSANALYYSI ARDL-MALLISSA Pro gradu -ukielma Talousiede Helmikuu 2016

Lisätiedot

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen Soimukseneon dynamiikka: johdano ja haiallinen valikoiuminen Ma-2.442 Oimoinioin seminaari Elise Kolola 8.4.2008 S yseemianalyysin Laboraorio Esielmä 4 Elise Kolola Oimoinioin seminaari - Kevä 2008 Esiyksen

Lisätiedot

RIL 256-2010 Suomen Rakennusinsinöörien Liitto RIL ry

RIL 256-2010 Suomen Rakennusinsinöörien Liitto RIL ry Suomen Rakennusinsinöörien Liio RIL ry Julkisen hankinojen kehiämismalli Tuoavuuden paranaminen TUKEFIN-meneelmällä 2 RIL 256-2010 RILin julkaisuilla on oma koisivu, joka löyyy osoieesa www.ril.fi Kirjakauppa

Lisätiedot

Vuoden 2004 alkoholiverotuksen muutoksen kulutusvaikutuksen ennustaminen. Linden, Mikael. ISBN 952-458-441-7 ISSN 1458-686X no 13

Vuoden 2004 alkoholiverotuksen muutoksen kulutusvaikutuksen ennustaminen. Linden, Mikael. ISBN 952-458-441-7 ISSN 1458-686X no 13 Vuoden 004 alkoholiverouksen muuoksen kuluusvaikuuksen ennusaminen Linden, Mikael ISBN 95-458-441-7 ISSN 1458-686X no 13 VUODEN 004 ALKOHOLIVEROTUKSEN MUUTOKSEN KULUTUSVAIKUTUKSEN ENNUSTAMINEN Mika Linden

Lisätiedot

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s). DEE- Piirianalyysi Ykkösharkan ehävien rakaisuehdoukse. askeaan ensin, kuinka paljon äyeen ladaussa akussa on energiaa. Tämä saadaan laskeua ehäväpaperissa anneujen akun ieojen 8.4 V ja 7 mah avulla. 8.4

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,

Lisätiedot

Mittaustekniikan perusteet, piirianalyysin kertausta

Mittaustekniikan perusteet, piirianalyysin kertausta Miausekniikan perusee, piirianalyysin kerausa. Ohmin laki: =, ai = Z ( = ännie, = resisanssi, Z = impedanssi, = vira). Kompleksiluvu Kompleksilukua arviaan elekroniikassa analysoiaessa piireä, oka sisälävä

Lisätiedot

VAASAN YLIOPISTO KAUPPATIETEELLINEN TIEDEKUNTA LASKENTATOIMI JA RAHOITUS

VAASAN YLIOPISTO KAUPPATIETEELLINEN TIEDEKUNTA LASKENTATOIMI JA RAHOITUS VAASAN YLIOPISTO KAUPPATIETEELLINEN TIEDEKUNTA LASKENTATOIMI JA RAHOITUS Markus Ylijoki HEDGE-RAHASTOJEN SUORITUSKYKY BRIC-MAISSA Laskenaoimi ja rahoius Laskenaoimen ja rahoiuksen yleinen linja Pro gradu

Lisätiedot

Diskreetillä puolella impulssi oli yksinkertainen lukujono:

Diskreetillä puolella impulssi oli yksinkertainen lukujono: DEE-00 ineaarise järjeselmä Harjoius 5, rakaisuehdoukse [johdano impulssivaseeseen] Jakuva-aikaisen järjeselmän impulssivase on vasaavanlainen järjeselmäyökalu kuin diskreeillä puolellakin: impulssivase

Lisätiedot

Seinämien risteyskohdat

Seinämien risteyskohdat CAE DS Painevalukappaleen suunnielu Sefan Fredriksson Seinämien riseyskohda Sefan Fredriksson SweCas Käännös: Pekka Savolainen ja Tuula Höök Tampereen eknillinen yliopiso Riseyskoha muodosuu kun kaksi

Lisätiedot

OH CHOOH (2) 5. H2O. OH säiliö. reaktori 2 erotus HCOOCH 3 11.

