x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
|
|
- Olavi Lahtinen
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla kertominen määritellään koordinaateittain: x = y x i = y i i = 1,..., n; x + y = (x 1 + y 1,..., x n + y n ); λ x = (λx 1,..., λx n ), aina, kun x 1,..., x n ; y 1,..., y n ; λ R. 2. Osoita, että (R 2, +, ) ei ole vektoriavaruus, kun vektoreiden x = (x 1, x 2 ), y = (y 1, y 2 ) laskutoimitukset on annettu seuraavasti: x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); λ x = (λx 1, 0), λ R. 3. Osoita, että (R 2,, ) ei ole lineaariavaruus, kun vektoreiden x = (x 1, x 2 ), y = (y 1, y 2 ) laskutoimitukset on annettu seuraavasti: x = y x i = y i i = 1, 2; x y = (x 1 y 1, x 2 + y 2 ); λ x = (λx 1, λx 2 ), λ R. 4. Olkoon K kunta ja 0, 1 K sen nolla- ja ykkösalkiot. Olkoon V lineaariavaruus kunnan K yli sekä 0 V sen nolla-alkio. Osoita lineaariavaruuden aksiomeja käyttäen, että (a) λ 0 = 0 kaikilla λ K. (b) λ v = ( λ) v = λ ( v) kaikilla λ K, v V ; (c) Jos λ v = λ w ja λ 0, niin v = w; 5. Olkoot W 1 = {(x, y, z, t) R 4 : x y + z t = 0}; W 2 = {(x, y, z, t) R 4 : x y + z = 0}; W 3 = {(x, y, z, t) R 4 : x y + z 1 = 0} (a) Osoita, että W 1 on vektoriavaruuden R 4 aliavaruus. (b) Onko W 2 on vektoriavaruuden W 1 aliavaruus?
2 (c) Onko W 2 on vektoriavaruuden R 4 aliavaruus? (d) Miksi W 3 ei ole vektoriavaruuden R 4 aliavaruus. 5 c-kohta VASTAUS: ON. RATKAISU: Osoitetaan, että aliavaruusaksiomit AA1: W ; AA2: jos w 1, w 2 W, niin w 1 + w 2 W ; AA3: jos w W ja λ R, niin λw W ; ovat voimassa. AA1: Koska = 0, niin 0 = (0, 0, 0, 0) W 2, joten W 2 ; AA2: Olkoot w 1 = (x 1, y 1, z 1, t 1 ), w 2 = (x 2, y 2, z 2, t 2 ) W 2. Tällöin (1) x 1 y 1 + z 1 = x 2 y 2 + z 2 = 0 ja w 1 + w 2 = (x 1 + x 2, y 1 + y 2, z 1 + z 2, t 1 + t 2 ), (x 1 + x 2 ) (y 1 + y 2 ) + (z 1 + z 2 ) = x 1 y 1 + z 1 + x 2 y 2 + z 2 = 0, joten w 1 + w 2 W 2 ; AA3: Olkoot w = (x, y, z, t) W 2 ja λ R, tällöin (2) x y + z = 0 ja λw = (λx, λy, λz, λt), (λx) (λy) + (λz) = λ(x y + z) = 0, joten λw W Olkoon V lineaariavaruus kunnan K yli ja v, v 1, v 2 V sekä W 1 = {αv α K}; (a) Määrää lineaarinen verho v K. W 2 = {αv 1 + βv 2 α, β K}. (b) Määrää lineaarinen verho v 1, v 2 K. (c) Osoita, että W 1 on vektoriavaruuden V aliavaruus. (d) Onko W 2 on avaruuden V aliavaruus? (e) Onko W 1 on avaruuden W 2 aliavaruus, jos v = v 1 v 2? 7. Olkoon K kunta ja V = K n, n Z +. Merkitään e k = (0,..., 1,..., 0) K n, missä k:s koordinaatti on 1 ja muut nollia aina, kun k = 1, 2,..., n. Osoita, että vektorit e 1,..., e n ovat lineaarisesti vapaita kunnan K yli.
