Luento 7 Järjestelmien ylläpito

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Luento 7 Järjestelmien ylläpito"

Transkriptio

1 Luno 7 Järjslmin ylläpio Ahi Salo Tknillinn korkakoulu PL, 5 TKK

2 Järjslmin ylläpidosa Priaallisia vaihohoja Uusiminn rplacmn Ennalahkäisvä huolo mainnanc Korjaaminn rpair ❶ Uusiminn Vioiun komponni korvaaan uusilla Myös muia komponnja voidaan uusia» Uusiminn hdään jonkin poliiikan mukaissi ks. suraava kalvo ❷ Ennalahkäisvä huolo Huollolla pyriään vikaanumisn sämisn» Esim. lnokonn huolo vikaanumisia i halua Huollon yhydssä vikaanun komponni korjaaan ai uusiaan» Vr. auon huolo jarrupala jn. Kysymyksiä» Min usin huollo piäisi hdä? missä laajuudssa? ❸ Korjaaminn Järjslmä korjaaan vain sn vikaanussa» Esim. salliii nnalahkäisvä huolo liian kallisa Kysymyksiä» Ikäänyvissä järjslmissä usin nmmän vikoja missä vaihssa korjaaminn i nää kannaa? Ma-.37 Riskianalyysi / Ahi Salo

3 Järjslmin korjaaminn Komponnin uusiminn Kun komponni vikaanuu, s vaihdaan uun» Esimrkiksi hhkulamppujn vaiho koona Kysymyksiä» Monako komponnia piäisi olla varasossa, joa varasoimisn ja vikaanumishäiriöidn yhnlasku kusannuks minimoiuva?» Onko vikaanun komponni pakko uusia hi?» Minkä poliiikan mukaan komponni piäisi uusia? Uusimispoliiikkoja Vikaanumisprusainn failur rplacmn:» Kukin komponni uusiaan vain sn vikaanussa Ikäänymisprusainn ag rplacmn» Kukin komponni uusiaan, kun s ❶ vikaanuu ai ❷ sn käyöikä saavuaa asun uusimisvälin c kumpi näisä sin ouuukin komponnin kohdalla nsiksi Eräprusainn block rplacmn» Komponni uusiaan, kun s ❶ vikaanuu ai ❷ ullaan uusimisajankohaan c,c,3c..., jolloin kaikki komponni uusiaan» Tällöin voidaan siis jouua uusimaan sllaisiakin komponnja, joka ova oimivia ja joka ova oll oiminnassa vain vähän aikaa Ma-.37 Riskianalyysi / Ahi Salo 3

4 Uusimispoliiikkojn vrailua Huomioia c Kun, ikäänymis- ja räprusainn uusiminn lähsyvä vikaanumisprusaisa Ikäänymisprusaisssa uusimisssa arviaan odousarvoissi nmmän komponnja kuin vikaanumisprusaisssa» Näin siksi, ä uusiaan myös komponnja, joka saavuava uusimisvälinsä oiminakunnossa Eräprusaisssa arviaan odousarvoissi nmmän komponnja kuin ikäänymisprusaisssa» Näin siksi, ä uusiaan myös komponnja, joka ova oimivia ja joka ivä ol vilä oll oiminnassa koko uusimisväliä Pä siis n f na nb, > n, n, n missä f a b ova hkn mnnssä arviavin uusin komponnin lkm: vikaanumis-, ikäänymis- ja räprusaisssa uusimisssa Ma-.37 Riskianalyysi / Ahi Salo 4

5 Vikaanumisalius Komponnin vikaanuminn Jos vikaaajuusfunkio h on kasvava, niin vikaanumisn kasvaa ajan myöä war-ou» Tyypillinn ilann, kun via aihuuva kulumissa Jos vikaaajuusfunkio h on vähnvä, niin vikaanumisn pinn ajan myöä burn-in» Voi olla ilann uudn järjslmän käyöönoossa, kys simrkiksi alkuvaihn lasnaudisa, joidn jälkn järjslmä oimii parmmin Molmpia apauksia varn arviaan linikämallja, joissa vikaaajuus i ol vakio Ylisimmin i-vakioisia vikaaajuusfunkioia mallinnaan Wibull- ja gammajakaumilla Käyöarkoiuksia Yksiäisn komponnin riskianalyysi Pisprosssi, joissa komponnja uusiaan» Komponnin vikaanumisajankohaa kuvaa saunnaismuuuja T» Korjaamisn ja uusimisn kuluva aika olaan mrkiyksömäksi» Kukin komponni saadaan uudnvroisksi viivä joko uusimalla ai korjaamalla Ma-.37 Riskianalyysi / Ahi Salo 5

6 Wibull-jakauma /3 Ma-.37 Riskianalyysi / Ahi Salo 6

7 Wibull-jakauma /3 Ominaisuuksia Sovluu sllaisn prosssin mallinamisn, jossa vikaanumisn muuuu ajan myöä Elinikää kuvaava funkio >, >, H -muooparamri määriää jakauman muodon» < vikaaajuusfunkio vähnvä» vikaaajuusfunkio vakio s. ksponnijakauma Wibullin rikoisapaus» > vikaaajuusfunkio kasvava Pä f S h E[ T r ] r r Γ r Ts. odousarvo- ja muu momni saadaan gammafunkiosa, joka on aulukoiu Elinikäodo L i siävissä suljussa muodossa Ma-.37 Riskianalyysi / Ahi Salo 7

8 Wibull-jakauma 3/3 Esim. virakykimn oimina Toimina-aika noudaaa Wibull-jakaumaa paramrin.4 vrk - ja.8. Min kauan kykin odousarvoissi ksää? Millä n:llä s ksää vähinään 5 vrk:a? Enä vähinään vilä 5 vrk:ä, jos s on oiminu vrk:a? Rakaisu Odousarvo saadaan kaavasa E[ T] Γ Tn sill, ä kykin ksää vähinään 5 vrk:a saadaan loonjäämisfunkiosa S5 Ehdollinn n sill, ä kykin oimii vähinään vrk:a, jos s on jo oiminu vrk:a S misä saadaan S, 8 S.4. 7 S7.459 S S5 T T Tämä n pinmpi kuin, syynä kasvava vikaaajuusfunkio kasvava.8 > S T T.8 Ma-.37 Riskianalyysi / Ahi Salo 8

9 9 Ma-.37 Riskianalyysi / Ahi Salo Gammajakauma/ Gammajakauma/ Elinikäfunkio anaa rikoisapauksna ksponnijakauman Eloonjäämisfunkio i siävissä suljussa muodossa» Sama kosk myös kumulaiivisa riskiaajuusfunkioa ja jäljllä olvaa linikä-odoa» Mm. näisä syisä Wibullin jakauma on käyännössä ylismpi kuin Gamma-jakauma Erlangin jakauma Jos T,T,..., T n ova oisisaan riippumaomia ksponnijakauunia saunnaismuuujia paramrilla, niin noudaaa Erlangin jakaumaa gammajakauma, missän r r x r T E dx x d F f τ τ τ ] [ Γ Γ Γ Λ H L n i i T n k k n k S n f!!

