Dynaaminen optimointi ja ehdollisten vaateiden menetelmä

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Dynaaminen optimointi ja ehdollisten vaateiden menetelmä"

Transkriptio

1 Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1

2 Meneelmien yhäläisyyksiä Verraaan koheen arvon äyämiä ODYja eri meneelmissä S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 2

3 S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 3 Meneelmien yhäläisyyksiä 2 Dynaaminen opimoini Io-prosessille: Ehdollisen vaaeiden meneelmä käyäen seuraavaa kohdea: Yhälö samanyyppise = π ρ α β 0 ]} [ { = r r B b a b X π µ

4 S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 4 Meneelmien yhäläisyyksiä 3 Jälkimmäinen yhälö saadaan edellisesä sijoiamalla lauseke ulee seuraavan koheen käyämisesä ] [ ja r B b a b r X = = = µ α β ρ n : α

5 Meneelmien eroja Tuoovaaimus S yseemianalyysin Laboraorio Dynaamisessa ohjelmoinnissa invesoijan uoovaaimus diskonokerroin ρ mallin ulkopuolinen parameri Ehdollisen vaaeiden meneelmässä ulkopuolela ainoasaan riskiön korko r Tuoovaaimus saadaan markkinaasapainosa Jälkimmäisessä siis parempi ulkina diskonokeroimelle Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 5

6 Meneelmien eroja 2 Vaaimukse markkinoille Ehdollisen vaaeiden meneelmä Olava riiävän vahva markkina riskillisille koheille Eriyisesi on olava kohde jonka arvo seuraa arvioiavan koheen arvoa arkasi Jälkimmäinen vaaimus hankala: Koheiden arvojen sokasisen komponenien jakaumien samuus ei riiä vaan myös realisaaioiden äyyy seuraa oisiaan S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 6

7 Meneelmien eroja 3 Vaaimukse markkinoille jakuu Dynaaminen ohjelmoini Ei vasaavia vaaimuksia markkinoille Jos ei oimivia markkinoia riskillisille koheille muueaan kohdefunkioa kuvaamaan pääöksenekijän omia riskiarvioia S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 7

8 Käyeävän meneelmän valina Sovelluksesa riippuu kumpi meneelmisä on suosielavampi Periaaeellisa eroa meneelmillä ei ole joen pääöksenekijä voi valia meneelmän omien mielymysensä mukaan mikäli molemma meneelmä ylipäänsä ova käyeävissä S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 8

9 Meneelmien yheyden ukimisa ukiava ilanne Tukiaan apausa jossa: Yriyksen uoovira on π Loppuaika on äärellinen loppuuoo Ω T T noudaaa geomerisa Brownin liikeä: d =α d σ dz Näillä oleuksilla analyysi yksinkeraisin idea kuienkin oimii yleisemminkin S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 9

10 Meneelmien yheyden ukimisa ukiava ilanne 2 Olkoon hekellä syseemin ila ja olkoon yriyksen arvo hekellä ilassa Johdeaan sekä dynaamisella ohjelmoinnilla eä ehdollisen vaaeiden meneelmällä S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 10

11 Dynaaminen ohjelmoini Dynaamisessa ohjelmoinnissa määrieään ensin diskonoekijä ρ. Tällöin T = ρ τ ρ T ε e π τ τ dτ e Ω T T missä ε merkisee odousarvoa laskeuna heken ieojen peruseella on siis nykyarvon odousarvo S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 11

12 ODYn johaminen dynaamisella ohjelmoinnilla Kasoaan ilannea hekeä d myöhemmin: [ f d ] ρ d = π d e ε d Yllä oleva yhälö on Bellmanin yhälö ilman ohjausa Käyeään oikeaan puoleen Ion lemmaa ja jäeään d:n suheen korkeamman kuin ensimmäisen aseen ermi huomioa S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 12

13 S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 13 ODYn johaminen dynaamisella ohjelmoinnilla 2 Saadaan [ ] ]d d d e d d π ρ α σ ε π ρ =

14 Dynaamisen ohjelmoinnin ODY Kun em. kaava sijoieaan akaisin alkuperäiseen yhälöön saadaan seuraava ODY σ 2 ρ α π = 0 Reunaeho on T = Ω T kaikille S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 14

15 Ehdollisen vaaeiden meneelmä Ehdollisen vaaeiden meneelmällä johdeiin aiemmin eä ässä ilaneessa koheen arvo noudaaa yhälöä σ r δ 2 r π = 0 r on riskiön korko ja δon osinko S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 15

16 Rakaisu ehdollisen vaaeiden meneelmällä Yhälö lähes sama kuin dynaamisella ohjelmoinnilla saau Rakaisukin siis samanmuooinen T r r T = e d e T τ ε π τ τ Ω missä on keinoekoinen muuuja joka noudaaa geomerisa Brownin liikeä d = r δ d σ dz. jolle S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 16

17 Ekvivaleni riskineuraali arvonmääriely Tässä siis muueaan geomerisen Brownin liikkeen kasvuparameria sien eä diskonaus voidaan ehdä riskiömällä korolla Tämä on esimerkki ekvivalenisa riskineuraalisa arvonmäärielysä equivalen risk-neural valuaion S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 17

18 Yheenveo Dynaaminen ohjelmoini ja ehdollisen vaaeiden meneelmä uoava samankalaise yhälö sijoiuskoheen arvolle S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 18

19 Koiehävä Selosa lyhyesi alle 4 rivillä 1 Käyeävän diskonokoron valinaavan eroja dynaamisen opimoinnin ja ehdollisen vaaeiden meneelmän välillä 2 Dynaamisen opimoinnin ja ehdollisen vaaeiden meneelmän eroja markkinoille aseeavien vaaimusen suheen S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 19

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial

Lisätiedot

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A.