OH CHOOH (2) 5. H2O. OH säiliö. reaktori 2 erotus HCOOCH 3 11. Kemian laieekniikka 1 Koilasku 1 4.4.28 Jarmo Vesola Tuoee ja reakio: hiilimonoksidi, meanoli, meyyliformiaai C HC (1) vesi, meyyliformiaai, meanoli, muurahaishappo HC CH (2) hiilimonoksi, vesi, muurahaishappo

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.4 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vasausen piireiden, sisälöjen ja piseiysen luonnehdina ei sido ylioppilasukinolauakunnan arvoselua. Lopullisessa arvoselussa

Lisätiedot

Monisilmukkainen vaihtovirtapiiri

Monisilmukkainen vaihtovirtapiiri Monisilmukkainen vaihovirapiiri Oeaan arkaselun koheeksi RLC-vaihovirapiiri jossa on käämejä, vasuksia ja kondensaaoreia. Kykenä Tarkasellaan virapiiriä, jossa yksinkeraiseen RLC-piiriin on kodensaaorin

Lisätiedot

Parantaako rasiinkaato kuusipaperipuiden laatuar

Parantaako rasiinkaato kuusipaperipuiden laatuar METSXTEHON TIEDOITUKSIA. METSITEHO REPORT 43 SI\ILYTYS: 8 ARNO TUOVINEN ILMARI WÄRE Paranaako inkaao kuusipaperipuiden laauar (Does Summer Felling Improve he Qualiy of Spruce Pulpwood?) Pyriäessä paranamaan

Lisätiedot

I L M A I L U L A I T O S

I L M A I L U L A I T O S I L M A I L U L A I T O S 2005 Ympärisökasaus Lenoasemien ympärisölupahankkee sekä ympärisövaikuusen ja -vahinkoriskien selviäminen hallisiva Ilmailulaioksen ympärisöyöä koimaassa. Kansainvälisillä foorumeilla

Lisätiedot

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA S I G N A A L I T E O R I A, O S A I I I TL98Z SIGNAALITEORIA, OSA III 44 3 Signaalin suodaus...44 3. Sysmin vas aikaasossa... 44 3. Kausaalisuus a sabiilisuus... 46 3.3 Vas aauusasossa... 46 3.4 Ampliudivas

Lisätiedot

b) Esitä kilpaileva myötöviivamekanismi a-kohdassa esittämällesi mekanismille ja vertaile näillä mekanismeilla määritettyjä kuormitettavuuksia (2p)

b) Esitä kilpaileva myötöviivamekanismi a-kohdassa esittämällesi mekanismille ja vertaile näillä mekanismeilla määritettyjä kuormitettavuuksia (2p) LUT / Teräsrakenee/Timo Björk BK80A30: Teräsrakenee II:.5.016 Oheismaeriaalin käyö EI salliua, laskimen käyö on salliua, lausekkeia ehäväosion lopussa Vasaukse laadiaan ehäväpaperille, joka palaueava,

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto Kojemeeorologia Sami Haapaala syksy 03 Fysiika laios, Ilmakehäieeide osaso Mialaieide dyaamise omiaisuude Dyaamise uusluvu määriävä mie mialaie käyäyyy syöeide muuuessa Apua käyeää differeiaaliyhälöiä,

Lisätiedot

Luento 9. Epälineaarisuus

Luento 9. Epälineaarisuus Lueno 9 Epälineaarisuus 9..7 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!

Lisätiedot

NPV. Laskukaavojen sparrauspaketti tenttiä varten (päivitetty ) Nettonykyarvo (NPV) - kirjan sivu 927

NPV. Laskukaavojen sparrauspaketti tenttiä varten (päivitetty ) Nettonykyarvo (NPV) - kirjan sivu 927 Laskukaavojen sparrauspakei eniä varen (päiviey 16.11.2016) Neonykyarvo (NPV) - kirjan sivu 927 Invesoinnin uoo ja pääoman uoo (ROI ja ROA) s. 926 Asiakkaan elinkaariarvo (CLV) s. 931 Hinnoielu s. 666

Lisätiedot

ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA

ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA Tieoliikenneekniikka I 521359A Kari Kärkkäinen Osa 8 1 23 Videosignaalin VSB-odulaaio analogisessa TV-järj. Värielevision videosignaalin siirrossa käyeään

