Lineaaristen järjestelmien teoriaa II

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Lineaaristen järjestelmien teoriaa II"

Transkriptio

1 Lieaarise järjeselmie eoriaa II Ohjaavuus Tarkkailavuus havaiavuus Lisää sabiilisuudesa Tilaesimoii, Kalma-suodi TKK/Syseemiaalyysi laboraorio

2 Mielekiioisia kysymyksiä Oko syseemi rakeeelaa sellaie, eä siä voidaa hallia? => ohjaavuus Tarviseeko syseemi eriyisä halliaa? => sabiilisuus Mie siä halliaa? => sääöeoria/-ekiikka Mie halliaa parhaalla mahdollisella avalla? => opimisääö Miä syseemi sieluelämäsä voidaa saoa? => arkkailavuus Mie sieluelämää havaiaa? =>ilahavaisemie Kalma-suodi TKK/Syseemiaalyysi laboraorio

3 TKK/Syseemiaalyysi laboraorio Ohjaavuus Tarkasellaa jakuva aja syseemiä Määriellää se ilasiiro- ja ulosulokuvaukse,,,, u x g y u x f x = = & p R U R T T R U R T T : : η ξ

4 Määrielmiä Syseemi o ohjaava R : alueessa D hekellä 0, jos jokaisa x 0 D kohi o olemassa ohjaus u U ja ajaheki 1 0 sie eä ξ 1, 0,x 0,u=0. Jos syseemi o ohjaavissa alueessa D jokaisea ajahekeä, se o asaisesi ohjaava Jos D=R, syseemi o globaalisi ohjaava Tasaisesi & globaalisi ohjaava syseemi = äydellisesi ohjaava syseemi Ohjaavuus karakerisoi syseemi halliavuua voidaako palauaa ollailaa äärellisessä ajassa TKK/Syseemiaalyysi laboraorio

5 Ohjaavuude esaamie: uloksia Epälieaarisille syseemeille ohjaavuude oeamie vaikeaa Lieaarise syseemi: Aikaivariai lieaarie syseemi x& = y Ax = Cx o äydellisesi ohjaava, jos ja vai jos x m-mariisi Q c = [B AB A 2 B... A -1 B] ragi o =dim x, m=dim u Bu Du TKK/Syseemiaalyysi laboraorio

6 Tarkkailavuus Alu syseemi o arkkailava R : alueessa D hekellä 0, jos jokaie x 0 D voidaa yksikäsieisesi määrää havaioimalla ohjaus u U ja ulosulo η., 0,x 0,u jollaki äärellisellä aikavälillä 0, 1, missä 1 o mahdollisesi x 0 :sa ja u:sa riippuva ajaheki Jos syseemi o arkkailava alueessa D jokaisea ajahekeä, se o asaisesi arkkailava Jos D=R, syseemi o globaalisi arkkailava Tasaisesi & globaalisi arkkailava syseemi = äydellisesi arkkailava syseemi Mia sille, voidaako syseemi ila rekosruoida ulosulosa TKK/Syseemiaalyysi laboraorio

7 Tarkkailavuude esaamie Epälieaarisille syseemeille ei yleisiä keioja Lieaarise syseemi: Aikaivariai lieaarie syseemi x& = Ax Bu y = Cx Du o äydellisesi ohjaava, jos ja vai jos x p-mariisi Q o = [C* A*C* A* 2 C*... A* -1 C*] ragi o =dim x, m=dim u * o hermioii TKK/Syseemiaalyysi laboraorio

8 Diskreeiaikaise syseemi Tulokse yleisyvä myös diskreeiaikaisii syseemeihi Mua: ohjaavuusmariisi ragieho o välämäö vai jos syseemimariisi A o kääyvä Esim. syseemi x 1 1=0 x 2 1=x 2 u o selväsi ohjaava, mua Q c = [B AB]=[0 0;1 1], joka ragi = 1 TKK/Syseemiaalyysi laboraorio

9 TKK/Syseemiaalyysi laboraorio Ohjaavuude ulkia Diskreeiaikaise syseemi ilayhälö rakaisu voidaa kirjoiaa muodossa 1 Du Cx y Bu Ax x = = = = = u u Q x A k Bu A x A x c k k M

10 ...ulkia Jos y Qc: ragi =, jokaie R : vekori x voidaa esiää muodossa x=q c [u-1... u0] T Eriyisesi voidaa kirjoiaa vekori -A x 0 ässä muodossa, jolloi o olemassa aiaki yksi ohjausjoo u0,...,u-1 s.e. x=0 TKK/Syseemiaalyysi laboraorio

11 Sabiilisuudesa edellee Klassise mekaiika sabiilisuuskäsiys: asapaiosa häiriy syseemi auomie käyäyymie Syseemiekie sabiilisuus: rajoieu sisäämeo saava aikaa rajoieuja ulosuloja piee muuokse sisäämeoissa saava aikaa pieiä muuoksia ulosuloissa =sisäämeo-ulosulo sabiilisuus Sabiilisuusehdo lähes sama TKK/Syseemiaalyysi laboraorio

12 TKK/Syseemiaalyysi laboraorio Tasapaioila Tarkasellaa edellä kuvaua syseemiä sekä ilasiiro- ja ulosuloskuvauksia Tila-avaruude pise x e o asapaioila, jos fx e,0,=0 kaikilla Nollaohjauksella järjeselmä pysyy asapaioilassa,,,, u x g y u x f x = = & p R U R T T R U R T T : : η ξ

13 Klassisia sabiilisuusmäärielmiä Tasapaioila x e o sabiili, jos jokaisa 0 ja jokaisa ε>o o olemassa δ >0 s.e. x x < δ ξ, x,0 x < 0 e 0 0 e ε x e o asympooisesi sabiili, jos se o sabiili ja jokaisa 0 kohi o olemassa δ 1 >0 s.e. x lim, 0x0,0 = 0 xe < δ1 ξ x e x e o globaalisi asympooisesi sabiili, jos se o sabiili ja ylläoleva päee kaikilla x 0 TKK/Syseemiaalyysi laboraorio

14 Sisäämeo-ulosulo -sabiilisuus Em. syseemi o sisäämeo-ulosulo sabiili jos jokaisa x 0 ja jokaisa M>0 kohi o olemassa N>0 sie eä jokaisella 0 päee: u < M η < N 0, 0x0, u eli lähdeäessä misä ilasa ahasa jokaise rajoieu sisäämeo ulee uoaa rajoieu ulosulo 0 TKK/Syseemiaalyysi laboraorio

15 Lieaarise syseemi Tarkasellaa lieaarisa aikaivariaia syseemiä x& = Ax Bu y = Cx Du Se asapaioilaa o aia origo Koska ollaohjausa vasaava ila liike o muooa x= e A x 0 voidaa odea, eä asympooisesi sabiili origo o myös globaalisesi asympooisesi sabiili Tulos: origo o yo. syseemi sabiili asapaioila joss A: omiaisarvoja ei ole kompleksiaso vasemmassa puoliasossa ja ei useampikeraisia om. arvoja im. akselilla Origo o globaalisi asympooisesi sabiili joss A: omiaisarvoje reaaliosa ova egaiivisia TKK/Syseemiaalyysi laboraorio

16 Yheys sabiilisuuksie välillä Jos origo o em. syseemi asympooisesi sabiili asapaiopise, o syseemi sisäämeo-ulosulo sabiili Jos syseemi o sisäämeo-ulosulo sabiili ja äydellisesi ohjaava ja arkkailava, ii origo o järjeselmä asympooisesi sabiili asapaiopise ei odisea Päevä myös diskreeiaikaisille syseemeille Sabiilisuuskrieerissä vase puoliaso korvaaa yksikköympyrällä TKK/Syseemiaalyysi laboraorio

17 Tilaesimoii ilaarkkailu Ogelma: määriä syseemi sisäie ila ulosulo ja syseemi malli avulla Tila miaamie kallisa, mahdooa => kosruoidaa ilaarkkailija => esimaai ilalle käyö esim. ilaakaisikykeässä Ogelmaa prosessi- ja miauskohia => Kalma-suodi keio yhdisää opimaalisesi malli ja miaus TKK/Syseemiaalyysi laboraorio

18 Tilaesimaaori Tarkasellaa lieaarisa kohiaoa syseemiä x& = Ax Bu Syseemi v& z y = Cx Du = Fv Gy = Mv Ny Hu Pu o yo. järjeselmä ilaesimaaori ai arkkailija observer, jos mielivalaisella alkuilalla x 0 o olemassa alkuila v 0 s.e. jos v 0 =v 0 ii z=x kaikilla > 0 ja kaikilla u avallisesi pyriää muodosamaa ii eä ise v o ila esimaai TKK/Syseemiaalyysi laboraorio

19 Täyde keraluvu arkkailija Syseemi xˆ& o ed. järjeselmä äyde keraluvu arkkailija, jos ehdosa x ˆ seuraa kaikilla >0 ja 0 = x x ˆ = x 0 kaikilla u Jos dimesio o pieempi, puhuaa redusoidu keraluvu arkkailijoisa miimikeraluvu arkkailija dimesio = dim x dim y Yo. arkkailija o em. syseemi arkkailija joss F=A-LC, G=L, H=B-LD L mielivalaie mariisi = Fxˆ Gy Hu, xˆ R TKK/Syseemiaalyysi laboraorio

20 ..arkkailija Tällöi arkkailija o xˆ & = Axˆ Bu L y Cxˆ Viimeisä sulkulausekea kusuaa iovaaioksi miaukse ja malli ulosulo erous Tarkkailija suuieluogelma: Valise L eli valise mie iovaaio huomioidaa Tilahavaisija syseemimariisi o A-LC Du valisemalla L sopivasi saadaa ilahavaisijalle mielivalaie dyamiikka edellyäe eä syseemi o äydellisesi arkkailava TKK/Syseemiaalyysi laboraorio

21 Kalma-suodi Edellä o oleeu, eä syseemi ja miaukse ova kohiaomia Mie ila olisi esimoiava, ku syseemi o sokasie? Tarkasellaa lieaarisa diskreeiaikaisa syseemiä x 1 = Ax Bu v y = Cx e missä covv=r 1, cove=r 2, v ja e valkoisa, keskeää riippumaoa kohiaa Exτvs T =0, Exτes=0, s>τ, Exτ=x 0, Exτ-x 0 xτ-x 0 T =Π 0 Myös ila ymmärreää sauaismuuujaksi TKK/Syseemiaalyysi laboraorio

22 Kalma-suodi Ogelma: kosruoi miause us,ys, s τ avulla esimaai x^1 1 s.e. virhee kovariassi E[x1-x^1 1 x1-x^1 1 T ] miimoiuu Tilaesimaaori: x^1 1=x^ 1Kr= Ax^ BuKy-Cx^ Tulos: Piei mahdollie kovariassi saavueaa, ku K=APC T [CPC T R 2 ] -1 Kalma-vahvisus P1=APA T R 1 -APC T [CPC T R 2 ] -1 CPA T, P0=P 0 kovariassi TKK/Syseemiaalyysi laboraorio

23 Tulkia, käyäö Rekursiivie algorimi viimeisi miaus riiää kovariassimariisi säilyää laskea kaala ärkeä iformaaio Kalma-suodi yhdisää miausdaa ja malli aama iformaaio iide luoeavuude suheessa luoeavuude miareia kohioide kovariassi skaalaua prosessi- ja ulosulodyamiikoilla suuri R 2 => piei vahvisus Käyäössä arviaa prosessi- ja miauskohia kovariasseille esimaai järkeily miaukse TKK/Syseemiaalyysi laboraorio

Lineaaristen järjestelmien teoriaa

Lineaaristen järjestelmien teoriaa Lineaarisen järjeselmien eoriaa Saavueavuus, ohjaavuus Tarkkailavuus, havaiavuus Klassisen mekaniikan sabiilisuus vs. syseemiekninen sabiilisuusuus Tilaesimoini Kalman-suodin Mielenkiinoisia kysymyksiä

Lisätiedot

Systeemimallit: sisältö

Systeemimallit: sisältö Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -kuvaus ja ilayhälömalli, ila Linearisoini Jakuva-aikaisen lineaarisen järjeselmän siirofunkio, sabiilisuus Laplace-muunnos Diskreeiaikaisen lineaarisen

Lisätiedot

Systeemimallit: sisältö

Systeemimallit: sisältö Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -uvaus ja ilayhälömalli, ila Linearisoini Jauva-aiaisen lineaarisen järjeselmän siirofunio, sabiilisuus Laplace-muunnos Disreeiaiaisen lineaarisen järjeselmän

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto Kojemeeorologia Sami Haapaala syksy 03 Fysiika laios, Ilmakehäieeide osaso Mialaieide dyaamise omiaisuude Dyaamise uusluvu määriävä mie mialaie käyäyyy syöeide muuuessa Apua käyeää differeiaaliyhälöiä,

Lisätiedot

5. Vakiokertoiminen lineaarinen normaaliryhmä

5. Vakiokertoiminen lineaarinen normaaliryhmä 1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa

Lisätiedot

2. Systeemi- ja signaalimallit

2. Systeemi- ja signaalimallit 2. Syseemi- ja signaalimalli Malliyyppejä: maemaainen malli: muuujien välise suhee kuvau maemaaisesi yhälöin lohkokaaviomalli: syseemin oiminojen looginen jako lohkoihin, joiden välisiä vuorovaikuuksia

Lisätiedot

7.1. Suurimman uskottavuuden estimointimenetelmä: Johdanto

7.1. Suurimman uskottavuuden estimointimenetelmä: Johdanto Ma-1.361 Tilasollie pääely 7. Suurimma uskoavuude meeelmä ja asympooie eoria Tilasollie pääely 7. Suurimma uskoavuude meeelmä ja asympooie eoria 7.1. Suurimma uskoavuude esimoiimeeelmä: Johdao Aikasarja,

Lisätiedot

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen Soimukseneon dynamiikka: johdano ja haiallinen valikoiuminen Ma-2.442 Oimoinioin seminaari Elise Kolola 8.4.2008 S yseemianalyysin Laboraorio Esielmä 4 Elise Kolola Oimoinioin seminaari - Kevä 2008 Esiyksen

Lisätiedot

Luento 2. Järjestelmät aika-alueessa Konvoluutio-integraali. tietoverkkotekniikan laitos

Luento 2. Järjestelmät aika-alueessa Konvoluutio-integraali. tietoverkkotekniikan laitos Lueno 2 Järjeselmä aika-alueessa Konvoluuio-inegraali Lueno 2 Lueno 2 Järjeselmä aika alueessa; Konvoluuio inegraali 2.1 Järjeselmien perusominaisuude Oppenheim 1.5. 1.6 Muisillise ja muisioma järjeselmä

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli

Yhden selittäjän lineaarinen regressiomalli Moimuuujameeelmä Yhde seliäjä lieaarie regressiomalli Moimuuujameeelmä: Yhde seliäjä lieaarie regressiomalli Ilkka Melli. Yhde seliäjä lieaarie regressiomalli, se esimoii ja esaus.. Yhde seliäjä lieaarie

Lisätiedot

2. Suoraviivainen liike

2. Suoraviivainen liike . Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus

Lisätiedot

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä

Lisätiedot

LUKU 6 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN

LUKU 6 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN LUKU 6 KOHINN VIKUUS NLOGISEN MOULIOIEN SUORIUSKYKYYN ieoliikeeekiikka I 5359 Kari Kärkkäie Osa 6 Luku 6 Kohia vaikuus aalogisii odulaaioihi Johdao aalyysieeelii Sigaali-kohiasuhee ääriäie Kaaaajuie järjeselä

Lisätiedot

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN 1 KULMMODULOITUEN SIGNLIEN SPEKTRIN LSKEMINEN Mie laskea eroaa lieaarise odulaaioide apauksesa? Milä spekri äyää epälieaarise prosessi jälkee? 51357 Tieoliikeeekiikka I Osa 15 Kari Kärkkäie Kevä 015 SPEKTRIN

Lisätiedot

Diskreetillä puolella impulssi oli yksinkertainen lukujono:

Diskreetillä puolella impulssi oli yksinkertainen lukujono: DEE-00 ineaarise järjeselmä Harjoius 5, rakaisuehdoukse [johdano impulssivaseeseen] Jakuva-aikaisen järjeselmän impulssivase on vasaavanlainen järjeselmäyökalu kuin diskreeillä puolellakin: impulssivase

Lisätiedot

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN KULMMODULOITUJEN SIGNLIEN SPEKTRIN LSKEMINEN 1 (3) (3) Spekri laskeie siisaoalle Kulaoduloidu sigaali spekri johaie o yöläsä epälieaarisuudesa johue (epälieaarise aalyysi ova yleesä hakalia). Se voidaa

Lisätiedot

Älä tee mitään merkintöjä kaavakokoelmaan!

Älä tee mitään merkintöjä kaavakokoelmaan! AS-74. Alogie ääö vkokoelm v. Plu ei jälkee! Trk kokoelm ivumäärä! Älä ee miää merkiöjä kvkokoelm! Dymie mllie perukompoei. Sähköie kompoei Vu (reii) u() Ri() el (iduki) u() L di() d odeori i() C du()

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.340 Lieaarie ohjelmoiti 20.9.2007 Lueto 2 Lieaarialgebraa ja geometriaa (kirja.5, 2.) S ysteemiaalyysi Tekillie korkeakoulu Lieaarie ohjelmoiti - Syksy 2007 / Lieaarialgebraa Notaatiota Kääteismatriisi

Lisätiedot

Laaja matematiikka 2 Kertaustehtäviä Viikko 17/ 2005

Laaja matematiikka 2 Kertaustehtäviä Viikko 17/ 2005 7303045 Laaja matematiikka Kertaustehtäviä Viikko 7/ 005 Tehtävät ovat Laaja matematiikka : ja : alueelta olevia etisiä välikoe- ja tettitehtäviä. Alkupää tehtävät liittyvät yleesä kurssii ja loppupää

Lisätiedot

9. Parametriset mallit, estimointi

9. Parametriset mallit, estimointi 9. Paramerise malli, esimoini Rakeneellise malli paramereillä a priori ulkina & merkiys Black box-malli parameri vain laskennan/soviuksen apuvälineiä Tarkasellaan pääosin diskreeiaikaisia malleja 3. harjoiusyössä

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,

Lisätiedot

Luento 11. Stationaariset prosessit

Luento 11. Stationaariset prosessit Lueno Soasisen prosessin ehosperi Signaalin suodaus Kaisarajoieu anava 5..6 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan

Lisätiedot

Parametriset mallit. parametreillä a priori tulkinta & merkitys. parametrit vain laskennan/sovituksen apuvälineitä

Parametriset mallit. parametreillä a priori tulkinta & merkitys. parametrit vain laskennan/sovituksen apuvälineitä Paramerise malli Rakeneellise malli paramereillä a priori ulkina & merkiys Black box-malli parameri vain laskennan/soviuksen apuvälineiä Tarkasellaan pääosin lineaarisia diskreeiaikaisia blackbox-malleja

Lisätiedot

MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai

MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai MATP53 Approbatur B Harjoitus, ratkaisut Maaatai..05. (Lämmittelytehtävä.) Oletetaa, että op = 7 tutia työtä. Kuika mota tutia Oili Opiskelija työsketelee itseäisesti kurssilla, joka laajuus o 4 op, ku

Lisätiedot

Tehtävä I. Vaihtoehtotehtävät.

Tehtävä I. Vaihtoehtotehtävät. Kem-9.7 Prosessiauomaaion perusee Teni 5.9.5 TÄMÄ PAPERI TÄYTYY EHDOTTOMASTI PALAUTTAA TENTIN MUKANA NIMI: (OS: ) OPINTOKIRJA: VIERAILULUENNOT KUUNNELTU: VALV. LASK: Tehävä I. Vaihoehoehävä. Oikea vasaus

Lisätiedot

LUKU 7 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN A Tietoliikennetekniikka I Osa 24 Kari Kärkkäinen Kevät 2015

LUKU 7 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN A Tietoliikennetekniikka I Osa 24 Kari Kärkkäinen Kevät 2015 1 LUKU 7 KOHINAN VAIKUUS ANALOGISEN MODULAAIOIDEN SUORIUSKYKYYN 51357A ieoliikeeekiikka I Osa 4 Kari Kärkkäie Kevä 15 LUKU 7 KOHINA ANALOGISISSA MODULAAIOISSA Johdao aalyysieeelii Sigaali-kohiasuhee ääriäie

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

MATEMATIIKAN JA TILASTOTIETEEN LAITOS f ( ) JYVÄSKYLÄN YLIOPISTO Harjoituste 3 ratkaisut MATEMATIIKAN JA TILASTOTIETEEN LAITOS Topologiset vektoriavaruudet 3.1. Jokaie kompakti joukko K R määrää fuktioavaruudessa E = C(R ) = {f : R R f o jatkuva}

Lisätiedot

Tasaantumisilmiöt eli transientit

Tasaantumisilmiöt eli transientit uku 12 Tasaanumisilmiö eli ransieni 12.1 Kelan kykeminen asajännieeseen Kappaleessa 11.2 kykeiin reaalinen kela asajännieeseen ja ukiiin energian varasoiumisa kelan magneeikenään. Tilanne on esiey uudelleen

Lisätiedot

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän: ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän

Lisätiedot

järjestelmät Luento 4

järjestelmät Luento 4 DEE- Lineaarise järjeselmä Lueno 4 Lineaarise järjeselmä Riso Mionen 3.7.4 Lueno 3 - Recap Lineaarisen differenssiyhälöiden raaiseminen Impulssivaseen äsie Impulssivase ja onvoluuiosumma Lineaarise järjeselmä

Lisätiedot

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A.

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A. 9. Epäoleellise inegraali; inegraalin derivoini paramerin suheen 9.. Epäoleellise aso- ja avaruusinegraali 27. Olkoon = {(x, y) x, y }. Osoia hajaanuminen ai laske arvo epäoleelliselle asoinegraalille

Lisätiedot

PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd

PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd PK-YRITYKSEN ARVONMÄÄRITYS KTT, DI TOIVO KOSKI elearning Communiy Ld Yriyksen arvonmääriys 1. Yriyksen ase- eli subsanssiarvo Arvioidaan yriyksen aseen vasaavaa puolella olevan omaisuuden käypäarvo, josa

Lisätiedot

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla. Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä

Lisätiedot

Esimerkki 2 (Kaupparatsuongelma eli TSP)

Esimerkki 2 (Kaupparatsuongelma eli TSP) 10 Esimerkki 2 (Kaupparatsuogelma eli TSP) Kauppamatkustaja o kierrettävä kaupukia site, että hä lähtee kaupugista 1 ja palaa sie sekä käy jokaisessa muussa kaupugissa täsmällee kerra. Matka kaupugista

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin

Lisätiedot

Luento 11. Stationaariset prosessit

Luento 11. Stationaariset prosessit Lueno Soasisen prosessin ehosperi Saunnaissignaalin suodaus 5..7 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ) ( ) ( ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan

Lisätiedot

Puolijohdekomponenttien perusteet A Ratkaisut 2, Kevät 2017

Puolijohdekomponenttien perusteet A Ratkaisut 2, Kevät 2017 OY/PJKOMP R 017 Puolijohdekomoeie erusee 571A Rakaisu, Kevä 017 1. Massavaikuuslai mukaisesi eemmisö- ja vähemmisövarauksekuljeajie ulo o vakio i, joka riiuu uolijohdemaeriaalisa ja lämöilasa. Kuvasa 1

Lisätiedot

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi Rakennusosien rakennusfysikaalinen oimina Ralf Lindber Professori, Tampereen eknillinen yliopiso ralf.lindber@u.fi Rakenneosien rakennusfysikaalisen oiminnan ymmärämiseksi on välämäönä piirää kolme eri

Lisätiedot

Tehtäviä neliöiden ei-negatiivisuudesta

Tehtäviä neliöiden ei-negatiivisuudesta Tehtäviä epäyhtälöistä Tehtäviä eliöide ei-egatiivisuudesta. Olkoo a R. Osoita, että 4a 4a. Ratkaisu. 4a 4a a) a 0 a ) 0.. Olkoot a,, R. Osoita, että a a a. Ratkaisu. Kerrotaa molemmat puolet kahdella:

Lisätiedot

5. Lineaarisen optimoinnin perusprobleemat

5. Lineaarisen optimoinnin perusprobleemat 2 5. Lieaarise optimoii perusprobleemat Optimoitiprobleema o lieaarise optimoii tehtävä, jos kohdefuktio o lieaarie fuktio ja rajoitusehdot ovat lieaarisia yhtälöitä tai lieaarisia epäyhtälöitä. Yleisessä

Lisätiedot

XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA

XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA II ADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA Laskenaaajuus akiivisuus Määrieäessä radioakiivisen näyeen akiivisuua (A) uloksena saadaan käyeyn miausyseemin anama laskenaaajuus (). = [II.I] jossa =

Lisätiedot

Luento 7 Järjestelmien ylläpito

Luento 7 Järjestelmien ylläpito Luno 7 Järjslmin ylläpio Ahi Salo Tknillinn korkakoulu PL, 5 TKK Järjslmin ylläpidosa Priaallisia vaihohoja Uusiminn rplacmn Ennalahkäisvä huolo mainnanc Korjaaminn rpair ❶ Uusiminn Vioiun komponni korvaaan

Lisätiedot

Kertaa tarvittaessa induktiota ja rekursiota koskevia tietoja.

Kertaa tarvittaessa induktiota ja rekursiota koskevia tietoja. MATEMATIIKAN JA TILASTOTIETEEN LAITOS Aalyysi I Harjoitus 5. 0. 2009 alkavalle viikolle Ratkaisuehdotuksia ( sivua) (Rami Luisto) Laskuharjoituksista saa pistettä, jos laskettu vähitää 50 tehtävää; 3 pistettä,

Lisätiedot

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5 S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,

Lisätiedot

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014 MAT-45 Fourier n meneelmä Merja Laaksonen, TTY 4..4 Sisälö Johano 3. Peruskäsieiä................................... 4.. Parillinen ja parion funkio....................... 7.. Heavisien funkio............................

Lisätiedot

Aikasarja-analyysi I Syksy 2005 Tampereen yliopisto Arto Luoma

Aikasarja-analyysi I Syksy 2005 Tampereen yliopisto Arto Luoma Aikasara-aalyysi I Syksy 5 Tamperee yliopiso Aro Luoma Pääasiallise lähee: Brockwell, Davis: Iroducio o Time Series ad Forecasig Brockwell, Davis: Time Series: Theory ad Mehods (lyh. TSTM).. Johdao. Yleisä

Lisätiedot

W dt dt t J.

W dt dt t J. DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1. Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x

Lisätiedot

YKSIULOTTEINEN JÄNNITYSTILA

YKSIULOTTEINEN JÄNNITYSTILA YKSIULOTTEINEN JÄNNITYSTILA Normaalijäits N N Leikkausjäits Q Q KAKSIULOTTEINEN JÄNNITYSTILA Lerakee STRE SS CONTOURS OF SE 4.4483 8.8966 4.345 65.793 7.4 48.69 9.38 33.586 373.35 Ma 45.4 At Node 438 Mi.9

Lisätiedot

Ratkaisu. Virittäviä puita on kahdeksan erilaista, kun solmut pidetään nimettyinä. Esitetään aluksi verkko kaaviona:

Ratkaisu. Virittäviä puita on kahdeksan erilaista, kun solmut pidetään nimettyinä. Esitetään aluksi verkko kaaviona: Diskreei maemaiikka, sks 00 Harjoius 0, rakaisuisa. Esi viriävä puu suunaamaomalle verkolle G = (X, E, Ψ), kun X := {,,, }, E := { {, }, {, }, {, }, {, }, {, }}, ja Ψ on ieninen kuvaus. Rakaisu. Viriäviä

Lisätiedot

ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +.

ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +. Diffrniaaliyhälö II, harjoius 3, 8 228, rakaisu JL, kuusi sivua a On muunnava linaarinn oisn kraluvun diffrniaaliyhälö ẍ qx f yhäpiäväksi nsimmäisn kraluvun linaarisksi kahdn skalaariyhälön sysmiksi Rak

Lisätiedot

Luento 9. Epälineaarisuus

Luento 9. Epälineaarisuus Lueno 9 Epälineaarisuus 8..6 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiika tukikurssi Kurssikerta 1 Iduktiotodistus Iduktiotodistukse logiikka Tutkitaa tapausta, jossa haluamme todistaa joki väittee P() site, että se pätee kaikilla luoollisissa luvuilla. Eli halutaa

Lisätiedot

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II Dynaamisten systeemien teoriaa Systeemianalyysilaboratorio II 15.11.2017 Vakiot, sisäänmenot, ulostulot ja häiriöt Mallin vakiot Systeemiparametrit annettuja vakioita, joita ei muuteta; esim. painovoiman

Lisätiedot

4 KORKEAMMAN KERTALUVUN LINEAARISET DIFFERENTIAALIYHTÄLÖT. Kertaluvun n lineaarinen differentiaaliyhtälö ns. standardimuodossa on

4 KORKEAMMAN KERTALUVUN LINEAARISET DIFFERENTIAALIYHTÄLÖT. Kertaluvun n lineaarinen differentiaaliyhtälö ns. standardimuodossa on 4 4 KORKEAAN KERTAUVUN INEAARISET DIFFERENTIAAIYHTÄÖT Kertalukua olevassa differetiaalihtälössä F(x,,,, () ) = 0 esiit :e kertaluvu derivaatta () = d /dx ja mahdollisesti alempia derivaattoja, :tä ja x:ää.

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial

Lisätiedot

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA S I G N A A L I T E O R I A, O S A I I I TL98Z SIGNAALITEORIA, OSA III 44 3 Signaalin suodaus...44 3. Sysmin vas aikaasossa... 44 3. Kausaalisuus a sabiilisuus... 46 3.3 Vas aauusasossa... 46 3.4 Ampliudivas

Lisätiedot

Luento 11. tietoverkkotekniikan laitos

Luento 11. tietoverkkotekniikan laitos Lueno Lueno Sokasise signaali ja prosessi II. Sokasise prosessi Pruju Saionaarisuus, ergodisuus Auo ja risikorrelaaio ehospekri.3 Kohinan suodaaminen Sokasinen raja arvo ja derivaaa Winer Khinchin eoreema.3

Lisätiedot

Luento 4. Fourier-muunnos

Luento 4. Fourier-muunnos Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:

Lisätiedot

Tilausohjatun tuotannon karkeasuunnittelu. Tilausohjatun tuotannon karkeasuunnittelu

Tilausohjatun tuotannon karkeasuunnittelu. Tilausohjatun tuotannon karkeasuunnittelu Tilausohjaun uoannon areasuunnielu Tilausohjaussa uoannossa sarjojen muodosaminen ei yleensä ole relevani ongelma, osa uoevaihelu on suura, mä juuri onin peruse MTO-uoannolle Tuoe- ja valmisusraenee ova

Lisätiedot

Insinöörimatematiikka IA

Insinöörimatematiikka IA Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän

Lisätiedot

Jaksollisista funktioista

Jaksollisista funktioista Jaksollisisa funkioisa Jukka Liukkonen Ylioeaja Helsingin ammaikorkeakoulu Sadia Ymärillämme ja joa sisällämme on runsaasi jaksollisina oisuvia ilmiöiä: äivä seuraa yöä, kesä alvea, sydän lyö ahdissa,

Lisätiedot

x v1 y v2, missä x ja y ovat kokonaislukuja.

x v1 y v2, missä x ja y ovat kokonaislukuja. Digiaalinen videonkäsiel Harjoius, vasaukse ehäviin 4-0 Tehävä 4. Emämariisi a: V A 0 V B 0 Hila saadaan kanavekorien (=emämariisin sarakkee) avulla. Kunkin piseen paikka hilassa on kokonaisluvulla kerroujen

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte

VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte 4/ VÄRÄHTELYMEKANIIKKA SESSIO 4: Yhden vaausaseen vaieneva akkvärähely, harninen kuriusheräe LIIKEYHTÄLÖN JOHTO JA RATKAISU Kuvassa n esiey visksisi vaienneun yhden vaausaseen harnisen akkvärähelijän erusalli.

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

Ryhmän osajoukon generoima aliryhmä ja vapaat ryhmät

Ryhmän osajoukon generoima aliryhmä ja vapaat ryhmät Ryhmä osajouko geeroima aliryhmä ja vapaat ryhmät LuK-tutkielma Joose Heioe Matemaattiste tieteide tutkito-ohjelma Oulu yliopisto Kevät 2017 Sisältö Johdato 2 1 Ryhmät ja aliryhmät 2 1.1 Ryhmä.................................

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Differentiaali- ja integraalilaskennan jatkokurssi

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Differentiaali- ja integraalilaskennan jatkokurssi Calculus Lukio 8 MAA Differetiaali- ja itegraalilaskea jatkokurssi Paavo Jäppie Alpo Kupiaie Matti Räsäe Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Differetiaali- ja itegraalilaskea jatkokurssi

Lisätiedot

11. Virheen arvioin-

11. Virheen arvioin- 11. Virhee arvioi- = mi%austarkkude ja määritystarkkuude arvioi4. Erilaisia virheitä: 1. Karkeat virheet Huolima5omuudesta tai työvirheestä johtuva moka Usei huomaa äly5ömää tuloksea 2. Systemaa?set virheet

Lisätiedot

1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1

1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1 Epäyhtälötehtävie ratkaisuja. osa, ks. Solmu 2/200. Kahde positiivise luvu harmoie, geometrie, aritmeettie ja kotraharmoie keskiarvo määritellää yhtälöillä H = 2 +, G = uv, A = u + v 2 u v ja C = u2 +

Lisätiedot

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia 6.4 Variaaiolaskennan oleusen rajoiukse Sivu ss. 27 31 läheien Kirk, ss. 13 143] ja KS, Ch. 5] pohjala Lähökoha oli: jos J:llä on eksremaali (), niin J:n variaaio δj( (), δ()) ():ä pikin on nolla. 1. Välämäön

Lisätiedot

MIKROTEORIA, HARJOITUS 7 MONOPOLI JA OLIGOPOLI

MIKROTEORIA, HARJOITUS 7 MONOPOLI JA OLIGOPOLI MIKROTEORIA, HARJOIT 7 MONOPOLI JA OLIGOPOLI. Amerikkalainen lääkeehdas m lääkeä koimarkkinoilla ja Kanadassa paenin urvin. Yriksen markkinoiniosaso on arvioinu, eä kääneis-ksnäkärä ova p p = = 5 Kaikki

Lisätiedot

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy

Lisätiedot

Luento 3. Fourier-sarja

Luento 3. Fourier-sarja Fourier muuos Rayleigh eoreema Spekriiheys Lueo 3 4..6 Fourier-sarja Fourier-sarja avulla pysyii esiämää jaksollie sigaali, joka jaksoaika o. Fourier-sarja Fourier-kompoei Eäpä aperiodise sigaali, joilla

Lisätiedot

Asuntojen huomiointi varallisuusportfolion valinnassa ja hinnoittelussa

Asuntojen huomiointi varallisuusportfolion valinnassa ja hinnoittelussa TAMPEREEN YLIOPISTO Johamiskorkeakoulu Asunojen huomioini varallisuusporfolion valinnassa ja hinnoielussa Kansanalousiede Pro gradu -ukielma Elokuu 2012 Ohjaaja: Hannu Laurila Tuomo Sola TIIVISTELMÄ Tampereen

Lisätiedot

4.3 Signaalin autokorrelaatio

4.3 Signaalin autokorrelaatio 5 4.3 Sigaali autokorrelaatio Sigaali autokorrelaatio kertoo kuika paljo sigaali eri illä korreloi itsesä kassa (josta imiki). Se o Fourier-muuokse ohella yksi käyttökelpoisimmista sigaalie aalysoitimeetelmistä.

Lisätiedot

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista. JATKUVAT FUNKTIOT JATKUVUUS Jatkuva funktio Epäjatkuva funktio Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista., suomennos Matti Pauna JATKUVUUS Jatkuva funktio Epäjatkuva

Lisätiedot

5 YHDEN VAPAUSASTEEN YLEINEN PAKOTETTU LIIKE

5 YHDEN VAPAUSASTEEN YLEINEN PAKOTETTU LIIKE Värähelymeaiia 5. 5 YHDEN VAPAUSASTEEN YLEINEN PAKOTETTU LIIKE 5. Johao Luvussa 4 araselii yhe vapausasee syseemii harmoisesa heräeesä aiheuuvaa vasea ja havaiii se riippuva pääasiassa syseemi vaimeusesa

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.4 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vasausen piireiden, sisälöjen ja piseiysen luonnehdina ei sido ylioppilasukinolauakunnan arvoselua. Lopullisessa arvoselussa

Lisätiedot

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus Tieonhakumeneelmä Helsingin yliopiso / TKTL.4.04 Toennäköisyyeen perusuva rankkaus Tieonhakumeneelmä Toennäköisyyspohjainen rankkaus Dokumenien haussa ongelmana on löyää käyäjän kyselynä ilmaiseman ieoarpeen

Lisätiedot

Notor Upotettava. 6 www.fagerhult.fi

Notor Upotettava. 6 www.fagerhult.fi Upoeavan Noor-valaisimen avulla kaoon voidaan luoda joko huomaamaomia ai ehokkaan huomioa herääviä ja yhenäisiä valaisinjonoja ilman minkäänlaisia varjosuksia. Pienesä koosaan huolimaa Noor arjoaa hyvin

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio

Lisätiedot

Mittaus- ja säätölaitteet IRIS, IRIS-S ja IRIS-M

Mittaus- ja säätölaitteet IRIS, IRIS-S ja IRIS-M Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M KANSIO 4 VÄLI ESITE Lapinleimu Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M IRIS, IRIS-S Rakenne IRIS muodosuu runko-osasa, sääösäleisä, sääömuerisa ai sääökahvasa

Lisätiedot

Muuttuvan kokonaissensitiivisyyden mallinnus valvontaohjelman riskinarvioinnissa esimerkkinä munintaparvet

Muuttuvan kokonaissensitiivisyyden mallinnus valvontaohjelman riskinarvioinnissa esimerkkinä munintaparvet Muuuvan kokonaissnsiiivisyyn mallinnus valvonaohjlman riskinarvioinnissa simrkkinä muninaarv Tausa: Aimma salmonllarojki FooBUG rojki ja uusi malli muninaarvill 8. EFSA WG: salmonlla muninaarvissa. Samaa

Lisätiedot

KOHINA KULMAMODULAATIOISSA

KOHINA KULMAMODULAATIOISSA OHI ULMMOULIOISS ioliikkiikka I 559 ai äkkäi Osa 4 7 ulaoulaaio ouloii kohia vallissa iskiiaaoi koosuu ivaaoisa ja vhokäyäilaisisa. ivaaoi suaa -sigaali vaihkula uuosopua aajuu uuosa kskiaajuu C ypäillä.

Lisätiedot

u = 2 u (9.1) x + 2 u

u = 2 u (9.1) x + 2 u 9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,

Lisätiedot

8. Jonotusjärjestelmät

8. Jonotusjärjestelmät 8. Joousjärjeselmä lueo8. S-38.45 Lkeeeora erusee Kevä 6 8. Joousjärjeselmä Ssälö Kerausa: ykskerae lkeeeoreee mall Jookur M/M/ alvelja, odousakkaa Sovellus daalkeee mallamsee akeasolla M/M/ alveljaa,

Lisätiedot

Sisältö. Kvantitatiivinen metodologia verkossa. Monitasomallintaminen. Monitasomallit. Regressiomalli dummy-muuttujilla.

Sisältö. Kvantitatiivinen metodologia verkossa. Monitasomallintaminen. Monitasomallit. Regressiomalli dummy-muuttujilla. Kvatitatiivie metodologia verkossa Moitasomallius Pekka Ratae Helsigi yliopisto isältö Moitasomallit Matemaattisia peruskäsitteitä Esimerkki kovariassista Otatavirhe Esimerkki elittävie muuttujie lisäämie

Lisätiedot

6 JÄYKÄN KAPPALEEN TASOKINETIIKKA

6 JÄYKÄN KAPPALEEN TASOKINETIIKKA Dyamiia 6. 6 JÄYKÄN KAPPALEEN TASKINETIIKKA 6. Yleisä Jäyä appalee ieiiassa arasellaa appaleesee aiuaie uloise oimie ja seurausea olea liiee (raslaaio ja roaaio) älisiä yheysiä. Voimie äsielyssä ariaa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiika tukikurssi Kurssikerta 3 1 Lisää iduktiota Jatketaa iduktio tarkastelua esimerki avulla. Yritetää löytää kaava : esimmäise (positiivise) parittoma luvu summalle eli summalle 1 + 3 + 5 + 7 +...

Lisätiedot

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET TRAN TyL:n MUKASN AKUUTUKSN RTYSPRUSTT Tässä peruseessa kaikki suuree koskea eraa, ellei oisin ole määriely. Tässä peruseessa käyey lyhenee: LL Lyhyaikaisissa yösuheissa oleien yönekijäin eläkelaki TaL

Lisätiedot

(x) (tasaisesti suppeneva sarja)

(x) (tasaisesti suppeneva sarja) 6.3 MATEMAATTISET OPERAATIOT SARJOIE Jos srjss o äärellie äärä erejä, void derivoii i iegroii suori huole ereiäi. Ääreöä srj puksess ereiäi operoii o slliu, jos srj suppeee sisesi. Esi. Trksell ääreöä

Lisätiedot

Systeemidynamiikka ja liikkeenjohto

Systeemidynamiikka ja liikkeenjohto Syseemidynamiikka ja liikkeenjoho Opimoiniopin seminaari 21.2.2007 Ilkka Leppänen S yseemianalyysin Laboraorio Esielmä 11 Ilkka Leppänen Opimoiniopin seminaari - Kevä 2007 Sisälö Johdano dynaamisen pääökseneon

Lisätiedot

Fourier n sarjan suppeneminen

Fourier n sarjan suppeneminen Fourier sarja suppeemie Leevi Aala Matematiika pro gradu -tutkielma Jyväskylä yliopisto Matematiika ja tilastotietee laitos 7 Tiivistelmä: Leevi Aala, Fourier sarja suppeemie, matematiika pro gradu -tutkielma,

Lisätiedot

4. Integraalilaskenta

4. Integraalilaskenta 4. Inegrlilsken Joh8elev esimerkki: kun hiukksen pikk s( erivoin jn suheen, sn hiukksen nopeus: v( = s'( Kun nopeus erivoin jn suheen sn kiihyvyys ( = v'( Kääneinen ongelm: hiukksen kiihyvyys on (. Mikä

Lisätiedot

Rekursioyhtälön ratkaisu ja anisogamia

Rekursioyhtälön ratkaisu ja anisogamia Rekursioyhtälö ratkaisu ja aisogamia Eeva Vilkkumaa.0.2008 Rekursioyhtälö ratkaisu (Liite I) Edellie esitelmä: +/m -koiraide (p) ja -aaraide (P) osuus populaatiossa kehittyy rekursiivisesti: p P + + a

Lisätiedot

>LTI-järjestelmä. >vaihespektri. >ryhmäviive

>LTI-järjestelmä. >vaihespektri. >ryhmäviive TL53, Signaalioria (J. Laiinn) 9..4 TTESN, TTESN5X, TTESN5Z Väliko, rakaisu Täydnnä ohisn kuvaan > - ai < -mrkiy kohda. Miä arkoiaan idonsiirokanavan kvalisoinnilla? Esiä lausk kvalisaaorin siirofunkioll,

Lisätiedot

Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015

Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015 Stokastiika perusteet Harjoitukset (Todeäköisyysavaruus, -mitta ja -fuktio) 2..205. Määritä potessijoukko 2,ku (a) {0, } (b) {(0, ]} ja ku (c) (0, ]. Ratkaisu: (a) 2 {;, {0}, {}, {0, }} (b) 2 {;, {(0,

Lisätiedot

ja läpäisyaika lasketaan (esim) integraalilla (5.3.1), missä nyt reitti s on z-akselilla:

ja läpäisyaika lasketaan (esim) integraalilla (5.3.1), missä nyt reitti s on z-akselilla: 10 a) Valo opeus levyssä o vakio v 0 = c / 0, jote ajaksi matkalla L laskemme L t0 = = 0 L. v0 c b) Valo opeus levyssä riippuu z:sta: c c v ( z) = = ( z ) 0 (1 + 3az 3 ) ja läpäisyaika lasketaa (esim)

Lisätiedot