Ilkka Mellin (2008) 1/24
|
|
- Anna Mäkinen
- 10 vuotta sitten
- Katselukertoja:
Transkriptio
1 Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma, Geometre keskarvo, Harmoe keskarvo, Hstogramm, Itervallastekko, Järjestysastekko, Järjestystuusluvut, Keskarvo, Keskhajota, Kvaltatvset muuttujat, Kvattatvset muuttujat, Laatueroastekko, Luokteltu frekvessjakauma, Maksm, Medaa, Mm, Mttaame, Mtta-astekot, Mttart, Nomaalastekko, Ordaalastekko, Otos, Otoskeskhajota, Otosvarass, Perusjoukko, Pylväsdagramm, Suhdeastekko, Suhteelle frekvess, t-jakauma Tlastolle aesto, Tlastolle muuttuja, Vahteluväl, Vahteluväl ptuus, Välmatka-astekko Tlastollste aestoje kerääme ja mttaame Tlastollset aestot Tlastollse tutkmukse kakk mahdollset kohteet muodostavat tutkmukse (kohde-) perusjouko. Tutkmukse kohteta tarkastellaa aa jok perusjouko muodostamassa kehkossa. Tutkmukse kohteks valttuja perusjouko alkota kutsutaa havatoyksköks. Tlastolle aesto koostuu havatoyksköde omasuuksa ja olosuhteta kuvaavsta umeerssta ta kvattatvssta tedosta. Havatoykskötä koskeva umeersa ta kvattatvsa tetoja kutsutaa havatoarvoks ta havaoks. Tlastollste aestoje kerääme Muutetaako tutkmuksessa tutkmukse kohtede olosuhteta aktvsest? () Tutkmus o koe, jos tutkmukse tavotteea o selvttää, mte kohtede olosuhtede aktve muuttame vakuttaa tutkmukse kohtes. () Tutkmus perustuu suor havatoh, jos tutkmukse tavotteea o va seurata, mte kohtede olosuhteet ja ssä tapahtuvat muutokset vakuttavat kohtes. Kohdstuuko tutkmus kakk perusjouko alkoh va johok perusjouko osaa? () Tutkmusta kutsutaa kokoastutkmukseks, jos kakk perusjouko alkot tutktaa. () Tutkmusta kutsutaa otatatutkmukseks, jos tutkmus kohdstuu johok perusjouko osajoukkoo. Mttaame ja mttart Tlastollse tutkmukse kohtede omasuuksa ja olosuhteta sekä de muutoksa kuvaavat umeerset ta kvattatvset tedot saadaa selvlle mttaamalla. Mttaame tarkottaa umeerste arvoje lttämstä tutkmukse kohtede omasuuks ja olosuhtes. Mttara vodaa ptää fuktoa, joka lttää umeerset arvot tutkmukse kohtede omasuuks ja olosuhtes. Mttaukse tulos vodaa ss aa lmasta jok tutkmukse kohtee omasuutta ta olosuhdetta kuvaava muuttuja arvoa. Sks tutkmukse kohtede omasuuksa ja olosuhteta kuvataa mttaustapahtumassa aa umeerslla muuttujlla. Mttar valdteett ja tarkkuus Ilkka Mell (008) /4
2 Mat-.60 Sovellettu todeäkösyyslasketa B Mttar o vald el okea, jos se esttää mttaukse kohteea olevaa omasuutta oke, merktyksellsest ja tarkotuksemukasest. Mttar o tarkka, jos se o harhato ja relaabel: () Mttar o harhato, jos se e systemaattsest al- ta ylarvo mtattava omasuude määrää. () Mttar o relaabel el luotettava, jos mttaustulos e muutu, ku mttausta tostetaa. Mtta-astekot Mttaus o tehty omaal- el laatueroastekolla, jos mttaus kertoo mh luokkaa mttaukse kohde kuuluu. Mttaus o tehty ordaal- el järjestysastekolla, jos mttaus kertoo oko mttaukse kohteella mtattavaa omasuutta eemmä ta vähemmä ku jollak tosella kohteella. Mttaus o tehty tervall- el välmatka-astekolla, jos mttaus kertoo kuka paljo kahde mtattava kohtee omasuudet eroavat tosstaa. Mttaus o tehty suhdeastekolla, jos mttaus kertoo kuka mota kertaa eemmä ta vähemmä mttaukse kohteella o mtattavaa omasuutta ku jollak tosella kohteella. Kvaltatvset ja kvattatvset muuttujat Omasuutta ja stä kuvaavaa muuttujaa kutsutaa kvaltatvseks, jos mttaukse kohteet vodaa luoktella mttaukse perusteella tosstaa eroav kategoroh ta luokk. Kvaltatvsa omasuuksa kuvataa laatueroastekollslla muuttujlla. Omasuutta ja stä kuvaavaa muuttujaa kutsutaa kvattatvseks, jos mttaus tuottaa omasuude määrällse arvo. Kvattatvsa omasuuksa kuvataa välmatka- ta suhdeastekollslla muuttujlla. Dskreett ja jatkuvat muuttujat Mtattavaa omasuutta vastaava muuttuja o dskreett, jos se vo saada va erllsä arvoja. Dskreettejä muuttuja ovat esmerkks laatueroastekollste muuttuje ja sjalukuja kuvaave järjestysastekollste muuttuje lsäks myös sellaset kvattatvset muuttujat kute lukumäärämuuttujat. Mtattavaa omasuutta vastaava muuttuja o jatkuva, jos se vo saada kakk arvot joltak välltä. Jatkuva muuttuja ovat esmerkks usemmat fyskaalset suureet kute ptuus, pta-ala, tlavuus, pao, aka, opeus ja pae sekä myös moet talouselämää kuvaavat suureet kute rahamäärä ja korko. Huomautus: Muuttuje mtta-astekollslla omasuukslla (kvaltatvsuudella/kvattatvsuudella ta dskreettydellä/jatkuvuudella) o syvälle vakutus she, mtä tlastollsa meetelmä kysesessä tlateessa o luvallsta (ta suotavaa) soveltaa. Ilkka Mell (008) /4
3 Mat-.60 Sovellettu todeäkösyyslasketa B Tlastollste aestoje kuvaame Frekvess Olkoo muuttuja dskreett ja oletetaa, että se mahdollset arvot ovat y, y,, y m,,, muuttuja havatut arvot. Muuttuja mahdollse arvo y k, k =,,, m frekvess f k kertoo kuka mota kertaa y k estyy havatoarvoje,,, joukossa. Frekvessjakauma Muuttuja mahdollset arvot y, y,, y m yhdessä de frekvesse f, f,, f m kassa muodostavat muuttuja havattuje arvoje,,, frekvessjakauma. Huomaa, että f + f + + f m = jossa o havatoje kokoaslukumäärä. Pylväsdagramm Frekvessjakaumaa (y k, f k ), k =,,, m vodaa kuvata graafsest pylväsdagrammlla, jossa muuttuja mahdollse arvo y k havatoarvoje,,, joukossa esttää pylväs, joka korkeus vastaa frekvessä f k. Huomautus: Pylväsdagramm tulkta o aaloge dskreet todeäkösyysjakauma pstetodeäkösyysfukto tulka kassa. Luokkafrekvess Olkoo muuttuja jatkuva ja oletetaa, että se mahdollset arvot ovat välllä (a, b) jossa vo olla a =, b = +. Jaetaa väl (a, b) pstellä a = a < a < a < < a < a = b 0 m psteveras osaväleh (a k, a k ], k =,,, m,,, m Ilkka Mell (008) 3/4