Lisätiedot

Derivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan

Derivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan 87 5. Eliminoinimeneely Tarkaellaan -kokoia vakiokeroimia yeemiä + x a a x a x + a x b() x = = = +. a a x a x a x b () (3) b() x + Derivoimalla enimmäinen komponeni, ijoiamalla jälkimmäien derivaaa iihen

Lisätiedot

Micrologic elektroniset suojareleet 2.0 A, 5.0 A, 6.0 A ja 7.0 A Pienjännitetuotteet

Micrologic elektroniset suojareleet 2.0 A, 5.0 A, 6.0 A ja 7.0 A Pienjännitetuotteet Micrologic elekronise suojarelee.0, 5.0, 6.0 ja 7.0 Pienjännieuoee Käyäjän käsikirja We do more wih elecriciy. Micrologic elekronise sojarelee.0, 5.0, 6.0 ja 7.0 Elekronisen suojareleen käyö Suojareleen

Lisätiedot

Maahanmuuttajan työpolkuhanke Väliraportti 31.8.2003-31.12.2004

Maahanmuuttajan työpolkuhanke Väliraportti 31.8.2003-31.12.2004 Maahanmuuajan yöplkuhanke Välirapri 31.8.2003-31.12.2004 Prjekin aviee hankepääöksessä Määrällise aviee Prjekin avieena n edesauaa maahanmuuajien yöllisymisä. Tämä apahuu maahanmuuajien ammaillisen valmiuksien

Lisätiedot

LVM/LMA/jp 2013-03-27. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20

LVM/LMA/jp 2013-03-27. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20 LVM/LMA/jp 2013-03-27 Valioneuvoson aseus ajoneuvojen käyösä iellä anneun aseuksen uuaisesa Anneu Helsingissä päivänä kuua 20 Valioneuvoson pääöksen ukaisesi uueaan ajoneuvojen käyösä iellä anneun aseuksen

Lisätiedot

Suunnitteluharjoitus s-2016 (...k-2017)

Suunnitteluharjoitus s-2016 (...k-2017) 1 Suunnieluharjoius s-2016 (...k-2017) HAKKURITEHOLÄHDE Seuraavan push-pull-yyppisen hakkurieholäheen komponeni ulisi valia (muunajaa lukuunoamaa). V1 iin 230 V ± 10 % 50 Hz V3 Perusieoja kykennäsä Verkkoasasuunauksen

Lisätiedot

A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat!

A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat! MAA Koe 7..03 A-osio. Ei laskina! Valise seuraavisa kolmesa ehäväsä vain kaksi joihin vasaa! A. a) Mikä on funkion f(x) määrieljoukko, jos f( x) x b) Muua ulomuooon: 4a 8a 4 A. a) Rakaise hälö: x 4x b)

Lisätiedot

Epäasiallista kohtelua voidaan työpaikalla ehkäistä etukäteen. s. 6

Epäasiallista kohtelua voidaan työpaikalla ehkäistä etukäteen. s. 6 Hyvä 4 2009 Työympärisö V a l i o n h a l l i n n o n Naureaanko eillä öissä? s. 18 y ö y m p ä r i s ö l e h i Henkinen väkivala yöpaikoilla s. 12 Nupin ei arvise mennä nurin s.16 Yliarkasaja Jenny Rinala,

Lisätiedot

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F Mat-2.34 Investointiteoria Laskuharjoitus 2/2008, Ratkaisut 29.04.2008 Binomihilan avulla voidaan laskea T vuoden ja tietyn kupongin sisältävän joukkovelkakirjan arvo eli hinta rekursiivisesti vaihtelevan

Lisätiedot

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015 Ene-59.4130, Kuivaus- ja haihduusprosessi eollisuudessa, asuharjoius 5, sysy 2015 Tehävä 4 on ähiehävä Tehävä 1. eijuerrosilassa poleaan rinnain uora ja urvea. Kuoren oseus on 54% ja uiva-aineen ehollinen

Lisätiedot

LVM/LMA/jp 2012-12-17. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20

LVM/LMA/jp 2012-12-17. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20 LVM/LMA/jp 2012-12-17 Valioneuvoson aseus ajoneuvojen käyösä iellä anneun aseuksen uuaisesa Anneu Helsingissä päivänä kuua 20 Valioneuvoson pääöksen ukaisesi, joka on ehy liikenne- ja viesinäiniseriön