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A. 9. Epäoleellise inegraali; inegraalin derivoini paramerin suheen 9.. Epäoleellise aso- ja avaruusinegraali 27. Olkoon = {(x, y) x, y }. Osoia hajaanuminen ai laske arvo epäoleelliselle asoinegraalille

Lisätiedot

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen Soimukseneon dynamiikka: johdano ja haiallinen valikoiuminen Ma-2.442 Oimoinioin seminaari Elise Kolola 8.4.2008 S yseemianalyysin Laboraorio Esielmä 4 Elise Kolola Oimoinioin seminaari - Kevä 2008 Esiyksen

Lisätiedot

Tasaantumisilmiöt eli transientit

Tasaantumisilmiöt eli transientit uku 12 Tasaanumisilmiö eli ransieni 12.1 Kelan kykeminen asajännieeseen Kappaleessa 11.2 kykeiin reaalinen kela asajännieeseen ja ukiiin energian varasoiumisa kelan magneeikenään. Tilanne on esiey uudelleen

Lisätiedot

Projektin arvon aleneminen

Projektin arvon aleneminen Projektin arvon aleneminen sivut 99-07 Optimointiopin seminaari - Syksy 000 / Arvon aleneminen Jatketaan projektin arvon tutkimista. Nyt huomioidaan arvon aleneminen. Syitä esimerkiksi: kaluston vanheneminen

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.4 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vasausen piireiden, sisälöjen ja piseiysen luonnehdina ei sido ylioppilasukinolauakunnan arvoselua. Lopullisessa arvoselussa

Lisätiedot

Johdannaisanalyysi. Contingent Claims Analysis Juha Leino S ysteemianalyysin. Laboratorio

Johdannaisanalyysi. Contingent Claims Analysis Juha Leino S ysteemianalyysin. Laboratorio Johdannaisanalyysi Contingent Claims Analysis Juha Leino 11.10.2000 Optimointiopin seminaari - Syksy 2000 / 1 Oletukset Yritys tuottaa tuotetta, jonka hinta on x x noudattaa geometrista Brownin liikettä

Lisätiedot

f x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d)

f x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d) Tehävä 1. Oleeaan, eä on käössä jakuva kuva, jossa (,, ) keroo harmaasävn arvon paikassa (, ) ajanhekenä. Dnaaminen kuva voidaan esiää Talor sarjana: d d d d d d O ( +, +, + ) = (,, ) + + + + ( ). (4a)

Lisätiedot

5. Vakiokertoiminen lineaarinen normaaliryhmä

5. Vakiokertoiminen lineaarinen normaaliryhmä 1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa

Lisätiedot

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia 6.4 Variaaiolaskennan oleusen rajoiukse Sivu ss. 27 31 läheien Kirk, ss. 13 143] ja KS, Ch. 5] pohjala Lähökoha oli: jos J:llä on eksremaali (), niin J:n variaaio δj( (), δ()) ():ä pikin on nolla. 1. Välämäön

Lisätiedot

2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t

2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t Tilasollinen ennusaminen Seppo Pynnönen Tilasoieeen professori, Meneelmäieeiden laios, Vaasan yliopiso. Tausaa Tulevaisuuden ennusaminen on ehkä yksi luoneenomaisimpia piireiä ihmiselle. On ilmeisesi aina

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 8 (viikko 14) Tehävä 1 LAD-käyrä siiryy ylöspäin. Ulkomaisen hinojen nousessa oman maan reaalinen vaihokurssi heikkenee 1 vaihoase vahvisuu IS-käyrä

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista Rahoiusriski ja johdannaise Mai Esola lueno Sokasisisa prosesseisa . Markov ominaisuus Markov -prosessi on sokasinen prosessi, missä ainoasaan muuujan viimeinen havaino on relevani muuujan seuraavaa arvoa

Lisätiedot

1 Excel-sovelluksen ohje

1 Excel-sovelluksen ohje 1 (11) 1 Excel-sovelluksen ohje Seuraavassa kuvaaan jakeluverkonhalijan kohuullisen konrolloiavien operaiivisen kusannusen (SKOPEX 1 ) arvioimiseen arkoieun Excel-sovelluksen oimina, mukaan lukien sovelluksen

Lisätiedot

Diskreetillä puolella impulssi oli yksinkertainen lukujono:

Diskreetillä puolella impulssi oli yksinkertainen lukujono: DEE-00 ineaarise järjeselmä Harjoius 5, rakaisuehdoukse [johdano impulssivaseeseen] Jakuva-aikaisen järjeselmän impulssivase on vasaavanlainen järjeselmäyökalu kuin diskreeillä puolellakin: impulssivase