10 Gammajakauma / Esim. urvallisuuskriiinn varusaminn Luoaimn visinäjärjsjslmän komponnin on oimiava avaruudssa v kuluua vähinään odnnäköisyydllä 99,99%. Monako varakomponnia on oava mukaan, jos komponnin vikaanumisaajuus on.5/v? Rakaisu Erlangin jakauman pruslla n:s komponnisa muodosuva järjslmä oimii v:n pääsä n:llä S n S k n.5.5 k k! 99,987% S 99,999% Koska 3 ja 4 niin olava ainakin 4 komponia li 3 varall Ma-.37 Riskianalyysi / Ahi Salo

11 Vikaanumisn lukumäärä Noaaioa Järjslmä oaa käyöön ajanhkllä T Komponni vikaanuu hkllä T ja s joko korjaaan ai korvaaan uudlla viipymää Toinn komponni vikaanuu hkllä T, minkä sill hdään samoin Näin mnlln hkn mnnssä arviaan komponnja N max k T { } k Lasknaprosssin ominaisuuksia N on i-vähnvä N N Jos <, niin on aikavälin, ] kulussa vikaanunidn komponnin lukumäärä Prosssilla on riippumaoma lisäyks, jos minkä ahansa kahdn oisiaan likkaamaoman aikavälin, ] ja 3, 4 ] aikana apahunidn vikaanumisn lukumäärä ova oisisaan riippumaomia Prosssi on saionaarinn saionary, jos minkä ahansa aikavälin kulussa vikaanunidn komponnin lukumäärä riippuu vain aikavälin piuudsa Uusiuumisprosssissa rnwal procss vikaanumisapahumin välis aja ova oisisaan riippumaomia ja idnissi jakauunia Ma-.37 Riskianalyysi / Ahi Salo

12 Ma-.37 Riskianalyysi / Ahi Salo

13 Homogninn Poisson-prosssi Poisson-prosssi paramrilla ouaa suraava hdo Alussa hkllä vikaanumisn lkm N Toisiaan likkaamaomin aikavälin aikana apahunidn vikaanumisn lukumäärä ova riippumaomia Minkä ahansa :n lvyisn aikavälin aikana vikaanumisn lkm on Poisson-jakauunu paramrilla sin, ä P [ N N n] missä Esim. Tarkasllaan dllisä avaruusluoaina. Mikä on odnnäköisyys sill, ä 7 vuodn kulussa on vikaanunu asan komponnia? Rakaisu n Ny P[ N n] jon n!.5 7 P N7! n,,,κ n [ ] n!.5 7 [ ].3% Ma-.37 Riskianalyysi / Ahi Salo 3

14 Ei-homogninn Poisson-prosssi Ominaisuuksia Vikaanumis ivä apahdu vakioaajuudlla, vaan niiä apahuu aikariippuvan funkion mukaissi; ää kusuaan innsiifunkioksi Kunnolaan huononva paranva järjslmä mallinnaan kasvavalla vähnvällä :llä Hkn mnnssä ilmnnidn vikaapahumin odousarvoinn lkm saadaan kumulaiivissa innsiifunkiosa Λ τ dτ Tasan n komponnia vikaanuu aikavälillä a b] odnnäköisyydllä P b n τ dτ n! a b a τ dτ [ N b N a n] Huomioia Ensimmäisn komponnin vikaanumisn kuluva odousarvoinn aika sama kuin yksiäisn komponnin vikaaajuusfunkiolla Sn sijaan myöhmmä vikaanumis riippuva innsiifunkiosa komponnin myöhmmä vikaanumisväli riippuva siiä, milloin aimma vikaanumis ova apahun Ei siis nää kys uusiuumisprosssisa! Ma-.37 Riskianalyysi / Ahi Salo 4

15 Ei-homogninn Poisson-prosssi Esimrkki virakykin Olkoon innsiifunkio τ, > paramrin.4 ja.8 so. sama kuin Wibull-jakauman vikaaajuusfn kalvolla 3. Millä odnnäköisyydllä ämän innsiinmukaissi huononuvassa järjslmässä komponni vikaanuu 3 kr vrk:n kulussa? Rakaisu Ny Λ Tän P [ N 3] τ dτ % τ dτ 3! [.4 τ dτ.8 ] Ma-.37 Riskianalyysi / Ahi Salo 5

16 Korjauks ja käyävyysk Järjslmin korjaamissa Tsaamisn, korjaamisn ja uusimisn mn usin aikaa, miä pisprosssikuvaus i oa huomioon Mrkiään X i :llä i:nn vikaanumisn ja R i :llä i:nn korjaamisn kuluvaa aikaa Järjslmän ila riippuu ny siiä, min kauan vikaanumisn ja korjaamisn kuluu aikaa Mrkiään järjslmän ilaa muuujalla, järjslmä oimii hkllä X, järjslmä i oimi hkllä Käyävyys availabiliy, A Tarkoiaa odnnäköisyyä, jolla järjslmä on oiminakunoinn jonakin ajankohana ai aikavälinä Lähsyy ajan kulussa vakioraja-arvoa, kun X i :n ja R i :n jakauma pysyvä samoina Voidaan käsinä äsmnää ri avoin Ma-.37 Riskianalyysi / Ahi Salo 6

17 Käyävyys ❶ Hkiäinn käyävyys Engl. poin availabiliy A P X E[ X ], > Sama kuin loonjäämisfunkio S komponnill, joa i voida korjaa ❷ Raja-arvoinn käyävyys Engl. limiing availabiliy A lim A Min suurn osan ajasa järjslmä oimii pikässä juoksussa? ❸ Kskimääräinn käyävyys välillä,c] Engl. avrag availabiliy [ ] c A c A d, c> c Min suurn osan aikavälisä,c] järjslmä oimii odousarvoissi? ❹ Raja-arvoinn kskim. käyävyys Engl. limiing avrag availabiliy A lim Ac Min suurn osan ajasa ylipääään järjslmä oimii? Ma-.37 Riskianalyysi / Ahi Salo 7

18 Käyävyydn määriäminn Lähökohia Olaan, ä X i ja R i i,,... ova oisisaan riippumaomia ksponnijakauunia saunnaismuuujia paramrin ja Aikavälin, + ] pääyssä järjslmä oimii, jos ❶ s oimi hkllä ikä hajonnu nnn + :ä, ai ❷ s i oiminu hkllä, mua korjaiin nnn + :ä Saadaan siis A + Kun, niin A + A + A + A + A' + A + A A +, > Ma-.37 Riskianalyysi / Ahi Salo 8