3 8. Olkoot F 1 = {f F(R, R) : f(t) = f(t + 2π) t R}; F 2 = {f C(R, R) : f = f}; F 3 = {f F(R, R) : f(π) = 0}. (a) Onko F 1 avaruuden F(R, R) aliavaruus? (b) Onko F 2 on avaruuden C(R, R) aliavaruus? Tässä f on funktion f derivaatta. (c) Onko F 3 avaruuden F(R, R) aliavaruus? 9. Kuuluuko polynomi x 2 joukon {x, x 3, x + 2x 2 + 3x 3 } Pol 3 (R, R) lineaariseen verhoon? 10. Olkoon S = {1, x, x 2,..., x k } Pol k (R, R). (a) Osoita, että S on lineaarisesti vapaa. (b) Osoita, että S R = Pol k (R, R). (c) Osoita, että S on polynomiavaruuden Pol k (R, R) kanta. (d) Määrää dim R Pol k (R, R). 11. Olkoon V = {p Pol 3 (R, R) : p(1) = p( 1) = 0}. Osoita, että V on avaruuden Pol 3 (R, R) aliavaruus ja määrää dim V. 12. Olkoon Sym(2, 2) = {A M(2, 2) : A = A T } symmetristen matriisien joukko. Osoita, että Sym(2, 2) on avaruuden M(2, 2) aliavaruus sekä laske dim M(2, 2) ja dim Sym(2, 2). 13. Olkoon V reaalinen sisätuloavaruus. Osoita, että reaaliselle sisätulolle pätee aina, kun α, β R ja v, u, w, z V. v αw + βz = α v w + β v z, 14. Olkoon n Z +. Määritellään kuvaus asettamalla z w = z w = n z k w k k=1 aina, kun z = (z 1,..., z n ), w = (w 1,..., w n ) C n. (a) Osoita, että (C n, ) on kompleksinen sisätuloavaruus. (b) Olkoon z = (i,..., i). Laske z z.
4 15. Määritellään kuvaus asettamalla x y = 5 x 1 y 1 + 3x 2 y2 aina, kun x = (x 1, x n ), y = (y 1, y n ). (a) Onko (R 2, ) on reaalinen sisätuloavaruus? (b) Onko (C 2, ) on kompleksinen sisätuloavaruus? 16. Määritellään kuvaus asettamalla x y = 5x 1 y 1 + 3x 2 y 2 aina, kun x = (x 1, x n ), y = (y 1, y n ). (a) Onko (R 2, ) on reaalinen sisätuloavaruus? (b) Onko (C 2, ) on kompleksinen sisätuloavaruus? 17. Määritellään kuvaus asettamalla p q = 2 p(k)q(k) k=0 aina, kun p, q Pol 2 (R, R). (a) Osoita, että näin saatu kuvaus on avaruuden Pol 2 (R, R) sisätulo. (b) Onko kuvaus avaruuden Pol 3 (R, R) sisätulo? 18. Olkoot n = (1, 0, 1) ja W = {w R 3 : w n = 0}. (a) Osoita, että W on avaruuden R 3 aliavaruus. (b) Määrää aliavaruudelle W jokin kanta. 19. Olkoon V kompleksinen sisätuloavaruus, λ C ja v, w V. (a) Osoita, että (b) Määrää v λw = λ v w. i v w + v i w. (c) Onko tulo v w w v reaaliluku? 20. Onko joukko A k ortogonaalinen, ja jos, niin onko se ortonormaali, kun (a) A 1 = {(1, 1, 1), (2, 0, 2), (1, 2, 1)}? (b) A 2 = {(i, 0, 0), (0, i, 0), (0, 0, i)}? (c) A 3 = {( 3, 0, 4, 0, 0), (0, 1, 0, 3, 0), (0, 0, 0, 0, 1)}?
5 21. Määritellään kuvaus 1 : R 2 R asettamalla x 1 = x 1 + x 2 kaikilla x = (x 1, x 2 ) R 2. Osoita, että 1 on normi. Piirrä joukko {x R 2 : x 1 1}. 22. Olkoon (V, ) normiavaruus. Osoita, että x y x y kaikilla x, y V. 23. Olkoon V reaalinen sisätuloavaruus ja x, y V. Osoita, että x y x + y 2 = x 2 + y Olkoon V sisätuloavaruus ja x, y V sellaiset vektorit, joille pätee x = 2, y = 2 ja x + y = 3. Laske vektoreiden x ja y välinen etäisyys x y. 25. Olkoot H sisätuloavaruus ja S sen kanta. Olkoon u H sellainen vektori, että u v kaikilla v S. Osoita, että u = Etsi Gram-Schmidtin menetelmällä aliavaruudelle H = ( 1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1) ortonormaali kanta. Mitkä ovat vektorin x = (1, 2, 3, 11) koordinaatit löytämässäsi kannassa? 26 RATKAISU alkuosaan: Ortogonaaliset vektorit ovat w 1 = ( 1, 1, 1, 1); w 2 = 1 (1, 5, 3, 3) 4 w 3 = (0, 0, 1, 1). 27. Olkoon L lineaarikuvaus. Osoita, että L(0) = RATKAISU: L(0) = L(0 0) = 0 L0 = Osoita, että nollakuvaus ja identtinen kuvaus ovat lineaarisia. 29. Määritellään kuvaus L : R 3 R 2, asettamalla L(x, y, z) = (x, y + z) aina,kun (x, y, z) R 3. Osoita, että kuvaus L lineaarinen? 30. Onko L : R 2 R, L(x 1, x 2 ) = e x 1+x 2 lineaarinen? 30 VASTAUS: EI. Esimerkiksi aksiomi LAb ei päde, kun λ = 0.
6 31. Onko L : R 2 R, L(x 1, x 2 ) = πx 1 lineaarinen? 31 VASTAUS: ON. 32. Olkoon L : R R sellainen lineaarikuvaus, että L( 7) = 14. Laske L(100). 32 RATKAISU: 14 = L( 7) = ( 7)L(1) L1 = 2 L(100) = 100L1 = Määritellään kuvaus L : R 2 Pol 2 (R, R), asettamalla aina, kun x = (a, b) R 2. L(x) = a + bx (a) Osoita, että kuvaus L on lineaarinen? (b) Määrää Ker L. (c) Onko L injektio? (d) Määrää Im L. (e) Onko L surjektio? (f) Onko L bijektio? (g) Määrää dim Ker L ja dim Im L ja vertaa tulosta dimensiokaavaan. 34. Olkoon V reaalinen sisätuloavaruus, dim K V = k Z + ja n V annettu. Määritellään kuvaus L : V R, asettamalla aina, kun x V. L(x) = n x (a) Osoita, että kuvaus L on lineaarinen. (b) Määrää dim Im L. (c) Määrää dim Ker L. 34 RATKAISU: Luentojen III osa: Esimerkki Määritellään lineaarikuvaus L : R 3 R 4, asettamalla L(x) = (x 1 + x 2, x 2 + x 3, x 1 + x 3, x 1 x 2 + x 3 ) aina, kun x = (x 1, x 2, x 3 ) R 3. (a) Määrää Ker L. (b) Onko L injektio? (c) Määrää dim Ker L ja dim Im L (käytä dimensiokaavaa). (d) Onko L surjektio? (e) Onko L bijektio?
7 (f) Määrää L:n matriisi [L] E3,E 4 luonnollisten kantojen E 3 = {e 1, e 2, e 3 } R 3 ja E 4 = {e 1, e 2, e 3, e 4 } R 4 suhteen. 35 VASTAUS: vertaa luentojen III osa: Esimerkit 11 ja 12: Ker L = {0}; ON injektio; dim Ker L = 0; dim Im L = 3; EI ole surjektio eikä bijektio; [L] E3,E 4 = Lineaarikuvaksen L matriisi on 0 1 [L] E2,E 4 = Anna kuvaus L muodossa 36 RATKAISU: L(x, y) = (a, b, c, d) = ae 1 + be 2 + ce 3 + de 4. Le 1 = e 2 + 2e 3 + e 4 ; Le 2 = e 1 + e 3 2e 4, L(x, y) = L(xe 1 + ye 2 ) = xle 1 + yle 2 ) = ye 1 xe 2 + (2x + y)e 3 + (x 2y)e Lineaarikuvaus L : R 3 R 3 toteuttaa ehdot Lu 1 = u 1 u 2 + u 3, L(u 1 u 2 ) = u 1, ja L(u 1 u 2 + u 3 ) = 2u 2 u 3, missä {u 1, u 2, u 3 } on avaruuden R 3 kanta. Laske Lu 2 ja Lu RATKAISU: L(u 1 u 2 ) = u 1, Lu 1 Lu 2 = u 1, Lu 2 = Lu 1 u 1 = u 2 + u 3 ; L(u 1 u 2 + u 3 ) = 2u 2 u 3, Lu 1 Lu 2 + Lu 3 = 2u 2 u 3, Lu 3 = Lu 1 + Lu 2 + 2u 2 u 3 = u 1 + 2u 2 u 3.
8 38. Olkoon S = sin x, cos x R ja s = {sin x, cos x}. Tutkitaan lineaarikuvausta L : S S, L = D 2 + 2D + I, missä D on derivaattakuvaus ja I on avaruuden S identtinen kuvaus. Määritä [L] s,s. 38 VASTAUS: [L] s,s = [ ] Olkoon V sisätuloavaruus ja A avaruuden V aliavaruus. Osoita, että 39 RATKAISU: A A = {0}. x A A x A ja x A x x = 0 x = Näytä, että pisteen t kohtisuora projektio PROJ A (t) = p aliavaruudelle A on yksikäsitteinen.
x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
Lisätiedotx = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia/Exercises 2017 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
LisätiedotLINEAARIALGEBRA. Harjoituksia/Exercises 2017 Valittuja ratkaisuja/selected solutions
LINEAARIALGEBRA Harjoituksia/Exercises 2017 Valittuja ratkaisuja/selected solutions 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n )
LisätiedotOsoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
LisätiedotLINEAARIALGEBRA. Harjoituksia/Exercises 2019 Valittuja ratkaisuja/selected solutions
LINEAARIALGEBRA Harjoituksia/Exercises 2019 Valittuja ratkaisuja/selected solutions 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n )
Lisätiedot802320A LINEAARIALGEBRA OSA II
802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen
Lisätiedot1 Sisätulo- ja normiavaruudet
1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
LisätiedotMääritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.
1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:
LisätiedotLINEAARIALGEBRA A 2016 TOMI ALASTE EDITED BY T.M. FROM THE NOTES OF
LINEAARIALGEBRA 83A 6 EDITED BY T.M. FROM THE NOTES OF TOMI ALASTE SISÄLTÖ Sisältö Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus 3 Lineaarikuvaus 4 Ominaisarvo 34 5 Esimerkkejä 44 . Lineaariavaruus
LisätiedotLineaarialgebra II P
Lineaarialgebra II 89P Sisältö Vektoriavaruus Sisätuloavaruus 8 3 Lineaarikuvaus 5 4 Ominaisarvo 5 Luku Vektoriavaruus Määritelmä.. Epätyhjä joukko V on vektoriavaruus, jos seuraavat ehdot ovat voimassa:.
Lisätiedotpdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus Lineaarikuvaus Ominaisarvo 0-68
SISÄLTÖ Sisältö pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus 0-1 2 Sisätuloavaruus 0-20 3 Lineaarikuvaus 0-41 4 Ominaisarvo 0-68 5 Esimerkkejä 0-88 1. Lineaariavaruus eli V 1 Lineaariavaruus
Lisätiedot802320A LINEAARIALGEBRA OSA II/PART II
802320A LINEAARIALGEBRA OSA II/PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2019 LINEAARIALGEBRA 1 / 69 Sisätuloavaruus/Inner product space Määritelmä 1 Olkoon V reaalinen vektoriavaruus.
Lisätiedot802320A LINEAARIALGEBRA OSA II/PART II
802320A LINEAARIALGEBRA OSA II/PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 LINEAARIALGEBRA 1 / 67 Sisätuloavaruus/Inner product space Määritelmä 1 Olkoon V reaalinen vektoriavaruus.
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO Syksy 2017 LINEAARIALGEBRA 1 / 59 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2019 LINEAARIALGEBRA 1 / 60 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
Lisätiedot802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III
802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Contents 1 Lineaarikuvaus 2 1.1 Määritelmä............................ 2 1.2 Matriisiesitys/Matrix
Lisätiedot802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II
802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVT 2019 1 Contents 1 Sisätulo- ja normiavaruudet 3 1.1 Sisätuloavaruus/Inner product space..............
Lisätiedot802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II
802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Contents 1 Sisätulo- ja normiavaruudet 2 1.1 Sisätuloavaruus/Inner product space..............
LisätiedotLineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
LisätiedotMatriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?
Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi
LisätiedotTehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2016 Harjoitus 3 Ratkaisut palautettava viimeistään maanantaina 29.8.2016 klo 13.15. Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä
Lisätiedot3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h
HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)
LisätiedotOrtogonaaliprojektio äärellisulotteiselle aliavaruudelle
Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka
LisätiedotHY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:
Lisätiedot1. Normi ja sisätulo
Kurssimateriaalia K3/P3-kursille syksyllä 3 83 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni Normi ja sisätulo
LisätiedotPäättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1
Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon
Lisätiedot(1.1) Ae j = a k,j e k.
Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma
LisätiedotBijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.
Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin
LisätiedotMatriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lisätiedot5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
LisätiedotLineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.
Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat
Lisätiedot1 Ominaisarvot ja ominaisvektorit
1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin
LisätiedotOrtogonaalisen kannan etsiminen
Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:
LisätiedotJAKSO 2 KANTA JA KOORDINAATIT
JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause
LisätiedotKuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
LisätiedotMatemaattinen Analyysi / kertaus
Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen
LisätiedotKanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
LisätiedotAlkeismuunnokset matriisille, sivu 57
Lineaarialgebra (muut ko) p. 1/88 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna
LisätiedotNumeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35
Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon
Lisätiedot2 / :03
file:///c:/users/joonas/desktop/linis II Syksy /Ratkaisuehdotukse / 8 76 3:3 Kysymys Pisteet,, Määritellään positiivisten reaalilukujen joukossa R + = {x R x > } yhteenlasku ja skalaarikertolasku seuraavasti:
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lisätiedot6. OMINAISARVOT JA DIAGONALISOINTI
0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos
Lisätiedot802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I
802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 1 Contents 1 Lineaariavaruus eli Vektoriavaruus 3 1.1 Määritelmä ja esimerkkejä....................
LisätiedotAvaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
Lisätiedot802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I
802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVT 2019 1 Contents 1 Lineaariavaruus eli Vektoriavaruus 3 1.1 Määritelmä ja esimerkkejä....................
Lisätiedot4. LINEAARIKUVAUKSET
86 4 LINEAARIKUVAUKSET 41 Määritelmä ja esimerkkejä Olkoot V ja V vektoriavaruuksia Tarkastellaan kuvausta L : V V Tällöin jokaiseen vektoriin v V liittyy tietty, L:n ja v:n yksikäsitteisesti määräämä
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus
LisätiedotOminaisvektoreiden lineaarinen riippumattomuus
Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin
LisätiedotSisätuloavaruudet. 4. lokakuuta 2006
Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotKantavektorien kuvavektorit määräävät lineaarikuvauksen
Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /310
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/310 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
Lisätiedot1 Avaruuksien ja lineaarikuvausten suora summa
MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon
Lisätiedot6 MATRIISIN DIAGONALISOINTI
6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,
Lisätiedoti=1 Näistä on helppo näyttää ominaisuudet (1)-(4). Ellei toisin mainita, käytetään R n :ssä
Kurssimateriaalia K3/P3-kursille syksyllä 003. 8.0.003 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni.. Normi
LisätiedotLINEAARIALGEBRA P. LUENTOMONISTE ja HARJOITUSTEHTÄVÄT
LINEAARIALGEBRA II 802119P LUENTOMONISTE ja HARJOITUSTEHTÄVÄT syksy 2008 30 V SISÄTULOAVARUUKSISTA 1. Sisätulon määritelmä Tarkastellaan sisätulon määrittelyä varten kompleksilukujen joukkoa C = {x + iy
LisätiedotMatriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo
Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Antti Rasila 2016 Vektoriavaruuden kannan olemassaolo Jos {v 1, v 2,..., v k } on äärellisulotteisen vektoriavaruuden V lineaarisesti riippumaton
LisätiedotNeliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja
7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä
LisätiedotMääritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )
Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä
LisätiedotKanta ja Kannan-vaihto
ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V
LisätiedotOrtogonaalinen ja ortonormaali kanta
Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä
LisätiedotHilbertin avaruudet, 5op Hilbert spaces, 5 cr
Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Pekka Salmi 14.3.2015 Pekka Salmi Hilbertin avaruudet 14.3.2015 1 / 64 Yleistä Opettaja: Pekka Salmi, MA327 Kontaktiopetus ti 1012 (L), ke 810 (L), ma 1214
LisätiedotEnsi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66
Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/66 Lineaarialgebra (muut ko) p. 2/66 Redusoitu porrasmuoto 1 1 2 4 1 1 4 6 2 2 5 9 1 1 0 2 0 0 1 1 0 0 0 0 Eli aste r(a) = 2 ja vaakariviavaruuden
LisätiedotMathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely
f ( n) JYVÄSKYLÄN YLIOPISTO Funktionaalianalyysi Sekalaisia harjoituksia MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Jatkuu... Mathematicians are like Frenchmen: whatever you say to them they translate into
LisätiedotLineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
Lisätiedot6. Lineaariset operaattorit
96 FUNKTIONAALIANALYYSIN PERUSKURSSI 6. Lineaariset operaattorit Luvussa 5 osoitimme, että Fourier-sarjat suppenevat L 2 -normissa (kts. Seuraus 5.8 sivulla 80). Osoitimme myös, että kun f on jatkuva ja
LisätiedotDemorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104
Lineaarialgebra (muut ko) p. 1/104 Ensi viikolla luennot salissa X Torstaina 7.12. viimeiset demot (12.12. ja 13.12. viimeiset luennot). Torstaina 14.12 on välikoe 2, muista ilmoittautua! Demorastitiedot
Lisätiedot9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista
29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n
LisätiedotOminaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.
Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (
LisätiedotRatkaisuehdotukset LH 7 / vko 47
MS-C34 Lineaarialgebra, II/7 Ratkaisuehdotukset LH 7 / vko 47 Tehtävä : Olkoot M R symmetrinen ja positiividefiniitti matriisi (i) Näytä, että m > ja m > (ii) Etsi Eliminaatiomatriisi E R siten, että [
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotNeliömuodoista, matriisin ominaisarvoista ja avaruuden kierroista
Neliömuodoista matriisin ominaisarvoista ja avaruuden kierroista Marko Moisio 1 Neliömuodoista ja matriisin ominaisarvoista Tarkastellaan toisen asteen tasokäyrän määräävää yhtälöä a + by 2 + 2cxy = d
LisätiedotLineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi
Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja
LisätiedotHarjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010
f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010 4.1. Viime kerralta. Esimerkki lokaalikonveksin avaruuden osajoukosta, joka
LisätiedotMetriset avaruudet 2017
Metriset avaruudet 2017 Jouni Parkkonen Merkintöjä N = {0, 1, 2,... } luonnolliset luvut #(A) N { } joukon A alkioiden lukumäärä A B = {a A : a / B} joukkojen A ja B erotus. A B on joukkojen A ja B erillinen
LisätiedotLineaariset mollit, kl 2017, Harjoitus 1
Lineaariset mollit, kl 07, Harjoitus Heikki Korpela 7 huhtikuuta 07 Tehtävä Symmetristä matriisia A(n n) sanotaan positiivisesti definiitiksi (merkitään A > 0), jos x T Ax > 0 kaikilla x 0, x R n (ks monisteen
LisätiedotHavainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.
Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot
LisätiedotLineaarialgebra ja matriisilaskenta I. LM1, Kesä /218
Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.
LisätiedotDerivaatta: funktion approksimaatio lineaarikuvauksella.
Viikko 5 Tällä viikolla yleistetään R 2 :n ja R 3 :n vektorialgebran peruskäsitteet n-ulotteiseen avaruuteen R n, ja määritellään lineaarikuvaus. Tarkastellaan funktioita, joiden määrittelyjoukko on n-ulotteisen
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä
Lisätiedot4. Hilbertin avaruudet
FUNKTIONAALIANALYYSIN PERUSKURSSI 51 4. Hilbertin avaruudet Hilbertin avaruudet ovat ääretönulotteisista normiavaruuksista ominaisuuksiltaan kaikkein lähinnä kotiavaruutta R n tai C n. Tästä syystä niiden
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
LisätiedotVektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden
LisätiedotTyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5
MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää
LisätiedotVektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21.
Vektorianalyysi I MAT21003 Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. syyskuuta 2017 1 Sisältö 1 Euklidinen avaruus 3 1.1 Euklidinen avaruus
LisätiedotYleiset lineaarimuunnokset
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos
Lisätiedot