12. ARKISIA SOVELLUKSIA

Koko: px
Aloita esitys sivulta:

Download "12. ARKISIA SOVELLUKSIA"

Transkriptio

1 MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina opia, eä jo kappaleen paikkakoordinaai kavaa, en vauhi on poiiivia. Olkoon ajanhekellä kappale paikaa () ja ajanhekellä + h (h voi olla negaiivinenkin) paikaa ( + h). Laueke ( + h) () h anaa kappaleen kekimääräien vauhdin aikavälillä [, + h] ja raja-arvo ( + h) () lim h h anaa puoleaan kappaleen hekellien vauhdin kellon ollea ämälleen. Voidaan ii ukoa, ehkäpä ymmärääkin, eä kappaleen vauhi on en paikkaa ilmaievan funkion () derivaaa. Niin anoua korkeammaa maemaiikaa (fyiikaa), miä oeaan nopeuden vekoriluonne paremmin huomioon, anoaan nopeuden olevan kappaleen paikkavekorin r aikaderivaaa v = r () Kun ryhdyään ajaelemaan aiaa oiin päin, voidaan analogiei pina-alaaioiden kana pääyä iihen ulokeen, eä jo kappaleen nopeu ajan funkiona unneaan, niin kappaleen paikkakoordinaai liiyy varmai nopeuden inegraali-funkioon. Kappaleen nopeuden (vauhdin, liike yhdeä dimenioa) muuumia luonnehdiaan anomalla, eä kappaleella on kiihyvyyä (acceleraion). Lauekkeia v( + h) v() v( + h) v() ja lim h h h edellinen anaa kappaleen kekimääräien kiihyvyyden ajaa h ja jälkimmäinen hekellien kiihyvyyden, kun kello on aan. Sien kiihyvyy on nopeuden aika-derivaaa ja amalla paikkakoordinaain derivaaan derivaaa (8)

2 MAA. Arkiia ovellukia a () = v = (). Ykiuloeiea liikkeeä anou yhälö voidaan eiää ilman vekorimerkkejä. Jo kappaleen kiihyvyy unneaan, niin on ilmeiä, eä en vauhi on likeieä yheydeä kiihyvyyden inegraalifunkioon. Oleellia näiä liikeaioia on e, eä äyyy unea jonkin uureen aikariippuvuu maemaaien ämälliei. Käyeäänkö käyännön lakuehäviä ny ien inegraalifunkioa vai määräyä inegraalia, on paljoli amanekevää. Oin aia elvinnee euraavaa eimerkiä. Eim. 7. Kappale on ajanhekellä = [] -akelin pieeä [m], en vauhi on v -akelin poiiivieen uunaan ja kappaleen kiihyvyy on vakio a >. Määriä kappaleen vauhi ja paikkakoordinaai ajanhekellä. v Kiihyvyyden kuvaaja on ien oheien näköinen a a Koka kiihyvyy on vauhdin (nopeuden) derivaaa, niin v () = ad = a + C Inegroimivakio kiinniyy ny iiä ehdoa, eä v() = v v() = a + C C = v v() = v + a v ja ien v (8)

3 MAA. Arkiia ovellukia Koka vauhi (nopeu) on paikan derivaaa, niin a () = (v()d = (v + a)d = v + + C. Inegroimivakio kiinniyy ny iiä ehdoa, eä () = eli ijoiu anaa, joa C = ja a () = + v + Saadu kaava ova fyyikoille uuja, ja oveluva aaiei kiihyvän liikkeen probleemoiden rakaiemieen. Eim. 8. Kappale on ajanhekellä = [] -akelin pieeä 6 [m], en vauhi v() =.5 m/, ii -akelin negaiivieen uunaan. Kappaleen kiihyvyy noudaaa euraavaa funkioa: m m, < a() = 4, Määriä kappaleen vauhi ja paikkakoordinaai ajanhekellä. Piirrä kaikia niiä kuvaaja ja piirrä myö kiihyvyyfunkion kuvaaja. Kiihyvyy ajan funkiona,5,5, ,5 (8)

4 MAA. Arkiia ovellukia v () = ad < + = m m ( )d, m m C v() 4 = 4 C, C,, < Inegroimivakio C kiinniyy ny iiä ehdoa, eä v() =.5 m/. Huomaaan hei, eä C =.5 m/. Tämä ieo ioo ny vauhdin aika-välillä, ja eriyiei m () v( ) = () 4 m.5 = m / ja ämä ieo puoleaan määrää hei en, eä C = m/, koka vauhdin v() ulee olla jakuva funkio. m m.5m, < 4 v() = m, Kappaleen vauhi ajan funkiona,5,5,5 -,5 - -,5 - -, Kuvaajaa ei ole jakeu (ilan ääämieki) ekuniin aakka, mua jo piirreäiiin, vaakauorana e jakuii, ja en arvo olii v = m/. 4(8)

5 MAA. Arkiia ovellukia () = (v() d = m m ( 4 m,.5m )d, < = 4 m m.5 m 4 = m + C4, + C, < Inegroimivakio C kiinniyy iiä ehdoa, eä () = 6 m. Huomaaan aa helpoi, eä C =6 m. Tämä ieo ioo kappaleen paikan aikavälillä, ja eriyiei 4 m () m ().5 m () = + 6m = 5.5m. 4 Funkion () ulee olla jakuva, ja äen (vaikka ei ämälliiä rajaarvoarkaeluja uorieaiikaan), m + C4 = 5.5 m C4 = 9.5 m 4 m m.5 m + 6 m, 4 () = m m, < Tää kaikki dimenioarkaelu (ii uureiden laadu, ykikö) on käiely varin perueelliei. Paikkakoordinaain aikariippuvuu euraavalla ivulla. 5(8)