19 Käyävyys ja vikaanumisaja Kskimääräinn käyävyys c + A + d c + + c c + Vain nsimmäinn rmi jää jäljll, kun Raja-arvoja Raja-arvoinn käyävyys siis A lim A + Koska kskimääräinn vikaanumisaika MTTF / man im o failur ja korjausaika MTTR / man im o rpair, niin kromalla yllä osoiaja ä nimiäjä rmillä / saadaan A MTTF MTTF + Raja-arvoinn käyävyys riippuu siiä, min nopasi järjslmä saadaan korjaua suhssa siihn, min nopasi s vikaanuu Tämä pä myös, kun korjausaika oisin jakauunu sim. korjaus ksolaan vakiopiuinn Ma-.37 Riskianalyysi / Ahi Salo + MTTR + c + + c 9

20 Esimrkkjä käyävyydsäk / Esim. uusiuumisprosssi Olaan järjslmän vikaanuminn ja korjaaminn ksponnijakauuniksi. Kskimääräinn vikaanumisaika on unia ja korjausaika unia. Järjslmä on aluksi oiminakunoinn. Mikä on järjslmän» oiminaodnnäköisyys hkllä?» raja-arvoinn käyävyys?» kskimääräinn käyävyys välillä,]? Rakaisu Ny /MTTF. ja /MTTR., jon.. A % Raja-arvoinn käyävyys saadaan, kun hkiäisssä käyävyyssä Kskimääräinn käyävyys.+.. A 99,%.+.. A +. 99,63% Ma-.37 Riskianalyysi / Ahi Salo

21 Esimrkkjä käyävyydsäk / Esim. laauohjlman suunnilu Laauohjlman avulla pyriään kaksinkraisamaan kskimääräinn vikaanumisaika skä puoliamaan kskimääräinn korjausaika. Jos nämä avoi saavuaan, mikä on laauohjlman vaikuus järjslmän käyävyyn? Rakaisu Ennn laauohjlmaa järjslmä on poissa käyösä ajan A + Laauohjlman jälkn vasaava osuus ajasa on A Suhksi saadaan siis A A + ½ + Usin olnnaissi pinmpi kuin, jon aika, jona järjslmä i ol saaavissa, aln noin nljäsosaansa ½ + ½ ½ + + ½ Ma-.37 Riskianalyysi / Ahi Salo

Luento 7 Järjestelmien ylläpito

Luento 7 Järjestelmien ylläpito Sysmianalyysin laboraorio Luno 7 Järjslmin ylläpio Ahi Salo Sysmianalyysin laboraorio Tknillinn korkakoulu PL, 5 TKK Sysmianalyysin laboraorio Järjslmin ylläpidosa Priaallisia vaihohoja Uusiminn rplacmn

Lisätiedot

Luento 7 Vikaantumisprosessit ja käytettävyys

Luento 7 Vikaantumisprosessit ja käytettävyys Aalo-yliopison prusiidn korkakoulu Mamaiikan ja sysmianalyysin laios Luno 7 Vikaanumisprosssi ja käyävyys Ahi alo ysmianalyysin laboraorio Mamaiikan ja sysmianalyysin laios Aalo-yliopison prusiidn korkakoulu

Lisätiedot

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA S I G N A A L I T E O R I A, O S A I I I TL98Z SIGNAALITEORIA, OSA III 44 3 Signaalin suodaus...44 3. Sysmin vas aikaasossa... 44 3. Kausaalisuus a sabiilisuus... 46 3.3 Vas aauusasossa... 46 3.4 Ampliudivas

Lisätiedot

ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +.

ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +. Diffrniaaliyhälö II, harjoius 3, 8 228, rakaisu JL, kuusi sivua a On muunnava linaarinn oisn kraluvun diffrniaaliyhälö ẍ qx f yhäpiäväksi nsimmäisn kraluvun linaarisksi kahdn skalaariyhälön sysmiksi Rak

Lisätiedot

Muuttuvan kokonaissensitiivisyyden mallinnus valvontaohjelman riskinarvioinnissa esimerkkinä munintaparvet

Muuttuvan kokonaissensitiivisyyden mallinnus valvontaohjelman riskinarvioinnissa esimerkkinä munintaparvet Muuuvan kokonaissnsiiivisyyn mallinnus valvonaohjlman riskinarvioinnissa simrkkinä muninaarv Tausa: Aimma salmonllarojki FooBUG rojki ja uusi malli muninaarvill 8. EFSA WG: salmonlla muninaarvissa. Samaa

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali

VÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali 7/ VÄRÄHTELYMEKANIIKKA SESSIO 7: Yhn vapausasn paovärähly, impulssiuormius ja Duhamlin ingraali IMPULSSIKUORMITUS Maanisn sysmiin ohisuva jasoon hrä on usin ajasa riippuva lyhyaiainn uormius. Ysinraisin

Lisätiedot

Luento 8 Vikaantumisprosessit ja käytettävyys

Luento 8 Vikaantumisprosessit ja käytettävyys Luento 8 Vikaantumisprosessit ja käytettävyys Jan-Erik Holmberg Systeemianalyysin laboratorio Aalto-yliopiston perustieteiden korkeakoulu PL 11100, 00076 Aalto jan-erik.holmberg@riskpilot.fi 1 Komponenttien

Lisätiedot

Luento 6 Luotettavuus ja vikaantumisprosessit

Luento 6 Luotettavuus ja vikaantumisprosessit Tkll korkakoulu ysmaalyys laboraoro Luo 6 Luoavuus a vkaaumsrosss Ah alo ysmaalyys laboraoro Tkll korkakoulu PL 00, 005 TKK Tkll korkakoulu ysmaalyys laboraoro Määrlmä Tarkaslava ykskö luoavuus o s odäkösyys,

Lisätiedot

a) Miksi signaalin jaksollisuus on tärkeä ominaisuus? Miten jaksollisuus vaikuttaa signaalin taajuussisältöön?

a) Miksi signaalin jaksollisuus on tärkeä ominaisuus? Miten jaksollisuus vaikuttaa signaalin taajuussisältöön? L53, Sinaalioria J. Laiinn..5 E3SN, E3SN5Z Väliko, rakaisu Vasaa lyhysi suraaviin kysymyksiin. 6p a Miksi sinaalin aksollisuus on ärkä ominaisuus? Min aksollisuus vaikuaa sinaalin aauussisälöön? b Miä

Lisätiedot

W dt dt t J.

W dt dt t J. DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan

Lisätiedot

VAIHELUKKOTEKNIIKKA JA TAKAISINKYTKETYT DEMODULAATTORIT KULMAMODULAATION ILMAISUSSA

VAIHELUKKOTEKNIIKKA JA TAKAISINKYTKETYT DEMODULAATTORIT KULMAMODULAATION ILMAISUSSA VIHELUOTENII J TISINYTETYT DEMODULTTORIT ULMMODULTION ILMISUSS Vaihohoinn ilmaisumnlmä kulmamoulaaioill? 5357 Tioliiknnkniikka I Osa 9 ari ärkkäinn ä 05 VIHELUO PLL FM & PM -ILMISINPIIRINÄ Ellä on arkaslu

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista Rahoiusriski ja johdannaise Mai Esola lueno Sokasisisa prosesseisa . Markov ominaisuus Markov -prosessi on sokasinen prosessi, missä ainoasaan muuujan viimeinen havaino on relevani muuujan seuraavaa arvoa

Lisätiedot

12. ARKISIA SOVELLUKSIA

12. ARKISIA SOVELLUKSIA MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen Rahoitusriskit ja johdannaist Matti Estola Lunto 5 rmiinihinnan määräytyminn 1. rmiinin ylinn hinnoittlukaava Mrkitään trmiinisopimuksn kohd-tuudn spot hintaa sopimuksn tkopäivänä S :lla, kohd-tuudn trmiinihintaa

Lisätiedot

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi Rakennusosien rakennusfysikaalinen oimina Ralf Lindber Professori, Tampereen eknillinen yliopiso ralf.lindber@u.fi Rakenneosien rakennusfysikaalisen oiminnan ymmärämiseksi on välämäönä piirää kolme eri

Lisätiedot

LIITE 8A: RAKENNELUVUN 137 YHTÄLÖITÄ

LIITE 8A: RAKENNELUVUN 137 YHTÄLÖITÄ LIITE 8A: RAKENNELUVUN 37 YHTÄLÖITÄ Raknnluvusta 37 on tämän työn yhtydssä syntynyt yli 00 yhtälöä, joista 00 yhtälöä on analysoitu. Näistä on osoittautunut 70 yhtälöä milnkiintoisiksi ja saman vrran otaksutaan

Lisätiedot

PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd

PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd PK-YRITYKSEN ARVONMÄÄRITYS KTT, DI TOIVO KOSKI elearning Communiy Ld Yriyksen arvonmääriys 1. Yriyksen ase- eli subsanssiarvo Arvioidaan yriyksen aseen vasaavaa puolella olevan omaisuuden käypäarvo, josa

Lisätiedot

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen Soimukseneon dynamiikka: johdano ja haiallinen valikoiuminen Ma-2.442 Oimoinioin seminaari Elise Kolola 8.4.2008 S yseemianalyysin Laboraorio Esielmä 4 Elise Kolola Oimoinioin seminaari - Kevä 2008 Esiyksen

Lisätiedot

SATE1050 Piirianalyysi II syksy / 8 Laskuharjoitus 2 / Transientti-ilmiö (ratkaisut muodostaen diff. yhtälöt, EI saa käyttä Laplace-muunnosta!

SATE1050 Piirianalyysi II syksy / 8 Laskuharjoitus 2 / Transientti-ilmiö (ratkaisut muodostaen diff. yhtälöt, EI saa käyttä Laplace-muunnosta! SAT5 Piirinlyysi II syksy 6 / 8 skuhrjoius / Trnsini-ilmiö (rkisu muodosn diff. yhälö, I s käyä plc-muunnos!) Thävä. All olvss kuvss siyssä piirissä kykin siiryy hkllä = snnos snoon viivä (= induknssin

Lisätiedot

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia 6.4 Variaaiolaskennan oleusen rajoiukse Sivu ss. 27 31 läheien Kirk, ss. 13 143] ja KS, Ch. 5] pohjala Lähökoha oli: jos J:llä on eksremaali (), niin J:n variaaio δj( (), δ()) ():ä pikin on nolla. 1. Välämäön

Lisätiedot

Luento 4. Fourier-muunnos

Luento 4. Fourier-muunnos Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto Kojemeeorologia Sami Haapaala syksy 03 Fysiika laios, Ilmakehäieeide osaso Mialaieide dyaamise omiaisuude Dyaamise uusluvu määriävä mie mialaie käyäyyy syöeide muuuessa Apua käyeää differeiaaliyhälöiä,

Lisätiedot

X(t) = X 0 + tx 1 + t 2 X 2 + t 3 X ,

X(t) = X 0 + tx 1 + t 2 X 2 + t 3 X , Ma-1.1332 Mariisiksponnifunkio, KP3-II, syksy 2007 Pkka Alsalo Johdano. Tämä monis sisälää kurssilla arviava ido mariisiksponnifunkiosa. Mariisiksponnifunkio. Suraavassa A on raalinn n n-mariisi, jonka

Lisätiedot

2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t

2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t Tilasollinen ennusaminen Seppo Pynnönen Tilasoieeen professori, Meneelmäieeiden laios, Vaasan yliopiso. Tausaa Tulevaisuuden ennusaminen on ehkä yksi luoneenomaisimpia piireiä ihmiselle. On ilmeisesi aina

Lisätiedot

Systeemimallit: sisältö

Systeemimallit: sisältö Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -kuvaus ja ilayhälömalli, ila Linearisoini Jakuva-aikaisen lineaarisen järjeselmän siirofunkio, sabiilisuus Laplace-muunnos Diskreeiaikaisen lineaarisen

Lisätiedot

Todennäköisyyspohjainen käyttövarmuuden ja kunnossapidon suunnittelu

Todennäköisyyspohjainen käyttövarmuuden ja kunnossapidon suunnittelu Tonnäköisyyspojainn käyövarmuun ja kunnossapion suunnilu Hikki Prnu Tamprn knillinn yliopiso, Korkakoulunkau 6, Bo 589, 33 Tampr Pu. (3) 352628, la (3) 35237, ikki.prnu@u.i AVAINSANAT käyövarmuus, kunnossapio,

Lisätiedot

Ratkaisu. Virittäviä puita on kahdeksan erilaista, kun solmut pidetään nimettyinä. Esitetään aluksi verkko kaaviona:

Ratkaisu. Virittäviä puita on kahdeksan erilaista, kun solmut pidetään nimettyinä. Esitetään aluksi verkko kaaviona: Diskreei maemaiikka, sks 00 Harjoius 0, rakaisuisa. Esi viriävä puu suunaamaomalle verkolle G = (X, E, Ψ), kun X := {,,, }, E := { {, }, {, }, {, }, {, }, {, }}, ja Ψ on ieninen kuvaus. Rakaisu. Viriäviä

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin

Lisätiedot

Käyttövarmuuden ja kunnossapidon perusteet, KSU-4310: Tentti ma

Käyttövarmuuden ja kunnossapidon perusteet, KSU-4310: Tentti ma KSU-430/Ten 4..2008/Prof. Seppo Vranen /3 Käyövarmuuden ja kunnossapdon perusee, KSU-430: Ten ma 4..2008 Huom. Vasaus van veen kysymykseen. Funko- ja/a ohjelmoavan laskmen, musnpanojen, luenomonseden ja

Lisätiedot

2. Suoraviivainen liike

2. Suoraviivainen liike . Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2010 Insinöörivalinnan fysiikan koe 2.6.2010, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2010 Insinöörivalinnan fysiikan koe 2.6.2010, malliratkaisut A1 Diplomi-insinöörin ja arkkithtin yhtisalinta - dia-alinta 2010 Alla on lutltu kuusi suurtta skä annttu taulukoissa kahdksan lukuaroa ja kahdksan SI-yksikön symbolia. Yhdistä suurt oikan suuruusluokan

Lisätiedot

KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN

KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN YYSILMIÖ J SILÄ VÄLYMIE YYSE SIIRO LJEUS HYVÄSI ÄYÄE ieoliikenneekniikka I 559 ari ärkkäinen Osa 5 4 MILLOI? Milloin ja missä kynnysilmiö esiinyy? un vasaanoimen ulon SR siis esi-ilmaisusuodaimen lähdössä

Lisätiedot

JLP:n käyttämättömät mahdollisuudet. Juha Lappi

JLP:n käyttämättömät mahdollisuudet. Juha Lappi JLP:n äyämäömä mahdollisuude Juha Lappi LP ehävä p z = a x + b z 0 Max or Min (.) 0 0 = = subjec o he following consrains: c a x + b z C, =,, q p q K r (.2) = = m n i ij K (.3) i= j= ij x xw= 0, =,, p

Lisätiedot

Mittaus- ja säätölaitteet IRIS, IRIS-S ja IRIS-M

Mittaus- ja säätölaitteet IRIS, IRIS-S ja IRIS-M Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M KANSIO 4 VÄLI ESITE Lapinleimu Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M IRIS, IRIS-S Rakenne IRIS muodosuu runko-osasa, sääösäleisä, sääömuerisa ai sääökahvasa

Lisätiedot

Nosto- ja Kiinnitysosat

Nosto- ja Kiinnitysosat Ilman miä i BETONI NOUSE. Noso- ja Kiinniysosa Valikoimasa löyyy laaja valikoima rilaisia nosoon ja kiinniyksn sovluvia boniin valavia ankkuria arvikkinn. Ankkuri on jau käyöavan mukaan kirrankkurihin,

Lisätiedot

POHJOINEN SOTE JA TUOTTAMISEN RAKENTEET Muistio 2/15

POHJOINEN SOTE JA TUOTTAMISEN RAKENTEET Muistio 2/15 POHJOINEN SOTE JA TUOTTAMISEN RAKENTEET Muisio 2/15 20.8.15 IKÄIHMISTEN PALVELUJEN RYHMÄ Aika 20.8.2015 klo 9-11.30 Paikka Läsnä Kokkolan kaupunginalo, kokoushuone Minerva Maija Juola, pj, Kokkola Vuokko

Lisätiedot

Ilpo Halonen Luonnehdintoja logiikasta 4. Luonnehdintoja logiikasta 4. Tautologioita 1. Tautologioita 3. Tautologioita 2. Johdatus logiikkaan

Ilpo Halonen Luonnehdintoja logiikasta 4. Luonnehdintoja logiikasta 4. Tautologioita 1. Tautologioita 3. Tautologioita 2. Johdatus logiikkaan Ilpo Halonn 2005 Luonnhdinoja logiikasa 4 Johdaus logiikkaan Ilpo Halonn Syksy 2005 ilpo.halonn@hlsinki.fi Filosofian laios Humanisinn idkuna whn you hav liminad h impossibl, whavr rmains, howvr improbabl,

Lisätiedot

Variations on the Black-Scholes Model

Variations on the Black-Scholes Model Variations on th Black-Schols Mol Sovlltun matmatiikan jatko-opintosminaari 6.9 Koh-tuus maksaa osinkoja avoittna on tarkastlla tilantita, joissa B&S yhtälö i ol riittävä sllaisnaan (sim. option koh-tuus

Lisätiedot

Lämmönsiirto (ei tenttialuetta)

Lämmönsiirto (ei tenttialuetta) ämmönsiirto um 4..3 ämmönsiirto (i tnttialutta) rminologiaa ämpötila on suur, joka kuvaa, mitn kuuma jokin sin tai ain on. ämpötilaa (lat. tmpratura) mitataan SI-järjstlmässä klvinillä (K) tai clsiusastilla

Lisätiedot

Mittaustekniikan perusteet, piirianalyysin kertausta

Mittaustekniikan perusteet, piirianalyysin kertausta Miausekniikan perusee, piirianalyysin kerausa. Ohmin laki: =, ai = Z ( = ännie, = resisanssi, Z = impedanssi, = vira). Kompleksiluvu Kompleksilukua arviaan elekroniikassa analysoiaessa piireä, oka sisälävä

Lisätiedot

Luento 5 Riippuvuudet vikapuissa Esimerkkejä PSA:sta

Luento 5 Riippuvuudet vikapuissa Esimerkkejä PSA:sta Luento 5 Riippuvuudet vikapuissa Esimerkkejä S:sta hti Salo Teknillinen korkeakoulu L 1100, 0015 TKK 1 Toisistaan riippuvat vikaantumiset Riippuvuuksien huomiointi erustapahtumien taustalla voi olla yhteisiä

Lisätiedot

5. Vakiokertoiminen lineaarinen normaaliryhmä

5. Vakiokertoiminen lineaarinen normaaliryhmä 1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa

Lisätiedot

Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt. (Kuuluu kurssiin Sähkömagnetismi, LuTK)

Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt. (Kuuluu kurssiin Sähkömagnetismi, LuTK) Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja linaaripiirit. Maxwllin yhtälöt. (Kuuluu kurssiin Sähkömagntismi, LuTK) Näytä tai jätä tarkistttavaksi tämän jakson pakollist thtävät viimistään

Lisätiedot

AINA TÄYTTÄ KONEASIAA

AINA TÄYTTÄ KONEASIAA AINA TÄYTTÄ KONEASIAA Toimiuksn osoi: Hämnpuiso 44, 33200 TAMPERE 25. vuosikra J O U L U K U U nro 10-2015 Rakaisuja järään konisuksn Uusia vaakakaraisia siliin Sugarissa s. 8 Asiakasrääälöinnin yhisyöä

Lisätiedot

x v1 y v2, missä x ja y ovat kokonaislukuja.

x v1 y v2, missä x ja y ovat kokonaislukuja. Digiaalinen videonkäsiel Harjoius, vasaukse ehäviin 4-0 Tehävä 4. Emämariisi a: V A 0 V B 0 Hila saadaan kanavekorien (=emämariisin sarakkee) avulla. Kunkin piseen paikka hilassa on kokonaisluvulla kerroujen

Lisätiedot

KOHINA KULMAMODULAATIOISSA

KOHINA KULMAMODULAATIOISSA OHI ULMMOULIOISS ioliikkiikka I 559 ai äkkäi Osa 4 7 ulaoulaaio ouloii kohia vallissa iskiiaaoi koosuu ivaaoisa ja vhokäyäilaisisa. ivaaoi suaa -sigaali vaihkula uuosopua aajuu uuosa kskiaajuu C ypäillä.

Lisätiedot

KÄYTTÖOPAS. Ilma vesilämpöpumppujärjestelmän sisäyksikkö ja lisävarusteet RECAIR OY EKHBRD011ADV1 EKHBRD014ADV1 EKHBRD016ADV1

KÄYTTÖOPAS. Ilma vesilämpöpumppujärjestelmän sisäyksikkö ja lisävarusteet RECAIR OY EKHBRD011ADV1 EKHBRD014ADV1 EKHBRD016ADV1 EKHBRD011ADV1 EKHBRD014ADV1 EKHBRD016ADV1 EKHBRD011ADY1 EKHBRD014ADY1 EKHBRD016ADY1 KÄYÖOPAS Ilma vesilämpöpumppujärjeselmän sisäyksikkö ja lisävarusee EKHBRD011ADV1+Y1 EKHBRD014ADV1+Y1 EKHBRD016ADV1+Y1

Lisätiedot

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014 MAT-45 Fourier n meneelmä Merja Laaksonen, TTY 4..4 Sisälö Johano 3. Peruskäsieiä................................... 4.. Parillinen ja parion funkio....................... 7.. Heavisien funkio............................

Lisätiedot

Vietnam-seuran Seurakirje 4/2009. Loppuvuoden terveisiä Vietnam-seurasta! AJANKOHTAISTA

Vietnam-seuran Seurakirje 4/2009. Loppuvuoden terveisiä Vietnam-seurasta! AJANKOHTAISTA Vinam-suran Surakirj 4/2009 Loppuvuodn rvisiä Vinam-surasa! Vuosi lähn loppuaan, ja on suran vuodn 2009 viimisn jäsnkirjn aika! AJANKOHTAISTA VIETNAMILAINEN VESINUKKETEATTERI HELSINGISSÄ! Vinamilainn vsinukkari

Lisätiedot

Tasaantumisilmiöt eli transientit

Tasaantumisilmiöt eli transientit uku 12 Tasaanumisilmiö eli ransieni 12.1 Kelan kykeminen asajännieeseen Kappaleessa 11.2 kykeiin reaalinen kela asajännieeseen ja ukiiin energian varasoiumisa kelan magneeikenään. Tilanne on esiey uudelleen

Lisätiedot

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,

Lisätiedot

Pag e. Lukion työskentelyä ohjaavat lukiolaki, lukioasetus, opetushallituksen ohjeet, koulutoimen toimintasääntö ja järjestyssäännöt.

Pag e. Lukion työskentelyä ohjaavat lukiolaki, lukioasetus, opetushallituksen ohjeet, koulutoimen toimintasääntö ja järjestyssäännöt. Liit 6 Mäntyharjun lukion järjstyssääntö Lukion työskntlyä ohjaavat lukiolaki, lukioastus, optushallituksn ohjt, koulutoimn toimintasääntö ja järjstyssäännöt. Järjstyssääntöjn tavoittna on turvata kouluyhtisön

Lisätiedot

Signaalit aika- ja taajuustasossa

Signaalit aika- ja taajuustasossa Sili lomuoo Sili ik- uussoss Alomuoo kuv sili käyäyymisä fukio li iksoss. Ylsä lomuoo rksll simrkiksi oskilloskoopi äyöllä. Siimuooi sili Asiφ Asiπf φ i Acosφ Acosπf φ muodos prus kikki sili uussisällö

Lisätiedot

Diskreetillä puolella impulssi oli yksinkertainen lukujono:

Diskreetillä puolella impulssi oli yksinkertainen lukujono: DEE-00 ineaarise järjeselmä Harjoius 5, rakaisuehdoukse [johdano impulssivaseeseen] Jakuva-aikaisen järjeselmän impulssivase on vasaavanlainen järjeselmäyökalu kuin diskreeillä puolellakin: impulssivase

Lisätiedot

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt SMG-500 Verolasennan numeerise meneelmä Ehdouse harjoiusen 4 raaisuisi Haeaan ensin ehävän analyyinen raaisu: dx 0 0 0 0 dx 00e = 0 = 00e 00 x = e + = 5e + alueho: x(0 = 0 0 x 0 = 5e + = 0 = 5 0 0 0 5

Lisätiedot

KÄYTTÖOPAS. -järjestelmän sisäyksikkö HXHD125A8V1B

KÄYTTÖOPAS. -järjestelmän sisäyksikkö HXHD125A8V1B KÄYÖOPAS -järjeselmän sisäyksikkö SISÄLÖ 1. Määrielmä... 1 1.1. Merkkien ja varoiusen arkoiukse... 1 1.2. Käyeyjen ermien merkiys... 1 2. Yleise varooime... 2 3. Johdano... 2 3.1. Yleisä... 2 3.2. ämän

Lisätiedot

Johdatus graafiteoriaan

Johdatus graafiteoriaan Johdatus graafitoriaan Syksy 2017 Lauri Hlla Tamprn yliopisto Luonnontitidn tidkunta 2 Luku 1 Pruskäsittitä 1.1 Määritlmiä 1.2 Esimrkkjä 1.3 Trminologiaa 1.4 Joitakin rikoisia yksinkrtaisia graafja 1.5

Lisätiedot

BETONI-TERÄS LIITTORAKENTEIDEN SUUNNITTELU EUROKOODIEN MUKAAN (TTY 2009) Betonipäivät 2010

BETONI-TERÄS LIITTORAKENTEIDEN SUUNNITTELU EUROKOODIEN MUKAAN (TTY 2009) Betonipäivät 2010 DIPLOMITYÖ: BETONI-TERÄS LIITTORAKENTEIDEN SUUNNITTELU EUROKOODIEN MUKAAN (TTY 29) Beonipäivä 21 DIPLOMITYÖ prosessina Aie: yön eeäjän aloieesa Selviykse beonin, eräksen ja puun osala oli jo ey/käynnissä

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial

Lisätiedot

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän: ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän

Lisätiedot

Luento 5 Yhteisvikojen analyysi PSA:n sovelluksia

Luento 5 Yhteisvikojen analyysi PSA:n sovelluksia alto-yliopiston perustieteiden korkeakoulu Luento 5 Yhteisvikojen analyysi S:n sovelluksia hti Salo Systeemianalyysin laboratorio alto-yliopiston perustieteiden korkeakoulu L 11100, 00076 alto ahti.salo@aalto.fi

Lisätiedot

Puolijohdekomponenttien perusteet A Ratkaisut 2, Kevät 2017

Puolijohdekomponenttien perusteet A Ratkaisut 2, Kevät 2017 OY/PJKOMP R 017 Puolijohdekomoeie erusee 571A Rakaisu, Kevä 017 1. Massavaikuuslai mukaisesi eemmisö- ja vähemmisövarauksekuljeajie ulo o vakio i, joka riiuu uolijohdemaeriaalisa ja lämöilasa. Kuvasa 1

Lisätiedot

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän

Lisätiedot

KULMAMODULOITUJEN SIGNAALIEN ILMAISU DISKRIMINAATTORILLA

KULMAMODULOITUJEN SIGNAALIEN ILMAISU DISKRIMINAATTORILLA 1 KULMMOULOITUJEN SIGNLIEN ILMISU ISKRIMINTTORILL Millaisia keinoja on PM & FM -ilmaisuun? 51357 Tieoliikenneekniikka I Osa 17 Kai Käkkäinen Kevä 015 ISKRIMINTTORIN TOIMINTKÄYRÄ J -YHTÄLÖ FM-signaalin

Lisätiedot

76132S Sähkömagneettinen säteily 1

76132S Sähkömagneettinen säteily 1 763 ähkömagnttinn säti. MAXWELLIN YHTÄLÖT Kaikki sähkömagnttisia knttiä koskvat kassist imiöt voidaan johtaa njästä htäöstä. Thjössä nämä sähköknttää E ja magnttiknttää B kuvaavat htäöt saavat suraavan

Lisätiedot

YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY 1 YRITYSKOHTAISEN TEHOSTAMISPOTENTIAALIN MITTAAMINEN

YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY 1 YRITYSKOHTAISEN TEHOSTAMISPOTENTIAALIN MITTAAMINEN ENERGIAMARKKINAVIRASTO 1 Le 2 Säkön jakeluverkkoomnnan yryskoasen eosamsavoeen määrely YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY Asanosanen: Vaasan Säköverkko Oy Lyy pääökseen dnro 491/424/2007 Energamarkknavraso

Lisätiedot

Tekes tänään (ja huomenna?) Pekka Kahri Palvelujohtaja, Tekes Fortune seminaari 21.8.2013

Tekes tänään (ja huomenna?) Pekka Kahri Palvelujohtaja, Tekes Fortune seminaari 21.8.2013 Tekes änään (ja huomenna?) Pekka Kahri Palvelujohaja, Tekes Forune seminaari 21.8.2013 Rahoiamme sellaisen innovaaioiden kehiämisä, joka ähäävä kasvun ja uuden liikeoiminnan luomiseen Yriysen kehiysprojeki

Lisätiedot

5. Omat rahat, yrityksen rahat

5. Omat rahat, yrityksen rahat 5. Omat rahat, yrityksn rahat Matmaattist aint Intgraatio: yhtiskuntaoppi Tässä jaksossa Palkka, palkkakustannukst Budjtti, budjtointi Kannattavuus, tulos Hinnoittlu, hinta Osio 5/1 Matmaattist aint 5.

Lisätiedot

Öljynvaihtohuolto 7 500 km:n/1 vuoden välein

Öljynvaihtohuolto 7 500 km:n/1 vuoden välein Sivu 1/5 Huooauuko Seuraavassa uvussa on Vokswagen-merkin uu huooauuko ja -ohjee. Koska ennen useia myyniaueia käyeiin omia huoo-ohjeia, useimmien eriyisoosuheisa johuen, nämä on ueeu huooauukoissa markkinakohaisin

Lisätiedot

KOMISSION VALMISTELUASIAKIRJA

KOMISSION VALMISTELUASIAKIRJA EUROOPAN UNIONIN NEUVOSTO Bryssel, 23. oukokuua 2007 (24.05) (OR. en) Toimielinen välinen asia: 2006/0039 (CNS) 9851/07 ADD 2 N 239 RESPR 5 CADREN 32 LISÄYS 2 I/A KOHTAA KOSKEVAAN ILMOITUKSEEN Läheäjä:

Lisätiedot

HYVINKÄÄN KAUPUNKI KUNTATEKNIIKKA

HYVINKÄÄN KAUPUNKI KUNTATEKNIIKKA USUNTO X.. HYNÄÄN UUN UNTTEN o Hgo h y Coygh öyy Fd Oy X X SSÄYS YESTÄ... OHJ J OHJESOOSUHTEET... To j... To j... To, j... To j... To j... To j U... UEEN RENNETTUUS UONNOSEEN ERUSTUEN.... Yä.... R....

Lisätiedot

Monisilmukkainen vaihtovirtapiiri

Monisilmukkainen vaihtovirtapiiri Monisilmukkainen vaihovirapiiri Oeaan arkaselun koheeksi RLC-vaihovirapiiri jossa on käämejä, vasuksia ja kondensaaoreia. Kykenä Tarkasellaan virapiiriä, jossa yksinkeraiseen RLC-piiriin on kodensaaorin

Lisätiedot

Tilausohjatun tuotannon karkeasuunnittelu. Tilausohjatun tuotannon karkeasuunnittelu

Tilausohjatun tuotannon karkeasuunnittelu. Tilausohjatun tuotannon karkeasuunnittelu Tilausohjaun uoannon areasuunnielu Tilausohjaussa uoannossa sarjojen muodosaminen ei yleensä ole relevani ongelma, osa uoevaihelu on suura, mä juuri onin peruse MTO-uoannolle Tuoe- ja valmisusraenee ova

Lisätiedot

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita

Lisätiedot

Tietoliikennesignaalit

Tietoliikennesignaalit ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime

Lisätiedot

ZELIO Time Sarja RE7 Elektroniset aikareleet

ZELIO Time Sarja RE7 Elektroniset aikareleet Zelio Time -aikarelee ZELIO Time Sarja RE7 Elekronise aikarelee Valinaopas 00 Valinaopas 00 Zelio Time RE 7 -aikarelee Valinaopas Sovellukse Elekronise aikarelee mahdollisava yksinkeraisen auomaisoiujen

Lisätiedot

Luento 2. Järjestelmät aika-alueessa Konvoluutio-integraali. tietoverkkotekniikan laitos

Luento 2. Järjestelmät aika-alueessa Konvoluutio-integraali. tietoverkkotekniikan laitos Lueno 2 Järjeselmä aika-alueessa Konvoluuio-inegraali Lueno 2 Lueno 2 Järjeselmä aika alueessa; Konvoluuio inegraali 2.1 Järjeselmien perusominaisuude Oppenheim 1.5. 1.6 Muisillise ja muisioma järjeselmä

Lisätiedot

1. Laske sivun 104 esimerkin tapaan sellainen likiarvo luvulle e, että virheen itseisarvo on pienempi kuin 10 5.

1. Laske sivun 104 esimerkin tapaan sellainen likiarvo luvulle e, että virheen itseisarvo on pienempi kuin 10 5. MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi II Harjoitus Ratkaisuhdotuksia Aapo Tvanlinna. Lask sivun 4 simrkin tapaan sllainn likiarvo luvull, ttä virhn itsisarvo on pinmpi kuin 5. Huomataan nsin,

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

1 Excel-sovelluksen ohje

1 Excel-sovelluksen ohje 1 (11) 1 Excel-sovelluksen ohje Seuraavassa kuvaaan jakeluverkonhalijan kohuullisen konrolloiavien operaiivisen kusannusen (SKOPEX 1 ) arvioimiseen arkoieun Excel-sovelluksen oimina, mukaan lukien sovelluksen

Lisätiedot

Toistoleuanvedon kilpailusäännöt

Toistoleuanvedon kilpailusäännöt 1.0 Yleisä Toisoleuanvedossa kilpailija suoriaa häjaksoisesi mahdollisimman mona leuanveoa omalla kehonpainollaan. Kilpailijalla on käössään ksi kilpailusuorius sekä asauloksen sauessa mahdollise uusinakierrokse

Lisätiedot

Kokonaishedelmällisyyden sekä hedelmällisyyden keski-iän vaihtelu Suomessa vuosina 1776 2005

Kokonaishedelmällisyyden sekä hedelmällisyyden keski-iän vaihtelu Suomessa vuosina 1776 2005 Kokonaishedelmällisyyden sekä hedelmällisyyden keski-iän vaihelu Suomessa vuosina 1776 2005 Heli Elina Haapalainen (157 095) 26.11.2007 Joensuun Yliopiso Maemaais- luonnonieeiden iedekuna Tieojenkäsielyieeen

Lisätiedot

16.10.2007 ASUNTOYHTIÖN TALOUSSUUNNITELMA RS-järjestelmä 1(5) URAKAT YHTEENSÄ, euroa. Arvio, euroa. Muut maapohjakustannukset, euroa.

16.10.2007 ASUNTOYHTIÖN TALOUSSUUNNITELMA RS-järjestelmä 1(5) URAKAT YHTEENSÄ, euroa. Arvio, euroa. Muut maapohjakustannukset, euroa. -järjstlmä 1(5) Asunto-osakyhtiö As Oy Hlsingin Gunillankartano, Hlsinki Prustajaosakas Raknnuskartio Oy (01899-0) Rakntaja (pääurakoitsija) Raknnuskartio Oy (01899-0) HANKINTA RAKENNUS- A. URAKAT KOKONAISURAKKA,

Lisätiedot

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015 Ene-59.4130, Kuivaus- ja haihduusprosessi eollisuudessa, asuharjoius 5, sysy 2015 Tehävä 4 on ähiehävä Tehävä 1. eijuerrosilassa poleaan rinnain uora ja urvea. Kuoren oseus on 54% ja uiva-aineen ehollinen

Lisätiedot

LVM/LMA/jp 2012-12-17. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20

LVM/LMA/jp 2012-12-17. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20 LVM/LMA/jp 2012-12-17 Valioneuvoson aseus ajoneuvojen käyösä iellä anneun aseuksen uuaisesa Anneu Helsingissä päivänä kuua 20 Valioneuvoson pääöksen ukaisesi, joka on ehy liikenne- ja viesinäiniseriön

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 8 (viikko 14) Tehävä 1 LAD-käyrä siiryy ylöspäin. Ulkomaisen hinojen nousessa oman maan reaalinen vaihokurssi heikkenee 1 vaihoase vahvisuu IS-käyrä

Lisätiedot

Pisto- ja viiltotapaturmien ehkäisy ja terävien instrumenttien hävittäminen

Pisto- ja viiltotapaturmien ehkäisy ja terävien instrumenttien hävittäminen Ohj (7) Pisto- ja viiltotapaturmin hkäisy ja trävin instrumnttin hävittäminn ohj kunnan sosiaali- ja trvydnhuollon yksiköill..206 alkan Trävän instrumntin aihuttama pisto- tai viiltotapaturma on yksi tyypillisimmistä

Lisätiedot

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5 S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,

Lisätiedot

Luento 6 Yhteisvikojen analyysi PSA:n sovelluksia

Luento 6 Yhteisvikojen analyysi PSA:n sovelluksia Luento 6 Yhteisvikojen analyysi PSA:n sovelluksia Jan-Erik Holmberg Systeemianalyysin laboratorio Aalto-yliopiston perustieteiden korkeakoulu PL 11100, 00076 Aalto jan-erik.holmberg@riskpilot.fi 1 Katkosjoukkojen

Lisätiedot

Tuotannon suhdannekuvaajan menetelmäkuvaus

Tuotannon suhdannekuvaajan menetelmäkuvaus 1(15) Tuoannon suhdannekuvaajan meneelmäkuvaus Luku 1 Luku 2 Luku 3 Luku 4 Tuoannon suhdannekuvaajan yleiskuvaus Tuoannon suhdannekuvaajan julkaisuaikaaulu, revisoinikäyännö ja jakelu Tuoannon suhdannekuvaajan

Lisätiedot

Kuntaeläkkeiden rahoitus ja kunnalliset palvelut

Kuntaeläkkeiden rahoitus ja kunnalliset palvelut Kunaeläkkeiden rahoius ja kunnallise palvelu I LA Rapori LA Repors 30.1.2013 No 4 Kunaeläkkeiden rahoius ja kunnallise palvelu Jukka Lassila * Niku Määänen ** armo Valkonen *** * LA linkeinoelämän ukimuslaios,

Lisätiedot

Välikoe II, Tehtävä 1

Välikoe II, Tehtävä 1 ! Lappeenrannan eknillinen krkeakulu Energiaekniikan sas Lämpö ja ympärisöekniikan lais 4316/4317 Viraus ja lämpövimaknee. Välike, 1.3.22 Ei kirjallisa maeriaalia L TKK:n h,spiirrsa lukuunamaa. Kusakin

Lisätiedot

Palkkielementti hum 3.10.13

Palkkielementti hum 3.10.13 Palilmntti hum.0. Palilmnttjä Tarastllaan tässä sitysssä vain Eulr-Brnoullin palitoriaan prustuvia palilmnttjä. Tässä palitoriassa olttaan, ttä palin poiiliaus säilyy taivutttunain tasona, joa on ohtisuorassa

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1) Kertaus K1. a) OA i k b) B = (, 0, 5) K. K. a) AB (6 ( )) i () ( ( 7)) k 8i 4k AB 8 ( 1) 4 64116 819 b) 1 1 AB( ( 1)) i 1 i 4 AB ( ) ( 4) 416 0 45 5 K4. a) AB AO OB OA OB ( i ) i i i 5i b) Pisteen A paikkavektori

Lisätiedot

KOTI JA ASUMINEN. Kaukolämpö on luotettava ratkaisu

KOTI JA ASUMINEN. Kaukolämpö on luotettava ratkaisu Tma KOTI JA ASUMINEN Tman löydä myös lhdn vrkkopalvlusa: www.sokamolhi.fi Kaukolämpö on luoava rakaisu Huol haluiin siirää syrjään. Siksi päädyiin kaukolämpöön, jossa hyödynnään jo olmassa olva lämpöparijärjslmä.

Lisätiedot

Liite VATT Analyysin lukuun 5

Liite VATT Analyysin lukuun 5 Liit VATT Aalyysi lukuu 5 Tässä liittssä sittää VATT Aalyysissa käytty lasktakhiko yksityiskohdat Liitt lopussa raportoidaa lasklmissa käyttyt ikäprofiilit a paramtriarvot Lasktakhiko raktamis sikuva o

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.4 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vasausen piireiden, sisälöjen ja piseiysen luonnehdina ei sido ylioppilasukinolauakunnan arvoselua. Lopullisessa arvoselussa

Lisätiedot

A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat!

A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat! MAA Koe 7..03 A-osio. Ei laskina! Valise seuraavisa kolmesa ehäväsä vain kaksi joihin vasaa! A. a) Mikä on funkion f(x) määrieljoukko, jos f( x) x b) Muua ulomuooon: 4a 8a 4 A. a) Rakaise hälö: x 4x b)

Lisätiedot