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

12. ARKISIA SOVELLUKSIA

12. ARKISIA SOVELLUKSIA MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,

Lisätiedot

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET TRAN TyL:n MUKASN AKUUTUKSN RTYSPRUSTT Tässä peruseessa kaikki suuree koskea eraa, ellei oisin ole määriely. Tässä peruseessa käyey lyhenee: LL Lyhyaikaisissa yösuheissa oleien yönekijäin eläkelaki TaL

Lisätiedot

Systeemimallit: sisältö

Systeemimallit: sisältö Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -kuvaus ja ilayhälömalli, ila Linearisoini Jakuva-aikaisen lineaarisen järjeselmän siirofunkio, sabiilisuus Laplace-muunnos Diskreeiaikaisen lineaarisen

Lisätiedot

Ratkaisu. Virittäviä puita on kahdeksan erilaista, kun solmut pidetään nimettyinä. Esitetään aluksi verkko kaaviona:

Ratkaisu. Virittäviä puita on kahdeksan erilaista, kun solmut pidetään nimettyinä. Esitetään aluksi verkko kaaviona: Diskreei maemaiikka, sks 00 Harjoius 0, rakaisuisa. Esi viriävä puu suunaamaomalle verkolle G = (X, E, Ψ), kun X := {,,, }, E := { {, }, {, }, {, }, {, }, {, }}, ja Ψ on ieninen kuvaus. Rakaisu. Viriäviä

Lisätiedot

OSINKOJEN JA PÄÄOMAVOITTOJEN VEROTUKSEN VAIKUTUKSET OSAKKEEN ARVOON

OSINKOJEN JA PÄÄOMAVOITTOJEN VEROTUKSEN VAIKUTUKSET OSAKKEEN ARVOON AMPN YLIOPISO Kauppaieeien laios OSINKOJN JA PÄÄOMAVOIOJN VOUKSN VAIKUUKS OSAKKN AVOON Laskenaoimi Seminaariukielma Helmikuu 2004 Ohjaaja: Ismo Vuorinen apani Höök 3 SISÄLLYS JOHDANO... 4. ukielman ausaa...4.2

Lisätiedot

OPTIMAALINEN INVESTOINTIPÄÄTÖS

OPTIMAALINEN INVESTOINTIPÄÄTÖS OPTIMAALINEN INESTOINTIPÄÄTÖS Keskiarvoon palautuvalle prosessille ja Poissonin hyppyprosessille Optimointiopin seminaari - Syksy 000 / 1 I. KESKIAROON PALAUTUA PROSESSI Investoinnin kohde-etuuden arvo

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin

Lisätiedot

Jatkuvan ajan dynaaminen optimointi

Jatkuvan ajan dynaaminen optimointi Jatkuvan ajan dynaaminen optimointi Diskreetistä ajasta jatkuvaan Ito prosessit Optimaalinen pysäytys Poisson prosessit Optimointiopin seminaari - Syksy 2000 / 1 Jatkuvan ajan dynaaminen π(x,u,t) tuottovirta

Lisätiedot

2. Matemaattinen malli ja funktio 179. a) f (-2) = -2 (-2) = = -6 b) f (-2) = 2 (-2) 2 - (-2) = (-8) + 7 = = 23

2. Matemaattinen malli ja funktio 179. a) f (-2) = -2 (-2) = = -6 b) f (-2) = 2 (-2) 2 - (-2) = (-8) + 7 = = 23 LISÄTEHTÄVÄT. Maemaainen malli ja funkio 9. a) f (-) = - (-) + = - + = -6 b) f (-) = (-) - (-) + = - (-8) + = 8 + 8 + = 80. a) f ( ) = + f ( ) = 0 + = 0 ( ) = ± = ± = ai = Vasaus: = - ai = b) + = + = 0

Lisätiedot

Investointimahdollisuudet ja investointien ajoittaminen

Investointimahdollisuudet ja investointien ajoittaminen Investointimahdollisuudet ja investointien ajoittaminen Optimaalisen investointistrategian ominaispiirteitä eli parametrien vaikutus ratkaisuun Optimointiopin seminaari - Syksy 000 / Optimointiopin seminaari

Lisätiedot

ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +.

ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +. Diffrniaaliyhälö II, harjoius 3, 8 228, rakaisu JL, kuusi sivua a On muunnava linaarinn oisn kraluvun diffrniaaliyhälö ẍ qx f yhäpiäväksi nsimmäisn kraluvun linaarisksi kahdn skalaariyhälön sysmiksi Rak

Lisätiedot

W dt dt t J.

W dt dt t J. DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan

Lisätiedot

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän: ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän

Lisätiedot

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt SMG-500 Verolasennan numeerise meneelmä Ehdouse harjoiusen 4 raaisuisi Haeaan ensin ehävän analyyinen raaisu: dx 0 0 0 0 dx 00e = 0 = 00e 00 x = e + = 5e + alueho: x(0 = 0 0 x 0 = 5e + = 0 = 5 0 0 0 5

Lisätiedot

A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat!