Lisätiedot

YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY 1 YRITYSKOHTAISEN TEHOSTAMISPOTENTIAALIN MITTAAMINEN

YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY 1 YRITYSKOHTAISEN TEHOSTAMISPOTENTIAALIN MITTAAMINEN ENERGIAMARKKINAVIRASTO 1 Le 2 Säkön jakeluverkkoomnnan yryskoasen eosamsavoeen määrely YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY Asanosanen: Vaasan Säköverkko Oy Lyy pääökseen dnro 491/424/2007 Energamarkknavraso

Lisätiedot

Tuotannon suhdannekuvaajan menetelmäkuvaus

Tuotannon suhdannekuvaajan menetelmäkuvaus 1(19) Tuoannon suhdannekuvaajan meneelmäkuvaus Luku 1 Luku 2 Luku 3 Luku 4 Tuoannon suhdannekuvaajan yleiskuvaus Tuoannon suhdannekuvaajan julkaisuaikaaulu, revisoinikäyännö ja jakelu Tuoannon suhdannekuvaajan

Lisätiedot

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka IMA- Exurso: Kompleksluvu ja radosgnaal / KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT Tausaa IMA- Exurso: Kompleksluvu ja radosgnaal / Kakk langaon vesnä ja radoeolkenne (makapuhelme, WLAN, ylesrado

Lisätiedot

Systeemidynamiikka ja liikkeenjohto

Systeemidynamiikka ja liikkeenjohto Syseemidynamiikka ja liikkeenjoho Opimoiniopin seminaari 21.2.2007 Ilkka Leppänen S yseemianalyysin Laboraorio Esielmä 11 Ilkka Leppänen Opimoiniopin seminaari - Kevä 2007 Sisälö Johdano dynaamisen pääökseneon

Lisätiedot

Sairastumisen taloudelliset seuraamukset 1

Sairastumisen taloudelliset seuraamukset 1 1 [D:\Kuopio2013yökykySairasuminen.doc] Vesa Kanniainen, Kansanalousieeen professori Helsingin yliopiso Sairasumisen aloudellise seuraamukse 1 ämän esielmän laaijasa: Rajoiukse: Perehyneisyys erveydenhuoloalaan:

Lisätiedot

More care. Buil in. COMPACT/ MINIKAIVUKONEET MUKAVAAJA TUOTTAVAA KAIVUUTA. Vain yksi seikka on odella rakaiseva: aeriaalin siiräinen ahdollisian nopeasi ja ehokkaasi. Ja kuen uukin Volvon kopaki konee,

Lisätiedot

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN KULMMODULOITUJEN SIGNLIEN SPEKTRIN LSKEMINEN 1 (3) (3) Spekri laskeie siisaoalle Kulaoduloidu sigaali spekri johaie o yöläsä epälieaarisuudesa johue (epälieaarise aalyysi ova yleesä hakalia). Se voidaa

Lisätiedot

a) Miksi signaalin jaksollisuus on tärkeä ominaisuus? Miten jaksollisuus vaikuttaa signaalin taajuussisältöön?

a) Miksi signaalin jaksollisuus on tärkeä ominaisuus? Miten jaksollisuus vaikuttaa signaalin taajuussisältöön? L53, Sinaalioria J. Laiinn..5 E3SN, E3SN5Z Väliko, rakaisu Vasaa lyhysi suraaviin kysymyksiin. 6p a Miksi sinaalin aksollisuus on ärkä ominaisuus? Min aksollisuus vaikuaa sinaalin aauussisälöön? b Miä

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)

Lisätiedot

Tuotannon suhdannekuvaajan menetelmäkuvaus

Tuotannon suhdannekuvaajan menetelmäkuvaus 1(16) Tuoannon suhdannekuvaajan meneelmäkuvaus Luku 1 Luku 2 Luku 3 Luku 4 Tuoannon suhdannekuvaajan yleiskuvaus Tuoannon suhdannekuvaajan julkaisuaikaaulu, revisoinikäyännö ja jakelu Tuoannon suhdannekuvaajan