4 Mat-.60 Sovellettu todeäkösyyslasketa B muuttuja havatut arvot. Muuttuja havattuje arvoje frekvess f k luokassa k kertoo de havatoarvoje,,, lukumäärä, jotka kuuluvat väl (a k, a k ], k =,,, m Luokteltu frekvessjakauma Luokkavält (a k, a k ], k =,,, m yhdessä vastaave luokkafrekvesse f, f,, f m kassa muodostavat muuttuja havattuje arvoje,,, luoktellu frekvessjakauma. Huomaa, että f + f + + f m = jossa o havatoje kokoaslukumäärä. Hstogramm Luokteltua frekvessjakaumaa ((a k, a k ], f k ), k =,,, m vodaa kuvata graafsest hstogrammlla, jossa muuttuja havattuje arvoje,,, frekvessä f k luokassa (a k, a k ], esttää suorakade, joka kataa o väl (a k, a k ] ja joka pta-ala vastaa luokkafrekvessä f k. Huomautus: Hstogramm tulkta o aaloge jatkuva todeäkösyysjakauma theysfukto tulka kassa. Suhdeastekollste muuttuje tuusluvut Artmeette keskarvo,,, välmatka- ta suhdeastekollse muuttuja havattuja arvoja. Lukuje,,, artmeette keskarvo saadaa kaavalla = = Artmeette keskarvo o havatoarvoje paopste ja kuvaa havatoarvoje keskmäärästä arvoa. Ilkka Mell (008) 4/4
5 Mat-.60 Sovellettu todeäkösyyslasketa B Varass,,, välmatka- ta suhdeastekollse muuttuja havattuja arvoja. Lukuje,,, (otos-) varass saadaa kaavalla jossa s = ( ) = = = = o lukuje,,, artmeette keskarvo. Otosvarass kuvaa havatoarvoje hajaatuesuutta (ta keskttyesyyttä) de artmeettse keskarvo (paopstee) ympärllä. Artmeettse keskarvo ja varass laskeme,,, välmatka- ta suhdeastekollse muuttuja havattuja arvoja. Jos havatoarvoje,,, artmeette keskarvo ja varass joudutaa laskemaa käs ta laskta käyttäe, kaattaa laskut järjestää alla oleva tauluko muotoo ja käyttää de veressä estettyjä kaavoja. Summa = s = Keskhajota,,, välmatka- ta suhdeastekollse muuttuja havattuja arvoja. Lukuje,,, (otos-) keskhajota o jossa s s = ( ) = = = = = Ilkka Mell (008) 5/4
6 Mat-.60 Sovellettu todeäkösyyslasketa B o lukuje,,, artmeette keskarvo ja s o lukuje,,, (otos-) varass. Otoskeskhajota kuvaa (kute otosvarass) havatoarvoje hajaatuesuutta (ta keskttyesyyttä) de artmeettse keskarvo (paopstee) ympärllä. Stadardot Olkoo välmatka- ta suhdeastekollse muuttuja havattuje arvoje,,, artmeette keskarvo ja s de varass. Tällö stadardotuje havatoarvoje z =, =,,, s artmeette keskarvo ja varass ovat z = z = 0 sz = ( z z) = Tlastolle etäsyys välmatka- ta suhdeastekollse muuttuja havattuje arvoje,,, artmeette keskarvo ja s de varass. Tällö havatoarvoje k ja l tlastolle etäsyys o k l dkl = s Orgomomett,,, välmatka- ta suhdeastekollse muuttuja havattuja arvoja. Lukuje,,, k. orgomomett o k a =, k =,, k = Keskusmomett,,, välmatka- ta suhdeastekollse muuttuja havattuja arvoja. Lukuje,,, k. keskusmomett o jossa k k ( ) = m = = = Ilkka Mell (008) 6/4
7 Mat-.60 Sovellettu todeäkösyyslasketa B o lukuje,,, artmeette keskarvo. Vous,,, välmatka- ta suhdeastekollse muuttuja havattuja arvoja. Havatoarvoje,,, jakauma voutta vodaa kuvata otostuusluvulla jossa c = m 3 3/ m m =. keskusmomett luvulle,,, Hupukkuus m 3 = 3. keskusmomett luvulle,,,,,, välmatka- ta suhdeastekollse muuttuja havattuja arvoja. Havatoarvoje,,, jakauma hupukkuutta vodaa kuvata otostuusluvulla c m = 4 m jossa m =. keskusmomett luvulle,,, m 4 = 4. keskusmomett luvulle,,, Geometre keskarvo,,, postvsa lukuja. Lukuje,,, geometre keskarvo o = G Lukuje,,, geometrse keskarvo logartm o lukuje,,, logartme artmeette keskarvo: log( ) + log( ) + + log( ) log( G) = = log( ) = Huomaa, että G = va, jos = = = Ilkka Mell (008) 7/4
8 Mat-.60 Sovellettu todeäkösyyslasketa B Harmoe keskarvo,,, postvsa lukuja. Lukuje,,, harmoe keskarvo o H = Lukuje,,, harmose keskarvo käätesluku o lukuje,,, kääteslukuje artmeette keskarvo: = H Huomaa, että va, jos H = = = = Järjestysastekollste muuttuje tuusluvut Järjestystuusluvut,,, järjestys-, välmatka- ta suhdeastekollse muuttuja havattuja arvoja. Järjestetää havatoarvot,,, suuruusjärjestyksee pemmästä suurmpaa ja olkoot z, z,, z järjestyksee asetetut havatoarvot. Suuruusjärjestyksessä k. havatoarvoa z k kutsutaa k. järjestystuusluvuks. Mm, maksm, vahteluväl z, z,, z järjestys-, välmatka- ta suhdeastekollse muuttuja havatut arvot järjestettyä suuruusjärjestyksee pemmästä suurmpaa. Tällö z = mmarvo z = maksmarvo (z, z ) = vahteluväl z z = vahteluväl ptuus Ilkka Mell (008) 8/4
9 Mat-.60 Sovellettu todeäkösyyslasketa B Prosettpsteet z, z,, z järjestys-, välmatka- ta suhdeastekollse muuttuja havatut arvot järjestettyä suuruusjärjestyksee pemmästä suurmpaa. Havatoarvoje p. prosettpste z (p), p =,,, 99 o pste, joka jakaa havatoaesto kahtee osaa: () p % havatoarvosta o lukua z (p) peempä ta korketaa yhtä suura ku z (p). () (00 p) % havatoarvosta o lukua z (p) suurempa. Medaa z, z,, z järjestys-, välmatka- ta suhdeastekollse muuttuja havatut arvot järjestettyä suuruusjärjestyksee pemmästä suurmpaa. Medaa Me o havatoarvoje 50. prosettpste: Me = z (50) Medaa jakaa havatoaesto kahtee yhtä suuree osaa, että tosessa kakk havatoarvot ovat medaaa peempä, tosessa kakk havatoarvot ovat medaaa suurempa. Havatoarvoje medaa Me vodaa määrätä seuraavalla tavalla: () Järjestetää havatoarvot suuruusjärjestyksee pemmästä suurmpaa. (a) Jos havatoarvoje lukumäärä o parto, medaa o järjestetystä havatoarvosta keskmmäe. (b) Jos havatoarvoje lukumäärä o parlle, medaa o järjestetystä havatoarvosta kahde keskmmäse artmeette keskarvo. Oletetaa, että artmeette keskarvo M ja medaa Me määrätää samasta jatkuva muuttuja havattuje arvoje luoktellusta frekvessjakaumasta. Jos havatoarvoje jakauma o ykshuppue, pätee seuraava: Vasemmalle volla jakaumlla M < Me Symmetrsllä jakaumlla M Me Okealle volla jakaumlla Me < M Kvartlt z, z,, z Ilkka Mell (008) 9/4