A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat! MAA Koe 7..03 A-osio. Ei laskina! Valise seuraavisa kolmesa ehäväsä vain kaksi joihin vasaa! A. a) Mikä on funkion f(x) määrieljoukko, jos f( x) x b) Muua ulomuooon: 4a 8a 4 A. a) Rakaise hälö: x 4x b)

Lisätiedot

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014 MAT-45 Fourier n meneelmä Merja Laaksonen, TTY 4..4 Sisälö Johano 3. Peruskäsieiä................................... 4.. Parillinen ja parion funkio....................... 7.. Heavisien funkio............................

Lisätiedot

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5 S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,

Lisätiedot

PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd

PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd PK-YRITYKSEN ARVONMÄÄRITYS KTT, DI TOIVO KOSKI elearning Communiy Ld Yriyksen arvonmääriys 1. Yriyksen ase- eli subsanssiarvo Arvioidaan yriyksen aseen vasaavaa puolella olevan omaisuuden käypäarvo, josa

Lisätiedot

VATT-KESKUSTELUALOITTEITA VATT DISCUSSION PAPERS. JULKISEN TALOUDEN PITKÄN AIKAVÄLIN LASKENTAMALLIT Katsaus kirjallisuuteen

VATT-KESKUSTELUALOITTEITA VATT DISCUSSION PAPERS. JULKISEN TALOUDEN PITKÄN AIKAVÄLIN LASKENTAMALLIT Katsaus kirjallisuuteen VATT-KESKUSTELUALOITTEITA VATT DISCUSSION PAPERS 445 JULKISEN TALOUDEN PITKÄN AIKAVÄLIN LASKENTAMALLIT Kasaus kirjallisuueen Juho Kosiainen Valion aloudellinen ukimuskeskus Governmen Insiue for Economic

Lisätiedot

Käyttövarmuuden ja kunnossapidon perusteet, KSU-4310: Tentti ma

Käyttövarmuuden ja kunnossapidon perusteet, KSU-4310: Tentti ma KSU-430/Ten 4..2008/Prof. Seppo Vranen /3 Käyövarmuuden ja kunnossapdon perusee, KSU-430: Ten ma 4..2008 Huom. Vasaus van veen kysymykseen. Funko- ja/a ohjelmoavan laskmen, musnpanojen, luenomonseden ja

Lisätiedot

a. Varsinainen prosessi on tuttua tilaesitysmuotoa:

a. Varsinainen prosessi on tuttua tilaesitysmuotoa: ELEC-C Sääöeniia 7. lauharjoiu Vaaue. r - K u K C y a. Varinainen proei on uua ilaeiymuooa: A Bu y C Kuvaa nähdään, eä ilamallin iäänmenona on u r K. Salaaria ei voi vähenää mariiia, joen un on n -veori,

Lisätiedot

KANTATAAJUINEN BINÄÄRINEN SIIRTOJÄRJESTELMÄ AWGN-KANAVASSA

KANTATAAJUINEN BINÄÄRINEN SIIRTOJÄRJESTELMÄ AWGN-KANAVASSA KJUI BIÄÄRI SIIROJÄRJSLMÄ WG-KVSS Kaajaajui siiro iformaaio siiro johdossa sllaisaa ilma kaoaalo- ai pulssimodulaaioa 536 ioliikkiikka II Osa 3 Kari Kärkkäi Syksy 5 JÄRJSLMÄMLLI Bii kso. Symboli {} ja

Lisätiedot

Notor Upotettava. 6 www.fagerhult.fi

Notor Upotettava. 6 www.fagerhult.fi Upoeavan Noor-valaisimen avulla kaoon voidaan luoda joko huomaamaomia ai ehokkaan huomioa herääviä ja yhenäisiä valaisinjonoja ilman minkäänlaisia varjosuksia. Pienesä koosaan huolimaa Noor arjoaa hyvin

Lisätiedot

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus Tieonhakumeneelmä Helsingin yliopiso / TKTL.4.04 Toennäköisyyeen perusuva rankkaus Tieonhakumeneelmä Toennäköisyyspohjainen rankkaus Dokumenien haussa ongelmana on löyää käyäjän kyselynä ilmaiseman ieoarpeen

Lisätiedot

Riskienhallinnan peruskäsitteitä

Riskienhallinnan peruskäsitteitä Rskenhallnnan peruskäseä Juss Kangaspuna 7. Syyskuua 2011 Työn saa allenaa ja julksaa Aalo-ylopson avomlla verkkosvulla. Mula osn kakk okeude pdäeään. Esyksen ssälö Todennäkösyyspohjanen vekehys aloudellsen

Lisätiedot

Rajoittamattomat kieliopit

Rajoittamattomat kieliopit Rajoittamattomat kieliopit Ohjelmoinnin ja laskennan perusmalleista muistetaan, että kieli voidaan kuvata (esim.) kieliopilla joka tuottaa sen, tai automaatilla joka tunnistaa sen. säännölliset lausekkeet

Lisätiedot

2. Suoraviivainen liike

2. Suoraviivainen liike . Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus

Lisätiedot

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015 Ene-59.4130, Kuivaus- ja haihduusprosessi eollisuudessa, asuharjoius 5, sysy 2015 Tehävä 4 on ähiehävä Tehävä 1. eijuerrosilassa poleaan rinnain uora ja urvea. Kuoren oseus on 54% ja uiva-aineen ehollinen