Lisätiedot

2.4.2012. Ennen opiskelua OHJAUSTOIMINTA TALOTEKNIIKAN KOULUTUSOHJELMASSA

2.4.2012. Ennen opiskelua OHJAUSTOIMINTA TALOTEKNIIKAN KOULUTUSOHJELMASSA OHJAUSTOIMINTA TALOTEKNIIKAN KOULUTUSOHJELMASSA Mikkelin ammaikorkeakoulun pedagogisen sraegian mukaan ohuksen avoieena on edisää opiskelijoiden siouumisa opiskeluunsa, ukea heidän yksilöllisiä uravalinoan

Lisätiedot

ZELIO Time Sarja RE7 Elektroniset aikareleet

ZELIO Time Sarja RE7 Elektroniset aikareleet Zelio Time -aikarelee ZELIO Time Sarja RE7 Elekronise aikarelee Valinaopas 00 Valinaopas 00 Zelio Time RE 7 -aikarelee Valinaopas Sovellukse Elekronise aikarelee mahdollisava yksinkeraisen auomaisoiujen

Lisätiedot

Pankkitalletukset ja rahamarkkinasijoitukset. Henri Huovinen, analyytikko Osakesäästäjien Keskusliitto ry

Pankkitalletukset ja rahamarkkinasijoitukset. Henri Huovinen, analyytikko Osakesäästäjien Keskusliitto ry Pankkitalletukset ja rahamarkkinasijoitukset Henri Huovinen, analyytikko Osakesäästäjien Keskusliitto ry Korkosijoitukset Korkosijoituksiin luokitellaan mm. pankkitalletukset, rahamarkkinasijoitukset,

Lisätiedot

käsitteitä Asiakirjaselvitys Vaatimuksenmukaisuustodistus/-vakuus Saateasiakirja Luomun merkinnät

käsitteitä Asiakirjaselvitys Vaatimuksenmukaisuustodistus/-vakuus Saateasiakirja Luomun merkinnät n u m o a u L akirj i as a j a a i p p u a k s i ä ö i i h Vä aikei amm käsieiä Asiakirjaselviys Vaaimuksenmukaisuusodisus/-vakuus Saaeasiakirja Luomun merkinnä Asiakirjaselviys Pakollinen asiakirja Tällä

Lisätiedot

YO Fysiikka. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen. Sanoma Pro Oy Helsinki

YO Fysiikka. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen. Sanoma Pro Oy Helsinki YO Fysiikka Heikki Leho Raimo Havukainen Jukka Maalampi Janna Leskinen Sanoma Pro Oy Helsinki Sisällys Opeajalle ja opiskelijalle 4 1 Kohi fysiikan ylioppilaskoea 5 Yleisä fysiikan ylioppilaskokeesa 6

Lisätiedot

SytytysjarjestelmaDIIAPCLH2.4, LH2.4 ETS

SytytysjarjestelmaDIIAPCLH2.4, LH2.4 ETS 6 SyyysjarjesemaD/APCLH 24 LH 24 ETS SyyysjarjesemaDAPCLH24 LH24 ETS 75 cy 100 122A YE 2 +30 230 1063 RO 0 1019 101A RO 25 RO 40 101C RD 25 J73 123 123A CNWH 1S CN/WH 1 13122A J 342A 22 20 YE 10 1 1CY

Lisätiedot

Aikasarja-analyysiä taloudellisilla aineistoilla

Aikasarja-analyysiä taloudellisilla aineistoilla Aikasarja-analyysiä taloudellisilla aineistoilla Leena Kalliovirta, Luonnonvarakeskus Leena.kalliovirta@luke.fi Kurssi Tilastotiede tutuksi HY matematiikan ja tilastotieteen laitos 1 Leena Kalliovirta

Lisätiedot

3d) Yes, they could: net exports are negative when imports exceed exports. Answer: 2182.