10 Mat-.60 Sovellettu todeäkösyyslasketa B järjestys-, välmatka- ta suhdeastekollse muuttuja havatut arvot järjestettyä suuruusjärjestyksee pemmästä suurmpaa. Tällö Q = Alakvartl = 5. prosettpste = z (5) Q = Keskkvartl = 50. prosettpste = z (50) Q 3 = Yläkvartl = 75. prosettpste = z (75) Kvartlt Q, Q, Q 3 jakavat suuruusjärjestyksee asetetu havatoaesto eljää yhtä suuree osaa. Ertysest: Alakvartl Q = Havatoarvoje medaaa Me peempe havatoarvoje medaa Keskkvartl Q = Havatoarvoje medaa Me Yläkvartl Q 3 = Havatoarvoje medaaa Me suurempe havatoarvoje medaa Kvartlt, kvartlväl, kvartlpokkeama havatoarvoje kvartlt Q, Q, Q 3. Tällö (Q, Q 3 ) = kvartlväl Q 3 Q = IQR = kvartlväl ptuus (Q 3 Q )/ = IQR/ = kvartlpokkeama Kvartlvälä, kvartlväl ptuutta (IQR = terquartle rage) ja kvartlpokkeamaa vodaa käyttää kuvaamaa havatoarvoje hajaatuesuutta (keskttyesyyttä). Jos havatoarvoje jakaumaa kuvaavaa kesklukua o käytetty medaaa, hajotalukua käytetää use kvartlpokkeamaa. Laatueroastekollste muuttuje tuusluvut Frekvess Olkoo otoskoko el kerättyje havatoarvoje lukumäärä. Olkoo A jok perusjouko osajoukko ja olkoo f otoksee kuuluve A-tyyppste havatoarvoje frekvess el lukumäärä. Tällö A-tyyppste havatoarvoje suhteelle frekvess el osuus otoksessa o f Mood Frekvessjakauma mood el tyypparvo Mo o yles havatoarvo. Luoktellu frekvessjakauma mood el tyypparvo Mo o sä luokassa, jossa luokteltua frekvessjakaumaa vastaava hstogramm saavuttaa maksmsa. Huomautuksa: Jos käytetty luoktus o tasaväle, luoktellu frekvessjakauma mood o sä luokassa, jota vastaava frekvess o suur. Jos käytetty luoktus e ole tasaväle, luoktellu frekvess jakauma mood e välttämättä ole sä luokassa, jota vastaava frekvess o suur. Ilkka Mell (008) 0/4
11 Mat-.60 Sovellettu todeäkösyyslasketa B Oletetaa, että artmeette keskarvo M, medaa Me ja mood Mo määrätää samasta jatkuva muuttuja havattuje arvoje luoktellusta frekvessjakaumasta. Jos havatoarvoje jakauma o ykshuppue, pätee seuraava: Vasemmalle volla jakaumlla M < Me < Mo Symmetrsllä jakaumlla M Me Mo Okealle volla jakaumlla Mo < Me < M Ilkka Mell (008) /4
12 Mat-.60 Sovellettu todeäkösyyslasketa B Tehtävä 7.. Alla o lueteltu joukko tlastollsa muuttuja.. Maskode C-vtamptosuus; ykskkö: mg/00 g. Alvar aukolta löydety kasv laj 3. Pae, joka vaadtaa teräksse sälö murtumsee; kg/cm 4. Heklöde reakto vätteesee Suome o ltyttävä NATO:o mtattua astekolla: täys er meltä, yhde tekevää, täys samaa meltä 5. Jokerede sjotus jääkekkolgassa; astekkoa,, 6. Teekkar koulutusohjelma 7. Teekkar älykkyysosamäärä; ykskkö: äo-pste 8. Teekkar pstemäärä kurss. välkokeessa; astekkoa 0,,,, Letokoee opeus; ykskkö: km/h (a) Mtkä ovat muuttuje -9 mtta-astekot? (b) Mtkä muuttujsta -9 ovat kvaltatvsa ja mtkä kvattatvsa? (c) Mtkä muuttujsta -9 ovat dskreettejä ja mtkä jatkuva? Tehtävä 7.. Mtä opmme? Tehtävässä tarkastellaa tlastollste muuttuje mtta-astekollsa omasuuksa sekä tlastollste muuttuje luokttelua tosaalta kvaltatvs ja kvattatvs muuttuj ja tosaalta dskreetteh ja jatkuv muuttuj. Tehtävä 7.. Ratkasu: (a) Laatueroastekollsa muuttuja:, 6 Järjestysastekollsa muuttuja: 4, 5, 7, 8 Suhdeastekollsa muuttuja:, 3, 9 (b) Kvaltatvsa muuttuja:, (4), (5), 6, (7) Kvattatvsa muuttuja:, 3, (4), (5), (7), 8, 9 Kvaltatvste ja kvattatvste muuttuje välmaastossa olevat järjestysastekollset muuttujat o merktty sulkuh. (c) Dskreettejä muuttuja:, 4, 5, 6, 8 Jatkuva muuttuja:, 3, (7), 9 Vakka olemme kohdassa (a) luoktelleet älykkyysosamäärä järjestysastekolls muuttuje joukkoo, stä o ehkä syytä ptää kutek jatkuvaa. Ilkka Mell (008) /4
13 Mat-.60 Sovellettu todeäkösyyslasketa B Tehtävä 7.. Erää talo asukkalla o seuraavat kuukaustulot ( /kk): Määrää aestosta seuraavat tuusluvut: (a) mm, maksm (b) vahteluväl, vahteluväl ptuus (c) medaa (d) kvartlväl, kvartlväl, kvartlväl ptuus, kvartlpokkeama Tehtävä 7.. Mtä opmme? Tehtävässä tarkastellaa järjestystuuslukuje määräämstä. Tehtävä 7.. Ratkasu: Kakk määrättävks pyydetyt tuusluvut ovat järjestystuuslukuja ta h perustuva tuuslukuja. Järjestetää havatoarvot suuruusjärjestyksee pemmästä suurmpaa järjestystuuslukuje määräämstä varte: (a) Mm ja maksm: M = 4300, Ma = 500 (b) Vahteluväl: (M, Ma) = (4300, 500) Vahteluväl ptuus: Ma M = = Ilkka Mell (008) 3/4
14 Mat-.60 Sovellettu todeäkösyyslasketa B stä (c) Etstää havatoje medaa Me. Medaa Me jakaa havatoaesto kahtee yhtä suuree osaa ste, että puolet havatoarvosta, jotka evät ole yhtä suura ku medaa, ovat medaaa peempä, ja puolet stä havatoarvosta, jotka evät ole yhtä suura ku medaa, ovat medaaa suurempa. Oletetaa, että havatoa o järjestetty suuruusjärjestyksee pemmästä suurmpaa. () Jos o parto, medaaks valtaa havatoarvo, joka löytyy pakasta ( + )/ () Jos o parlle, medaaks valtaa kahde keskmmäse havao artmeette keskarvo. Koska havatoje lukumäärä o tässä parlle, Me = ( )/ = 300 (d) Etstää es havatoje kvartlt Q, Q, Q 3. Kvartlt Q, Q, Q 3 jakavat suuruusjärjestyksee asetetu havatoaesto eljää yhtä suuree osaa. Keskkvartl Q o sama ku medaa. Alakvartl Q o medaaa peempe havatoarvoje medaa ja yläkvartl Q 3 o medaaa suurempe havatoarvoje medaa. Ste Q = Me = 300 Q = ( )/ = 000 Q 3 = ( )/ = 8050 Kvartlväl o (Q,Q 3 ) = (000,8050) Kvartlväl ptuus o IQR = Q 3 Q = = 7850 Kvartlpokkeama o IQR/ = (Q 3 Q )/ = 7850/ = 395 Ilkka Mell (008) 4/4
15 Mat-.60 Sovellettu todeäkösyyslasketa B Tehtävä 7.3. Muodosta tehtävä 7.. aestosta luokteltu frekvessjakauma, joka luokkaväleä ovat (4000,000] (00,8000] (8000,60000] Määrää myös frekvessjakaumaa vastaava hstogrammkuvo suorakatede korkeudet, ku luokkavälä [4000,000] vastaava suorakatee korkeudeks valtaa 5 ykskköä. Hahmottele myös ko. hstogrammkuvo ruudullselle paperlle. Mssä luokassa o jakauma mood? Tehtävä 7.3. Mtä opmme? Tehtävässä tarkastellaa luoktellu frekvessjakauma ja stä vastaava graafse estykse el hstogramm kostruomsta. Tehtävä 7.3. Ratkasu: Hstogrammkuvo muodostuu suorakatesta, jode pta-alat suhtautuvat tossa kute vastaavat luokkafrekvesst (ta suhteellset luokkafrekvesst). Tehtävä 7.. aestosta saadaa seuraava luokteltu frekvessjakauma, ku luokkaväleä ovat (4000,000], (00,8000], (8000,60000] : Luokkaväl Luokkafrekvess Suorakatee korkeus (ykskköä) (4000,000] 5 5 (000,8000] 9 9/ = 9.5 (8000,60000] /4 = 0.5 Hstogrammkuvo suorakatede korkeukse määrääme: () Valtaa luokkaväl (4000,000] lttyvä suorakatee korkeudeks 5 ykskköä. () Luokkaväl (000,8000] o kaks kertaa ptemp ku luokkaväl (4000,000]. Sks luokkaväl (000,8000] lttyvä suorakatee korkeus saadaa jakamalla luokkavälä vastaava frekvess 9 luvulla. (3) Luokkaväl (8000,60000] o eljä kertaa ptemp ku luokkaväl (4000,000]. Sks luokkaväl (8000,60000] lttyvä suorakatee korkeus saadaa jakamalla luokkavälä vastaava frekvess luvulla 4. Ilkka Mell (008) 5/4
16 Mat-.60 Sovellettu todeäkösyyslasketa B Alla oleva kuvo esttää yo. luokteltua frekvessjakaumaa vastaavaa hstogramma. 5 f/ Jakauma mood o luokassa (4000,000], koska sä hstogramm saavuttaa maksmsa. Huomaa, että mood e ole luokassa (000,8000], vakka stä vastaava frekvess o suur. Huomautuksa: () Hstogrammssa suorakatede pta-alat evät ss korkeudet ovat suhteessa luokkafrekvesseh. () Hstogrammssa suorakatede korkeudet ovat suhteessa luokkafrekvesseh va, jos luoktus o tasaväle. () Okea laatu pystyaksellle o tehtävä 7.3. tapauksessa frekvess/ : Vaaka-aksel laatu: Pystyaksel laatu: frekvess/ Suorakatee pta-ala: frekvess/ = frekvess Ilkka Mell (008) 6/4
17 Mat-.60 Sovellettu todeäkösyyslasketa B Tehtävä 7.4. Määrää tehtävä 7.. aesto kahde esmmäse sarakkee 8:sta luvusta artmeette keskarvo, otosvarass ja otoskeskhajota. Tehtävä 7.4. Mtä opmme? Tehtävässä tarkastellaa artmeettse keskarvo, otosvarass ja otoskeskhajoa määräämstä. Tehtävä 7.4. Ratkasu: Laskutomtukset vodaa suorttaa kahdella tavalla. Tapa : = s = ( ) Tapa : s = s = s = s = s Jos havatoarvoje artmeettse keskarvo ja varass laskemsta varte laadtaa tetokoeohjelma, laskutomtukset vodaa järjestää laskutavassa, että havaot käydää läp va kerra, ku taas laskutavassa havaot o käytävä läp kaks kertaa. Se sjaa laskutava kaavat ovat umeersest vakaampa ku laskutavassa, ts. jos teet tetokoeohjelma, jolla o tarkotus laskea havatoarvoje artmeette keskarvo ja otosvarass, kaattaa käyttää laskutapaa. Alla o kopo laskutomtuste tekemsessä apua käytetty Mcrosoft Ecel taulukosta. Ilkka Mell (008) 7/4
18 Mat-.60 Sovellettu todeäkösyyslasketa B Taulukosta saadaa: 8 8 = = = s = = ( ) = s = ( ) = s 8 8 = = s = Palkka -Ka (-Ka)^ ^ Summa Ka = 96.5 Tapa : Var = Hajota = Tapa : Var = Hajota = Ilkka Mell (008) 8/4
19 Mat-.60 Sovellettu todeäkösyyslasketa B Tehtävä 7.5. Olkoo = = lukuje,,, artmeette keskarvo. (a) Todsta, että (b) ( ) = 0 Todsta, että mmo elösumma ( a) muuttuja a suhtee. Tehtävä 7.5. Mtä opmme? Tehtävässä tutktaa artmeettse keskarvo karakterstsa omasuuksa. Tehtävä 7.5. Ratkasu: Olkoo = = lukuje,,, artmeette keskarvo. (a) Tällö ( ) = = = = 0 (b) Todstus : Koska (a)-kohda mukaa ( ) = 0 Ilkka Mell (008) 9/4
20 Mat-.60 Sovellettu todeäkösyyslasketa B ( a) = ( + a) ja lsäks alaraja ( ) saavutetaa, ku a= [( ) ( )( a) ( a) ] = + + ( ) ( a) ( ) ( a) = + + = ( ) + ( a) ( ) Todstus : Etstää fukto f ( a) = ( a) äärarvot muuttuja a suhtee dervomalla fukto f(a) muuttuja a suhtee. Dervodaa fukto f(a), merktää dervaatta ollaks ja ratkastaa saatu ormaalyhtälö muuttuja a suhtee: f a = a = a = + a= + a= ( ) ( ) ( ) 0 a = = = = = Ratkasuks saadaa = a= = Ratkasu vastaa fukto f(a) mmä, koska f a = a = > ( ) ( ) 0 a Lsäks fukto f(a) mmarvoks saadaa f ( ) = ( ) = ( ) s jossa s o lukuje,,, otosvarass. Tehtävä 7.6. Ilkka Mell (008) 0/4
21 Mat-.60 Sovellettu todeäkösyyslasketa B Hetetää oppaa 30 kertaa. Olkoo tuloksea seuraava slmälukuje joo:, 4, 4,, 5, 4,,, 6, 5, 3, 3, 5, 4, 4,, 6,, 5, 4, 4, 3, 3, 3, 5, 5, 3, 4, 5, 4 (a) Määrää slmälukuje frekvesst ja suhteellset frekvesst. (b) Määrää slmälukuje frekvessjakauma mood. Tehtävä 7.6. Mtä opmme? Tehtävässä tarkastellaa laatueroastekollste muuttuje tuuslukuje määräämstä. Tehtävä 7.6. Ratkasu: Kakk määrättävks pyydetyt tuusluvut ovat laatueroastekollste muuttuje tuuslukuja ta h perustuva tuuslukuja. Olemme hettäeet oppaa 30 kertaa ja tuloksea o seuraava slmälukuje joo:, 4, 4,, 5, 4,,, 6, 5, 3, 3, 5, 4, 4,, 6,, 5, 4, 4, 3, 3, 3, 5, 5, 3, 4, 5, 4 (a) Määrätää slmälukuje frekvesst f ja suhteellset frekvesst f/. Tehtävää helpottaa, jos järjestämme joo luvut suuruusjärjestyksee. Saamme tällö joo,,,,,, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6 Ste slmälukuje frekvesse ja suhteellste frekvesse jakaumat vodaa esttää alla oleva tauluko muodossa: Slmäluku Summa Frekvess f Suhteelle frekvess f/ 5/30 /30 6/30 9/30 7/30 /30 (b) Kohda (a) frekvesstaulukosta vomme lukea, että frekvessjakauma mood o Mo = 4 koska slmäluvu 4 frekvess o suur. Tehtävä 7.7. Olet ottaut paksta 0000 euro laa, jota e saa lyhetää kahde esmmäse vuode akaa. Alkuperäse sopmukse mukae korko o. vuotea 0 % ja. vuotea 0 %, jollo takas maksettava laapääoma kasvaa kahdessa vuodessa %. Oletetaa, että pak vaatmuksesta sopmusta muutetaa, että kahde esmmäse vuode akaa käytetää samaa korkoprosetta, joka määrätää, että laapääoma kasvaa tää akaa samaks ku alkuperäse sopmukse mukaa. (a) Määrää. Ilkka Mell (008) /4
22 Mat-.60 Sovellettu todeäkösyyslasketa B (b) (c) Näytä, että uude sopmukse korkoa e saada kaavalla (0 + 0)/ % Näytä, että uude sopmukse korko saadaa kaavalla jossa (.. ) 00%.. o lukuje. ja. geometre keskarvo. Tehtävä 7.7. Mtä opmme? Tehtävässä äytetää, että artmeette keskarvo e ole aa käypä tuusluku. Okea keskluku tehtävä ogelma ratkasemsee o tässä geometre keskarvo. Tehtävä 7.7. Ratkasu: (a) Olkoo korko. vuotea 0 % ja. vuotea 0 %. Laapääoma. vuode lopussa: ( + 0/00) 0000 = ( + 0.) 0000 = = 000 Laapääoma. vuode lopussa: ( + 0/00) 000 = ( + 0.) 000 =. 000 = 300 Ste laapääoma kasvaa kahdessa vuodessa 00 ( )/0000 % = 3 % jote = 3 (b) Määrätää. ja. vuode korkoprosette artmeette keskarvo: % = 5% Olkoo korko ss molempa vuosa 5 %. Laapääoma. vuode lopussa: ( + 5/00) 0000 = ( + 0.5) 0000 = = 500 Laapääoma. vuode lopussa: ( + 5/00) 500 = ( + 0.5) 500 = = 35 Ste laapääoma kasvaa kahdessa vuodessa 00 ( )/0000 % = 3.5 % > 3 % Huomaa, että okea korkoprosett e ole myöskää 3 % = 6% Ilkka Mell (008) /4
23 Mat-.60 Sovellettu todeäkösyyslasketa B (c) Määrätää korkoprosett kaavalla jossa (.. ) 00%.. o lukuje. ja. geometre keskarvo: (.. ) Olkoo korko ss molempa vuosa %. Laapääoma. vuode lopussa: ( /00) 0000 = ( ) 0000 = = Laapääoma. vuode lopussa: ( /00) = ( ) = Ste laapääoma kasvaa kahdessa vuodessa 00 ( )/0000 % = 3 % kute ptääk. Huomautus: Olkoo korko. vuotea p % ja tosea vuotea q %. Ylesest pätee: p q p q = mutta ( p + q)/ ( p+ q)/ p q pats, jos p = q Tehtävä 7.8. Pakkakute A ja B välmatka o 0 km. Heklö ajaa A:sta B:he keskopeudella 60 km/h ja B:stä A:ha keskopeudella 0 km/h. (a) Määrää keskopeus edestakasella matkalla. (b) Näytä, että keskopeutta edestakasella matkalla e saada kaavalla (60 + 0)/ = 90 km/h Ilkka Mell (008) 3/4
24 Mat-.60 Sovellettu todeäkösyyslasketa B (c) Näytä, että okea keskopeus saadaa määräämällä lukuje 60 ja 00 harmoe keskarvo Tehtävä 7.8. Mtä opmme? Tehtävässä äytetää, että artmeette keskarvo e ole aa käypä tuusluku. Okea keskluku tehtävä ogelma ratkasemsee o tässä harmoe keskarvo. Tehtävä 7.8. Ratkasu: (a) A: ja B: välmatka: 0 km Ajoaka A:sta B:he (60 km/h): 0/60 = h Ajoaka B:stä A:ha (0 km/h): 0/0 = h Matka edestakas: 40 km Ajoaka edestakas: + = 3 h Keskopeus edestakasella matkalla: 40/3 = 80 km/h (a) (b) Määrätää keskopeukse artmeette keskarvo: (60 + 0) km/h = 90 km/h 80 km/h Määrätää keskopeukse harmoe keskarvo: km/h = 80 km/h Ilkka Mell (008) 4/4
Ilkka Mellin (2006) 1/1
Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma,
Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut
Mat-2.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Kaksiulotteie ormaalijakauma Mitta-asteikot Havaitoaieisto kuvaamie ja otostuusluvut Avaisaat: Ehdollie jakauma, Ehdollie odotusarvo, Ehdollie variassi,
Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat:
Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Artmeette keskarvo, Estmaatt,
Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat:
Mat-1.60 Sovellettu todeäkösyyslasketa Mat-1.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Otos ja otosjakaumat Avasaat: Artmeette keskarvo, Beroull-jakauma, Beroull-koe, χ -jakauma, Frekvess, Frekvessjakauma,
Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot
Mat-.09 Sovellettu todeäkösyyslasku Systeemaalyys laboratoro Teklle korkeakoulu SYKSY 00 Ilkka Mell Sovellettu todeäkösyyslasku: Kaavat ja taulukot f XY x X x X y Y ( x, y) exp XY ( XY ) XY XY X X Y Tomttaut
Mat-2.090 Sovellettu todennäköisyyslasku A
Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie
Luento 6 Luotettavuus Koherentit järjestelmät
Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu
Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot
TKK (c) Ilkka Mell (2004) Kokoastodeäkösyys ja Kokoastodeäkösyys ja : Johdato Kokoastodeäkösyyde ja Bayes kaavoje systeemteoreette tulkta Johdatus todeäkösyyslasketaa Kokoastodeäkösyys ja TKK (c) Ilkka
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemaalyys laboratoro Mat-.9 Sovellettu todeäkösyyslasku A Nordlud Harjotus 8 (vko 45/3) (Ahe: Raja-arvolauseta, otostuuslukuja, johdatusta estmot, Lae luvut 9.5,.-.6). Olkoo X ~ p(λ), mssä λ
Turingin kone on kuin äärellinen automaatti, jolla on käytössään
4 TUINGIN KONEET Ala Turg 1935 36 auha Koe vo srtää auha: T U I N G auhapää: ohjausykskkö: Turg koe o ku äärelle automaatt, jolla o käytössää auhapäätä vasemmalle ta okealle; se vo myös lukea ta krjottaa
Tilastollisten aineistojen kerääminen ja mittaaminen Tilastolliset aineistot
Todeäkösyyslaskea ja talstotetee peruskurssesmerkkkokoelma 4 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 4 Aheet: Tlastollste aestoje kerääme ja mttaame Tlastollste aestoje kuvaame Otokset
Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto
Kynä-paper -harjotukset Tana Lehtnen 8.8.07 Tana I Lehtnen Helsngn ylopsto Etelä-Suomen ja Lapn lään, 400 opettajaa a. Perusjoukon (populaaton) muodostvat kakk Etelä-Suomen ja Lapn läänn peruskoulun opettajat
Tilastolliset menetelmät: Lineaarinen regressioanalyysi
Tlastollset meetelmät Leaare regressoaalyys Tlastollset meetelmät: Leaare regressoaalyys 3. Tlastolle rppuvuus ja korrelaato 4. Johdatus regressoaalyys 5. Yhde selttäjä leaare regressomall 6. Ylee leaare
1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä
Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10
9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli
lueto9.ppt S-38.45 Lkeeteora perusteet Kevät 5 Ykskertae lkeeteoreette mall Puhdas jakojärjestelmä Asakkata saapuu keskmäär opeudella asakasta per akayks. / keskmääräe asakkade välaka Asakkata palvellaa
= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2
HY / Matematka ja tlastotetee latos Tlastolle päättely II, kevät 28 Harjotus 3A Ratkasuehdotuksa Tehtäväsarja I Olkoot Y,, Y ja Nθ, ) Osota, että T T Y) Y 2 o parametr gθ) θ 2 harhato estmaattor Laske
Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4
TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun
MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN
MTTTP SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN Aesto kaavoje () (3), (9) ja () esmerkkeh Lepakot pakallstavat hyötesä lähettämällä korkeataajusta äätä Ne pystyvät pakallstamaa hyöteset
9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli
Ssältö Kertausta: ykskertae lkeeteoreette mall M/M/-PS asakasta palvelja asakaspakkaa M/M/-PS asakasta palveljaa asakaspakkaa Sovellus elastse datalketee malltamsee vuotasolla M/M//k/k-PS k asakasta palvelja
Jaksolliset ja toistuvat suoritukset
Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e
Jakaumien tunnusluvut. Jakaumien tunnusluvut. Jakaumien tunnusluvut: Mitä opimme? 2/2. Jakaumien tunnusluvut: Mitä opimme? 1/2
TKK (c) Ila Mell (4) Jaaume tuusluvut Johdatus todeäösyyslasetaa Jaaume tuusluvut Marov ja Tshebyshev epäyhtälöt Momett Vous ja hupuuus Suurte luuje la TKK (c) Ila Mell (4) Jaaume tuusluvut: Mtä opmme?
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 4
MS-A Todeäkösyyslaskea ja tlastotetee peruskurss Vkko Tlastollste aestoje kerääme ja mttaame; tlastollste aestoje kuvaame; Otokset ja otosjakaumat; Estmot; Estmotmeetelmät; Vällestmot Mtä tlastotede o?
Mat Koesuunnittelu ja tilastolliset mallit
Mat-.03 Koeuuttelu tlatollet mallt. harjotuket Mat-.03 Koeuuttelu tlatollet mallt. harjotuket / Ratkaut Aheet: Avaaat: Tlatollte aetoje kuvaame Oto otokaumat Etmot Etmotmeetelmät Väletmot Artmeette kekarvo,
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia.
HY, MTO / Matemaattste tetede kadohjelma Tlastolle päättely II, kevät 208 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I Olkoo Y, Y rppumato otos Pareto jakaumasta, fy; θ θc θ y θ+ { y > c } tuetulla vakolla
Tchebycheff-menetelmä ja STEM
Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot
7. laskuharjoituskierros, vko 10, ratkaisut
7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,
Satunnaismuuttujat ja todennäköisyysjakaumat
Satuasmuuttujat ja todeäkösyysjakaumat Todeäkösyyslasketa: Satuasmuuttujat ja todeäkösyysjakaumat 9. Satuasmuuttujat ja todeäkösyysjakaumat 0. Kertymäfukto. Jakaume tuusluvut. Moulotteset satuasmuuttujat
Muuttujien välisten riippuvuuksien analysointi
Mat-.4 Tlastollse aalyys peusteet, kevät 7 5. lueto: Tlastolle ppuvuus ja koelaato Muuttuje välste ppuvuukse aalysot Tlastollsssa aalyysessä tutktaa use muuttuje välsä ppuvuuksa Työttömyysastee ppuvuus
1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on
HY MTO / Matemaattste tetede kadohjelma Tlastolle päättely II kevät 019 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I 1 Mostee teht 516 Eräde kuulalaakerede kestoa mljooaa kerrosta o totuttu kuvaamaa Webull-jakaumalla
Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?
Mttausteknkan perusteet / luento 7 Mttausepävarmuus Mttausepävarmuus Mttaustulos e ole koskaan täysn oken Mttaustulos on arvo mtattavasta arvosta Mttaustuloksen ja mtattavan arvon ero on mttausvrhe Mkäl
2-suuntainen vaihtoehtoinen hypoteesi
Mat-.6 Sovellettu todeäkösyyslasketa. harjotukset Mat-.6 Sovellettu todeäkösyyslasketa B. harjotukset / Ratkasut Aheet: Tlastollset testt Avasaat: Artmeette keskarvo, Beroull-jakauma, F-jakauma, F-test,
Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28
Jyväskylän Aattkorkeakoulu, IT-nsttuutt IIF00 Sovellettu fyskka, Syksy 005, 4.5 ETS Opettaja Pas epo alln lö Laatja - Pas Vähäartt Vuoskurss - IST4SE Tekopävä 005-9-4 Palautuspävä 005-9-8 8.9.005 /7 LABOATOIOTYÖ
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 5 Aiheet: Tilastolliset testit Avainsanat:
MS-A5 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 5 MS-A5 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 5 Aheet: Tlastollset testt Avasaat: Artmeette keskarvo Beroull-jakauma
3.5 Generoivat funktiot ja momentit
3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä
13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit
68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta
Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa
Mttausteknkan perusteet / luento 6 Mttausepävarmuus ja shen lttyvää termnologaa Mttausepävarmuus = mttaustulokseen lttyvä parametr, joka kuvaa mttaussuureen arvojen odotettua vahtelua Mttauksn lttyvä kästtetä
COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT
COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks
Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:
Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa
10.5 Jaksolliset suoritukset
4.5 Jaksollset suortukset Tarkastellaa tlaetta, jossa asakas tallettaa pakktllle tostuvast yhtäsuure rahasumma k aa korkojakso lopussa. Asakas suorttaa talletukse kertaa. Lasketaa tlllä oleva pääoma :e
Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet: Mitä opimme?
TKK (c) Ilkka Mell (004) Kovergesskästteet ja raja-arvolauseet Kovergesskästtetä Suurte lukuje lat Keskee raja-arvolause Keskese raja-arvolausee seurauksa Johdatus todeäkösyyslasketaa Kovergesskästteet
Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat:
Mat-.36 Tlastollnen päättely 7. harjotukset Mat-.36 Tlastollnen päättely 7. harjotukset / Tehtävät Aheet: Avansanat: ypoteesen testaus. lajn vrhe,. lajn vrhe, arhaton test, ylkäysalue, ylkäysvrhe, ypotees,
Raja-arvot. Osittaisderivaatat.
1 MAT-13440 LAAJA MATEMATIIKKA 4 Tamperee teklle ylopsto Rsto Slveoe Kevät 2010 Luku 3 Raja-arvot Osttasdervaatat 1 Fuktode raja-arvot Tarkastelemme fuktota f : A, jode määrttelyjoukko A T Muuttujat ovat
FYSA220/2 (FYS222/2) VALON POLARISAATIO
FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron
Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt
FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-
Mat Lineaarinen ohjelmointi
Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot
Harjoituksen pituus: 90min 3.10 klo 10 12
Pallollse puolustae: Sokea ja ta käspallo/ Lppupallo Tavote: aalteo estäe sjottue puolustavalle puolelle, potku ta heto estäe, syöttäse estäe rstäe taklaus, pae tla vottase estäe sjottue puolustavalle
Tilastolliset menetelmät: Otokset, otosjakaumat ja estimointi. 4. Otokset ja otosjakaumat 5. Estimointi 6. Estimointimenetelmät 7.
Tlastollset meetelmät Otokset, otosjakaumat ja estmot Tlastollset meetelmät: Otokset, otosjakaumat ja estmot 4. Otokset ja otosjakaumat 5. Estmot 6. Estmotmeetelmät 7. Välestmot Ilkka Mell 5 Tlastollset
on tavanomainen yhden selittäjän lineaarinen regressiomalli, jossa jäännöstermit ε i toteuttavat seuraavat oletukset:
Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Ylee leaare mall Artmeette keskarvo,
Monte Carlo -menetelmä
Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla
Todennäköisyyden aksioomat. Todennäköisyyden aksioomat. Todennäköisyyden aksioomat: Mitä opimme? 2/2. Todennäköisyyden aksioomat: Mitä opimme?