Lisätiedot

XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA

XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA II ADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA Laskenaaajuus akiivisuus Määrieäessä radioakiivisen näyeen akiivisuua (A) uloksena saadaan käyeyn miausyseemin anama laskenaaajuus (). = [II.I] jossa =

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 8 / versio 3. marraskuuta 2015 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu

Lisätiedot

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän

Lisätiedot

Tietoliikennesignaalit

Tietoliikennesignaalit ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime

Lisätiedot

KÄYTTÖOPAS. Ilma vesilämpöpumppujärjestelmän sisäyksikkö ja lisävarusteet RECAIR OY EKHBRD011ADV1 EKHBRD014ADV1 EKHBRD016ADV1

KÄYTTÖOPAS. Ilma vesilämpöpumppujärjestelmän sisäyksikkö ja lisävarusteet RECAIR OY EKHBRD011ADV1 EKHBRD014ADV1 EKHBRD016ADV1 EKHBRD011ADV1 EKHBRD014ADV1 EKHBRD016ADV1 EKHBRD011ADY1 EKHBRD014ADY1 EKHBRD016ADY1 KÄYÖOPAS Ilma vesilämpöpumppujärjeselmän sisäyksikkö ja lisävarusee EKHBRD011ADV1+Y1 EKHBRD014ADV1+Y1 EKHBRD016ADV1+Y1

Lisätiedot

Lisää satunnaisuutta ja mahdollisuus keskeyttää projekti

Lisää satunnaisuutta ja mahdollisuus keskeyttää projekti isää satunnaisuutta ja mahdollisuus keskeyttää projekti Esitelmä 7 - Mika lmoniemi Optimointiopin seminaari - Syksy isää satunnaisuutta Tähän mennessä on käytetty vain yhtä satunnaismuuttujaa tuotteen

Lisätiedot

Investointimahdollisuudet ja investoinnin ajoittaminen

Investointimahdollisuudet ja investoinnin ajoittaminen Investointimahdollisuudet ja investoinnin ajoittaminen Ajoituksen ratkaisu dynaamisella optimoinnilla Optimointiopin seminaari - Syksy 000 / Esitelmän sisältö Investoinnin ajoitusongelman esittely Ongelman

Lisätiedot

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi Rakennusosien rakennusfysikaalinen oimina Ralf Lindber Professori, Tampereen eknillinen yliopiso ralf.lindber@u.fi Rakenneosien rakennusfysikaalisen oiminnan ymmärämiseksi on välämäönä piirää kolme eri

Lisätiedot

KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN

KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN YYSILMIÖ J SILÄ VÄLYMIE YYSE SIIRO LJEUS HYVÄSI ÄYÄE ieoliikenneekniikka I 559 ari ärkkäinen Osa 5 4 MILLOI? Milloin ja missä kynnysilmiö esiinyy? un vasaanoimen ulon SR siis esi-ilmaisusuodaimen lähdössä

Lisätiedot

Epävarmuus diskonttokoroissa ja mittakaavaetu vs. joustavuus

Epävarmuus diskonttokoroissa ja mittakaavaetu vs. joustavuus Epävarmuus diskonokoroissa ja miakaavaeu vs. jousavuus Opimoiniopin seminaari - Syksy 2000 / 1 Esielmän sisälö Kirjan Invesmen Under Uncerainy osan I luvu 4 ja 5. Mien epävarmuus diskonokorossa vaikuaa

Lisätiedot

S Signaalit ja järjestelmät Tentti

S Signaalit ja järjestelmät Tentti S-7. Signaali ja järjeselmä eni..6 Vasaa ehävään, ehävisä 7 oeaan huomioon neljä parhaien suorieua ehävää.. Vasaa lyhyesi seuraaviin osaehäviin, käyä arviaessa kuvaa. a) Mikä kaksi ehoa kanaunkioiden φ

Lisätiedot

Diskreettiaikainen dynaaminen optimointi

Diskreettiaikainen dynaaminen optimointi Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u

Lisätiedot

Suunnitteluharjoitus s-2016 (...k-2017)

Suunnitteluharjoitus s-2016 (...k-2017) 1 Suunnieluharjoius s-2016 (...k-2017) HAKKURITEHOLÄHDE Seuraavan push-pull-yyppisen hakkurieholäheen komponeni ulisi valia (muunajaa lukuunoamaa). V1 iin 230 V ± 10 % 50 Hz V3 Perusieoja kykennäsä Verkkoasasuunauksen

Lisätiedot

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s). DEE- Piirianalyysi Ykkösharkan ehävien rakaisuehdoukse. askeaan ensin, kuinka paljon äyeen ladaussa akussa on energiaa. Tämä saadaan laskeua ehäväpaperissa anneujen akun ieojen 8.4 V ja 7 mah avulla. 8.4

Lisätiedot

EDE Introduction to Finite Element Method

EDE Introduction to Finite Element Method Tampere Universiy of Technology EDE- Inroducion o Finie Elemen ehod.. Eercise 7 A We divide he srucure o hree beam elemens wih wo nodal degrees of freedom. The nodes, elemens and global degrees of freedom

Lisätiedot

11. Jatkuva-aikainen optiohinnoittelu

11. Jatkuva-aikainen optiohinnoittelu . Jauva-aiainen opiohinnoielu Sijoiusoheien hinojen ehiymisä voiaan arasella myös jauva-aiaisina prosesseina Iô-prosessi erisuuruise perioiohaise hinnanmuuose mahollisia voiaan oisinaan raaisa analyyisesi.

