2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t"

Transkriptio

1 Tilasollinen ennusaminen Seppo Pynnönen Tilasoieeen professori, Meneelmäieeiden laios, Vaasan yliopiso. Tausaa Tulevaisuuden ennusaminen on ehkä yksi luoneenomaisimpia piireiä ihmiselle. On ilmeisesi aina iedoseu, eä henkilö, jolla on kyky ennakoida ulevia apahumia edes vähän paremmin kuin muu on huomaavassa eulyöniasiassa. Vaikka ämä aio anaakin huomaavan edun, ei liene kukaan haluaisi omaavansa sellaisa kykyä, eä pysyisi äysin ennakoimaan ulevaisuuden. Elämä kävisi ällaisessa ilaneessa kaikei mahdoomaksi. Niinpä voidaankin myöneisessä hengessä odea, eä unemaon ulevaisuus ei suinkaan ole kirous vaan miä suurimmassa määrin elineho. Olkoonkin näin, mua ihminen on pyrkiny arvioimaan kiihkeäsi unemaona ulevaisuua keinolla millä hyvänsä. Tiedonläheiksi ova kelvannee eläinen sisäelime, kahvinporo, ähde, sammako ja lukemaoma muu eliö. Kirjallisena ennuseläheenä yksi unneuimpia lienee Raamau, jonka peruseella on ehy varsin arkkojakin arvioia niin menneisyydesä kuin ulevaisuudesa. Muun muassa arkkipiispa Usher 600-luvulla pääyi Raamaun peruseella arvioon, eä maapallo on synyny 4004 vuoa ennen ajanlaskumme alkua sunnunaina 23. lokakuua aamulla klo Jos ämä arvio on ennäyksellisen arkka, niin se lienee nykyieämyksen peruseella ennusevirheelään myös ennäyksellisen suuri. Seuraavassa kuienkin arkasellaan ieeellisä lähesymisapaa ennuseiden uoamiseksi ja arkkuuden arvioimiseksi. Ennusamisa apahuu monessa yheydessä. Esimerkiksi voidaan yriää ennusaa auon jarruusmakan piuua nopeuden ja muiden ekijöiden peruseella. Taloudessa kuienkin ennusaminen kykeään yleensä aikaan, jolloin arkaselavana on aikasarja, joka koosuu muuujan arvoisa peräkkäisinä ajanhekinä. 2. Taloudessa käyeyjä yksinkeraisia ennusemalleja Ennuseiden lähökohana on ennuseen ekohekellä käyeävissä oleva ieo. Niinpä voidaankin yksinkeraisesi määriellä, eä ennuse on ämänhekiseen ieoon perusuva odous ulevaisuuden apahumasa (esimerkiksi yriyksen liikevaihdosa ai koko alouden uoannosa). Merkisemällä käyeävissä olevaa informaaioa hekellä kirjaimella I ja arkaselavaa muuujan arvoa hekellä kirjaimella y, voidaan ennuse seuraavalle ajanjaksolle + kirjoiaa maemaaisesi muooon () E y I ), y = + ( + jossa hau y:n päällä arkoiaa, eä kysymyksessä on muuujan ennuseu arvo ja E arkoiaa ässä apauksessa odousarvoa, ehdolla, eä käyeävissä on informaaio I. Ennen kuin mallia () voidaan sovelaa käyännössä on määrieävä odousarvolle operaionaalinen muoo. Se onkin ennusemallin rakenamisen vaaivimpia ehäviä.

2 Puhdas saunnaisprosessi Ennen kuin siirryään arkaselemaan joiakin käyeyimpiä rakaisuja, johdaellaan kaavan () peruseella ärkeä käsie ennusamaomuus. Oleaen, eä unneaan muuujan odousarvo m = E( y ), niin ennusamaomuudella arkoieaan yksinkeraisesi siä, eä ennuseaessa y:n arvoa ei käyeävissä olevasa informaaiosa ole miään hyöyä. Toisin sanoen se ei muua odousa y:n ulevisa arvoisa. Tällöin y:n ehdollinen odousarvo E ( y + I ) on sama kuin sen ei-ehdollinen odousarvo E ( y + ), eli yˆ + = E( y+ I ) = E( y+ ) = m. Tällä käsieellä on keskeinen sija ennusemallia rakenneaessa ja mallin käyökelpoisuua arvioiaessa. Nimiäin, koska () on opimaalinen ennuse käyeävissä olevan informaaion suheen, niin ennusevirheen, eli ennuseen ja oeuuneen arvon erouksen ulisi olla ennusamaona. Käyännössä ää ei-ennuseavuua ukiaan arkaselemalla peräkkäisen havainojen riippuvuua oisisaan. Miana käyeään korrelaaiokerroina. Oheisessa Kuviossa on esimerkki ällaisesa ei-ennuseavasa aikasarjasa, joa kirjallisuudessa kusuaan puhaaksi saunnaisprosessiksi, valkoiseksi kohinaksi (nimi ulee opiikasa) ai virheprosessiksi. Merkiään siä kirjaimella e. Luoneenomaisa ällaiselle sarjalle on erävä suunnanmuuokse, joissa ei ole järjeselmällisä oisuvuua. 3 Valkoinen kohina w Kuvio. Valkoinen kohina Moving Average Jos palaaan malliin (), niin havaiavalle aikasarjalle voidaan kirjoiaa ny esiys (2) y = E ( y I ) + e. Täen, jos y ei ole ennuseavissa, niin y = m + e, eli havaiava sarja vaihelee saunnaisesi keskiarvonsa ympärillä. Käyännössä kuienkin havaiava aikasarja ova yleensä huomaavasi asaisemmin käyäyyviä. Eräs käyökelpoinen malli on (3) y = m + ae + e

3 joa sanoaan liukuvan keskiarvon malliksi eli MA (Moving Average) malliksi. Tässä siis aikasarjalla on yhden askeleen muisi sien, eä osa eilen apahuneesa muuoksesa vaikuaa seuraavaan päivään. Tämä asoiaa sarjaa sien, eä keroimen ollessa posiiivinen edellisen ajanheken muuos vaimenaa uua muuosa, jos ne ova erimerkkisiä ja vahvisaa, jos ne ova samanmerkkisiä. Kuvieellisena esimerkkinä voisi olla osakkeen hinnan muuos, jossa edellisenä päivänä apahunu muuos saa osaja ja myyjä liikkeelle, mua kaupankäynnin hiauden vuoksi kaikkia kauppoja ei ehdiä oeuaa samana päivänä vaan osa jää seuraavalle päivälle. Kerroin a ilmaisee kuinka suurella voimakkuudella edellisen päivän muuos heijasuu seuraavaan päivään. Mallissa () ny E ( y I = m + ae, eli + ) paras ennuse seuraavalle päivälle on m + ae ja näin käyökelpoisen informaaion muodosaa edellisen ajankohdan havaiu saunnaispoikkeama, joka ieyllä keroimella vaikuaa seuraavaan havainoon. 3 y =0.6 e - + e Kuvio 2. MA()-prosessi Malli (3) on helposi yleiseävissä lisäämällä aiempia ermejä jakoksi oikealle puolelle. Auoregressiivinen malli Toinen paljon käyey malli on niin sanou auoregressiivinen (AR) malli, joka yksinkeraisimmillaan on muooa (4) y = c + by + e, jossa c on yheydessä sarjan keskiarvoon kaavan m = c /( b) kaua ( < b < ). Ennuse saa ny muodon E ( y+ I ) = c + by, eli informaaion muodosaa edellisen ajankohdan havaino, joka ieyllä keroimella vaikuaa seuraavaan. Tämä malli voidaan myös helposi yleisää lisäämällä hisoriaermejä oikealle puolelle. Tarkaselaessa edelleen kuvieellisena esimerkkinä pörssikursseja. Ajaellaan ilanne, jossa kurssien nousessa markkinoille ilmaanuu lisää myyjiä, jolloin arjonnan

4 lisäänyessä kurssi alkava laskea. Tällöin kerroin b olisi negaiivinen. Jos aas ajaellaan, eä nouseva kurssi heräävä osoinnosusa markkinoilla olisi kerroin posiiivinen. Kuviossa 3 on esimerkki AR-mallisa. Tyypillisä ällaiselle sarjalle on posiiivisen keroimen apauksessa, eä suuria arvoja seuraa suure arvo ja pieniä piene. Jos kerroin on negaiivinen käyäyyy sarja sahaavasi, eli suuria arvoja seuraa piene arvo ja päinvasoin y =0.8 y r - +e Kuvio 3. Auoregressiivinen prosessi Mallien (3) ja (4) yhdiselmänä saadaan niin sanou auoregressiivinen liukuvan keskiarvon malli ARMA (Auo Regressive Moving Average). (5) y = d + by + ae + e, joka on käyännössä osoiauunu usein hyvinkin käyökelpoiseksi. Rinnasamalla edellisiin pörssiesimerkkeihin yhdisyy ässä kahdenlainen käyäyyminen. Ennusamisessa käyökelpoinen informaaio koosuu edellisesä virheermisä ja edellisesä sarjan arvosa, joka vaikuava seuraavaan havainoon. Saunnaiskulu Eräs ärkeä erikoisapaus Auoregressiivisesä mallisa (4) saadaan, kun b=, jolloin malli ulee muooon y d y + e = + Tällaisa mallia sanoaan saunnaiskuluksi (Random Walk). Auoregressiivisessä mallissa aikaisempien havainojen vaikuus pikkuhiljaa häviää. Saunaiskulussa sen sijaan jokainen aikaisemman havainnon vaikuus ei häviä koskaan. Tällä yksinkeraisella mallilla on keskeinen sija esimerkiksi pörssikurssien mallinamisen eoriassa. Kuvioissa 4 on esimerkki saunnaiskulusa ja kuviossa 5 HEX yleisindeksin kuvaaja. Kuvio ova luoneelaan oisensa kalaisia.

5 Saunnaiskulku Y Aika Kuvio 4. Saunnaiskulku HEX yleisindeksi Indeksi Aika Kuvio 5. HEX yleisindeksi Tyypillisä ällaiselle sarjalle on, eä paras ennuse seuraavalle päivälle on viimeksi havaiu arvo. Yksinkerainen kasvumalli Useissa apauksissa riiävä arvio ulevaisuudesa saadaan kun unneaan kasvuvauhi. Esimerkiksi alouden, jonkin oimialan ai yriyksen kehiyksen luonnehdinnassa usein riiää kun unneaan sen vuouinen kasvuvauhi. Tällöin, jos vaikkapa yriyksen liikevaihdon vuouisa kasvua (vuouinen suheellinen muuos) kuvaaan paramerilla

6 g, niin jakuva-aikaisa mallia käyeäessä ja hyödynämällä jälleen suheellisen yksinkeraisa maemaiikkaa saadaan kasvumalliksi ajan suheen (6) g Y = Y0e, jossa Y 0 on yriyksen liikevaiho arkaseluajanjakson alussa (=0) ja e on koulumaemaiikasa uu Neperin luku (2.78 ). Kasvumallin peruseella on helppoa arvioida esimerkiksi kuinka monessa vuodessa liikevaiho kaksinkeraisuu. Mallisa (6) saaavaa vasausa sanoaan joskus 70 säännöksi, sillä yksinkeraisella laskuoimiuksella saadaan, eä kaksinkeraisumisaika on 0.693/g, eli likimain 0.70/g. Kasvumalli ja Suomen alouden kasvun ennusaminen Tarkasellaan esimerkkinä Suomen reaalisa bruokansanuoea vuoden 990 hinnoin ajanjaksola Merkiään Y:llä bk:a, muueaan yhälö (6) logarimiseen muooon ja lisäään virheermi, jolloin saadaan ilasollinen malli (7) y = y 0 + g + v, jossa y = ln(y) ja v on virheermi. Tällainen malli saadaan helposi esimoiua havainoaineisosa. Tarkasellaan kuienkin paramerien y0 ja g esimaaien sijaan ensin kuinka virheermi v käyäyyy. Senhän piäisi olla valkoisa kohinaa, eli kuvion () kalaisa. Kuienkin kuviosa 6 nähdään väliömäsi, eä näin ei asia varmasikaan ole. Enemmän se muisuaa kuvion 3 ilannea. 0.2 Virheermin aikasarja Virheermi Aika Kuvio 6. Talouden kasvumallin virheermin aikasarja. Niinpä osoiauuu, eä mallia voidaan oleellisesi paranaa, kun mallinneaan virheermi seuraavan auoregressiivisen prosessin mukaisesi (8) v a v + a2v + e = 2

7 Esimoiniulokse on esiey aulukossa 2. Taulukko 2. Kasvumallin (7) paramerien esimaai. Parameri Esimaai Keskivirhe -arvo p-arvo y g a a Keroimen g esimaain arvo arkoiaa, eä Suomen aloudellinen kasvu on arkaseluajanjakson peruseella arvioiuna pikällä aikavälillä 2.5 prosenia. Koska ilasoaineisoon perusuvaan arvioiniin liiyy aina saunnaisvirheä, on syyä liiää arvioon myös virhemarginaali, jolla äsmällisemmin ilmaisuna arkoieaan luoamusvälejä. Apuna käyeään keskivirheä. Kasvuesimaain virhearvio ässä apauksessa on 0.4 proseniyksikköä. Taulukon - ja p-arvo ilmaiseva keroimien niin sanou ilasollise merkisevyyde, joihin ässä ei sen enempää kuienkaan puuua. Esimoidun mallin peruseella voidaan ny myös laaia ennuseia. Keskimääräinen kasvuennuse on 2.5 prosenia, mua ennuseeseen vaikuaa myös kahden edellisen vuoden virheermi. Hyödynämällä jäännösermin AR-rakenne saadaan vuoden 998 kasvuennuseeksi niinkin korkea kuin 5.5 prosenia. Viime vuoden syksyllä (997) ennuselaiokse povasiva älle vuodelle (998) melko yksimielisesi 3.5 prosenin ieämissä olevaa kasvua. Tänä keväänä ennuseia on kuienkin korjau selväsi ylös; ETLA:n ennuse on 4 ja PTT:n 4.5 prosenia, joen hajona on huomaavasi suurempaa miä se oli vielä viime syksynä. Jos kasvumallilla (7) ehdään ennuse älle vuodelle ilman viime vuoden bk:n ennakkoieoa anaa se ennuseeksi 4.2 prosenia. Ennuseiden vaihelevuus keroo ilaneen epävarmuudesa. Viime vuosi näyää jälleen jäävän hisoriaan suuren ennusevirheiden vuoena alouden kasvun suheen. Vuoden 996 syksyllä esimerkiksi PTT ennusi vuoden 997 kasvuksi 2.5 prosenia ja muu ärkeimmä laiokse lähes ykskanaan 3.5 prosenia. Tuoreimman ennakkoiedon mukaan oeuunu kasvu oli kuienkin 5.9 prosenia! Opimisisimmakin ennusee jäivä äen melkein 2.5 proseniyksikköä alle oeuuneen. Romahdusvuoena 99 pessimisisimmäkin ennusee yliampuiva seisemällä proseniyksiköllä! Kysymyksessähän ieysi oli eriäin poikkeava vuosi. Virhemarginaali ennuseille Kuen yllä olemme havainnee ennusamisilanne on poikkeuksea vaikea. Luoneenomaisa ennuseille ieysi on, eä niiden vaihelun ulee olla pienempää kuin odellisuuden. Näin siksi, eä oeuuvassa apahumassa osaekijänä olevaa saunnaisuua ei kannaa ennusaa. Täen on myös luonnollisa, eä ennusee poikkeava odellisisa arvoisa. Kuienkin, joa ennuseiden käyäjä saisiva jonkinlaisen kuvan ilaneeseen liiyväsä epävarmuudesa, olisi ennuseisiin liieävä laauserifikaai. Tällaisina oimisiva virhemarginaali, joia liieään jo gallup-

8 arvioineihin. Voiaisiin käyää esimerkiksi vaikkapa niinkin kapeia kuin 50 prosenin luoamusvälejä, joka siis ilmoiava raja joiden sisäpuolelle oeuuvan arvon voidaan odoaa sauvan 50 prosenin odennäköisyydellä. Esimerkiksi edellä arkasellun kasvumallin 50 prosenin virhemarginaali on 2.7 proseniyksikköä. Toisin sanoen kun mallin anama kasvuennuse älle vuodelle on 5.5 prosenia, niin 50 prosenin varmuudella sen ulisi olla 2.8:n ja 8.2:n prosenin välillä. Tässä on siis 25 prosenin odennäköisyys, eä kasvu jää alle 2.8 prosenia, samoin 25 prosenin oennäköisyys, eä se yliää huikea 8.2 prosenia. Huomaakoon, eä alarajakin yliää mallin anaman pikän aikavälin 2.5 prosenin kasvun. Tämä on ulkiavissa sien, eä korkeasuhdanne näyää jakuvan ainakin vielä ämän vuoden. Koska ukimuslaiokse eivä oisaiseksi julkaise luoamusvälejä vaan desimaalin arkkuudella olevia yksiäisiä ennuseia, jää epävarmuuden arvioini ainoasaan käyäjän oman aidon varaan. Jonkinlaisa käsiysä epävarmuudesa saa kun verailee kuinka ennusee poikkeava oisisaan. Tämäkään ei osin anna aina kovin hyvää kuvaa ilaneesa, kuen yllä jo odeiin. Niinpä virhemarginaalien liiäminen ennuseisiin olisi eriäin arpeellisa.

12. ARKISIA SOVELLUKSIA

12. ARKISIA SOVELLUKSIA MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista Rahoiusriski ja johdannaise Mai Esola lueno Sokasisisa prosesseisa . Markov ominaisuus Markov -prosessi on sokasinen prosessi, missä ainoasaan muuujan viimeinen havaino on relevani muuujan seuraavaa arvoa

Lisätiedot

PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd

PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd PK-YRITYKSEN ARVONMÄÄRITYS KTT, DI TOIVO KOSKI elearning Communiy Ld Yriyksen arvonmääriys 1. Yriyksen ase- eli subsanssiarvo Arvioidaan yriyksen aseen vasaavaa puolella olevan omaisuuden käypäarvo, josa

Lisätiedot

KOMISSION KERTOMUS. Suomi. Perussopimuksen 126 artiklan 3 kohdan nojalla laadittu kertomus

KOMISSION KERTOMUS. Suomi. Perussopimuksen 126 artiklan 3 kohdan nojalla laadittu kertomus EUROOPAN KOMISSIO Bryssel 27.2.205 COM(205) 4 final KOMISSION KERTOMUS Suomi Perussopimuksen 26 ariklan 3 kohdan nojalla laadiu keromus FI FI KOMISSION KERTOMUS Suomi Perussopimuksen 26 ariklan 3 kohdan

Lisätiedot

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET TRAN TyL:n MUKASN AKUUTUKSN RTYSPRUSTT Tässä peruseessa kaikki suuree koskea eraa, ellei oisin ole määriely. Tässä peruseessa käyey lyhenee: LL Lyhyaikaisissa yösuheissa oleien yönekijäin eläkelaki TaL

Lisätiedot

Laskelmia verotuksen painopisteen muuttamisen vaikutuksista dynaamisessa yleisen tasapainon mallissa

Laskelmia verotuksen painopisteen muuttamisen vaikutuksista dynaamisessa yleisen tasapainon mallissa Laskelmia verouksen painopiseen muuamisen vaikuuksisa dynaamisessa yleisen asapainon mallissa Juha Kilponen ja Jouko Vilmunen TTässä arikkelissa esieään laskelmia siiä, mien verouksen painopiseen siiräminen

Lisätiedot

Öljyn hinnan ja Yhdysvaltojen dollarin riippuvuussuhde

Öljyn hinnan ja Yhdysvaltojen dollarin riippuvuussuhde Öljyn hinnan ja Yhdysvalojen dollarin riippuvuussuhde Kansanalousiede Pro gradu -ukielma Talousieeiden laios Tampereen yliopiso Toukokuu 2010 Jari Hännikäinen TIIVISTLMÄ Tampereen yliopiso Talousieeiden

Lisätiedot

XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA

XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA II ADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA Laskenaaajuus akiivisuus Määrieäessä radioakiivisen näyeen akiivisuua (A) uloksena saadaan käyeyn miausyseemin anama laskenaaajuus (). = [II.I] jossa =

Lisätiedot

Finanssipolitiikan tehokkuudesta Yleisen tasapainon tarkasteluja Aino-mallilla

Finanssipolitiikan tehokkuudesta Yleisen tasapainon tarkasteluja Aino-mallilla BoF Online 3 29 Finanssipoliiikan ehokkuudesa Yleisen asapainon arkaseluja Aino-mallilla Juha Kilponen Tässä julkaisussa esiey mielipiee ova kirjoiajan omia eiväkä välämää edusa Suomen Pankin kanaa. Suomen

Lisätiedot

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus Tieonhakumeneelmä Helsingin yliopiso / TKTL.4.04 Toennäköisyyeen perusuva rankkaus Tieonhakumeneelmä Toennäköisyyspohjainen rankkaus Dokumenien haussa ongelmana on löyää käyäjän kyselynä ilmaiseman ieoarpeen

Lisätiedot

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä

Lisätiedot

Tietoliikennesignaalit

Tietoliikennesignaalit ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime

Lisätiedot

Kuntaeläkkeiden rahoitus ja kunnalliset palvelut

Kuntaeläkkeiden rahoitus ja kunnalliset palvelut Kunaeläkkeiden rahoius ja kunnallise palvelu I LA Rapori LA Repors 30.1.2013 No 4 Kunaeläkkeiden rahoius ja kunnallise palvelu Jukka Lassila * Niku Määänen ** armo Valkonen *** * LA linkeinoelämän ukimuslaios,

Lisätiedot

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi Rakennusosien rakennusfysikaalinen oimina Ralf Lindber Professori, Tampereen eknillinen yliopiso ralf.lindber@u.fi Rakenneosien rakennusfysikaalisen oiminnan ymmärämiseksi on välämäönä piirää kolme eri

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,

Lisätiedot

1 Excel-sovelluksen ohje

1 Excel-sovelluksen ohje 1 (11) 1 Excel-sovelluksen ohje Seuraavassa kuvaaan jakeluverkonhalijan kohuullisen konrolloiavien operaiivisen kusannusen (SKOPEX 1 ) arvioimiseen arkoieun Excel-sovelluksen oimina, mukaan lukien sovelluksen

Lisätiedot

2. Suoraviivainen liike

2. Suoraviivainen liike . Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus

Lisätiedot

W dt dt t J.

W dt dt t J. DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan

Lisätiedot

Hoivapalvelut ja eläkemenot vuoteen 2050

Hoivapalvelut ja eläkemenot vuoteen 2050 VATT-TUTKIMUKSIA 94 VATT-RESEARCH REPORTS Pekka Parkkinen Hoivapalvelu ja eläkemeno vuoeen 25 Valion aloudellinen ukimuskeskus Governmen Insiue for Economic Research Helsinki 22 ISBN 951-561-425-2 ISSN

Lisätiedot

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen Soimukseneon dynamiikka: johdano ja haiallinen valikoiuminen Ma-2.442 Oimoinioin seminaari Elise Kolola 8.4.2008 S yseemianalyysin Laboraorio Esielmä 4 Elise Kolola Oimoinioin seminaari - Kevä 2008 Esiyksen

Lisätiedot

5. Vakiokertoiminen lineaarinen normaaliryhmä

5. Vakiokertoiminen lineaarinen normaaliryhmä 1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa

Lisätiedot

SÄHKÖN HINTA POHJOISMAISILLA SÄHKÖMARKKINOILLA

SÄHKÖN HINTA POHJOISMAISILLA SÄHKÖMARKKINOILLA TAMPEREEN YLIOPISTO Talousieeiden laios SÄHKÖN HINTA POHJOISMAISILLA SÄHKÖMARKKINOILLA Kansanalousiede Pro gradu -ukielma Tammikuu 2009 Ohjaaja: Hannu Laurila Tero Särkijärvi TIIVISTELMÄ Tampereen yliopiso

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

JYVÄSKYLÄN YLIOPISTO Taloustieteiden tiedekunta TARJONTA SUOMEN ASUNTOMARKKINOILLA

JYVÄSKYLÄN YLIOPISTO Taloustieteiden tiedekunta TARJONTA SUOMEN ASUNTOMARKKINOILLA JYVÄSKYLÄN YLIOPISTO Talousieeiden iedekuna TARJONTA SUOMEN ASUNTOMARKKINOILLA Kansanalousiede Pro gradu -ukielma Helmikuu 2006 Laaia: Janne Lilavuori Ohaaa: Professori Kari Heimonen JYVÄSKYLÄN YLIOPISTO

Lisätiedot

Tuotannon suhdannekuvaajan menetelmäkuvaus

Tuotannon suhdannekuvaajan menetelmäkuvaus 1(15) Tuoannon suhdannekuvaajan meneelmäkuvaus Luku 1 Luku 2 Luku 3 Luku 4 Tuoannon suhdannekuvaajan yleiskuvaus Tuoannon suhdannekuvaajan julkaisuaikaaulu, revisoinikäyännö ja jakelu Tuoannon suhdannekuvaajan

Lisätiedot

Kokonaishedelmällisyyden sekä hedelmällisyyden keski-iän vaihtelu Suomessa vuosina 1776 2005

Kokonaishedelmällisyyden sekä hedelmällisyyden keski-iän vaihtelu Suomessa vuosina 1776 2005 Kokonaishedelmällisyyden sekä hedelmällisyyden keski-iän vaihelu Suomessa vuosina 1776 2005 Heli Elina Haapalainen (157 095) 26.11.2007 Joensuun Yliopiso Maemaais- luonnonieeiden iedekuna Tieojenkäsielyieeen

Lisätiedot

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän: ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän

Lisätiedot

VATT-KESKUSTELUALOITTEITA VATT DISCUSSION PAPERS. JULKISEN TALOUDEN PITKÄN AIKAVÄLIN LASKENTAMALLIT Katsaus kirjallisuuteen

VATT-KESKUSTELUALOITTEITA VATT DISCUSSION PAPERS. JULKISEN TALOUDEN PITKÄN AIKAVÄLIN LASKENTAMALLIT Katsaus kirjallisuuteen VATT-KESKUSTELUALOITTEITA VATT DISCUSSION PAPERS 445 JULKISEN TALOUDEN PITKÄN AIKAVÄLIN LASKENTAMALLIT Kasaus kirjallisuueen Juho Kosiainen Valion aloudellinen ukimuskeskus Governmen Insiue for Economic

Lisätiedot

Mittaus- ja säätölaitteet IRIS, IRIS-S ja IRIS-M

Mittaus- ja säätölaitteet IRIS, IRIS-S ja IRIS-M Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M KANSIO 4 VÄLI ESITE Lapinleimu Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M IRIS, IRIS-S Rakenne IRIS muodosuu runko-osasa, sääösäleisä, sääömuerisa ai sääökahvasa

Lisätiedot

Sijoitusriskien ja rahoitustekniikan vaikutus TyEL-maksun kehitykseen

Sijoitusriskien ja rahoitustekniikan vaikutus TyEL-maksun kehitykseen Ismo Risku ja Kasimir Kaliva Sijoiusriskien ja rahoiusekniikan vaikuus TyEL-maksun kehiykseen Eläkeurvakeskuksen keskuselualoieia 009:6 Ismo Risku ja Kasimir Kaliva Sijoiusriskien ja rahoiusekniikan vaikuus

Lisätiedot

Lyhyiden ja pitkien korkojen tilastollinen vaihtelu

Lyhyiden ja pitkien korkojen tilastollinen vaihtelu Lyhyiden ja pikien korkojen ilasollinen vaihelu Tomi Pekka Juhani Marikainen Joensuun Yliopiso Maemaais-luonnonieeellinen iedekuna / Tieojenkäsielyieeen ja ilasoieeen laios / Tilasoiede Pro Gradu -ukielma

Lisätiedot

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän

Lisätiedot

Termiinikurssi tulevan spot-kurssin ennusteena

Termiinikurssi tulevan spot-kurssin ennusteena TAMPEREEN YLIOPISTO Talousieeiden laios Termiinikurssi ulevan spo-kurssin ennuseena Kansanalousiede Pro gradu-ukielma Talousieeiden laios Tampereen yliopiso 28.2.2006 Ville Kivelä 1 TIIVISTELMÄ Tampereen

Lisätiedot

KOMISSION VALMISTELUASIAKIRJA

KOMISSION VALMISTELUASIAKIRJA EUROOPAN UNIONIN NEUVOSTO Bryssel, 23. oukokuua 2007 (24.05) (OR. en) Toimielinen välinen asia: 2006/0039 (CNS) 9851/07 ADD 2 N 239 RESPR 5 CADREN 32 LISÄYS 2 I/A KOHTAA KOSKEVAAN ILMOITUKSEEN Läheäjä:

Lisätiedot

OSINKOJEN JA PÄÄOMAVOITTOJEN VEROTUKSEN VAIKUTUKSET OSAKKEEN ARVOON

OSINKOJEN JA PÄÄOMAVOITTOJEN VEROTUKSEN VAIKUTUKSET OSAKKEEN ARVOON AMPN YLIOPISO Kauppaieeien laios OSINKOJN JA PÄÄOMAVOIOJN VOUKSN VAIKUUKS OSAKKN AVOON Laskenaoimi Seminaariukielma Helmikuu 2004 Ohjaaja: Ismo Vuorinen apani Höök 3 SISÄLLYS JOHDANO... 4. ukielman ausaa...4.2

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 8 (viikko 14) Tehävä 1 LAD-käyrä siiryy ylöspäin. Ulkomaisen hinojen nousessa oman maan reaalinen vaihokurssi heikkenee 1 vaihoase vahvisuu IS-käyrä

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto Kojemeeorologia Sami Haapaala syksy 03 Fysiika laios, Ilmakehäieeide osaso Mialaieide dyaamise omiaisuude Dyaamise uusluvu määriävä mie mialaie käyäyyy syöeide muuuessa Apua käyeää differeiaaliyhälöiä,

Lisätiedot

Lyhyt johdanto Taylorin sääntöön

Lyhyt johdanto Taylorin sääntöön K a n s a n a l o u d e l l i n e n a i k a k a u s k i r j a 1 0 6. v s k. 2 / 2 0 1 0 Lyhy johdano Taylorin säänöön Juha Tervala Johaja Aboa Cenre for Economics 1. Johdano Taylorin säänö on sen kehiäjän

Lisätiedot

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A.

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A. 9. Epäoleellise inegraali; inegraalin derivoini paramerin suheen 9.. Epäoleellise aso- ja avaruusinegraali 27. Olkoon = {(x, y) x, y }. Osoia hajaanuminen ai laske arvo epäoleelliselle asoinegraalille

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial

Lisätiedot

Asuntojen huomiointi varallisuusportfolion valinnassa ja hinnoittelussa

Asuntojen huomiointi varallisuusportfolion valinnassa ja hinnoittelussa TAMPEREEN YLIOPISTO Johamiskorkeakoulu Asunojen huomioini varallisuusporfolion valinnassa ja hinnoielussa Kansanalousiede Pro gradu -ukielma Elokuu 2012 Ohjaaja: Hannu Laurila Tuomo Sola TIIVISTELMÄ Tampereen

Lisätiedot

Diskreetillä puolella impulssi oli yksinkertainen lukujono:

Diskreetillä puolella impulssi oli yksinkertainen lukujono: DEE-00 ineaarise järjeselmä Harjoius 5, rakaisuehdoukse [johdano impulssivaseeseen] Jakuva-aikaisen järjeselmän impulssivase on vasaavanlainen järjeselmäyökalu kuin diskreeillä puolellakin: impulssivase

Lisätiedot

Suomen kalamarkkinoiden analyysi yhteisintegraatiomenetelmällä

Suomen kalamarkkinoiden analyysi yhteisintegraatiomenetelmällä KALA- JA RIISTARAPORTTEJA nro 374 Jukka Laiinen Jari Seälä Kaija Saarni Suomen kalamarkkinoiden analyysi yheisinegraaiomeneelmällä Helsinki 006 Julkaisija Riisa- ja kalaalouden ukimuslaios KUVAILULEHTI

Lisätiedot

Painevalukappaleen valettavuus

Painevalukappaleen valettavuus Painevalukappaleen valeavuus Miskolc Universiy Sefan Fredriksson Swecas AB Muokau ja lisäy käännös: Tuula Höök, Pekka Savolainen Tampereen eknillinen yliopiso Painevalukappale äyyy suunniella sien, eä

Lisätiedot

Notor Upotettava. 6 www.fagerhult.fi

Notor Upotettava. 6 www.fagerhult.fi Upoeavan Noor-valaisimen avulla kaoon voidaan luoda joko huomaamaomia ai ehokkaan huomioa herääviä ja yhenäisiä valaisinjonoja ilman minkäänlaisia varjosuksia. Pienesä koosaan huolimaa Noor arjoaa hyvin

Lisätiedot

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5 S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 12: Yhden vapausasteen vaimenematon pakkovärähtely, harmoninen

VÄRÄHTELYMEKANIIKKA SESSIO 12: Yhden vapausasteen vaimenematon pakkovärähtely, harmoninen / VÄRÄHTELYMEKANIIKKA SESSIO : Yhden vapausaseen vaieneaon pakkoväähely, haoninen kuoiusheäe JOHDANTO Ulkoisisa kuoiuksisa aiheuuvaa väähelyä sanoaan pakkoväähelyksi. Jos syseeissä on vaiennusa, on kyseessä

Lisätiedot

OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA 2 OV. Isto Jokinen 2012. 1. Mekaniikka 2

OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA 2 OV. Isto Jokinen 2012. 1. Mekaniikka 2 OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA OV Io Jokinen 01 SISÄLTÖ SIVU 1. Mekaniikka Nopeu Kekinopeu Kehänopeu 3 Kiihyvyy 3 Puoamikiihyvyy 4 Voima 5 Kika 6 Työ 7 Teho 8 Paine 9

Lisätiedot

Sanomalehtien kysyntä Suomessa Sanomalehtien kysynnän kehittymistä selittävä ekonometrinen malli

Sanomalehtien kysyntä Suomessa Sanomalehtien kysynnän kehittymistä selittävä ekonometrinen malli Sanomalehien kysynä Suomessa Sanomalehien kysynnän kehiymisä seliävä ekonomerinen malli Heikki Nikali, Iella BI Research series - Tukimussarja 7/2014 12.3.2014 FOR INTERNAL USE ONLY VAIN SISÄISEEN KÄYTTÖÖN

Lisätiedot

Kuukausi- ja kuunvaihdeanomalia Suomen osakemarkkinoilla vuosina 2005-2013

Kuukausi- ja kuunvaihdeanomalia Suomen osakemarkkinoilla vuosina 2005-2013 Kauppaieeellinen iedekuna Talousjohaminen Kandidaainukielma Kuukausi- ja kuunvaihdeanomalia Suomen osakemarkkinoilla vuosina 2005-2013 Monhly and Turn-of-he-Monh anomaly in he Finnish sock marke during

Lisätiedot

RIL 256-2010 Suomen Rakennusinsinöörien Liitto RIL ry

RIL 256-2010 Suomen Rakennusinsinöörien Liitto RIL ry Suomen Rakennusinsinöörien Liio RIL ry Julkisen hankinojen kehiämismalli Tuoavuuden paranaminen TUKEFIN-meneelmällä 2 RIL 256-2010 RILin julkaisuilla on oma koisivu, joka löyyy osoieesa www.ril.fi Kirjakauppa

Lisätiedot

Luento 4. Fourier-muunnos

Luento 4. Fourier-muunnos Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:

Lisätiedot

f x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d)

f x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d) Tehävä 1. Oleeaan, eä on käössä jakuva kuva, jossa (,, ) keroo harmaasävn arvon paikassa (, ) ajanhekenä. Dnaaminen kuva voidaan esiää Talor sarjana: d d d d d d O ( +, +, + ) = (,, ) + + + + ( ). (4a)

Lisätiedot

KEHITTYNEIDEN VALUUTTAMARKKINOIDEN TEHOKKUUS: USD INDEKSI

KEHITTYNEIDEN VALUUTTAMARKKINOIDEN TEHOKKUUS: USD INDEKSI Kauppaieeellinen iedekuna Talouden ja yriysjuridiikan laios Kandidaainukielma Rahoius KEHITTYNEIDEN VALUUTTAMARKKINOIDEN TEHOKKUUS: USD INDEKSI Currency Marke Efficiency of Developed Counries: USD Index

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.4 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vasausen piireiden, sisälöjen ja piseiysen luonnehdina ei sido ylioppilasukinolauakunnan arvoselua. Lopullisessa arvoselussa

Lisätiedot

Tekes tänään (ja huomenna?) Pekka Kahri Palvelujohtaja, Tekes Fortune seminaari 21.8.2013

Tekes tänään (ja huomenna?) Pekka Kahri Palvelujohtaja, Tekes Fortune seminaari 21.8.2013 Tekes änään (ja huomenna?) Pekka Kahri Palvelujohaja, Tekes Forune seminaari 21.8.2013 Rahoiamme sellaisen innovaaioiden kehiämisä, joka ähäävä kasvun ja uuden liikeoiminnan luomiseen Yriysen kehiysprojeki

Lisätiedot

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt SMG-500 Verolasennan numeerise meneelmä Ehdouse harjoiusen 4 raaisuisi Haeaan ensin ehävän analyyinen raaisu: dx 0 0 0 0 dx 00e = 0 = 00e 00 x = e + = 5e + alueho: x(0 = 0 0 x 0 = 5e + = 0 = 5 0 0 0 5

Lisätiedot

JLP:n käyttämättömät mahdollisuudet. Juha Lappi

JLP:n käyttämättömät mahdollisuudet. Juha Lappi JLP:n äyämäömä mahdollisuude Juha Lappi LP ehävä p z = a x + b z 0 Max or Min (.) 0 0 = = subjec o he following consrains: c a x + b z C, =,, q p q K r (.2) = = m n i ij K (.3) i= j= ij x xw= 0, =,, p

Lisätiedot

A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat!

A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat! MAA Koe 7..03 A-osio. Ei laskina! Valise seuraavisa kolmesa ehäväsä vain kaksi joihin vasaa! A. a) Mikä on funkion f(x) määrieljoukko, jos f( x) x b) Muua ulomuooon: 4a 8a 4 A. a) Rakaise hälö: x 4x b)

Lisätiedot

Silloin voidaan suoraan kirjoittaa spektrin yhtälö käyttämällä hyväksi suorakulmaisen pulssin Fouriermuunnosta sekä viiveen vaikutusta: ( ) (

Silloin voidaan suoraan kirjoittaa spektrin yhtälö käyttämällä hyväksi suorakulmaisen pulssin Fouriermuunnosta sekä viiveen vaikutusta: ( ) ( TT/TV Inegraalimuunnokse Fourier-muunnos, ehäviä : Vasauksia Meropolia/. Koivumäki v(. Määriä oheisen signaalin Fourier-muunnos. Vinkki: Superposiio, viive. Voidaan sovelaa superposiioperiaaea, koska signaalin

Lisätiedot

Piennopeuslaite FMH. Lapinleimu

Piennopeuslaite FMH. Lapinleimu Piennopeuslaie FMH Floormaser FMH on puolipyöreä uloilmalaie, joka on arkoieu käyeäväksi syrjäyävään ilmanjakoon Floormaser- järjeselmässä. KANSIO VÄLI 6 ESITE Lapinleimu.1.0 Floormaser Yleisä Floormaser

Lisätiedot

Luento 7 Järjestelmien ylläpito

Luento 7 Järjestelmien ylläpito Luno 7 Järjslmin ylläpio Ahi Salo Tknillinn korkakoulu PL, 5 TKK Järjslmin ylläpidosa Priaallisia vaihohoja Uusiminn rplacmn Ennalahkäisvä huolo mainnanc Korjaaminn rpair ❶ Uusiminn Vioiun komponni korvaaan

Lisätiedot

Työ 2: 1) Sähkönkulutuksen ennustaminen SARIMAX-mallin avulla 2) Sähkön hankinnan optimointi

Työ 2: 1) Sähkönkulutuksen ennustaminen SARIMAX-mallin avulla 2) Sähkön hankinnan optimointi Ma-2.3132 Syseemianalyysilaboraorio I Työ 2: 1) Sähkönkuluuksen ennusaminen SARIMAX-mallin avulla 2) Sähkön hankinnan opimoini 1 yö 2 Aikasarjamalli erään yriyksen sähkönkuluukselle SARIMAX-malli: kausivaihelu,

Lisätiedot

Piennopeuslaite FMP. Lapinleimu

Piennopeuslaite FMP. Lapinleimu Piennopeuslaie FMP Floormaser FMP on lieä uloilmalaie, joka on arkoieu käyeäväksi syrjäyävään ilmanjakoon Floormaser-järjeselmässä. KANSIO 4 VÄLI 6 ESITE 6 Lapinleimu.1.00 Floormaser Yleisä Floormaser

Lisätiedot

F E . 1. a!? # % b &., @ $ c + ± = e < > [ \ ] ^ g λ Ø ø φ " 1 / 2 h Á á É. j À à È è Ì ì Ò k ò ù Ä ä Ë ë Ï. o à ã Ñ ñ Õ õ F` = 6mm = 9/12mm = 19mm

F E . 1. a!? # % b &., @ $ c + ± = e < > [ \ ] ^ g λ Ø ø φ  1 / 2 h Á á É. j À à È è Ì ì Ò k ò ù Ä ä Ë ë Ï. o à ã Ñ ñ Õ õ F` = 6mm = 9/12mm = 19mm : A ➎ C ➎ B D = 6mm = 9/12mm = a!? # % b &., @ $ c + ± = d * / : ; ( ) e < > [ \ ] ^ f { } ~ µ ß Ω g λ Ø ø φ " 1 / 2 h Á á É i é Í í Ó ó Ú ú j À à È è Ì ì Ò k ò ù Ä ä Ë ë Ï l ï Ö ö Ü ü ÿ  m â Ê ê î ô

Lisätiedot

Seinämien risteyskohdat

Seinämien risteyskohdat CAE DS Painevalukappaleen suunnielu Sefan Fredriksson Seinämien riseyskohda Sefan Fredriksson SweCas Käännös: Pekka Savolainen ja Tuula Höök Tampereen eknillinen yliopiso Riseyskoha muodosuu kun kaksi

Lisätiedot

TALOUSTIETEIDEN TIEDEKUNTA. Lauri Tenhunen KAIKKIALLA LÄSNÄ OLEVAN TIETOTEKNIIKAN TALOUSTIETEELLISTÄ ANALYYSIÄ

TALOUSTIETEIDEN TIEDEKUNTA. Lauri Tenhunen KAIKKIALLA LÄSNÄ OLEVAN TIETOTEKNIIKAN TALOUSTIETEELLISTÄ ANALYYSIÄ TLOUSTIETEIDEN TIEDEKUNT Lauri Tenhunen KIKKILL LÄSNÄ OLEVN TIETOTEKNIIKN TLOUSTIETEELLISTÄ NLYYSIÄ Pro gradu ukielma Yleinen alousiede Tammikuu 03 SISÄLLYS Sisällys Kuvio ja auluko JOHDNTO... 5 VERKOSTOTLOUSTIETEEN

Lisätiedot

Built Environment Process Reengineering (PRE)

Built Environment Process Reengineering (PRE) RAKENNETTU YMPÄRISTÖ Tarviaanko ää palkkia? Buil Environmen Process Reengineering (PRE) Infra FINBIM -projeki on saavuamassa visionsa, Buil Environmen Process Innovaions Reengineering Miä on Infra FINBIM?

Lisätiedot

MÄNTTÄ-VILPPULAN KAUPUNKI. Mustalahden asemakaava Liikenneselvitys. Työ: E23641. Tampere 18.5.2010

MÄNTTÄ-VILPPULAN KAUPUNKI. Mustalahden asemakaava Liikenneselvitys. Työ: E23641. Tampere 18.5.2010 MÄNÄ-VLPPULAN KAUPUNK Musalahden asemakaava Liikenneselviys yö: E ampere 8..00 ARX Ympärisö Oy PL 0 ampere Puhelin 00 000 elefax 00 00 www.airix.fi oimiso: urku, ampere, Espoo ja Oulu Mänä-Vilppulan kaupunki,

Lisätiedot

STOKASTISIA MALLEJA SÄHKÖN HINNOITTELUUN. Sanni Sieviläinen

STOKASTISIA MALLEJA SÄHKÖN HINNOITTELUUN. Sanni Sieviläinen HELSINGIN YLIOPISTO Maemaais-Luonnonieeellinen iedekuna Maemaiikan ja ilasoieeen laios STOKASTISIA MALLEJA SÄHKÖN HINNOITTELUUN Sanni Sieviläinen Pro Gradu-ukielma Ohjaaja: Dario Gasbarra 3. syyskuua 215

Lisätiedot

Seinämien risteyskohdat

Seinämien risteyskohdat CAE DS Painevalukappaleen suunnielu Seinämien riseyskohda Sefan Fredriksson - SweCas Käännös: Pekka Savolainen ja Tuula Höök - Tampereen eknillinen yliopiso Riseyskoha muodosuu kun kaksi kappaleen seinämää

Lisätiedot

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014 MAT-45 Fourier n meneelmä Merja Laaksonen, TTY 4..4 Sisälö Johano 3. Peruskäsieiä................................... 4.. Parillinen ja parion funkio....................... 7.. Heavisien funkio............................

Lisätiedot

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s). DEE- Piirianalyysi Ykkösharkan ehävien rakaisuehdoukse. askeaan ensin, kuinka paljon äyeen ladaussa akussa on energiaa. Tämä saadaan laskeua ehäväpaperissa anneujen akun ieojen 8.4 V ja 7 mah avulla. 8.4

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte

VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte 4/ VÄRÄHTELYMEKANIIKKA SESSIO 4: Yhden vaausaseen vaieneva akkvärähely, harninen kuriusheräe LIIKEYHTÄLÖN JOHTO JA RATKAISU Kuvassa n esiey visksisi vaienneun yhden vaausaseen harnisen akkvärähelijän erusalli.

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin

Lisätiedot

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia 6.4 Variaaiolaskennan oleusen rajoiukse Sivu ss. 27 31 läheien Kirk, ss. 13 143] ja KS, Ch. 5] pohjala Lähökoha oli: jos J:llä on eksremaali (), niin J:n variaaio δj( (), δ()) ():ä pikin on nolla. 1. Välämäön

Lisätiedot

Euroopan kehittyvien osakemarkkinoiden yhteisintegraatio

Euroopan kehittyvien osakemarkkinoiden yhteisintegraatio LAPPEENRANNAN TEKNILLINEN YLIOPISTO KAUPPATIETEIDEN OSASTO Laskenaoimen ja rahoiuksen laios Rahoius Euroopan kehiyvien osakemarkkinoiden yheisinegraaio ja kausalieei Aarne Björklund Rahoius 4 0239210 Sisällyslueelo

Lisätiedot

KÄYTTÖOPAS. -järjestelmän sisäyksikkö HXHD125A8V1B

KÄYTTÖOPAS. -järjestelmän sisäyksikkö HXHD125A8V1B KÄYÖOPAS -järjeselmän sisäyksikkö SISÄLÖ 1. Määrielmä... 1 1.1. Merkkien ja varoiusen arkoiukse... 1 1.2. Käyeyjen ermien merkiys... 1 2. Yleise varooime... 2 3. Johdano... 2 3.1. Yleisä... 2 3.2. ämän

Lisätiedot

Finavian ympäristötyö 2006: Vesipäästöjen hallintaa ja tehokkaita prosesseja

Finavian ympäristötyö 2006: Vesipäästöjen hallintaa ja tehokkaita prosesseja 9 Y M P Ä R I S T Ö K A T S A U S 2006 2 Finavian ympärisöyö 2006: Vesipääsöjen hallinaa ja ehokkaia prosesseja Jääneson aiheuama kuormius aseiain hallinaan Finavia vasaa maahuolinayriysen jäänesoon käyämän

Lisätiedot

VALTIOLLINEN SIJOITUSRAHASTO

VALTIOLLINEN SIJOITUSRAHASTO TAMPEREEN YLIOPISTO Talousieeiden laios VALTIOLLINEN SIJOITUSRAHASTO VENÄJÄN TALOUDEN PELASTUS? Kansanalousiede Pro Gradu -ukielma Joulukuu 2008 Ohjaaja: Jukka Pirilä Tuomo Huhanen TIIVISTELMÄ Tampereen

Lisätiedot

Epävarmuus diskonttokoroissa ja mittakaavaetu vs. joustavuus

Epävarmuus diskonttokoroissa ja mittakaavaetu vs. joustavuus Epävarmuus diskonokoroissa ja miakaavaeu vs. jousavuus Opimoiniopin seminaari - Syksy 2000 / 1 Esielmän sisälö Kirjan Invesmen Under Uncerainy osan I luvu 4 ja 5. Mien epävarmuus diskonokorossa vaikuaa

Lisätiedot

Built Environment Process Reengineering (PRE)

Built Environment Process Reengineering (PRE) RAKENNETTU YMPÄRISTÖ Tarviaanko ää palkkia? Buil Environmen Process Reengineering (PRE) Infra FINBIM- bsf infraoimialakunnan perusamiskokous, Buil Environmen Process Innovaions Reengineering Miä on Infra

Lisätiedot

Mittaustekniikan perusteet, piirianalyysin kertausta

Mittaustekniikan perusteet, piirianalyysin kertausta Miausekniikan perusee, piirianalyysin kerausa. Ohmin laki: =, ai = Z ( = ännie, = resisanssi, Z = impedanssi, = vira). Kompleksiluvu Kompleksilukua arviaan elekroniikassa analysoiaessa piireä, oka sisälävä

Lisätiedot

Hevoosella vaan- käyttäjäkysely

Hevoosella vaan- käyttäjäkysely Hevoosella vaan käyäjäkysely 1. Vasaajan ikä Vasaajien määrä: 126 Alle 20 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 2035 yli 35 2. Tausa Vasaajien määrä: 126 Hevosyriäjä/hevosalan ammailainen (ravi ai

Lisätiedot

Suvi Kangasrääsiö MONETAARIMALLIT EUR/USD-VALUUTTAKURSSIN VAIHTELUN SELITTÄJÄNÄ: YHTEISINTEGROITUVUUSANALYYSI ARDL-MALLISSA

Suvi Kangasrääsiö MONETAARIMALLIT EUR/USD-VALUUTTAKURSSIN VAIHTELUN SELITTÄJÄNÄ: YHTEISINTEGROITUVUUSANALYYSI ARDL-MALLISSA OULUN YLIOPISTON KAUPPAKORKEAKOULU Suvi Kangasrääsiö MONETAARIMALLIT EUR/USD-VALUUTTAKURSSIN VAIHTELUN SELITTÄJÄNÄ: YHTEISINTEGROITUVUUSANALYYSI ARDL-MALLISSA Pro gradu -ukielma Talousiede Helmikuu 2016

Lisätiedot

Teknistä tietoa TARRANAUHOISTA

Teknistä tietoa TARRANAUHOISTA Teknisä ieoa TARRANAUHOISTA P-ouch-arraeipi näkyvä ja kesävä Broherin laminoidu P-ouch-arraeipi on suunnielu ammaimaiseen arraulosukseen oimisoissa, ehaissa ja koona. Runsaasa arraeippivalikoimasa löydä

Lisätiedot

LVM/LMA/jp 2012-12-17. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20

LVM/LMA/jp 2012-12-17. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20 LVM/LMA/jp 2012-12-17 Valioneuvoson aseus ajoneuvojen käyösä iellä anneun aseuksen uuaisesa Anneu Helsingissä päivänä kuua 20 Valioneuvoson pääöksen ukaisesi, joka on ehy liikenne- ja viesinäiniseriön

Lisätiedot

Systeemimallit: sisältö

Systeemimallit: sisältö Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -kuvaus ja ilayhälömalli, ila Linearisoini Jakuva-aikaisen lineaarisen järjeselmän siirofunkio, sabiilisuus Laplace-muunnos Diskreeiaikaisen lineaarisen

Lisätiedot

x v1 y v2, missä x ja y ovat kokonaislukuja.

x v1 y v2, missä x ja y ovat kokonaislukuja. Digiaalinen videonkäsiel Harjoius, vasaukse ehäviin 4-0 Tehävä 4. Emämariisi a: V A 0 V B 0 Hila saadaan kanavekorien (=emämariisin sarakkee) avulla. Kunkin piseen paikka hilassa on kokonaisluvulla kerroujen

Lisätiedot

Working Paper Yrittäjyyden ja yritysten verokannustimet. ETLA Discussion Papers, The Research Institute of the Finnish Economy (ETLA), No.

Working Paper Yrittäjyyden ja yritysten verokannustimet. ETLA Discussion Papers, The Research Institute of the Finnish Economy (ETLA), No. econsor www.econsor.eu Der Open-Access-Publikaionsserver der ZBW Leibniz-Informaionszenrum Wirschaf The Open Access Publicaion Server of he ZBW Leibniz Informaion Cenre for Economics Kanniainen, Vesa Working

Lisätiedot

KÄYTTÖOPAS. Ilma vesilämpöpumppujärjestelmän sisäyksikkö ja lisävarusteet RECAIR OY EKHBRD011ADV1 EKHBRD014ADV1 EKHBRD016ADV1

KÄYTTÖOPAS. Ilma vesilämpöpumppujärjestelmän sisäyksikkö ja lisävarusteet RECAIR OY EKHBRD011ADV1 EKHBRD014ADV1 EKHBRD016ADV1 EKHBRD011ADV1 EKHBRD014ADV1 EKHBRD016ADV1 EKHBRD011ADY1 EKHBRD014ADY1 EKHBRD016ADY1 KÄYÖOPAS Ilma vesilämpöpumppujärjeselmän sisäyksikkö ja lisävarusee EKHBRD011ADV1+Y1 EKHBRD014ADV1+Y1 EKHBRD016ADV1+Y1

Lisätiedot

More care. Buil in. COMPACT/ MINIKAIVUKONEET MUKAVAAJA TUOTTAVAA KAIVUUTA. Vain yksi seikka on odella rakaiseva: aeriaalin siiräinen ahdollisian nopeasi ja ehokkaasi. Ja kuen uukin Volvon kopaki konee,

Lisätiedot

Tehtävä I. Vaihtoehtotehtävät.

Tehtävä I. Vaihtoehtotehtävät. Kem-9.7 Prosessiauomaaion perusee Teni 5.9.5 TÄMÄ PAPERI TÄYTYY EHDOTTOMASTI PALAUTTAA TENTIN MUKANA NIMI: (OS: ) OPINTOKIRJA: VIERAILULUENNOT KUUNNELTU: VALV. LASK: Tehävä I. Vaihoehoehävä. Oikea vasaus

Lisätiedot

1. Matemaattinen heiluri, harmoninen värähtelijä Fysiikka IIZF2020

1. Matemaattinen heiluri, harmoninen värähtelijä Fysiikka IIZF2020 1. Maeaainen heiluri, haroninen värähelijä Fysiikka IIZF Juha Jokinen (Selosuksesa vasaava) Janne Kiviäki Ani Lahi Miauspäivä:..9 Laboraorioyön selosus 9..9 Pendulu is a ass hanging fro a pivo poin which

Lisätiedot

Tasaantumisilmiöt eli transientit

Tasaantumisilmiöt eli transientit uku 12 Tasaanumisilmiö eli ransieni 12.1 Kelan kykeminen asajännieeseen Kappaleessa 11.2 kykeiin reaalinen kela asajännieeseen ja ukiiin energian varasoiumisa kelan magneeikenään. Tilanne on esiey uudelleen

Lisätiedot

LVM/LMA/jp 2013-03-27. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20

LVM/LMA/jp 2013-03-27. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20 LVM/LMA/jp 2013-03-27 Valioneuvoson aseus ajoneuvojen käyösä iellä anneun aseuksen uuaisesa Anneu Helsingissä päivänä kuua 20 Valioneuvoson pääöksen ukaisesi uueaan ajoneuvojen käyösä iellä anneun aseuksen

Lisätiedot

SUOMEN PANKIN KANSANTALOUSOSASTON TYÖPAPEREITA

SUOMEN PANKIN KANSANTALOUSOSASTON TYÖPAPEREITA SUOMEN PANKIN KANSANTALOUSOSASTON TYÖPAPEREITA 10.10.2004 1/2004 Hannes Kaadu Kuluajahinainflaaion miaaminen Yhdysvalloissa 2 Kuluajahinainflaaion miaaminen Yhdysvalloissa Kansanalousosason yöpapereia

Lisätiedot

S Signaalit ja järjestelmät Tentti

S Signaalit ja järjestelmät Tentti S-7. Signaali ja järjeselmä eni..6 Vasaa ehävään, ehävisä 7 oeaan huomioon neljä parhaien suorieua ehävää.. Vasaa lyhyesi seuraaviin osaehäviin, käyä arviaessa kuvaa. a) Mikä kaksi ehoa kanaunkioiden φ

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 3, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 3, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset DEE- ineaarise järjeselmä Harjoius 3, harjoiusenpiäjille arkoieu rakaisuehdoukse Ennen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu Piirianalyysin juuri suorianee

Lisätiedot

BINÄÄRINEN SYNKRONINEN TIEDONSIIRTO KAISTARAJOITTAMATTOMILLA MIELIVALTAISILLA PULSSIMUODOILLA SOVITETTU SUODATIN JA SEN SUORITUSKYKY AWGN-KANAVASSA

BINÄÄRINEN SYNKRONINEN TIEDONSIIRTO KAISTARAJOITTAMATTOMILLA MIELIVALTAISILLA PULSSIMUODOILLA SOVITETTU SUODATIN JA SEN SUORITUSKYKY AWGN-KANAVASSA BINÄÄRINN SYNKRONINN IDONSIIRO KAISARAJOIAMAOMILLA MILIVALAISILLA PULSSIMUODOILLA SOVIU SUODAIN JA SN SUORIUSKYKY AWGN-KANAVASSA Millaiia aalomuooja perupuleja yypilliei käyeään? 536A ieoliikenneekniikka

Lisätiedot