TKK () Ilkka Mell (2004) 1 Todeäkösyyde aksoomat Suhteelle rekvess, klasse todeäkösyys ja ehdolle todeäkösyys Johdatus todeäkösyyslasketaa Todeäkösyyde aksoomat TKK () Ilkka Mell (2004) 2 Todeäkösyyde
1. PARAMETRIEN ESTIMOINTI
Mat-.04 Tlastollse aalyys perusteet Mat-.04 Tlastollse aalyys perusteet / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Estmaatt, Estmaattor, Estmot, Jääöselösumma, Jääösterm, Jääösvarass,
Bernoullijakauma. Binomijakauma
Beroulljaauma Beroull oe o ahde mahdollse ulostulo oe, jossa taahtumsta äytetää mtysä ostume ja eäostume. Esmerejä: rahahetto (ruua ta laava), lase sytymä (tyttö ta oa), helö verryhmä ( ta c ), oselja
Tilastollinen päättely. 3. Piste-estimointi Johdanto Estimointimenetelmät Estimaattoreiden ominaisuudet
Mat-1.361 Tlastolle päättely 3. Pste-estmot Tlastolle päättely 3. Pste-estmot 3.1. Johdato Estmaattor, Estmaatt, Estmot, Havato, Havatopste, Otos, Otostuusluku, Parametr, Pste-estmot, Pstetodeäkösyysfukto,
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemaalyys laboratoro Mat-.090 Sovellettu todeäkösyyslasku A Nordlud Harotus (vko 49/003) (Ahe: Tlastollsa testeä, regressoaalyysä Lae luvut 5.5, 6) HUOM! Laskarede palautukse takaraa o pokkeuksellsest
Mittaustulosten käsittely
Mttaustulosten kästtely Vrhettä ja epävarmuutta lmasevat kästteet Tostokoe ja satunnasten vrheden tlastollnen kästtely. Mttaustulosten jakaumaa kuvaavat tunnusluvut. Normaaljakauma 7. Tostokoe ja suurmman
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Montavoteoptmont ja teollsten prosessen hallnta Ylassstentt Juss Hakanen juss.hakanen@jyu.f syksy 2010 Interaktvset menetelmät Idea: päätöksentekjää hyödynnetään aktvsest ratkasuprosessn akana
8. laskuharjoituskierros, vko 11, ratkaisut
Mat-2.091 Sovellettu todeäköisyyslasku, kevät -05 Heliövaara, Palo, Melli 8. laskuharjoituskierros, vko 11, ratkaisut D1. Oletetaa, että havaiot X i, i = 1, 2,..., 100 muodostavat yksikertaise satuaisotokse
Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa
URUN AMMAIKORKEAKOULU YÖOHJE (7) FYSIIKAN LABORAORIO V.2 2.2 38E. MEKAANISEN VÄRÄHELYN UKIMINEN. yön tavote 2. eoraa yössä tutustutaan harmonsen mekaansen värähdyslkkeen omnasuuksn seuraavssa tapauksssa:
Suoran sovittaminen pistejoukkoon
Suora sovttame pstejoukkoo Ku halutaa tutka kahde tlastollse muuttuja rppuvuutta tosstaa, käytetää use leaarsta regressota el suora sovttamsta havatojoukkoo. Sä o aettu joukko havatopareja (x, y ), ja
HASSEN-WEILIN LAUSE. Kertausta
HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten
Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä
Tavotteet skaalaavan funkton lähestymstapa el referensspste menetelmä Optmontopn semnaar - Kevät 2000 / 1 Estelmän ssältö Panotetun metrkan ongelmen havatsemnen Referensspste menetelmän dean esttely Referensspste
Baltian Tie 2001 ratkaisuja
Balta Te 001 ratkasuja 1. Olkoot tehtävät T, = 1,,..., 8. Eräs mahdollsuus jakaa tehtävät kahdeksalle opskeljalle O j, j =1,,..., 8 o ohesessa taulukossa T 1 T T T 4 T T 6 T 7 T 8 O 1 O O O 4 O O 6 O 7
r i m i v i = L i = vakio, (2)
4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään
Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut
Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss
Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt
FYSP103 / 1 KAASUTUTKIUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttausöytäkrjan ja työselostuksen laatmsta Luento-
AquaPro 3-10 11-18 19-26 27-34. Bedienungsanleitung Operating instructions Gebruiksaanwijzing Käyttöohje FIN. 046.01.00 Rev.0607
046.01.00 Rev.0607 D GB NL FIN Bedenungsanletung Operatng nstructons Gebruksaanwjzng Käyttöohje 3-10 11-18 19-26 27-34 120 Automaattnen pyörvä laser kallstustomnnolla: Itsetasaus vaakasuorassa tasossa
Kuluttajahintojen muutokset
Kuluttajahntojen muutokset Samu Kurr, ekonomst, rahapoltkka- ja tutkmusosasto Tutkmuksen tausta ja tavotteet Tavaroden ja palveluden hnnat evät muutu jatkuvast, vaan ovat ana jossan määrn jäykkä lyhyellä
Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)
J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 1 Markov-prosesst (Jatkuva-akaset Markov-ketut) Tarkastellaan (statonaarsa) Markov-prosessea, oden parametravaruus on atkuva (yleensä aka). Srtymät
Mekaniikan jatkokurssi Fys102
Mekankan jatkokurss Fys102 Syksy 2009 Jukka Maalamp LUENTO 2 Alkuverryttelyä Vääntömomentt Oletus: Vomat tasossa, joka on kohtsuorassa pyörmsaksela vastaan. Oven kääntämseen tarvtaan er suurunen voma
1.2. Aritmeettisen keskiarvon ja otosvarianssin otosjakaumat: Odotusarvot ja varianssit
Tlastolle päättely. Otosjakaumat Tlastolle päättely. Otosjakaumat.. Otos, otostuusluvut ja de otosjakaumat Arvota, Havato, Havatoarvo, Otos, Otosjakauma, Otostuusluku, Rppumattomuus, Satuasmuuttuja, Satuasotos,
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 2
Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma Aheet: Satuasmuuttujat ja todeäkösyysjakaumat Kertymäfukto Jakaume tuusluvut Dskreettejä jakauma Jatkuva jakauma Avasaat: Bomjakauma Desl Dskreett
Timo Tarvainen PUROSEDIMENTIIANALYYSIEN HAVAINNOLLISTAMINEN GEOSTATISTIIKAN KEINOIN. Outokumpu Oy Atk-osasto
Tmo Tarvanen PUROSEDMENTANALYYSEN HAVANNOLLSTAMNEN GEOSTATSTKAN KENON Outokumpu Oy Atk-osasto PUROSEDMENTTANALYYSEN HAVANNOLLSTAMNEN GEOSTATSSTKAN KENON 1. Johdanto Nn sanotulla SKALAn alueella (karttaleht
Uuden eläkelaitoslain vaikutus allokaatiovalintaan
TEKNILLINEN KORKEAKOULU Systeemanalyysn laboratoro Mat-2.108 Sovelletun matematkan erkostyö Uuden eläkelatoslan vakutus allokaatovalntaan Tmo Salmnen 58100V Espoo, 14. Toukokuuta 2007 Ssällysluettelo Johdanto...
Sähkökiukaan kivimassan vaikutus saunan energiankulutukseen
LAPPEENRANNAN ENILLINEN YLIOPISO eknllnen tedekunta LU Energa Sähkökukaan kvmassan vakutus saunan energankulutukseen Lappeenrannassa 3.6.009 Lass arvonen Lappeenrannan teknllnen ylopsto eknllnen tedekunta
Mat-2.108 Sovelletun matematiikan erikoistyö. Sijoitussalkun optimointi Black-Litterman -mallilla
Mat-2.8 Sovelletu matematka erkostyö Sjotussalku optmot Black-Ltterma -malllla Kar Vatae (4753V) 9.5.24 Ssällysluettelo Johdato...2 2 Sjotussalku optmot Markowtz malllla...3 2. Sjotussalku optmot...5 2.2
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.
MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät 2016 1 Perustuu Antt
Mittalaitteet. M. Kuisma, T. Torttila, J. Tyster. Elektroniikan laboratoriotyöt 1 - Mittalaitteet 1
Elektroka laboratorotyöt - Mttalatteet Mttalatteet M. Kusma, T. Torttla, J. Tyster Tvstelmä Laboratorotyössä tutustutaa sovelletu elektroka laboratoroo, laboratorossa olev mttalattes sekä laboratoro työsketelytapoh.
PPSS. Roolikäyttäytymisanalyysi 28.03.2011. Tämän raportin on tuottanut: MLP Modular Learning Processes Oy Äyritie 8 A FIN 01510 Vantaa info@mlp.
PP Roolkäyttäytymsanalyys Roolkäyttäytymsanalyys Rool: Krjanptäjä Asema: Laskentapäällkkö Organsaato: Mallyrtys Tekjä: Matt Vrtanen 8.0.0 Tämän raportn on tuottanut: MLP Modular Learnng Processes Oy Äyrte
Mat Sovellettu todennäköisyyslaskenta B 9. harjoitukset / Ratkaisut Aiheet: Estimointi Estimointimenetelmät Väliestimointi Avainsanat:
Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Estmot Estmotmeetelmät Välestmot Avasaat: Artmeette keskarvo, Beroull-jakauma, Beroull-koe, Estmaatt, Estmaattor,
3.3 Hajontaluvuista. MAB5: Tunnusluvut
MAB5: Tunnusluvut 3.3 Hajontaluvusta Esmerkk 7 Seuraavat kolme kuvaa osottavat, että jakaumlla vo olla sama keskarvo ja stä huolmatta ne vovat olla avan erlaset. Kakken kolmen keskarvo on 78,0! Frekvenss
1.4. Aritmeettisen keskiarvon otosjakauma: Suurten otosten tuloksia
Tlastolle päättely. Otosjakaumat Tlastolle päättely. Otosjakaumat.. Otos, otostuusluvut ja de otosjakaumat Arvota, Havato, Havatoarvo, Otos, Otosjakauma, Otostuusluku, Rppumattomuus, Satuasmuuttuja, Satuasotos,
Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot
TKK (c Ilkka Melli (004 Johdatus tilastotieteesee TKK (c Ilkka Melli (004 : Mitä opimme? Tarkastelemme tässä luvussa seuraavia järjestysasteikolliste muuttujie testejä: ja merkkitesti parivertailuille
Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa.
Testimuuttuja kriittie arvo 5 %: merkitsevyystasolla katsotaa taulukosta. Kriittie arvo o 9,488. Koska laskettu arvo 4,35 o pieempi kui taulukosta saatu kriittie arvo 9,488, ii ollahypoteesi jää voimaa.
Tilastollisen fysiikan luennot
Tlastollsen fyskan luennot Tvstelmät luvuttan I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ Lämpö on systeemen mkroskooppsten osen satunnasta lkettä Lämpöenerga vrtaa kuumemmasta kappaleesta kylmempään Jos kaks kappaletta
Kokonaislukuoptimointi
Kokonaslukuotmont Robust dskreett otmont ysteemanalyysn Laboratoro Teknllnen korkeakoulu Ar-Pekka Perkkö ovelletun matematkan tutkasemnaar Kevät 28 sältö Robustn lneaarsen kokonasluku- sekä sekalukuotmontongelman
Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen
Tosakajärjestelmät Luento : Resurssen hallnta ja prorteett Tna Nklander Jaetut resursst Useat tapahtumat jakavat ohjelma-/lattesto-olota, jossa kesknänen possulkemnen on välttämätöntä. Ratkasuja: Ajonakanen
Painotetun metriikan ja NBI menetelmä
Panotetun metrkan ja NBI menetelmä Optmontopn semnaar - Kevät / 1 Estelmän ssältö Paretopsteden generont panotetussa metrkossa Panotettu L p -metrkka Panotettu L -metrkka el panotettu Tchebycheff -metrkka
6. Stokastiset prosessit (2)
Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella
Tilastollisten aineistojen kuvaaminen
Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kuvaaminen TKK (c) Ilkka Mellin (2007) 1 Tilastollisten aineistojen kuvaaminen >> Havaintoarvojen jakauma Tunnusluvut Suhdeasteikollisten
Tilastollinen riippuvuus ja korrelaatio. Tilastollinen riippuvuus ja korrelaatio. Tilastollinen riippuvuus ja korrelaatio: Esitiedot
TKK (c) Ilkka Mell (4) Tlastolle rppuvuus ja korrelaato Tlastolle rppuvuus, korrelaato ja regresso Kahde muuttuja havatoaesto kuvaame Pearso korrelaatokertome estmot ja testaus Järjestyskorrelaatokertomet
ABTEKNILLINEN KORKEAKOULU
ABTEKNILLINEN KORKEAKOULU Tetoverkkolaboratoro 6. Stokastset prosesst () Luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 5 6. Stokastset prosesst () Ssältö Markov-prosesst Syntymä-kuolema-prosesst
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.204 Tlastollsen analyysn perusteet, kevät 2007 5. luento: Tlastollnen rppuvuus ja korrelaato Ka Vrtanen Muuttujen välsten rppuvuuksen analysont Tlastollsssa analyysessä tutktaan usen muuttujen välsä
Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen TKK (c) Ilkka Mellin (2005) 1 Tilastollisten aineistojen kuvaaminen Havaintoarvojen jakauma Tunnusluvut Suhdeasteikollisten muuttujien tunnusluvut
3 Tilayhtälöiden numeerinen integrointi
3 Tlayhtälöden numeernen ntegront Alkuarvotehtävässä halutaan ratkasta lopputla xt f ) sten, että tlayhtälöt ẋ = fx,u, t) toteutuvat, kun alkutla x 0 on annettu Tlayhtälöden numeernen ntegront vodaan suorttaa
Segmentointimenetelmien käyttökelpoisuus
Metsäteteen akakauskrja t e d o n a n t o Rasa Sell Segmentontmenetelmen käyttökelposuus ennakkokuvonnssa Rasa Sell Sell, R. 00. Segmentontmenetelmen käyttökelposuus ennakkokuvonnssa. Metsäteteen akakauskrja
SMG-1100: PIIRIANALYYSI I
SMG-1100: PIIRIANALYYSI I Vahtosähkön teho hetkellnen teho p(t) pätöteho P losteho Q näennästeho S kompleksnen teho S HETKELLINEN TEHO Kn veresen kvan mpedanssn Z jännte ja vrta (tehollsarvon osottmet)
Hanna-Kaisa Hurme Teräksen tilastollinen rakenneanalyysi Diplomityö
Hanna-Kasa Hurme Teräksen tlastollnen rakenneanalyys Dplomtyö Tarkastajat: professor Kejo Ruohonen (TUT) ja dosentt Esko Turunen (TUT) Tarkastajat ja ahe hyväksytty Luonnonteteden ja ympärstöteknkan tedekuntaneuvoston
Sähköstaattinen energia
ähköstaattnen enega Potentaalenegan a potentaaln suhde on samanlanen kun Coulomn voman a sähkökentän suhde: ähkökenttä vakuttaa vaattuun kappaleeseen nn, että se kokee Coulomn voman, mutta sähkökenttä
1, x < 0 tai x > 2a.
PHYS-C020 Kvanttmekankka Laskuharotus 2, vkko 45 Tarkastellaan ptkn x-aksela lkkuvaa hukkasta, onka tlafunkto on (x, t) Ae x e!t, mssä A, a! ovat reaalsa a postvsa vakota a) Määrtä vako A sten, että tlafunkto
( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.
Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä