Luento 4. Fourier-muunnos
|
|
- Jalmari Järvinen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II: Signaalin maksimi- ja minimiarvo ova äärellisiä jokaisella äärellisellä aikavälillä ( a, b sup { } ( (, ( i, s i i s i a i i b + + < < + i III: Signaalin epäjakuvuuskoia on rajallinen määrä lim äärellisessä määrässä ε s ( + ε v ( ε piseiä välillä (-, 4..6
2 Fourier-muunnos On olemassa joukko signaaleia, joka eivä äyä Diricle n eoja, mua niille voidaan kuienkin esiää Fourier-muunnos sien, eä muunnoksen yleise ominaisuude ova voimassa. Esim. Impulssiunkio Tasavira Askel- ja signmum-unkio Sini-signaali Näiä signaaleja kusuaan yleiseyiksi signaaleiksi. Yleisey signaali ova eosignaaleja Impulssiunkio/Diracin dela-unkio Ääreömän kapea pulssi, jonka pina-ala on. + δ( d= δ( d= Impulssiunkio δ( voidaan joaa raja-arvona pulssisa, jonka piuus on ε ja korkeus /ε, kun ε. Suorakaidepulssin apauksessa: δ = Π ε ε ( limε ε Π ( x x = muuoin 4..6 ε ε 4
3 Impulssiunkio 9 8 Suorakaidepulssi 9 8 Gaussin pulssi T= T=.5 T= Ampliudi 5 4 Ampliudi Aika - - Aika Impulssiunkio Signaalin kerominen impulssiunkiolla Näyeenoo ( s( δ( = s δ( s( δ ( d = s( Signaalin konvoluuio impulssiunkion kanssa (impulssivase s( δ( = s( τ δ( τ d = s(
4 Impulssiunkion Fourier muunnos Impulssiunkion Fourier-muunnos x( X( F{ δ ( } = Raja-arvona pulssin Fourier-muunnkosesa: F Π = sinc ε ε ( ε F AΠ = ATsinc( T T limε F Π = limε sinc( ε ε ε sin ( π ε π cos( π ε = limε = imε = π ε π l Hôpial Raja-arvoja käyäen suoraan F-muunnoksen määrielmäsä: s( δ( = s( δ( i i F{ ( } ( e π π δ = δ d = e δ ( d = + = 4..6 δ( d= δ( d= 7 = Signaalin energia on jakaanunu asan kaikille aajuuksille Impulssiunkion kääneismuunnos Impulssiunkion kääneismuunnos F { δ ( } = x( X( Todisus F e d e d i { ( } ( π i π δ δ δ ( DC-komponenin (vakion Fourier-muunnos F { A} = Aδ ( Taajuussiirros i F δ ( = e π = = = = { } Todisus iπ iπ iπ F { δ ( } = δ ( e d = e δ ( d = e = = 4
5 Sini-signaalin Fourier-muunnos Sinimuooinen signaali Eulerin kaavalla sinimuooinen signaali voidaan kirjoiaa kaden osoiimen avulla, joia aajuusasossa vasaa aajuussiirros. i i sin ( = ( e e cos i i i ( = ( e + e iπ { δ ( } = F e Spekri: A Y( = e + + e iφ iφ ( δ ( δ ( A Y( Jaksollisen signaalin Fourier-muunnos Jaksollinen signaali voidaan esiää Fourier-sarjan avulla π k v ( = vk exp i k = T Sovelleaan aajuussiirroksen Fourier-muunnosa iπ π k F e = δ F{ v( } = vkf exp i = vkδ k k= T k= T Jaksollisen signaalin Fourier-muunnos saa nollasa poikkeavia arvoja ainoasaan armonisilla aajuuksilla. Inegraali spekriieyden yli anaa signaalin keskimääräisen eon ( * ( = k = v k= V V d v P { } (
6 Epäjakuva-ampliudise signaali Askelunkio u( < u ( = δτ ( dτ= Epäjakuvuuskodan derivaaa voidaan lausua impulssiunkion avulla d u ( = δ ( d u( u ( 4..6 Epäjakuva-ampliudise signaali Epäjakuvuuskoa ajanekellä d x ( = ξ'( + x x d ξ '( + ( ( δ ( on signaalin jakuvan ermin derivaaa, joka äyää Diricle n edo x( + x( - x( Signaalin Fourier muunnos-saadaan inegroinikeinon avulla { (} F x + ( ( ( ( τ F... s( d... d n S( n τ τ τ = ( iπ n kpl x( = ξ '( τ + x x δ τ dτ + iπ { ξ '( } + ( ( ( F x x e = iπ
7 Epäjakuva-ampliudise signaali Mona epäjakuvuuskoaa d x ( = ξ'( + Δ x ( k δ d + ( ( Δ x( = x x k k k k ( k { (} F x { ξ } F '( + Δx( k e k = iπ iπ k Esimerkki Pulssi > T x ( = AΠ = T A T d x ( = A δ τ + T A δ τ T d A x( x ( iπ T iπ T ( π T e e sin F{ x( } = A = AT = ATsinc( T iπ π T Signmum-unkio < x( = sgn( = = > Rakaisaan derivaaa Signum-unkio x( - dx(/d d d x ( = sgn( d d + = x( x( δ ( = ( δ( = δ( Derivaaan Fourier-muunnos unneaan, joen x(:n Fourier-muunnos saadaan inegroinikeinolla d F{ x( } = F x( X( iπ d = F{ δ ( } = iπ iπ
8 Signum-unkio Tarkiseaan ulos kääneismuunamalla se i π ( π ( π cos sin F = e d = d + i d iπ iπ iπ iπ cos( π sin ( π = i d + d π π cos( π v ( = π Funkio on parion, joen (pina-ala inegraali sen yli = v( =v( sinc ( ' d ' sin ( π F = d sinc( d iπ = π = sinc ( ' d ' < = sgn( sinc ( ' d ' = sgn( ' = d = d sinc( d = Muuujan vaio Yksikköaskelunkio Askelunkio voidaan esiää asavirakomponenin ja signum-unkion avulla sgn( u ( = ( + sgn( = > Fourier-muunnos F { u (} = F + F sgn( = δ ( + jπ - u( - U(
9 Näyeenoo Tarkasellaan jakuvaa signaalia g( vain ieyinä ajanekinä k, k T g( { gk (, k } Nyquisin näyeenooeoreema: Tarkasellaan kaisarajoieua signaalia (, jonka kaisanleveys on B. Jos näyeenoo aajuus s = B, niin ( voidaan lausua näyeiseyn signaalin avulla g( k avulla sin ( π s ( k g( = g( k = g( ksinc( s ( k k= π ( k k= s Näyeenoo Alkuperäinen signaali g( iπ G( ge ( d = Näyeisyssignaali s( = k s ( = muuoin Näyeisey signaali g s (=g(s( Fourier-muunnos g( s( gs ( iπ iπ ( = g(( s e d = g( δ ( k e d k = = k = ge ( iπ k
10 Näyeenoo Näyeisyssignaali on periodinen, joen se voidaan lausua Fourier-sarjana π k S( s ( = sk exp i k = / π k sk = s(exp i d = / Ny näyeisey signaali voidaan kirjoiaa muooon π k i gs ( = g( s( = g( e k = Fourier-muunnos π k k i i π i k π ( = g( e e d g( e d G = k= = k= k= Poissonin summakaava iπ k k 4..6 g( e = G 9 k= k= Näyeenoo Alkuperäisen signaalin spekri G( Näyeiseyn signaalin spekri k ( = G k = < B B ( B ( B B Jos, niin alkuperäinen signaali voidaan palauaa näyeiseysä: B ( B G( = muuoin 4..6
11 Näyeenoo Jos, niin Nyquisin aajua korkeamma aajuude laskosuva < B alemmille eikä alkuperäisä signaalia voida enään palauaa. ( Nyquisin aajuus N = s = 4..6 Näyeenoo Näyeisyssignaali s( = k s ( = muuoin Näyeiseävä signaali g( = cos( π s G( = + + ( δ ( s δ ( s Näyeisey signaali gs( = cos( π s s( Kerolasku aikaasossa => Kovoluuio aajuusasossa s S( s G( ( s < 4..6
12 Näyeenoo Näyeisyssignaali s( = k s ( = muuoin Näyeiseävä signaali g( = cos( π s G( = + + ( δ ( s δ ( s Näyeisey signaali gs( = cos( π s s( Kerolasku aikaasossa => Kovoluuio aajuusasossa s S( G( s ( s > Näyeenoo Aliasoini ilmiö: Yli Nyquisin aajuuden oleva signaali, näyää näyeisyksen jälkeen alemman aajuuden signaalila s =4 Hz, N = Hz = Hz =3 Hz N N
S Signaalit ja järjestelmät Tentti
S-7. Signaali ja järjeselmä eni..6 Vasaa ehävään, ehävisä 7 oeaan huomioon neljä parhaien suorieua ehävää.. Vasaa lyhyesi seuraaviin osaehäviin, käyä arviaessa kuvaa. a) Mikä kaksi ehoa kanaunkioiden φ
Tietoliikennesignaalit
ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime
( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:
ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän
( ) ( ) x t. 2. Esitä kuvassa annetun signaalin x(t) yhtälö aikaalueessa. Laske signaalin Fourier-muunnos ja hahmottele amplitudispektri.
ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 1/11 1. Johda anneun pulssin Fourier-muunnos ja hahmoele ampliudispekri. Käyä esim. derivoinieoreemaa, ja älä unohda 1. derivaaan epäjakuvuuskohia!
Luento 9. Epälineaarisuus
Lueno 9 Epälineaarisuus 9..7 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!
Silloin voidaan suoraan kirjoittaa spektrin yhtälö käyttämällä hyväksi suorakulmaisen pulssin Fouriermuunnosta sekä viiveen vaikutusta: ( ) (
TT/TV Inegraalimuunnokse Fourier-muunnos, ehäviä : Vasauksia Meropolia/. Koivumäki v(. Määriä oheisen signaalin Fourier-muunnos. Vinkki: Superposiio, viive. Voidaan sovelaa superposiioperiaaea, koska signaalin
Luento 2. Jaksolliset signaalit
Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi
12. ARKISIA SOVELLUKSIA
MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina
Luento 11. Stationaariset prosessit
Lueno Soasisen prosessin ehosperi Signaalin suodaus Kaisarajoieu anava 5..6 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan
6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia
6.4 Variaaiolaskennan oleusen rajoiukse Sivu ss. 27 31 läheien Kirk, ss. 13 143] ja KS, Ch. 5] pohjala Lähökoha oli: jos J:llä on eksremaali (), niin J:n variaaio δj( (), δ()) ():ä pikin on nolla. 1. Välämäön
Luento 4 Fourier muunnos
Luento 4 Luento 4 Fourier muunnos 4. F muunnos F muunnos Oppenheim 4. 4. Energiaspektri (spektritiheys) Rayleigh'n energia teoreema, energiaspektri Kaistanleveys Boden diagrammi 4.3 F muunnoksen ominaisuudet,
b) Ei ole. Todistus samaan tyyliin kuin edellinen. Olkoon C > 0 ja valitaan x = 2C sekä y = 0. Tällöin pätee f(x) f(y)
Maemaiikan ja ilasoieeen osaso/hy Differeniaaliyhälö II Laskuharjoius 1 malli Kevä 19 Tehävä 1. Ovako seuraava funkio Lipschiz-jakuvia reaaliakselilla: a) f(x) = x 1/3, b) f(x) = x, c) f(x) = x? a) Ei
Luento 9. Epälineaarisuus
Lueno 9 Epälineaarisuus 8..6 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!
TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta
KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän
MS-C1420 Fourier-analyysi osa II
MS-C142 Fourier-analyysi osa II G. Gripenberg Aalto-yliopisto 14. helmikuuta 214 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta 214 1 / 36 1 Fourier-sarjat ja Fourier-integraalit
12. Luento. Modulaatio
Analoginen modulaaio Digiaalinen modulaaio. Lueno..7 Modulaaio Modulaaiossa siirreään moduloivan signaalin spekri kanoaallon aajuusalueelle, joko sien eä spekrin muoo säilyy lineaarisessa modulaaiossa,
W dt dt t J.
DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan
Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista
Rahoiusriski ja johdannaise Mai Esola lueno Sokasisisa prosesseisa . Markov ominaisuus Markov -prosessi on sokasinen prosessi, missä ainoasaan muuujan viimeinen havaino on relevani muuujan seuraavaa arvoa
SIGNAALITEORIAN KERTAUSTA 1
SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä
a) Ortogonaalinen, koska kantafunktioiden energia 1
S-7.060 Signaali ja järjeselmä Teni 14.5.001 1. Vasaa lyhyesi seuraaviin saehäviin, käyä arviaessa kuvaa. a) Mikä minaisuuksisa rgnaalinen ja rnrmaalinen kuvaa paremmin Furier-sarjaa ja miksi? b) Esiä
MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014
MAT-45 Fourier n meneelmä Merja Laaksonen, TTY 4..4 Sisälö Johano 3. Peruskäsieiä................................... 4.. Parillinen ja parion funkio....................... 7.. Heavisien funkio............................
Luento 3. Fourier-sarja
Fourier muuos Rayleigh eoreema Spekriiheys Lueo 3 4..6 Fourier-sarja Fourier-sarja avulla pysyii esiämää jaksollie sigaali, joka jaksoaika o. Fourier-sarja Fourier-kompoei Eäpä aperiodise sigaali, joilla
Konvoluution laskeminen vaihe vaiheelta Sivu 1/5
S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,
Luento 3. Fourier-sarja
Fourier-muuos Rayleigh eoreema Spekriiheys Lueo 3 4..7 Fourier-sarja Fourier-sarja avulla pysyii esiämää jaksollie sigaali, joka jaksoaika o. Fourier-sarja Fourier-kompoei Eäpä aperiodise sigaali, joilla
Luento 11. Stationaariset prosessit
Lueno Soasisen prosessin ehosperi Saunnaissignaalin suodaus 5..7 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ) ( ) ( ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan
3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA
S I G N A A L I T E O R I A, O S A I I I TL98Z SIGNAALITEORIA, OSA III 44 3 Signaalin suodaus...44 3. Sysmin vas aikaasossa... 44 3. Kausaalisuus a sabiilisuus... 46 3.3 Vas aauusasossa... 46 3.4 Ampliudivas
Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( )
Luento Jasollisten signaalien Fourier-sarjat Viivaspetri S-.7. Signaalit ja järjestelmät 5 op KK ietoliienne Laboratorio Jean Baptiste Joseph Fourier (768-83) Ransalainen matemaatio ja fyysio. Esitti Fourier-sarjat
x v1 y v2, missä x ja y ovat kokonaislukuja.
Digiaalinen videonkäsiel Harjoius, vasaukse ehäviin 4-0 Tehävä 4. Emämariisi a: V A 0 V B 0 Hila saadaan kanavekorien (=emämariisin sarakkee) avulla. Kunkin piseen paikka hilassa on kokonaisluvulla kerroujen
SIGNAALITEORIAN KERTAUSTA OSA 1
1 SIGNAALITEORIAN KERTAUSTA OSA 1 Millainen on signaalin spektri ja miten se lasketaan? SIGNAALIEN JA SPEKTRIN PERUSKÄSITTEITÄ 2 Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka graafinen
f x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d)
Tehävä 1. Oleeaan, eä on käössä jakuva kuva, jossa (,, ) keroo harmaasävn arvon paikassa (, ) ajanhekenä. Dnaaminen kuva voidaan esiää Talor sarjana: d d d d d d O ( +, +, + ) = (,, ) + + + + ( ). (4a)
Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka
IMA- Exurso: Kompleksluvu ja radosgnaal / KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT Tausaa IMA- Exurso: Kompleksluvu ja radosgnaal / Kakk langaon vesnä ja radoeolkenne (makapuhelme, WLAN, ylesrado
MS-C1420 Fourier-analyysi osa I
MS-C142 Fourier-analyysi osa I G. Gripenberg Aalto-yliopisto 29. tammikuuta 214 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa I 29. tammikuuta 214 1 / 3 1 Johdanto 2 Fourier-integraali Fourier-muunnos
Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).
DEE- Piirianalyysi Ykkösharkan ehävien rakaisuehdoukse. askeaan ensin, kuinka paljon äyeen ladaussa akussa on energiaa. Tämä saadaan laskeua ehäväpaperissa anneujen akun ieojen 8.4 V ja 7 mah avulla. 8.4
MS-C1420 Fourier-analyysi osa II
MS-C142 Fourier-analyysi osa II G. Gripenberg Aalto-yliopisto 14. helmikuuta 214 1 Fourier-sarjat ja Fourier-integraalit Poissonin summakaava Whittaker-Shannonin interpolointikaava 2 Vaimennetunen distribuution
a) Miksi signaalin jaksollisuus on tärkeä ominaisuus? Miten jaksollisuus vaikuttaa signaalin taajuussisältöön?
L53, Sinaalioria J. Laiinn..5 E3SN, E3SN5Z Väliko, rakaisu Vasaa lyhysi suraaviin kysymyksiin. 6p a Miksi sinaalin aksollisuus on ärkä ominaisuus? Min aksollisuus vaikuaa sinaalin aauussisälöön? b Miä
MS-C1420 Fourier-analyysi osa I
MS-C1420 Fourier-analyysi osa I G. Gripenberg Aalto-yliopisto 29. tammikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-C1420 Fourier-analyysiosa I 29. tammikuuta 2014 1 / 29 Fourier-muunnoksia Jatkuva-aikaisen
Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7
MS-C14, Fourier-analyysi, I/19- Fourier-analyysi, I/19-, Mallivastaukset, Laskuharjoitus 7 Harjoitustehtävä 7.1. Hetkellä t R olkoon s(t) 1 + cos(4πt) + sin(6πt). Laske tämän 1-periodisen signaalin s Fourier-kertoimet
Kompleksianalyysi, viikko 6
Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että
Luento 7. LTI-järjestelmät
Luento 7 Lineaaristen järjestelmien analyysi taajuustasossa Taajuusvaste Stabiilisuus..7 LTI-järjestelmät u(t) h(t) y(t) Tarkastellaan lineaarista aikainvarianttia järjestelmää n n m m d d d d yt () =
ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +.
Diffrniaaliyhälö II, harjoius 3, 8 228, rakaisu JL, kuusi sivua a On muunnava linaarinn oisn kraluvun diffrniaaliyhälö ẍ qx f yhäpiäväksi nsimmäisn kraluvun linaarisksi kahdn skalaariyhälön sysmiksi Rak
MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I
MS-C140 Fourier-analyysi Esimerkkejä, perusteluja, osa I G. Gripenberg Aalto-yliopisto 3. tammikuuta 014 G. Gripenberg (Aalto-yliopisto MS-C140 Fourier-analyysiEsimerkkejä, perusteluja, osa3. I tammikuuta
MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I
MS-C14 Fourier-analyysi Esimerkkejä, perusteluja, osa I G. Gripenberg Aalto-yliopisto 3. tammikuuta 14 G. Gripenberg (Aalto-yliopisto MS-C14 Fourier-analyysiEsimerkkejä, perusteluja, osa3. I tammikuuta
MS-C1420 Fourier-analyysi osa I
1 Johdanto MS-C142 Fourier-analyysi osa I G Gripenberg 2 Fourier-integraali Fourier-muunnos ja derivaatta Konvoluutio Fourier-käänteismuunnos eliöintegroituvat funktiot Aalto-yliopisto 29 tammikuuta 214
Tasaantumisilmiöt eli transientit
uku 12 Tasaanumisilmiö eli ransieni 12.1 Kelan kykeminen asajännieeseen Kappaleessa 11.2 kykeiin reaalinen kela asajännieeseen ja ukiiin energian varasoiumisa kelan magneeikenään. Tilanne on esiey uudelleen
2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t
Tilasollinen ennusaminen Seppo Pynnönen Tilasoieeen professori, Meneelmäieeiden laios, Vaasan yliopiso. Tausaa Tulevaisuuden ennusaminen on ehkä yksi luoneenomaisimpia piireiä ihmiselle. On ilmeisesi aina
Tietoliikennesignaalit & spektri
Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia
Numeeriset menetelmät
Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys
( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt
SMG-500 Verolasennan numeerise meneelmä Ehdouse harjoiusen 4 raaisuisi Haeaan ensin ehävän analyyinen raaisu: dx 0 0 0 0 dx 00e = 0 = 00e 00 x = e + = 5e + alueho: x(0 = 0 0 x 0 = 5e + = 0 = 5 0 0 0 5
Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008
Mat-.3 / Mat-.33 Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 4, loppuviikko, syksy 8 Ennen malliratkaisuja, muistin virkistämiseksi kaikkien rakastama osittaisintegroinnin kaava: b a u(tv (t
YKSISIVUKAISTAMODULAATIO (SSB)
YKSISIVUKAISTAODULAATIO SSB ien kaisaa voi sääsää verrauna DSB- a A-modulaaioihin? ikä on Hilber-munnin? 5357A Tieoliikenneekniikka I Osa 9 Kari Kärkkäinen Kevä 05 YKSISIVUKAISTAODULAATION IDEA DSB & A-inormaaio
2. Suoraviivainen liike
. Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus
Luento 11. tietoverkkotekniikan laitos
Lueno Lueno Sokasise signaali ja prosessi II. Sokasise prosessi Pruju Saionaarisuus, ergodisuus Auo ja risikorrelaaio ehospekri.3 Kohinan suodaaminen Sokasinen raja arvo ja derivaaa Winer Khinchin eoreema.3
Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246
Osa VI Fourier analyysi A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 12. lokakuuta 2007 127 / 246 1 Johdanto 2 Fourier-sarja 3 Diskreetti Fourier muunnos A.Rasila, J.v.Pfaler () Mat-1.1331
SGN-1200 Signaalinkäsittelyn menetelmät Välikoe
SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,
Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille
Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial
Signaalit ja järjestelmät aika- ja taajuusalueissa
Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)
9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A.
9. Epäoleellise inegraali; inegraalin derivoini paramerin suheen 9.. Epäoleellise aso- ja avaruusinegraali 27. Olkoon = {(x, y) x, y }. Osoia hajaanuminen ai laske arvo epäoleelliselle asoinegraalille
SATE2140 Dynaaminen kenttäteoria syksy /7 Laskuharjoitus 4 / Sähkömagneettiset aaltojen polarisoituminen
SATE14 Dnaainen kenäeoia sks 16 1 /7 Laskuhajoius 4 / Sähköagneeise aalojen polaisoiuinen Tehävä 1. Vapaassa ilassa väähelevän piseläheen aiheuaan palloaallon sähkökenän voiakkuus on A V E, sincos k e.
SGN-1200 Signaalinkäsittelyn menetelmät Välikoe
SGN-100 Signaalinkäsittelyn menetelmät Välikoe 6.4.010 Sivuilla 1- on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,
VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia
8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.
Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 4.1 Fourier-sarja 4.2 Viivaspektri, tehospektri
Luento 4 Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 9 Oppenheim 3.3, 3.4 4.1 Fourier-sarja Kompleksi F-sarja F-sinisarja Sinc-funktio 4. Viivaspektri, tehospektri Viivaspektri Parsevalin teoreema
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
Valintakoe
Valintakoe 7.3.05 Kokeessa saa käyttää kirjoitusvälinewiden lisäksi ainoastaan kokeessa jaettavaa funktiolaskinta ja taulukkoa Pisteytys 8*3p=4p. Tehtävien alakohtien pistemäärät voivat poiketa toisistaan..
Mat-1.1331 Matematiikan pk KP3-i - kertaus
Mat-.33 Matematiikan pk KP3-i - kertaus J.v.Pfaler TKK 24. lokakuuta 2007 Kurssin ensimmäisen puoliskon selkäranka on Kompleksitason funktioiden teoria, sisältäen analyyttiset funktiot, auchy integraali
KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN
YYSILMIÖ J SILÄ VÄLYMIE YYSE SIIRO LJEUS HYVÄSI ÄYÄE ieoliikenneekniikka I 559 ari ärkkäinen Osa 5 4 MILLOI? Milloin ja missä kynnysilmiö esiinyy? un vasaanoimen ulon SR siis esi-ilmaisusuodaimen lähdössä
Juuri 13 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. K1. A: III, B: I, C: II ja IV.
Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 Keraus K. A: III, B: I, C: II ja IV Kuvaaja: I II III IV Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 K. a) lim ( ) Nimiäjä ( ) o aia
Ratkaisu. Virittäviä puita on kahdeksan erilaista, kun solmut pidetään nimettyinä. Esitetään aluksi verkko kaaviona:
Diskreei maemaiikka, sks 00 Harjoius 0, rakaisuisa. Esi viriävä puu suunaamaomalle verkolle G = (X, E, Ψ), kun X := {,,, }, E := { {, }, {, }, {, }, {, }, {, }}, ja Ψ on ieninen kuvaus. Rakaisu. Viriäviä
KULMAMODULOITUJEN SIGNAALIEN ILMAISU DISKRIMINAATTORILLA
1 KULMMOULOITUJEN SIGNLIEN ILMISU ISKRIMINTTORILL Millaisia keinoja on PM & FM -ilmaisuun? 51357 Tieoliikenneekniikka I Osa 17 Kai Käkkäinen Kevä 015 ISKRIMINTTORIN TOIMINTKÄYRÄ J -YHTÄLÖ FM-signaalin
y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1
1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y
Monisilmukkainen vaihtovirtapiiri
Monisilmukkainen vaihovirapiiri Oeaan arkaselun koheeksi RLC-vaihovirapiiri jossa on käämejä, vasuksia ja kondensaaoreia. Kykenä Tarkasellaan virapiiriä, jossa yksinkeraiseen RLC-piiriin on kodensaaorin
DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset
D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,
VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte
4/ VÄRÄHTELYMEKANIIKKA SESSIO 4: Yhden vaausaseen vaieneva akkvärähely, harninen kuriusheräe LIIKEYHTÄLÖN JOHTO JA RATKAISU Kuvassa n esiey visksisi vaienneun yhden vaausaseen harnisen akkvärähelijän erusalli.
Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.
6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon
A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)
ELEC-A7 Signaalit ja järjestelmät Syksy 5 Tehtävä 3. a) Suoran tapauksessa ratkaistaan kaksi tuntematonta termiä, A ja B, joten tarvitaan kaksi pistettä, jotka ovat pisteet t = ja t =.. Saadaan yhtälöpari
Luoki?elua: tavallinen vs osi?ais. Osa 11. Differen0aaliyhtälöt. Luoki?elua: kertaluku. Luoki?elua: lineaarisuus 4/13/13
4/3/3 Osa. Differen0aaliyhtälöt Differen0aaliyhtälö = yhtälö jossa esiintyy jonkin funk0on derivaa?a. Esim: dx = x2 f x + f xy 2 2m d 2 ψ = Eψ dx 2 Luoki?elua: tavallinen vs osi?ais Differen0aaliyhtälöt
5. Vakiokertoiminen lineaarinen normaaliryhmä
1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa
A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat!
MAA Koe 7..03 A-osio. Ei laskina! Valise seuraavisa kolmesa ehäväsä vain kaksi joihin vasaa! A. a) Mikä on funkion f(x) määrieljoukko, jos f( x) x b) Muua ulomuooon: 4a 8a 4 A. a) Rakaise hälö: x 4x b)
KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN
KULMMODULOITUJEN SIGNLIEN SPEKTRIN LSKEMINEN 1 (3) (3) Spekri laskeie siisaoalle Kulaoduloidu sigaali spekri johaie o yöläsä epälieaarisuudesa johue (epälieaarise aalyysi ova yleesä hakalia). Se voidaa
5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 5 Funktion jatkuvuus 5.1 Määritelmä ja perustuloksia 1. Tarkastellaan väitettä a > 0: b > 0: c > 0: d U c (a): f(d) / U b (f(a)), missä a, b, c, d R. Mitä funktion
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-00 Signaalinkäsittelyn menetelmät, Tentti 6.3.006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja
ELEC-A7200 Signaalit ja järjestelmät 5 op
Luennoisija Prof. Riku Jäni Pääassiseni Seppo Saasamoinen S-posi: riku.jani@aalo.fi Puh. 5 597 8588 E9 Vasaanoo ma klo 9- S-posi: seppo.saasamoinen@aalo.fi Puh. 5 365 376 hps://noppa.aalo.fi/noppa/kurssi/elec-a7/eusivu
Luento 7 Järjestelmien ylläpito
Luno 7 Järjslmin ylläpio Ahi Salo Tknillinn korkakoulu PL, 5 TKK Järjslmin ylläpidosa Priaallisia vaihohoja Uusiminn rplacmn Ennalahkäisvä huolo mainnanc Korjaaminn rpair ❶ Uusiminn Vioiun komponni korvaaan
Ilmavirransäädin. Mitat
Ilmairransäädin Mia (MF, MP, ON, MOD, KNX) Ød nom (MF-D, MP-D, ON-D, MOD-D, KNX-D) Tuoekuaus on ilmairasäädin pyöreälle kanaalle. Se koosuu sääöpellisä ja miaaasa oimilaieesa ja siä oidaan ohjaa huonesääimen
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti 18.3.2008 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen
Soimukseneon dynamiikka: johdano ja haiallinen valikoiuminen Ma-2.442 Oimoinioin seminaari Elise Kolola 8.4.2008 S yseemianalyysin Laboraorio Esielmä 4 Elise Kolola Oimoinioin seminaari - Kevä 2008 Esiyksen
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-00 Signaalinkäsittelyn menetelmät, Tentti..005 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja sen
Kompleksiluvut signaalin taajuusjakauman arvioinnissa
Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos
OH CHOOH (2) 5. H2O. OH säiliö. reaktori 2 erotus HCOOCH 3 11.
Kemian laieekniikka 1 Koilasku 1 4.4.28 Jarmo Vesola Tuoee ja reakio: hiilimonoksidi, meanoli, meyyliformiaai C HC (1) vesi, meyyliformiaai, meanoli, muurahaishappo HC CH (2) hiilimonoksi, vesi, muurahaishappo
Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42
Numeeriset menetelmät TIEA381 Luento 13 Kirsi Valjus Jyväskylän yliopisto Luento 13 () Numeeriset menetelmät 8.5.2013 1 / 42 Luennon 13 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Moniaskelmenetelmien
6 Integraali ja derivaatta
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 9 6 Inegrli j deriv 6. Inegrli ylärjns funkion. Olkoon Määriä kun () [, ], (b) ], 3]., kun [, ],, kun ], 3]. f() d, [, 3],. Osoi, eä jos funkio f on Riemnn-inegroiuv
Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto
Kojemeeorologia Sami Haapaala syksy 03 Fysiika laios, Ilmakehäieeide osaso Mialaieide dyaamise omiaisuude Dyaamise uusluvu määriävä mie mialaie käyäyyy syöeide muuuessa Apua käyeää differeiaaliyhälöiä,
YKSISIVUKAISTAMODULAATIO (SSB)
YKSISIVUKISTODULTIO SSB Tieoliikenneekniikka I 5359 Kari Kärkkäinen Osa 6 0 Yksisivukaisamodulaaion idea DSB:ssa inormaaio on redundanisesi kaheen keraan, s. LSB & USB. Toisen kaisan läheys riiää, olloin
F E . 1. a!? # % b &., @ $ c + ± = e < > [ \ ] ^ g λ Ø ø φ " 1 / 2 h Á á É. j À à È è Ì ì Ò k ò ù Ä ä Ë ë Ï. o à ã Ñ ñ Õ õ F` = 6mm = 9/12mm = 19mm
: A ➎ C ➎ B D = 6mm = 9/12mm = a!? # % b &., @ $ c + ± = d * / : ; ( ) e < > [ \ ] ^ f { } ~ µ ß Ω g λ Ø ø φ " 1 / 2 h Á á É i é Í í Ó ó Ú ú j À à È è Ì ì Ò k ò ù Ä ä Ë ë Ï l ï Ö ö Ü ü ÿ Â m â Ê ê î ô
Osittaisdifferentiaaliyhtälöt
Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,
Osa 11. Differen-aaliyhtälöt
Osa 11. Differen-aaliyhtälöt Differen-aaliyhtälö = yhtälö jossa esiintyy jonkin funk-on derivaa
Diskreetillä puolella impulssi oli yksinkertainen lukujono:
DEE-00 ineaarise järjeselmä Harjoius 5, rakaisuehdoukse [johdano impulssivaseeseen] Jakuva-aikaisen järjeselmän impulssivase on vasaavanlainen järjeselmäyökalu kuin diskreeillä puolellakin: impulssivase
SIGNAALITEORIAN KERTAUSTA OSA 2
1 SIGNAALITEORIAN KERTAUSTA OSA 2 Miten spektri lasketaan moduloiduille ja näytteistetyille tietoliikennesignaaleille? KONVOLUUTIO JA KERTOLASKU 2 Kantataajuussignaali (baseband) = sanomasignaali ilman
Luento 2. Järjestelmät aika-alueessa Konvoluutio-integraali. tietoverkkotekniikan laitos
Lueno 2 Järjeselmä aika-alueessa Konvoluuio-inegraali Lueno 2 Lueno 2 Järjeselmä aika alueessa; Konvoluuio inegraali 2.1 Järjeselmien perusominaisuude Oppenheim 1.5. 1.6 Muisillise ja muisioma järjeselmä
Luku 4 - Kuvien taajuusanalyysi
Luku 4 - Kuvien taajuusanalyysi Matti Eskelinen 8.2.2018 Kuvien taajuusanalyysi Tässä luvussa tutustumme taajuustasoon ja opimme analysoimaan kuvia ja muitakin signaaleja Fourier-muunnoksen avulla. Aiheina
SIGNAALITEORIAN KERTAUSTA 2. Tietoliikennetekniikka I A Kari Kärkkäinen Osa 3
SIGNAALITEORIAN KERTAUSTA 2 Tieoliikenneekniikka I 521359A Kari Kärkkäinen Osa 3 Konvoluuio ja kerolasku ajassa ja aajuudessa Kanaaajuussignaali baseband sanomasignaali sellaisenaan ilman modulaaioa Kaisanpääsösignaali