Lisätiedot

KÄYTTÖOPAS. -järjestelmän sisäyksikkö HXHD125A8V1B

KÄYTTÖOPAS. -järjestelmän sisäyksikkö HXHD125A8V1B KÄYÖOPAS -järjeselmän sisäyksikkö SISÄLÖ 1. Määrielmä... 1 1.1. Merkkien ja varoiusen arkoiukse... 1 1.2. Käyeyjen ermien merkiys... 1 2. Yleise varooime... 2 3. Johdano... 2 3.1. Yleisä... 2 3.2. ämän

Lisätiedot

3. Teoriaharjoitukset

3. Teoriaharjoitukset 3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x

Lisätiedot

Ito-prosessit. Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma. S ysteemianalyysin. Laboratorio

Ito-prosessit. Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma. S ysteemianalyysin. Laboratorio Ito-prosessit Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma Optimointiopin seminaari - Syksy 2000 / 1 Ito-prosessit Brownin liikkeen yleistys (Ito prosessi) x(t) : dx

Lisätiedot

Tuotannon suhdannekuvaajan menetelmäkuvaus

Tuotannon suhdannekuvaajan menetelmäkuvaus 1(15) Tuoannon suhdannekuvaajan meneelmäkuvaus Luku 1 Luku 2 Luku 3 Luku 4 Tuoannon suhdannekuvaajan yleiskuvaus Tuoannon suhdannekuvaajan julkaisuaikaaulu, revisoinikäyännö ja jakelu Tuoannon suhdannekuvaajan

Lisätiedot

Luento 9. Epälineaarisuus

Luento 9. Epälineaarisuus Lueno 9 Epälineaarisuus 8..6 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli

Yhden selittäjän lineaarinen regressiomalli Moimuuujameeelmä Yhde seliäjä lieaarie regressiomalli Moimuuujameeelmä: Yhde seliäjä lieaarie regressiomalli Ilkka Melli. Yhde seliäjä lieaarie regressiomalli, se esimoii ja esaus.. Yhde seliäjä lieaarie

Lisätiedot

2. Systeemi- ja signaalimallit

2. Systeemi- ja signaalimallit 2. Syseemi- ja signaalimalli Malliyyppejä: maemaainen malli: muuujien välise suhee kuvau maemaaisesi yhälöin lohkokaaviomalli: syseemin oiminojen looginen jako lohkoihin, joiden välisiä vuorovaikuuksia

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

Lineaaristen järjestelmien teoriaa II

Lineaaristen järjestelmien teoriaa II Lieaarise järjeselmie eoriaa II Ohjaavuus Tarkkailavuus havaiavuus Lisää sabiilisuudesa Tilaesimoii, Kalma-suodi TKK/Syseemiaalyysi laboraorio Mielekiioisia kysymyksiä Oko syseemi rakeeelaa sellaie, eä

Lisätiedot

Investointimahdollisuudet ja niiden ajoitus

Investointimahdollisuudet ja niiden ajoitus Investointimahdollisuudet ja niiden ajoitus Ratkaisu optiohinnoitteluteorian avulla Esitelmä - Eeva Nyberg Optimointiopin seminaari - Syksy 000 / Tähän asti opittua NP:n rajoitteet vaikka NP negatiivinen

Lisätiedot

Öljyn hinnan ja Yhdysvaltojen dollarin riippuvuussuhde

Öljyn hinnan ja Yhdysvaltojen dollarin riippuvuussuhde Öljyn hinnan ja Yhdysvalojen dollarin riippuvuussuhde Kansanalousiede Pro gradu -ukielma Talousieeiden laios Tampereen yliopiso Toukokuu 2010 Jari Hännikäinen TIIVISTLMÄ Tampereen yliopiso Talousieeiden

Lisätiedot

TENTISSÄ KÄYTETTÄVÄ KAAVAKOKOELMA KURSSILLE Luotettavuusteoria

TENTISSÄ KÄYTETTÄVÄ KAAVAKOKOELMA KURSSILLE Luotettavuusteoria TENTISSÄ KÄYTETTÄVÄ KAAVAKOKOELMA KURSSILLE Luoeavuueoria Dekripiivinen luoeavuu R() =P(T>) R(x ) =P(T>+ x T>) r() = f() R() R() =e R(x ) =e r() d +x r() d F () R() f() r() F () R() f() F () df () d R()

Lisätiedot

Mittaustekniikan perusteet, piirianalyysin kertausta

Mittaustekniikan perusteet, piirianalyysin kertausta Miausekniikan perusee, piirianalyysin kerausa. Ohmin laki: =, ai = Z ( = ännie, = resisanssi, Z = impedanssi, = vira). Kompleksiluvu Kompleksilukua arviaan elekroniikassa analysoiaessa piireä, oka sisälävä

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 3, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 3, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset DEE- ineaarise järjeselmä Harjoius 3, harjoiusenpiäjille arkoieu rakaisuehdoukse Ennen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu Piirianalyysin juuri suorianee

Lisätiedot

STOKASTISIA MALLEJA SÄHKÖN HINNOITTELUUN. Sanni Sieviläinen

STOKASTISIA MALLEJA SÄHKÖN HINNOITTELUUN. Sanni Sieviläinen HELSINGIN YLIOPISTO Maemaais-Luonnonieeellinen iedekuna Maemaiikan ja ilasoieeen laios STOKASTISIA MALLEJA SÄHKÖN HINNOITTELUUN Sanni Sieviläinen Pro Gradu-ukielma Ohjaaja: Dario Gasbarra 3. syyskuua 215

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 8. marraskuuta 2016 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu Tasoaaltoyhtälöt

Lisätiedot

a) Ortogonaalinen, koska kantafunktioiden energia 1

a) Ortogonaalinen, koska kantafunktioiden energia 1 S-7.060 Signaali ja järjeselmä Teni 14.5.001 1. Vasaa lyhyesi seuraaviin saehäviin, käyä arviaessa kuvaa. a) Mikä minaisuuksisa rgnaalinen ja rnrmaalinen kuvaa paremmin Furier-sarjaa ja miksi? b) Esiä

Lisätiedot

Projektin keskeyttäminen, uudelleen käynnistäminen ja hylkääminen

Projektin keskeyttäminen, uudelleen käynnistäminen ja hylkääminen Projektin keskeyttäminen, uudelleen käynnistäminen ja hylkääminen Optimointiopin seminaari - Syksy 000 / 1 Mallin laajennus Toiminta voidaan väliaikaisesti keskeyttää ja käynnistää uudelleen Keskeyttämisestä

Lisätiedot

Suomen kalamarkkinoiden analyysi yhteisintegraatiomenetelmällä

Suomen kalamarkkinoiden analyysi yhteisintegraatiomenetelmällä KALA- JA RIISTARAPORTTEJA nro 374 Jukka Laiinen Jari Seälä Kaija Saarni Suomen kalamarkkinoiden analyysi yheisinegraaiomeneelmällä Helsinki 006 Julkaisija Riisa- ja kalaalouden ukimuslaios KUVAILULEHTI

Lisätiedot

Esteet, hyppyprosessit ja dynaaminen ohjelmointi

Esteet, hyppyprosessit ja dynaaminen ohjelmointi Esteet, hyppyprosessit ja dynaaminen ohjelmointi Juha Martikainen 4.10.2000 Oppikirjan sivut 83-87 ja 93-98 Optimointiopin seminaari - Syksy 2000 / 1 Esteet (määritelmät) Muistellaan menneitä: Ajelehtiva

Lisätiedot

VAASAN YLIOPISTO KAUPPATIETEELLINEN TIEDEKUNTA LASKENTATOIMEN JA RAHOITUKSEN LAITOS. Jukka Lähteenmäki

VAASAN YLIOPISTO KAUPPATIETEELLINEN TIEDEKUNTA LASKENTATOIMEN JA RAHOITUKSEN LAITOS. Jukka Lähteenmäki VAASAN YLIOPISTO KAUPPATIETEELLINEN TIEDEKUNTA LASKENTATOIMEN JA RAHOITUKSEN LAITOS Jukka Läheenmäki POLIITTISTEN VAALIEN VAIKUTUS INDEKSIOPTIOIDEN IMPLISIITTISEEN VOLATILITEETTIN Laskenaoimen ja rahoiuksen

Lisätiedot

Sijoitusriskien ja rahoitustekniikan vaikutus TyEL-maksun kehitykseen

Sijoitusriskien ja rahoitustekniikan vaikutus TyEL-maksun kehitykseen Ismo Risku ja Kasimir Kaliva Sijoiusriskien ja rahoiusekniikan vaikuus TyEL-maksun kehiykseen Eläkeurvakeskuksen keskuselualoieia 009:6 Ismo Risku ja Kasimir Kaliva Sijoiusriskien ja rahoiusekniikan vaikuus

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

Lasin karkaisun laatuongelmat

Lasin karkaisun laatuongelmat Rakeneiden Mekaniikka Vol. 44, Nro, 11, s. 14-155 Lasin karkaisun laauongelma Ani Aronen Tiiviselmä. Karkaisula lasila vaadiaan hyvää lujuua sekä visuaalisa laaua. Näihin voidaan vaikuaa lasin karkaisuprosessin

Lisätiedot

TALOUSTIETEIDEN TIEDEKUNTA. Lauri Tenhunen KAIKKIALLA LÄSNÄ OLEVAN TIETOTEKNIIKAN TALOUSTIETEELLISTÄ ANALYYSIÄ

TALOUSTIETEIDEN TIEDEKUNTA. Lauri Tenhunen KAIKKIALLA LÄSNÄ OLEVAN TIETOTEKNIIKAN TALOUSTIETEELLISTÄ ANALYYSIÄ TLOUSTIETEIDEN TIEDEKUNT Lauri Tenhunen KIKKILL LÄSNÄ OLEVN TIETOTEKNIIKN TLOUSTIETEELLISTÄ NLYYSIÄ Pro gradu ukielma Yleinen alousiede Tammikuu 03 SISÄLLYS Sisällys Kuvio ja auluko JOHDNTO... 5 VERKOSTOTLOUSTIETEEN

Lisätiedot

Mittaus- ja säätölaitteet IRIS, IRIS-S ja IRIS-M

Mittaus- ja säätölaitteet IRIS, IRIS-S ja IRIS-M Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M KANSIO 4 VÄLI ESITE Lapinleimu Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M IRIS, IRIS-S Rakenne IRIS muodosuu runko-osasa, sääösäleisä, sääömuerisa ai sääökahvasa

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

9. Tila-avaruusmallit

9. Tila-avaruusmallit 9. Tila-avaruusmallit Aikasarjan stokastinen malli ja aikasarjasta tehdyt havainnot voidaan esittää joustavassa ja monipuolisessa muodossa ns. tila-avaruusmallina. Useat aikasarjat edustavat dynaamisia

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki

Lisätiedot

2:154. lak.yht. lak.yht. lak.yht. 2:156 2:156 6-9901-0 2:156. lak.yht. 2:155. 35 dba. sr-1. No330. YY/s-1. Työväentalo 8-9903-0. No30. sr-2.

2:154. lak.yht. lak.yht. lak.yht. 2:156 2:156 6-9901-0 2:156. lak.yht. 2:155. 35 dba. sr-1. No330. YY/s-1. Työväentalo 8-9903-0. No30. sr-2. 00 lak.yh. lak.yh. lak.yh. lak.yh. lak.yh. ras.m ras.m lak.yh. lak.yh. lak.yh. lak.yh. lak.yh. 0 0 No No No0 No0 0:::M0 0:::M0 0:::M0 0:::M0 0:::M0 0::0:M0 0:::M0 0:::M0 0:::M 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Aika t

Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Aika t Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Valkoinen kohina ε t 2 1 0 1 2 Voimme tehdä saman laskun myös yleiselle välille [ a, a], missä 0 < a

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,

Lisätiedot

Monisilmukkainen vaihtovirtapiiri

Monisilmukkainen vaihtovirtapiiri Monisilmukkainen vaihovirapiiri Oeaan arkaselun koheeksi RLC-vaihovirapiiri jossa on käämejä, vasuksia ja kondensaaoreia. Kykenä Tarkasellaan virapiiriä, jossa yksinkeraiseen RLC-piiriin on kodensaaorin

Lisätiedot

Luento 4. Fourier-muunnos

Luento 4. Fourier-muunnos Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:

Lisätiedot

Robusti tilastollinen päättely ensimmäisen ja toisen ehdollisen momentin mallintamisessa

Robusti tilastollinen päättely ensimmäisen ja toisen ehdollisen momentin mallintamisessa Robusi ilasollinen pääely ensimmäisen ja oisen ehdollisen momenin mallinamisessa ilasoieeen pro gradu ukielma Jarmo Mika Rafael Mikkola Marraskuu SISÄLLYS JOHDANO EORIAA. Robusi kvasiuskoavuusesimoinimeneelmä.

Lisätiedot

1. Matemaattinen heiluri, harmoninen värähtelijä Fysiikka IIZF2020

1. Matemaattinen heiluri, harmoninen värähtelijä Fysiikka IIZF2020 1. Maeaainen heiluri, haroninen värähelijä Fysiikka IIZF Juha Jokinen (Selosuksesa vasaava) Janne Kiviäki Ani Lahi Miauspäivä:..9 Laboraorioyön selosus 9..9 Pendulu is a ass hanging fro a pivo poin which

Lisätiedot

Optioiden hinnoittelu Pohjoisella sähkömarkkinalla. Minna Kauria-Kojo Pro gradu-tutkielma Matematiikan ja tilastotieteen laitos Helsingin yliopisto

Optioiden hinnoittelu Pohjoisella sähkömarkkinalla. Minna Kauria-Kojo Pro gradu-tutkielma Matematiikan ja tilastotieteen laitos Helsingin yliopisto Opioiden hinnoielu Pohjoisella sähkömarkkinalla Minna Kauria-Kojo Pro gradu-ukielma Maemaiikan ja ilasoieeen laios Helsingin yliopiso 13.12.2016 HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF

Lisätiedot

x v1 y v2, missä x ja y ovat kokonaislukuja.

x v1 y v2, missä x ja y ovat kokonaislukuja. Digiaalinen videonkäsiel Harjoius, vasaukse ehäviin 4-0 Tehävä 4. Emämariisi a: V A 0 V B 0 Hila saadaan kanavekorien (=emämariisin sarakkee) avulla. Kunkin piseen paikka hilassa on kokonaisluvulla kerroujen

Lisätiedot

Luento 11. Stationaariset prosessit

Luento 11. Stationaariset prosessit Lueno Soasisen prosessin ehosperi Signaalin suodaus Kaisarajoieu anava 5..6 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan

Lisätiedot