6 MAA. Arkiia ovellukia Eim. 9. Funkio f määriellään yhälöllä f() = d. Piirrä funkion f kuvaaja ja eiä en laueke inegroidua muodoa. Tää ehävää ilanne on ellainen, eä inegroimimuuuja juokee aina välin. Inegroiavaa funkioa on käielävä erikeen kolmea oaa en mukaan, onko <, ai onko e > aikka kuuluuko e välille [, ]. Normaali ieiarvojen poiaminen äyyy aina ehdä hei aluki:, kun =, kun <. Olkoon <. Tällöin koko inegroimivälillä > ja f () = d = ( )d = /( ) = 6(8)

7 MAA. Arkiia ovellukia Olkoon < <. Tällä välillä on pieeeen aakka < ja ää kakkoeen aakka on > : f () = d = ( )d + ( )d = = /( ) + / ( ) = + Olkoon >. Tällöin koko inegroimivälillä on > ja f () = d = ( )d = /( ) = Eim. 4. Funkio f määriellään yhälöllä f() = g ()d, miä g on kaikkialla derivoiuva funkio. Määriä f () ja f (). Kyeeä on hivenen eoreeinen apau, joka vaaii ymmärryä iiä, eä kun määräy inegraali käieynä ylärajana (ykinkeraieki) funkioki derivoidaan, aadaan aia ilmaiua eimerkin avulla euraavai: 7(8)

8 MAA. Arkiia ovellukia h () = r()d h () = r() a Tämä aia on eoreeiei johdeu ekä pina-alanfunkion yheydeä, eä yleiemminkin. Tehävän eimerkiä f() = g ()d inegroimimuuuja juokee välin, mua koka muuuja eiinyy myö ie inegraalia, funkioa h() kokevaa uloa ei voi käyää uoraan. Inegroinnin kannala ny kuienkin muuuja on vakio ja e voidaan uoda inegraalimerkin eeen (niin uein kuin on varoieukin, eei :n lauekea miään apaukea aa kuljeella akaa eeen eikä edeä aake). On angen uuri ero iinä, pääyykö inegroinikäky ymboliin d vai d. Sii f () = g()d = g()d. Kyeeä on ii muuujan ja inegraalin ulo, joka derivoidaan normaalii ulon derivoinikaavaa käyäen: f ( ) = g( ) d f ( ) = g( ) d + g( ) f ( ) = g( ) + g ( ) + g( ) = g( ) + g ( ) ja 8(8)

BINÄÄRINEN SYNKRONINEN TIEDONSIIRTO KAISTARAJOITTAMATTOMILLA MIELIVALTAISILLA PULSSIMUODOILLA SOVITETTU SUODATIN JA SEN SUORITUSKYKY AWGN-KANAVASSA

BINÄÄRINEN SYNKRONINEN TIEDONSIIRTO KAISTARAJOITTAMATTOMILLA MIELIVALTAISILLA PULSSIMUODOILLA SOVITETTU SUODATIN JA SEN SUORITUSKYKY AWGN-KANAVASSA BINÄÄRINN SYNKRONINN IDONSIIRO KAISARAJOIAMAOMILLA MILIVALAISILLA PULSSIMUODOILLA SOVIU SUODAIN JA SN SUORIUSKYKY AWGN-KANAVASSA Millaiia aalomuooja perupuleja yypilliei käyeään? 536A ieoliikenneekniikka

Lisätiedot

Derivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan

Derivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan 87 5. Eliminoinimeneely Tarkaellaan -kokoia vakiokeroimia yeemiä + x a a x a x + a x b() x = = = +. a a x a x a x b () (3) b() x + Derivoimalla enimmäinen komponeni, ijoiamalla jälkimmäien derivaaa iihen

Lisätiedot

OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA 2 OV. Isto Jokinen 2012. 1. Mekaniikka 2

OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA 2 OV. Isto Jokinen 2012. 1. Mekaniikka 2 OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA OV Io Jokinen 01 SISÄLTÖ SIVU 1. Mekaniikka Nopeu Kekinopeu Kehänopeu 3 Kiihyvyy 3 Puoamikiihyvyy 4 Voima 5 Kika 6 Työ 7 Teho 8 Paine 9

Lisätiedot

W dt dt t J.

W dt dt t J. DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan

Lisätiedot

4.3 Liikemäärän säilyminen

4.3 Liikemäärän säilyminen Tämän kappaleen aihe liikemäärän äilyminen törmäykiä. Törmäy on uora ja kekeinen, jo törmäävät kappaleet liikkuvat maakekipiteitten kautta kulkevaa uoraa pitkin ja jo törmäykohta on tällä amalla uoralla.

Lisätiedot

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A.

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A. 9. Epäoleellise inegraali; inegraalin derivoini paramerin suheen 9.. Epäoleellise aso- ja avaruusinegraali 27. Olkoon = {(x, y) x, y }. Osoia hajaanuminen ai laske arvo epäoleelliselle asoinegraalille

Lisätiedot

Luento 4. Fourier-muunnos

Luento 4. Fourier-muunnos Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:

Lisätiedot

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s). DEE- Piirianalyysi Ykkösharkan ehävien rakaisuehdoukse. askeaan ensin, kuinka paljon äyeen ladaussa akussa on energiaa. Tämä saadaan laskeua ehäväpaperissa anneujen akun ieojen 8.4 V ja 7 mah avulla. 8.4

Lisätiedot

2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t

2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t Tilasollinen ennusaminen Seppo Pynnönen Tilasoieeen professori, Meneelmäieeiden laios, Vaasan yliopiso. Tausaa Tulevaisuuden ennusaminen on ehkä yksi luoneenomaisimpia piireiä ihmiselle. On ilmeisesi aina

Lisätiedot

2. Suoraviivainen liike

2. Suoraviivainen liike . Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus

Lisätiedot

KOE 2 Ympäristöekonomia

KOE 2 Ympäristöekonomia Helingin yliopio Valinakoe.5. Maaalou-meäieeellinen iedekuna KOE Ympäriöekonomia Sekä A- eä B-oioa ulee aada vähinään 5 pieä. Mikäli A-oion piemäärä on vähemmän kuin 5 pieä B-oio jäeään arvoelemaa. B-OSIO

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 6, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 6, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset DEE- ineaarie järjeelmä Harjoiu 6, harjoiuenpiäjille arkoieu rakaiuehdouke Tää harjoiukea käiellään aplace-muunnoa ja en hyödynämiä differeniaaliyhälöiden rakaiemiea Tehävä Määrielmän mukaan funkion f

Lisätiedot

7. Pyörivät sähkökoneet

7. Pyörivät sähkökoneet Pyörivät ähkökoneet 7-1 7. Pyörivät ähkökoneet Mekaanien energian muuntamieen ähköenergiaki ekä ähköenergian muuntamieen takaiin mekaanieki energiaki käytetään ähkökoneita. Koneita, jotka muuntavat mekaanien

Lisätiedot

PD-säädin PID PID-säädin

PD-säädin PID PID-säädin -äädin - äätö on ykinkertainen äätömuoto, jota voidaan kutua myö uhteuttavaki äädöki. Sinä lähtöignaali on uoraa uhteea tuloignaalin. -äätimen uhdealue kertoo kuinka paljon mittauuure aa muuttua ennen

Lisätiedot

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoki, proeori Lappeenrannan teknillinen yliopito Näin uuden vuoden alkaea ueat meitä miettivät ijoitualkkuna kootumuta. Yki kekeiitä kyymykitä on päätö eri

Lisätiedot

SUOMEN AKTUAARIYHDISTYS THE ACTUARIAL SOCIETY OF FINLAND

SUOMEN AKTUAARIYHDISTYS THE ACTUARIAL SOCIETY OF FINLAND 97 SUOMEN AKTUAARIYHDISTYS THE ACTUARIAL SOCIETY OF FINLAND WORKING PAPERS ISSN 0781-4410 SUOMEN AKTUAARIYHDISTYS The Acuarial Sociey o Finland 97 Auranen, Ani Omavauueu (2009) Omavauueu SHV-yö Ani Auranen

Lisätiedot

PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd

PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd PK-YRITYKSEN ARVONMÄÄRITYS KTT, DI TOIVO KOSKI elearning Communiy Ld Yriyksen arvonmääriys 1. Yriyksen ase- eli subsanssiarvo Arvioidaan yriyksen aseen vasaavaa puolella olevan omaisuuden käypäarvo, josa

Lisätiedot

Intensiteettitaso ja Doplerin ilmiö

Intensiteettitaso ja Doplerin ilmiö Inteniteettitao ja Doplerin ilmiö Tehtävä Erkki työkentelee airaalaa. Sairaalalta 6,0 km päää on tapahtunut tieliikenneonnettomuu ja onnettomuupaikalta lähteneen ambulanin ireenin ääni kuuluu Erkille 60,0

Lisätiedot

a. Varsinainen prosessi on tuttua tilaesitysmuotoa:

a. Varsinainen prosessi on tuttua tilaesitysmuotoa: ELEC-C Sääöeniia 7. lauharjoiu Vaaue. r - K u K C y a. Varinainen proei on uua ilaeiymuooa: A Bu y C Kuvaa nähdään, eä ilamallin iäänmenona on u r K. Salaaria ei voi vähenää mariiia, joen un on n -veori,

Lisätiedot

F Y S I I K K A KERTAUSTEHTÄVIÄ 1-20

F Y S I I K K A KERTAUSTEHTÄVIÄ 1-20 F Y S I I K K A KERTAUSTEHTÄVIÄ - 0 Oalla eieyiä kyyykiä vaauke ova huoaavai pidepiä kuin iä eierkiki kokeea vaaukela vaadiaan. Kokeea on oaava vain olennainen aia per ehävä. . Muua SI järjeelän ykiköihin

Lisätiedot

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän

Lisätiedot

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET TRAN TyL:n MUKASN AKUUTUKSN RTYSPRUSTT Tässä peruseessa kaikki suuree koskea eraa, ellei oisin ole määriely. Tässä peruseessa käyey lyhenee: LL Lyhyaikaisissa yösuheissa oleien yönekijäin eläkelaki TaL

Lisätiedot

RATKAISUT: 3. Voimakuvio ja liikeyhtälö

RATKAISUT: 3. Voimakuvio ja liikeyhtälö Phyica 9. paino (8) 3. Voiakuvio ja liikeyhtälö : 3. Voiakuvio ja liikeyhtälö 3. a) Newtonin I laki on nieltään jatkavuuden laki. Kappale jatkaa liikettään uoraviivaieti uuttuattoalla nopeudella tai pyyy

Lisätiedot

Elektroniikan, tietoliikenteen ja automaation tiedekunta

Elektroniikan, tietoliikenteen ja automaation tiedekunta TEKNIINEN KORKEAKOUU Elekroniikan, ieoliikeneen ja auomaaion iedekuna Suanna Pöyhönen IIKKUVAAN MATERIAAIIN SYNKRONOITUVA EIKKAUS TAAJUUSMUUTTAJASOVEUKSENA Diplomiyö, joka on jäey opinnäyeenä arkaeavaki

Lisätiedot

Mat-2.090 Sovellettu todennäköisyyslasku A

Mat-2.090 Sovellettu todennäköisyyslasku A Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie

Lisätiedot

Viivakuormituksen potentiaalienergia saadaan summaamalla viivan pituuden yli

Viivakuormituksen potentiaalienergia saadaan summaamalla viivan pituuden yli hum.9. oiman potentiaalienergia Potentiaalienergiata puhutaan, kun kappaleeeen vaikuttaa jokin konervatiivinen voima. oima on konervatiivinen, jo en tekemä tö vaikutupieen iirteä tiettä paikata toieen

Lisätiedot

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä

Lisätiedot

Fy07 Koe Kuopion Lyseon lukio (KK) 1 / 5

Fy07 Koe Kuopion Lyseon lukio (KK) 1 / 5 y07 Koe 8.9.05 Kuopion yeon lukio (KK) / 5 Vataa kolmeen tehtävään. Vatuken reitani on 60, käämin induktani on 0,60 H ja reitani 8 ja kondenaattorin kapaitani on 80. Komponentit ovat arjaan kytkettyinä

Lisätiedot

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5 S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,

Lisätiedot

Öljyshokkien talousvaikutusten heikkeneminen ja ilmiön syyt

Öljyshokkien talousvaikutusten heikkeneminen ja ilmiön syyt Öljyhokkien alouvaikuuen heikkeneinen ja iliön yy Kananalouiede Pro gradu -ukiela Talouieeiden laio Taereen ylioio Ohjaaja: Jukka Pirilä Lokakuu 20 Terhi Lohander TIIVISTELMÄ Taereen ylioio Talouieeiden

Lisätiedot

SOSIAALIPÄIVYSTYKSEN KEHITTÄMISEN VUODET KESKI-SUOMESSA

SOSIAALIPÄIVYSTYKSEN KEHITTÄMISEN VUODET KESKI-SUOMESSA 0..0 () SOSIAALIPÄIVYSTYKSEN KEHITTÄMISEN VUODET KESKI-SUOMESSA Soiaalipäivytyke kehittämiellä o maakaamme eide voie jatkmo. Alkyäyke ille atoi vode valtioevoto periaatepäätö, joa aetettii tavoitteeki

Lisätiedot

Rak-54.116 Rakenteiden mekaniikka C, RM C (4 ov) Tentti 30.8.2007

Rak-54.116 Rakenteiden mekaniikka C, RM C (4 ov) Tentti 30.8.2007 Rak-54.116 Rakeneden mekankka, RM (4 ov) Ten.8.7 Krjoa jokaeen koepapern elvä - koko nme, puhuelunm allevvauna - oao, vuokur, enn pävämäärä ekä enävä opnojako koodeneen - opkeljanumero, mukaan luken arkukrjan

Lisätiedot

SytytysjarjestelmaDIIAPCLH2.4, LH2.4 ETS

SytytysjarjestelmaDIIAPCLH2.4, LH2.4 ETS 6 SyyysjarjesemaD/APCLH 24 LH 24 ETS SyyysjarjesemaDAPCLH24 LH24 ETS 75 cy 100 122A YE 2 +30 230 1063 RO 0 1019 101A RO 25 RO 40 101C RD 25 J73 123 123A CNWH 1S CN/WH 1 13122A J 342A 22 20 YE 10 1 1CY

Lisätiedot

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt SMG-500 Verolasennan numeerise meneelmä Ehdouse harjoiusen 4 raaisuisi Haeaan ensin ehävän analyyinen raaisu: dx 0 0 0 0 dx 00e = 0 = 00e 00 x = e + = 5e + alueho: x(0 = 0 0 x 0 = 5e + = 0 = 5 0 0 0 5

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte

VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte 4/ VÄRÄHTELYMEKANIIKKA SESSIO 4: Yhden vaausaseen vaieneva akkvärähely, harninen kuriusheräe LIIKEYHTÄLÖN JOHTO JA RATKAISU Kuvassa n esiey visksisi vaienneun yhden vaausaseen harnisen akkvärähelijän erusalli.

Lisätiedot

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k Aalto-yliopiton Perutieteiden korkeakoulu Matematiikan ja yteemianalyyin laito Mat-49 Syteemien Identifiointi 0 harjoituken ratkaiut äytetään enin iirtofunktiomalli Tehdään Laplace-muunno: ẋ k 0 k x +

Lisätiedot

b) Laskiessani suksilla mäkeä alas ja hypätessäni laiturilta järveen painovoima tekee työtä minulle.

b) Laskiessani suksilla mäkeä alas ja hypätessäni laiturilta järveen painovoima tekee työtä minulle. nergia. Työ ja teho OHDI JA TSI -. Opettaja ja opikelija tekevät hyvin paljon aanlaita ekaanita työtä, kuten liikkuinen, kirjojen ja eineiden notainen, liikkeellelähtö ja pyähtyinen. Uuien aioiden oppiinen

Lisätiedot

Kuva 22: Fraktaalinen kukkakaali. pituus on siis 4 AB. On selvää, että käyrän pituus kasvaa n:n kasvaessa,

Kuva 22: Fraktaalinen kukkakaali. pituus on siis 4 AB. On selvää, että käyrän pituus kasvaa n:n kasvaessa, Tortai 6..999 = Geometria o hyvä tapa kuvata ykikertaiia kappaleita, mutta kappaleie tullea äärettömä moimutkaiiki, käy iie kuvaamie klaie geometria avulla mahottomaki. Eimerkiki rataviiva pituue määrittämie

Lisätiedot

S Signaalit ja järjestelmät Tentti

S Signaalit ja järjestelmät Tentti S-7. Signaali ja järjeselmä eni..6 Vasaa ehävään, ehävisä 7 oeaan huomioon neljä parhaien suorieua ehävää.. Vasaa lyhyesi seuraaviin osaehäviin, käyä arviaessa kuvaa. a) Mikä kaksi ehoa kanaunkioiden φ

Lisätiedot

XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA

XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA II ADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA Laskenaaajuus akiivisuus Määrieäessä radioakiivisen näyeen akiivisuua (A) uloksena saadaan käyeyn miausyseemin anama laskenaaajuus (). = [II.I] jossa =

Lisätiedot

A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat!

A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat! MAA Koe 7..03 A-osio. Ei laskina! Valise seuraavisa kolmesa ehäväsä vain kaksi joihin vasaa! A. a) Mikä on funkion f(x) määrieljoukko, jos f( x) x b) Muua ulomuooon: 4a 8a 4 A. a) Rakaise hälö: x 4x b)

Lisätiedot

Luottamusmiehen / -valtuutetun valinta, asema ja oikeudet

Luottamusmiehen / -valtuutetun valinta, asema ja oikeudet YLEMMÄT TOIMIHENKILÖT YTN RY OHJE YRY+K -ryhmä / Mko 19.8.2009 1 (13) Luottamumiehen / -valtuutetun valinta, aema ja oikeudet Siällyluettelo: Yleitä... 2 Oikeu luottamumiehen valintaan... 2 Luottamumiehen

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset SMG-4200 Sähkömagneettiten järjetelmien lämmöniirto Harjoituken 1 ratkaiuehdotuket Vata 1800-luvun puoliväliä ymmärrettiin että lämpöenergia on atomien ja molekyylien atunnaieen liikkeeeen värähtelyyn

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

KOMISSION VALMISTELUASIAKIRJA

KOMISSION VALMISTELUASIAKIRJA EUROOPAN UNIONIN NEUVOSTO Bryssel, 23. oukokuua 2007 (24.05) (OR. en) Toimielinen välinen asia: 2006/0039 (CNS) 9851/07 ADD 2 N 239 RESPR 5 CADREN 32 LISÄYS 2 I/A KOHTAA KOSKEVAAN ILMOITUKSEEN Läheäjä:

Lisätiedot

Diskreetillä puolella impulssi oli yksinkertainen lukujono:

Diskreetillä puolella impulssi oli yksinkertainen lukujono: DEE-00 ineaarise järjeselmä Harjoius 5, rakaisuehdoukse [johdano impulssivaseeseen] Jakuva-aikaisen järjeselmän impulssivase on vasaavanlainen järjeselmäyökalu kuin diskreeillä puolellakin: impulssivase

Lisätiedot

12. laskuharjoituskierros, vko 16, ratkaisut

12. laskuharjoituskierros, vko 16, ratkaisut 1. lakuharjoitukierro, vko 16, ratkaiut D1. Muuttujien x ja Y havaitut arvot ovat: x 1 3 4 6 8 9 11 14 Y 1 4 4 5 7 8 9 a) Määrää regreiomallin Y i = α +βx i +ǫ i regreiokertoimien PNS-etimaatit ja piirrä

Lisätiedot

5. Vakiokertoiminen lineaarinen normaaliryhmä

5. Vakiokertoiminen lineaarinen normaaliryhmä 1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa

Lisätiedot

ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +.

ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +. Diffrniaaliyhälö II, harjoius 3, 8 228, rakaisu JL, kuusi sivua a On muunnava linaarinn oisn kraluvun diffrniaaliyhälö ẍ qx f yhäpiäväksi nsimmäisn kraluvun linaarisksi kahdn skalaariyhälön sysmiksi Rak

Lisätiedot

Mittaustekniikan perusteet, piirianalyysin kertausta

Mittaustekniikan perusteet, piirianalyysin kertausta Miausekniikan perusee, piirianalyysin kerausa. Ohmin laki: =, ai = Z ( = ännie, = resisanssi, Z = impedanssi, = vira). Kompleksiluvu Kompleksilukua arviaan elekroniikassa analysoiaessa piireä, oka sisälävä

Lisätiedot

Ojala, Leena Ojala ja Timo Ranta LAPLACE-MUUNNOS

Ojala, Leena Ojala ja Timo Ranta LAPLACE-MUUNNOS Timo Ojala, eena Ojala ja Timo Rana APACE-MUUNNOS Eipuhe Tämä aplace-muunnoa ja en ovelamia käielevä oppimaeriaali on arkoieu ähköekniikan ininöörikouluukeen. Eiieoina ulii unea eimerkiki Ojalain lakuoppien

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.4 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vasausen piireiden, sisälöjen ja piseiysen luonnehdina ei sido ylioppilasukinolauakunnan arvoselua. Lopullisessa arvoselussa

Lisätiedot

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän: ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän

Lisätiedot

Luento 7 Järjestelmien ylläpito

Luento 7 Järjestelmien ylläpito Luno 7 Järjslmin ylläpio Ahi Salo Tknillinn korkakoulu PL, 5 TKK Järjslmin ylläpidosa Priaallisia vaihohoja Uusiminn rplacmn Ennalahkäisvä huolo mainnanc Korjaaminn rpair ❶ Uusiminn Vioiun komponni korvaaan

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial

Lisätiedot

Luku 16 Markkinatasapaino

Luku 16 Markkinatasapaino 68 Luku 16 Markkinataaaino 16.1 Markkinataaainon määrity Tarkatelemme kilailulliia markkinoita kaikki talouenitäjät hinnanottajia kaikki määrittävät arhaat ratkaiuna uhteea makimihintoihin talouenitäjien

Lisätiedot

Tilausohjatun tuotannon karkeasuunnittelu. Tilausohjatun tuotannon karkeasuunnittelu

Tilausohjatun tuotannon karkeasuunnittelu. Tilausohjatun tuotannon karkeasuunnittelu Tilausohjaun uoannon areasuunnielu Tilausohjaussa uoannossa sarjojen muodosaminen ei yleensä ole relevani ongelma, osa uoevaihelu on suura, mä juuri onin peruse MTO-uoannolle Tuoe- ja valmisusraenee ova

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Rakaiuia Nämä Derivaaa -kurin kerauehävien ja -arjojen rakaiu peruuva oppikirjan ieoihin ja meneelmiin. Kuakin ehävää on yleenä vain yki rakaiu, mikä ei kuienkaan arkoia iä, eä rakaiu olii ainoa ai ede

Lisätiedot

Systeemimallit: sisältö

Systeemimallit: sisältö Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -kuvaus ja ilayhälömalli, ila Linearisoini Jakuva-aikaisen lineaarisen järjeselmän siirofunkio, sabiilisuus Laplace-muunnos Diskreeiaikaisen lineaarisen

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin

Lisätiedot

ELEC-C1230 Säätötekniikka. Luku 3: Dynaamisen vasteen määrittäminen, Laplace-muunnos, siirtofunktio

ELEC-C1230 Säätötekniikka. Luku 3: Dynaamisen vasteen määrittäminen, Laplace-muunnos, siirtofunktio ELEC-C30 Sääöekniikka Luku 3: Dynaamien vaeen määriäminen, Laplace-muunno, iirofunkio Differeniaaliyhälön rakaiu Syeemin ymmärämien ja hallinnan kannala on olennaia ieää, mien lähöuure y() käyäyyy ajan

Lisätiedot

2:154. lak.yht. lak.yht. lak.yht. 2:156 2:156 6-9901-0 2:156. lak.yht. 2:155. 35 dba. sr-1. No330. YY/s-1. Työväentalo 8-9903-0. No30. sr-2.

2:154. lak.yht. lak.yht. lak.yht. 2:156 2:156 6-9901-0 2:156. lak.yht. 2:155. 35 dba. sr-1. No330. YY/s-1. Työväentalo 8-9903-0. No30. sr-2. 00 lak.yh. lak.yh. lak.yh. lak.yh. lak.yh. ras.m ras.m lak.yh. lak.yh. lak.yh. lak.yh. lak.yh. 0 0 No No No0 No0 0:::M0 0:::M0 0:::M0 0:::M0 0:::M0 0::0:M0 0:::M0 0:::M0 0:::M 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat: Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,

Lisätiedot

Äänen nopeus pitkässä tangossa

Äänen nopeus pitkässä tangossa IXPF24 Fyiikka, ryhälaboratoriotyö IST4S1 / E1 / A Okanen Janne, Vaitti Mikael, Vähäartti Pai Jyväkylän Aattikorkeakoulu, IT-intituutti IXPF24 Fyiikka, Kevät 2005, 6 ECTS Opettaja Pai Repo Äänen nopeu

Lisätiedot

Copyright Helsingin yliopisto, psykologian laitos ja Tampereen yliopisto, psykologian laitos

Copyright Helsingin yliopisto, psykologian laitos ja Tampereen yliopisto, psykologian laitos VALINTAKOE 008 kogiioiede ja pykologia aieiovihko Copyigh Heligi yliopio, pykologia laio ja Tampeee yliopio, pykologia laio. Maeiaali luvao kopioii kielley. Tää vihkoa o kokee ehävie aieio ja kaavaliiee.

Lisätiedot

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia 6.4 Variaaiolaskennan oleusen rajoiukse Sivu ss. 27 31 läheien Kirk, ss. 13 143] ja KS, Ch. 5] pohjala Lähökoha oli: jos J:llä on eksremaali (), niin J:n variaaio δj( (), δ()) ():ä pikin on nolla. 1. Välämäön

Lisätiedot

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen

Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen Soimukseneon dynamiikka: johdano ja haiallinen valikoiuminen Ma-2.442 Oimoinioin seminaari Elise Kolola 8.4.2008 S yseemianalyysin Laboraorio Esielmä 4 Elise Kolola Oimoinioin seminaari - Kevä 2008 Esiyksen

Lisätiedot

Nokian kaupungin tiedotuslehti Kolmenkulman yrityksille

Nokian kaupungin tiedotuslehti Kolmenkulman yrityksille Nokian kaupungin tiedotulehti Kolmenkulman yritykille Hyvä nykyinen ja tuleva kolmenkulmalainen U ui yrityalueemme alkoi yntyä Öljytien varteen ijaitee Nokian puolella. Tampereella iitä on yli 200 heh-

Lisätiedot

OH CHOOH (2) 5. H2O. OH säiliö. reaktori 2 erotus HCOOCH 3 11.

OH CHOOH (2) 5. H2O. OH säiliö. reaktori 2 erotus HCOOCH 3 11. Kemian laieekniikka 1 Koilasku 1 4.4.28 Jarmo Vesola Tuoee ja reakio: hiilimonoksidi, meanoli, meyyliformiaai C HC (1) vesi, meyyliformiaai, meanoli, muurahaishappo HC CH (2) hiilimonoksi, vesi, muurahaishappo

Lisätiedot

KÄYTTÖOPAS. Ilma vesilämpöpumppujärjestelmän sisäyksikkö ja lisävarusteet RECAIR OY EKHBRD011ADV1 EKHBRD014ADV1 EKHBRD016ADV1

KÄYTTÖOPAS. Ilma vesilämpöpumppujärjestelmän sisäyksikkö ja lisävarusteet RECAIR OY EKHBRD011ADV1 EKHBRD014ADV1 EKHBRD016ADV1 EKHBRD011ADV1 EKHBRD014ADV1 EKHBRD016ADV1 EKHBRD011ADY1 EKHBRD014ADY1 EKHBRD016ADY1 KÄYÖOPAS Ilma vesilämpöpumppujärjeselmän sisäyksikkö ja lisävarusee EKHBRD011ADV1+Y1 EKHBRD014ADV1+Y1 EKHBRD016ADV1+Y1

Lisätiedot

Y56 Laskuharjoitukset 3 palautus ma klo 16 mennessä

Y56 Laskuharjoitukset 3 palautus ma klo 16 mennessä 1 Y6 Lakuharjoituket 3 alautu ma 3.. klo 16 menneä Harjoitu 1. Lue enin Vihmo, Jouni (006) Alkoholijuomien hintajoutot uomea vuoina 199 00, Yhteikuntaolitiikka 71, 006/1 ivut 9 ja vataa itten kyymykiin.

Lisätiedot

LUKION FYSIIKKAKILPAILU 8.11.2005 avoimen sarjan vast AVOIN SARJA

LUKION FYSIIKKAKILPAILU 8.11.2005 avoimen sarjan vast AVOIN SARJA LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat AVOIN SARJA Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooitteei, opettajai nii ekä koului nii. Kilpailuaikaa on inuuttia. Sekä tehtävä- että

Lisätiedot

10 Suoran vektorimuotoinen yhtälö

10 Suoran vektorimuotoinen yhtälö 10 Suran vektrimutinen htälö J aluki tarkatellaan -tan kuuluvaa, rign kautta kulkevaa uraa, niin ura n täin määrätt, mikäli tunnetaan en uunta. Tavallieti tämä annetaan uuntakulman tangentin = kulmakertimen

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2004

MAOL-Pisteitysohjeet Fysiikka kevät 2004 MAOL-Piteityohjeet Fyiikka kevät 004 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -1/3 p - lakuvirhe, epäielekä tulo, vähintään - - vataukea yki erkitevä nuero liikaa

Lisätiedot

Alipäästösuodatuksesta jää kuitenkin pieni vaihtovirtakomponentti, joka summautuu tasajännitteen päälle:

Alipäästösuodatuksesta jää kuitenkin pieni vaihtovirtakomponentti, joka summautuu tasajännitteen päälle: . Saainen analyyi.. Buck-opoloia Käiellään enin buck-yyppiä hakkurieholähdeä (kuva 2.2a ja 3.). ää eimerkiä kuorma on puhaai reiiivinen (R), mua yleiei e on yöeävien laieiden ominaiuukia muodouva impedani.

Lisätiedot

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria. 5. Veitoken tilavuu on V,00 m 1,00 m,00 m 6,00 m. Pienoimallin tilavuu on 1 V malli 6,00 m 0,06m. 100 Mittakaava k aadaan tälötä. 0,06 1 k 6,00 100 1 k 0,1544... 100 Mitat ovat. 1,00m 0,408...m 100 0,41

Lisätiedot

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus Tieonhakumeneelmä Helsingin yliopiso / TKTL.4.04 Toennäköisyyeen perusuva rankkaus Tieonhakumeneelmä Toennäköisyyspohjainen rankkaus Dokumenien haussa ongelmana on löyää käyäjän kyselynä ilmaiseman ieoarpeen

Lisätiedot

LUKION FYSIIKKAKILPAILU 10.11.2009, ratkaisut PERUSSARJA

LUKION FYSIIKKAKILPAILU 10.11.2009, ratkaisut PERUSSARJA LUKION FYSIIKKAKILPAILU 0..009, ratkaiut PERUSSARJA Vataa huolellieti ja iititi! Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooite, opettajai nii ekä koului nii. Kilpailuaikaa on 00 inuuttia.

Lisätiedot

PARTIKKELIN KINETIIKKA

PARTIKKELIN KINETIIKKA PTKKELN KNETKK Newonin laki ma m& - on paikkeliin aikuaien oimien eulani - m on paikkelin maa - a & on paikkelin aboluuinen kiih Suoaiiaien liikkeen liikehälö (liikeuuna : m a 0 z 0 Taoliikkeen liikehälö

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista Rahoiusriski ja johdannaise Mai Esola lueno Sokasisisa prosesseisa . Markov ominaisuus Markov -prosessi on sokasinen prosessi, missä ainoasaan muuujan viimeinen havaino on relevani muuujan seuraavaa arvoa

Lisätiedot

YKI HYVINVOINTI. Lämmittely. Tee ja puhu lauseita:

YKI HYVINVOINTI. Lämmittely. Tee ja puhu lauseita: Lämmittely YKI HYVINVOINTI Tee ja puhu laueita: Eimerkiki: Minua naurattaa uein, jo mä katon Eddie Murphyn elokuvia. Joku mua äryttää, kun mä unohdan otaa maitoa kaupata. Mun lata kutittaa aina tädin luona

Lisätiedot

JLP:n käyttämättömät mahdollisuudet. Juha Lappi

JLP:n käyttämättömät mahdollisuudet. Juha Lappi JLP:n äyämäömä mahdollisuude Juha Lappi LP ehävä p z = a x + b z 0 Max or Min (.) 0 0 = = subjec o he following consrains: c a x + b z C, =,, q p q K r (.2) = = m n i ij K (.3) i= j= ij x xw= 0, =,, p

Lisätiedot

Tasaantumisilmiöt eli transientit

Tasaantumisilmiöt eli transientit uku 12 Tasaanumisilmiö eli ransieni 12.1 Kelan kykeminen asajännieeseen Kappaleessa 11.2 kykeiin reaalinen kela asajännieeseen ja ukiiin energian varasoiumisa kelan magneeikenään. Tilanne on esiey uudelleen

Lisätiedot

Tarpeenmukainen ilmanvaihto

Tarpeenmukainen ilmanvaihto YLEISKUVAUS Tarpeenmukainen ilmanvaihto Huipputuotteet tarpeenmukaieen ilmanvaihtoon! www.wegon.com Tarpeenmukainen ilmanvaihto tarjoaa hyvän viihtyiyyden ja pienet käyttökutannuket Kun huone on käytöä,

Lisätiedot

KÄYTTÖOPAS. -järjestelmän sisäyksikkö HXHD125A8V1B

KÄYTTÖOPAS. -järjestelmän sisäyksikkö HXHD125A8V1B KÄYÖOPAS -järjeselmän sisäyksikkö SISÄLÖ 1. Määrielmä... 1 1.1. Merkkien ja varoiusen arkoiukse... 1 1.2. Käyeyjen ermien merkiys... 1 2. Yleise varooime... 2 3. Johdano... 2 3.1. Yleisä... 2 3.2. ämän

Lisätiedot

x v1 y v2, missä x ja y ovat kokonaislukuja.

x v1 y v2, missä x ja y ovat kokonaislukuja. Digiaalinen videonkäsiel Harjoius, vasaukse ehäviin 4-0 Tehävä 4. Emämariisi a: V A 0 V B 0 Hila saadaan kanavekorien (=emämariisin sarakkee) avulla. Kunkin piseen paikka hilassa on kokonaisluvulla kerroujen

Lisätiedot

Telecommunication engineering I A Exercise 3

Telecommunication engineering I A Exercise 3 Teleouao egeerg I 5359A xere 3 Proble elaodulaaor lohkokaavo o eey oppkrja kuvaa 3.63. Pulodulaaor ääuloa o aoagaal ja reeregaal erou d. Tää gaal kerroaa pulgeeraaor gaallla rajouke, el erouke erk elväe,

Lisätiedot

RATKAISUT: 17. Tasavirtapiirit

RATKAISUT: 17. Tasavirtapiirit Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö

Lisätiedot

MÄNTTÄ-VILPPULAN KAUPUNKI. Mustalahden asemakaava Liikenneselvitys. Työ: E23641. Tampere 18.5.2010

MÄNTTÄ-VILPPULAN KAUPUNKI. Mustalahden asemakaava Liikenneselvitys. Työ: E23641. Tampere 18.5.2010 MÄNÄ-VLPPULAN KAUPUNK Musalahden asemakaava Liikenneselviys yö: E ampere 8..00 ARX Ympärisö Oy PL 0 ampere Puhelin 00 000 elefax 00 00 www.airix.fi oimiso: urku, ampere, Espoo ja Oulu Mänä-Vilppulan kaupunki,

Lisätiedot

MS-C2132 Systeemianalyysilaboratorio I Laboratoriotyö 2. Sähkönkulutuksen ennustaminen aikasarjamallin avulla & Sähkön hankinnan optimointi

MS-C2132 Systeemianalyysilaboratorio I Laboratoriotyö 2. Sähkönkulutuksen ennustaminen aikasarjamallin avulla & Sähkön hankinnan optimointi MS-C2132 Syeemianalyyilaboraorio I Laboraorioyö 2 Sähkönkuluuken ennuaminen aikaarjamallin avulla & Sähkön hankinnan opimoini Laboraorioyö 2 Aikaarjamalli erään yriyken ähkönkuluukelle SARIMAX-malli: kauivaihelu,

Lisätiedot

ARKISTONMUODOSTUSSUUNNITELMA 29.6.2007. Säilytys- aika

ARKISTONMUODOSTUSSUUNNITELMA 29.6.2007. Säilytys- aika 0 YLEISHALLINTO 1(145) Verio 5.11 00 Norminano Tunnu Tehäväkokonaiuueen iiyvä T/L Rekieri Arkioiniäreyikka Säiyy- Säiyy- Säi. Juki- Suo. ieoaineio, aiakiran nimi uu k. Liäieoa 000 Hainnoie määräyke a ohee

Lisätiedot

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014 MAT-45 Fourier n meneelmä Merja Laaksonen, TTY 4..4 Sisälö Johano 3. Peruskäsieiä................................... 4.. Parillinen ja parion funkio....................... 7.. Heavisien funkio............................

Lisätiedot

Tehtävä I. Vaihtoehtotehtävät.

Tehtävä I. Vaihtoehtotehtävät. Kem-9.7 Prosessiauomaaion perusee Teni 5.9.5 TÄMÄ PAPERI TÄYTYY EHDOTTOMASTI PALAUTTAA TENTIN MUKANA NIMI: (OS: ) OPINTOKIRJA: VIERAILULUENNOT KUUNNELTU: VALV. LASK: Tehävä I. Vaihoehoehävä. Oikea vasaus

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 8 (viikko 14) Tehävä 1 LAD-käyrä siiryy ylöspäin. Ulkomaisen hinojen nousessa oman maan reaalinen vaihokurssi heikkenee 1 vaihoase vahvisuu IS-käyrä

Lisätiedot

S-55.1220 Piirianalyysi 2 Tentti 4.1.2007

S-55.1220 Piirianalyysi 2 Tentti 4.1.2007 S-55.2 Piirianalyyi 2 Tentti 4..07. Piiriä yöttää kaki lähdettä, joilla on eri taajuudet. Kuinka uuri on lämmöki muuttuva teho P? Piiri on jatkuvuutilaa. J 2 00 Ω 5µH 0 pf 0/0 V J 2 00/0 ma f MHz f 2 2MHz.

Lisätiedot

Kahdeksansolmuinen levyelementti

Kahdeksansolmuinen levyelementti Levy8 ja RS hm 7.. Kahdekanolminen levyelementti akatellaan kvan kahdekanolmita levyelementtiä. q 6 y (,y q 8 ( 8,y 8 8 q 7 q 6 (,y q 5 q q q 7 q q ( 7,y 7 v ( 6,y 6 P 5 ( 5,y 5 q 9 6 q 5 (,y q (,y q q

Lisätiedot

VALINTAKOE 2010 kognitiotiede ja psykologia aineisto- ja tehtävävihko

VALINTAKOE 2010 kognitiotiede ja psykologia aineisto- ja tehtävävihko Luva aauai mekie vaaulomakeumeoi eli vaaulomakkee 4 oikeaa yläeuaa oleva umeo. Vaaulomakeumeo VALINTAKOE 00 kogiioiede ja pykologia aieio- ja ehävävihko Copyigh Heligi yliopio, käyäyymiieeide laio, Tampeee

Lisätiedot

11. Takaisinkytketyt vahvistimet

11. Takaisinkytketyt vahvistimet Kar berg Kar berg. akankykey vahvme. ahvn yyppejä Jännevahvn Ohjaun läheen pääyyppejä Jänne hjau jännelähde ra hjau jännelähde Jänne hjau vralähde ra hjau vralähde v kun >> v kun >> ja >> njänne n en uraan

Lisätiedot

KUITUKAAPELOINTI KUITUKAAPELOINTI KAAPELIRAKENTEET KUITUKAAPELIVERKKO

KUITUKAAPELOINTI KUITUKAAPELOINTI KAAPELIRAKENTEET KUITUKAAPELIVERKKO KUITUKAAPELOINTI Valokuitutekniikkaa on käytetty puhelinyhteykiä jo vuoia en mahdollitamien pitkien välimatkojen takia. Vähitellen en käyttö on yleitynyt myö kiinteitön yleikaapeloinnia. Kuidun liääntynyt

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,

Lisätiedot