3d) Yes, they could: net exports are negative when imports exceed exports. Answer: 2182. . Se talous, jonka kerroin on suurempi, reagoi voimakkaammin eksogeenisiin kysynnän muutoksiin. Investointien, julkisen kysynnän tai nettoviennin muutokset aiheuttavat sitä suuremman muutoksen tasapainotulossa,

Lisätiedot

Suomen lähialueiden muutosdynamiikka - Itämereltä Murmanskiin

Suomen lähialueiden muutosdynamiikka - Itämereltä Murmanskiin Suomen lähialueiden muuosdynamiikka - Iämerelä Murmanskiin Venäjä jakauuu 83 hallinnolliseen alueeseen -Suomea lähellä on 4: Pieari, Leningradin alue, Karjalan asavala ja Murmanskin alue Kari Liuho Johaja

Lisätiedot

Korko ja inflaatio. Makrotaloustiede 31C00200 Kevät 2016

Korko ja inflaatio. Makrotaloustiede 31C00200 Kevät 2016 Korko ja inflaatio Makrotaloustiede 31C00200 Kevät 2016 Sisältö Nimellis ja reaalikorot, Fisher yhtälö Lyhyt ja pitkä korko Rahapolitiikka ja korot Korko ja inflaatio Nimellinen korko i: 1 tänä vuonna

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

Suomen ja kehittyvien markkinoiden välinen yhteisintegraatio pitkällä ja keskipitkällä aikavälillä

Suomen ja kehittyvien markkinoiden välinen yhteisintegraatio pitkällä ja keskipitkällä aikavälillä LAPPEENRANNAN TEKNILLINEN YLIOPISTO School of Business Rahoius Suomen ja kehiyvien markkinoiden välinen yheisinegraaio pikällä ja keskipikällä aikavälillä Kandidaain ukielma Olli Keunen 0277353 25.5.2007

Lisätiedot

Flow shop, työnvaiheketju, joustava linja, läpivirtauspaja. Kahden koneen flow shop Johnsonin algoritmi

Flow shop, työnvaiheketju, joustava linja, läpivirtauspaja. Kahden koneen flow shop Johnsonin algoritmi Flow shop önvaheeju jousava lnja läpvrauspaja Flow shopssa önvaheden järjess on sama alla uoella Kosa vahea vo edelää jono vova ö olla vaheleva ja ö vova ohaa osensa äl ö evä oha osaan puhuaan permuaaoaaaulusa

Lisätiedot

VAASAN YLIOPISTO KAUPPATIETEELLINEN TIEDEKUNTA LASKENTATOIMEN JA RAHOITUKSEN LAITOS. Jukka Lähteenmäki

VAASAN YLIOPISTO KAUPPATIETEELLINEN TIEDEKUNTA LASKENTATOIMEN JA RAHOITUKSEN LAITOS. Jukka Lähteenmäki VAASAN YLIOPISTO KAUPPATIETEELLINEN TIEDEKUNTA LASKENTATOIMEN JA RAHOITUKSEN LAITOS Jukka Läheenmäki POLIITTISTEN VAALIEN VAIKUTUS INDEKSIOPTIOIDEN IMPLISIITTISEEN VOLATILITEETTIN Laskenaoimen ja rahoiuksen

Lisätiedot

sama kuin liikkeeseenlaskijan muilla vakuudettomilla sitoumuksilla Nordea Pankki Suomi Oyj:n Structured Products -yksikkö

sama kuin liikkeeseenlaskijan muilla vakuudettomilla sitoumuksilla Nordea Pankki Suomi Oyj:n Structured Products -yksikkö Lainakohtaiset ehdot Nordea Pankki Suomi Oyj 11/2003 Erillisjoukkovelkakirjalaina Nordea Pankki Suomi Oyj:n joukkovelkakirjaohjelman lainakohtaiset ehdot Nämä lainakohtaiset ehdot muodostavat yhdessä Nordea

Lisätiedot

1.1. Alkuerä Kaikki kuljettajat mahtuvat mukaan yhteen alkuerälähtöön, koska enimmäisosallistujamäärä lähdössä on tuo 10.

1.1. Alkuerä Kaikki kuljettajat mahtuvat mukaan yhteen alkuerälähtöön, koska enimmäisosallistujamäärä lähdössä on tuo 10. 1. Luokassa enintään 10 kuljettajaa Tässä tapauksessa luokassa ajetaan kaksi (2) lähtöä, yksi (1) alkuerä ja yksi (1) finaali. 1.1. Alkuerä 1.1.1. Kaikki kuljettajat mahtuvat mukaan yhteen alkuerälähtöön,

Lisätiedot

Kappale 9: Raha ja rahapolitiikka KT34 Makroteoria I. Juha Tervala

Kappale 9: Raha ja rahapolitiikka KT34 Makroteoria I. Juha Tervala Kappale 9: Raha ja rahapolitiikka KT34 Makroteoria I Juha Tervala Raha Raha on varallisuusesine, joka on yleisesti hyväksytty maksuväline 1. Hyödykeraha Luonnollinen arvo Esim.: kulta, oravanahkat, savukkeet

Lisätiedot

KOE 2 Ympäristöekonomia

KOE 2 Ympäristöekonomia Helingin yliopio Valinakoe.5. Maaalou-meäieeellinen iedekuna KOE Ympäriöekonomia Sekä A- eä B-oioa ulee aada vähinään 5 pieä. Mikäli A-oion piemäärä on vähemmän kuin 5 pieä B-oio jäeään arvoelemaa. B-OSIO

Lisätiedot

Lorentz-muunnos L(v) on operaatio, joka voidaan esittää myös matriisina

Lorentz-muunnos L(v) on operaatio, joka voidaan esittää myös matriisina Lorenz-muunnos L on operaaio, joka oidaan esiää myös mariisina L / / mariisi L muodosaa ryhmän: kaksi peräkkäisä Lorenz-muunnosa on myös Lorenz-muunnos, ja on olemassa myös kääneinen Lorenz- muunnos 3

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Harjoitukset 7 (viikko 13) Tehtävä 1 a) Tapahtuu siirtymä pisteestä A pisteeseen B. Jos TR-käyrä on vaakasuora, niin IS-käyrän siirtyminen oikealle ei

Lisätiedot

3.4 Rationaalifunktion kulku ja asymptootit

3.4 Rationaalifunktion kulku ja asymptootit .4 Rationaalifunktion kulku ja asymptootit Rationaali- eli murtofunktiolla tarkoitetaan funktiota R, jonka lauseke on kahden polynomin osamäärä: P() R(). Q() Ainakin nimittäjässä olevan polynomin asteluvun

Lisätiedot

Lineaaristen järjestelmien teoriaa II

Lineaaristen järjestelmien teoriaa II Lieaarise järjeselmie eoriaa II Ohjaavuus Tarkkailavuus havaiavuus Lisää sabiilisuudesa Tilaesimoii, Kalma-suodi TKK/Syseemiaalyysi laboraorio Mielekiioisia kysymyksiä Oko syseemi rakeeelaa sellaie, eä

Lisätiedot

EPÄLINEAARISET KULMAMODULAATIOT VAIHEMODULAATIO (PM) JA TAAJUUSMODULAATIO (FM)

EPÄLINEAARISET KULMAMODULAATIOT VAIHEMODULAATIO (PM) JA TAAJUUSMODULAATIO (FM) 1 EPÄLINERISET KULMMODULTIOT VIHEMODULTIO PM J TJUUSMODULTIO FM Mien PM a FM eroava oisisaan? Millainen on kapeakaisainen kulmamodulaaori? 521357 Tieoliikenneekniikka I Osa 14 Kari Kärkkäinen Kevä 2015

Lisätiedot

Aikasarja-analyysi I Syksy 2005 Tampereen yliopisto Arto Luoma

Aikasarja-analyysi I Syksy 2005 Tampereen yliopisto Arto Luoma Aikasara-aalyysi I Syksy 5 Tamperee yliopiso Aro Luoma Pääasiallise lähee: Brockwell, Davis: Iroducio o Time Series ad Forecasig Brockwell, Davis: Time Series: Theory ad Mehods (lyh. TSTM).. Johdao. Yleisä

Lisätiedot

OHJEET LUE TÄMÄ AIVAN ENSIKSI!

OHJEET LUE TÄMÄ AIVAN ENSIKSI! 1/8 OHJEET LUE TÄMÄ AIVAN ENSIKSI! Sinulla on nyt hallussasi testi, jolla voit arvioida oman älykkyytesi. Tämä testi muodostuu kahdesta osatestistä (Testi 1 ja Testi ). Testi on tarkoitettu vain yli neljätoistavuotiaille.

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

ELEC-E8419 Sähkönsiirtojärjestelmät 1: Kulmastabiilius, taajuusstabiilius, roottorin nopeusstabiilius

ELEC-E8419 Sähkönsiirtojärjestelmät 1: Kulmastabiilius, taajuusstabiilius, roottorin nopeusstabiilius ELEC-E8419 Sähkönsiirojärjeselmä 1: Kulmasabiilius, aajuussabiilius, rooorin nopeussabiilius Kurssi syksyllä 015 erioi I-II, 5 opinopiseä Liisa Haarla Luenojen yinasia Kulmasabiilius, pina-alakrieeri,

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

Optioiden hinnoittelu Pohjoisella sähkömarkkinalla. Minna Kauria-Kojo Pro gradu-tutkielma Matematiikan ja tilastotieteen laitos Helsingin yliopisto

Optioiden hinnoittelu Pohjoisella sähkömarkkinalla. Minna Kauria-Kojo Pro gradu-tutkielma Matematiikan ja tilastotieteen laitos Helsingin yliopisto Opioiden hinnoielu Pohjoisella sähkömarkkinalla Minna Kauria-Kojo Pro gradu-ukielma Maemaiikan ja ilasoieeen laios Helsingin yliopiso 13.12.2016 HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30. FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.

Lisätiedot

a. Varsinainen prosessi on tuttua tilaesitysmuotoa:

a. Varsinainen prosessi on tuttua tilaesitysmuotoa: ELEC-C Sääöeniia 7. lauharjoiu Vaaue. r - K u K C y a. Varinainen proei on uua ilaeiymuooa: A Bu y C Kuvaa nähdään, eä ilamallin iäänmenona on u r K. Salaaria ei voi vähenää mariiia, joen un on n -veori,

Lisätiedot

KAUPANKÄYNTIVARASTON POSITIORISKIN LASKEMINEN

KAUPANKÄYNTIVARASTON POSITIORISKIN LASKEMINEN 00 N:o 22 LIITE KAUPANKÄYNTIVARASTON POSITIORISKIN LASKEMINEN. Positioriskin laskemisessa käytettävät määritelmät Tässä liitteessä tarkoitetaan: arvopaperin nettopositiolla samanlajisen arvopaperin pitkien

Lisätiedot

7. Normaalijakauma ja standardipisteet

7. Normaalijakauma ja standardipisteet 33 7. Normaalijakauma ja standardipisteet Aiemmin olemme esittäneet joitakin variaabelin jakaumia histogrammien ja frekvenssipolygonien muodossa. Jos kuvittelemme, että mittaamme varsin tarkasti ja jatkuvaksi

Lisätiedot

Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45.

Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45. Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 8.8% 8.9%.%.% 9.7%.7% Etelä Länsi Itä Oulu Lappi Ahvenanmaa Länsi Etelä Itä Oulu Lappi Ahvenanmaa Läänien

Lisätiedot

Inflaatio, deflaatio, valuuttakurssit ja korot Rahatalouden perusasioita I

Inflaatio, deflaatio, valuuttakurssit ja korot Rahatalouden perusasioita I Inflaatio, deflaatio, valuuttakurssit ja korot Rahatalouden perusasioita I 26.10.2010 Hanna Freystätter, VTL Rahapolitiikka- ja tutkimusosasto Suomen Pankki 1 Inflaatio = Yleisen hintatason nousu. Deflaatio

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Kari Tapolan elämä on mennyt täysin uusiksi sivu 6. JÄTTIJAKELU 15.600 kpl. LEHTI - NETTI - NETTI-TV Seuraava OmaNokia -lehti ilmestyy 3.10.

Kari Tapolan elämä on mennyt täysin uusiksi sivu 6. JÄTTIJAKELU 15.600 kpl. LEHTI - NETTI - NETTI-TV Seuraava OmaNokia -lehti ilmestyy 3.10. LEHTI - NETTI - NETTI-TV Seuraava OmaNokia -lehi ilmesyy 3.10. JÄTTIJAKELU 15.600 kpl OmaNokia n:o 18/2013 Torsai 19.9.2013 ISSN 1799-0602 Kari Tapolan elämä on menny äysin uusiksi sivu 6 OmaNokia n:o

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun

Lisätiedot

järjestelmät Luento 4

järjestelmät Luento 4 DEE- Lineaarise järjeselmä Lueno 4 Lineaarise järjeselmä Riso Mionen 3.7.4 Lueno 3 - Recap Lineaarisen differenssiyhälöiden raaiseminen Impulssivaseen äsie Impulssivase ja onvoluuiosumma Lineaarise järjeselmä

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot