MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.

Koko: px
Aloita esitys sivulta:

Download "MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä."

Transkriptio

1 MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät Perustuu Antt Raslan luentomonsteeseen vuodelta Jarmo Malnen (Aalto-ylopsto) MS-A0205/MS-A0206 Kevät / 19

2 Lagrangen kertojat 1/3 Usen optmonttehtävssä halutaan asettaa rajotusehtoja optmotavlle muuttujlle. Tyypllnen esmerkk tällasesta tehtävästä on peltpurkn muodon optmont: Halutaan mnmoda purkn pnta-ala (el käytetty materaal) A(h, r) = 2πrh + 2πr 2 nn, että tlavuus V (r, h) = πr 2 h on vako. Duaaltehtävä: Halutaan maksmoda purkn tlavuus V (r, h) sten, että pnta-ala A(h, r) on vako. Prmaal- ja duaaltehtävllä on sama ratkasu. Tämän sanoo maalasjärkkn, mutta tse asassa ratkasuun johtavat yhtälötkn ovat (olennasest) samoja. Jarmo Malnen (Aalto-ylopsto) MS-A0205/MS-A0206 Kevät / 19

3 Lagrangen kertojat 2/3 Mnmo f (x, y) ehdolla g(x, y) = 0. Havataan, että mkäl ongelmalla on ratkasu, nn ratkasupsteessä (a, b) vektoren f ja g on oltava joko yhdensuuntasa ta vastakkassuuntasa (mkäl g(a, b) 0). Mks? Koska muussa tapauksessa funktolla f ols nollasta pokkeva suunnattu dervaatta käyrän g(x, y) = 0 tangentn suuntaan psteessä (a, b), ja ss mnm e vo olla psteessä (a, b). Entä jos tehtävänä ols maksmoda f (x, y) ehdolla g(x, y) = 0? Entä jos tehtävänä ols maksmoda g(x, y) ehdolla f (x, y) = c? Jarmo Malnen (Aalto-ylopsto) MS-A0205/MS-A0206 Kevät / 19

4 Lagrangen kertojat 3/3 Mkäl optmpste on olemassa, se on Lagrangen funkton L(x, y, λ) = f (x, y) + λg(x, y) krttnen pste (el gradentn nollakohta). Menetelmä ylestyy myös useammalle muuttujalle. Esmerkks kolmen muuttujan tapauksessa Lagrangen funkto on L(x, y, z, λ, µ) = f (x, y, z) + λg(x, y, z) + µh(x, y, z), mssä f on mnmotava funkto ja rajote-ehdot ovat g(x, y, z) = 0 sekä h(x, y, z) = 0. Jarmo Malnen (Aalto-ylopsto) MS-A0205/MS-A0206 Kevät / 19

5 Esmerkk 1 1/2 Mnmodaan funkto f (x, y) = x 2 + y 2 ehdolla g(x, y) = x 2 y 16 = 0. Muodostetaan Lagrangen funkto Yhtälöt krttslle pstelle ovat L(x, y, λ) = x 2 + y 2 + λ(x 2 y 16). 0 = L = 2x(1 + λy), x 0 = L y = 2y + λx2, 0 = L λ = x2 y 16, josta vmenen on ana tse rajotusehto. Jarmo Malnen (Aalto-ylopsto) MS-A0205/MS-A0206 Kevät / 19

6 Esmerkk 1 2/2 Ensmmäsestä yhtälöstä saadaan x = 0 ta λy = 1, mutta x = 0 on rstrdassa kolmannen yhtälön kanssa. Sten tosesta yhtälöstä 0 = 2y 2 + λyx 2 = 2y 2 x 2. Tästä saadaan edelleen x = ± 2y, ja 2y 3 = 16 el y = 2. Äärarvoja (mahdollsa mnmejä) on ss kaks (x, y) = (±2 2, 2). Ptää selvttää mulla kenon, ovatko mnmejä va maksmeja. Jarmo Malnen (Aalto-ylopsto) MS-A0205/MS-A0206 Kevät / 19

7 Esmerkk 2 Yrtetään etsä Lagrangen kertojen menetelmällä funkton f (x, y) = y mnm ehdolla g(x, y) = y 3 x 2 = 0. Selväst nähdään, että mnm f (x, y) = 0 saavutetaan psteessä (0, 0). Muodostetaan Lagrangen funkto Saadaan yhtälöt L(x, y, λ) = y + λ(y 3 x 2 ). 2λx = 0, 1 + 3λy 2 = 0, ja y 3 x 2 = 0. Nämä yhtälöt ovat keskenään rstrdassa, joten ratkasua nlle e ole. Huomaa, että g(0, 0) = 0 mnmpsteessä. Tästä nähdään, Lagrangen kertojat näkevät äärarvoja van pstessä, jossa g(0, 0) 0. Jarmo Malnen (Aalto-ylopsto) MS-A0205/MS-A0206 Kevät / 19

8 Esmerkk 3 1/4 Etstään äärarvot funktolle f (x, y, z) = xy + 2z ehdolla x + y + z = 0 ja x 2 + y 2 + z 2 = 24. Koska f on jatkuva ja annettujen lekkausjoukkojen lekkaus on ympyrävva (el rajotettu ja suljettu joukko), nn äärarvot ovat olemassa. Muodostetaan Lagrangen funkto L(x, y, z, λ, µ) = xy + 2z + λ(x + y + z) + µ(x 2 + y 2 + z 2 24). Jarmo Malnen (Aalto-ylopsto) MS-A0205/MS-A0206 Kevät / 19

9 Esmerkk 3 2/4 Lagrangen funkton osttasdervaatosta saadaan yhtälöt y + λ + 2µx = 0, x + λ + 2µy = 0, 2 + λ + 2µz = 0, x + y + z = 0, ja x 2 + y 2 + z 2 24 = 0. Kahden ensmmäsen yhtälön erotus johtaa yhtälöön (x y)(1 2µ) = 0, joten joko µ = 1/2 ta x = y. Tutktaan molemmat tapaukset. Jarmo Malnen (Aalto-ylopsto) MS-A0205/MS-A0206 Kevät / 19

10 Esmerkk 3 3/4 Tapaus I (µ = 1/2): Tosen ja kolmannen yhtälön perusteella x + λ + y = 0 ja 2 + λ + z = 0, ss x + y = 2 + z. Neljännestä yhtälöstä saadaan z = 1 ja x + y = 1. Vmesen yhtälön perusteella x 2 + y 2 = 24 z 2 = 23. Koska x 2 + y 2 + 2xy = (x + y) 2 = 1, saadaan 2xy = 1 23 = 22 ja xy = 11. Nyt (x y) 2 = x 2 + y 2 2xy = = 45, joten x y = ±3 5. Yhdessä yhtälön x + y = 1 tästä saadaan kaks krttstä pstettä P 1 = ( (1+3 5)/2, (1 3 5)/2, 1 ) ja P 2 = ( (1 3 5)/2, (1+3 5)/2, 1 ). Kummassakn psteessä f (x, y, z) = 11 2 = 13. Jarmo Malnen (Aalto-ylopsto) MS-A0205/MS-A0206 Kevät / 19

11 Esmerkk 3 4/4 Tapaus II (x = y): Neljännestä yhtälöstä nähdään, että z = 2x, ja vmesen yhtälön perusteella 6x 2 = 24 el x = ±2. Nän ollen, krttset psteet ovat Saadaan P 3 = (2, 2, 4) ja P 4 = ( 2, 2, 4). f (2, 2, 4) = 4 8 = 4 ja f ( 2, 2, 4) = = 12. Sten funkton f maksm on 12 ja mnm 13. Jarmo Malnen (Aalto-ylopsto) MS-A0205/MS-A0206 Kevät / 19

12 Regresso-ongelma Regressoanalyysssa pyrtään valtsemaan parametrn β arvo sten, että käyrä y = f (x; β) kulks mahdollsmman läheltä jokasta havantopstettä (x j, y j ) R 2, j = 1, 2,..., n. Tällasta optmaalsest valttua käyrää kutsutaan regressomallks y = f (x; β), jossa funkton f muoto on valttu tlanteen ja harknnan mukaan. Kunhan f valttu, nn eräs ratkasu käyränsovtusongelmaan on penmmän nelösumman menetelmä. Jarmo Malnen (Aalto-ylopsto) MS-A0205/MS-A0206 Kevät / 19

13 Penmmän nelösumman menetelmä Penmmän nelösumman menetelmässä pyrtään mnmomaan regressomalln vrhetermen ε j ε j = y j f (x j ; β), j = 1, 2,..., n nelösummaa el funktota F (β) = n ε 2 j = j=1 n ( yj f (x j ; β) ) 2. muuttamalla parametrvektorn β = (β 0, β 1,..., β m ) arvoa. Optmaalnen β:n arvo on parametrn β penmmän nelösumman estmaatt el PNS-estmaatt. Kysymys: Mks e mnmotas lauseketta n j=1 y j f (x j ; β) nelösumman sjasta? j=1 Jarmo Malnen (Aalto-ylopsto) MS-A0205/MS-A0206 Kevät / 19

14 PNS-sovtus ε j (x j,y j) Kuvassa vhreällä parametresta β = (β 1, β 2,..., β m ) rppuva sovtettava funkto f (x; β) eräällä knteällä parametrn arvolla. Datapsteet (x j, y j ) ja vastaavat vrhetermt ε j, kun j = 1,..., n. Jarmo Malnen (Aalto-ylopsto) MS-A0205/MS-A0206 Kevät / 19

15 Lneaarnen regresso 1/2 Lneaarsessa regressossa f (x; β) = β 0 β 1 x jossa β = (β 0, β 1 ) ja nelösumma on F (β 0, β 1 ) = (y β 0 β 1 x ) 2. Etstään pste (β 0, β 1 ) sten, että F (β 0, β 1 ) = 0. Lasketaan osttasdervaatta F (β 0, β 1 ) = 2 ( β 1 x + nβ 0 β 0 y ). Ratkastaan nollakohta β 0 = 1 n y β 1 n x = ȳ β 1 x mssä x on datavektorn x = (x 1, x 2,..., x n ) komponentten artmeettnen keskarvo. Jarmo Malnen (Aalto-ylopsto) MS-A0205/MS-A0206 Kevät / 19

16 Lneaarnen regresso 2/2 Lasketaan seuraavaks osttasdervaatta F (β 0, β 1 ) = 2 ( β 0 x + β 1 β 1 x 2 x y ). Sjottamalla β 0 :n lauseke, saadaan n xȳ nβ 1 x 2 + β 1 x 2 x y = 0. Ratkastaan nollakohta β 1 = n xȳ x y n x 2 x2 Tarksta jälkmmänen yhtälö! = (x x)(y ȳ) (x x) 2. Jarmo Malnen (Aalto-ylopsto) MS-A0205/MS-A0206 Kevät / 19

17 Esmerkk 4 Sovta PNS-suora dataan Estmo (ekstrapolo) y kun x = 5. x y Saadaan x = 2.0, ȳ = 1.842, ja β 1 = = Sten β 0 = = Nän ollen y = 0.113x , ja haluttu estmaatt psteessä x = 5 on y = = Jarmo Malnen (Aalto-ylopsto) MS-A0205/MS-A0206 Kevät / 19

18 Esmerkk 5: Tosen asteen sovtus 1/2 Tutktaan lsäaneen määrän x vakutusta kuvumsakaan y. Er lsäaneen määrllä x (grammaa) saatn kuvumsajat y (tunta), = 1,..., 9: x y Huomataan, että kuvumsajan rppuvuus lsäaneen määrästä on epälneaarsta. Mnmkohdan estmomseks sovtetaan havantohn paraabel y = β 0 + β 1 x + β 2 x 2. Penmmän nelösumman yhtälöryhmä malllle on β k (y β 0 β 1 x β 2 x 2 ) 2 = 0, k = 0, 1, 2. Jarmo Malnen (Aalto-ylopsto) MS-A0205/MS-A0206 Kevät / 19

19 Esmerkk 5: Tosen asteen sovtus 2/2 Nästä saadaan yhtälöryhmä nβ 0 + β 1 x + β 2 x 2 = y, β 0 x + β 1 x 2 + β 2 x 3 = x y β 0 x 2 + β 1 x 3 + β 2 x 4 = x 2y. Laskemalla yhtälöryhmän kertomet havannosta saadaan 9β β β 2 = β β β 2 = β β β 2 = Ratkasuna ovat β 0 = 11.15, β 1 = ja β 2 = Penmmän nelösumman melessä parhaten havantohn lttyvä paraabel on ss y = x x 2. Jarmo Malnen (Aalto-ylopsto) MS-A0205/MS-A0206 Kevät / 19

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

Tchebycheff-menetelmä ja STEM

Tchebycheff-menetelmä ja STEM Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematkkaan Informaatoteknologan tedekunta Jyväskylän ylopsto 4. luento 24.11.2017 Neuroverkon opettamnen - gradenttmenetelmä Neuroverkkoa opetetaan syöte-tavote-parella

Lisätiedot

4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman

4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman 4. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7..008 Thomas Hackman 4. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 4. Tähtteteellsten

Lisätiedot

Epälineaaristen pienimmän neliösumman tehtävien ratkaiseminen numeerisilla optimointimenetelmillä (valmiin työn esittely)

Epälineaaristen pienimmän neliösumman tehtävien ratkaiseminen numeerisilla optimointimenetelmillä (valmiin työn esittely) Epälneaarsten penmmän nelösumman tehtäven ratkasemnen numeerslla optmontmenetelmllä valmn työn esttely Lar Pelkola 9.9.014 Ohjaaja/valvoja: Prof. Harr Ehtamo yön saa tallentaa ja julkstaa Aalto-ylopston

Lisätiedot

3. Datan käsittely lyhyt katsaus

3. Datan käsittely lyhyt katsaus 3. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento..0 Thomas Hackman HTTPK I, kevät 0, luento 3 3. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus

Lisätiedot

Painokerroin-, epsilon-rajoitusehtoja hybridimenetelmät

Painokerroin-, epsilon-rajoitusehtoja hybridimenetelmät Panokerron-, epslon-rajotusehtoja hybrdmenetelmät Optmontopn semnaar - Kevät 000 / Estelmän ssältö Ylestä jälkkätespreferenssmenetelmstä Panokerronmenetelmä Epslon-rajotusehtomenetelmä Hybrdmenetelmä Esmerkkejä

Lisätiedot

3 Tilayhtälöiden numeerinen integrointi

3 Tilayhtälöiden numeerinen integrointi 3 Tlayhtälöden numeernen ntegront Alkuarvotehtävässä halutaan ratkasta lopputla xt f ) sten, että tlayhtälöt ẋ = fx,u, t) toteutuvat, kun alkutla x 0 on annettu Tlayhtälöden numeernen ntegront vodaan suorttaa

Lisätiedot

Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40

Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40 Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40 Alkuviikolla harjoitustehtäviä lasketaan harjoitustilaisuudessa. Loppuviikolla näiden harjoitustehtävien tulee olla ratkaistuina harjoituksiin

Lisätiedot

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss

Lisätiedot

5. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman

5. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman 5. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7.4.006 Thomas Hackman 5. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 5. Tähtteteellsten

Lisätiedot

2 Osittaisderivaattojen sovelluksia

2 Osittaisderivaattojen sovelluksia 2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä

Lisätiedot

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä Tavotteet skaalaavan funkton lähestymstapa el referensspste menetelmä Optmontopn semnaar - Kevät 2000 / 1 Estelmän ssältö Panotetun metrkan ongelmen havatsemnen Referensspste menetelmän dean esttely Referensspste

Lisätiedot

3.5 Generoivat funktiot ja momentit

3.5 Generoivat funktiot ja momentit 3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä

Lisätiedot

Raja-arvot. Osittaisderivaatat.

Raja-arvot. Osittaisderivaatat. 1 MAT-13440 LAAJA MATEMATIIKKA 4 Tamperee teklle ylopsto Rsto Slveoe Kevät 2010 Luku 3 Raja-arvot Osttasdervaatat 1 Fuktode raja-arvot Tarkastelemme fuktota f : A, jode määrttelyjoukko A T Muuttujat ovat

Lisätiedot

Monte Carlo -menetelmä

Monte Carlo -menetelmä Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Montavoteoptmont ja teollsten prosessen hallnta Ylassstentt Juss Hakanen juss.hakanen@jyu.f syksy 2010 Interaktvset menetelmät Idea: päätöksentekjää hyödynnetään aktvsest ratkasuprosessn akana

Lisätiedot

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10

Lisätiedot

Galerkin in menetelmä

Galerkin in menetelmä hum.9.3 Galerkn n menetelmä Galerknn menetelmän soveltamnen e ole rajottunut van ongelmn, jotka vodaan pukea sellaseen varaatomuotoon, joka on seurauksena funktonaaln mnmomsesta, kuten potentaalenergan

Lisätiedot

VERKKOJEN MITOITUKSESTA

VERKKOJEN MITOITUKSESTA J. Vrtamo 38.3141 Telelkenneteora / Verkon mtotus 1 VERKKOJEN MITOITUKSESTA 1. Prkytkentäset verkot Lnkken kapasteetten (johtoja/lnkk) määräämnen sten, että verkon kokonaskustannukset mnmotuvat, kun päästä-päähän

Lisätiedot

Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat:

Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat: Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Artmeette keskarvo, Estmaatt,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. marraskuuta 2007 Antti Rasila () TodB 30. marraskuuta 2007 1 / 19 1 Lineaarinen regressiomalli ja suurimman uskottavuuden menetelmä Minimin löytäminen

Lisätiedot

Jaksolliset ja toistuvat suoritukset

Jaksolliset ja toistuvat suoritukset Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e

Lisätiedot

= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2

= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2 HY / Matematka ja tlastotetee latos Tlastolle päättely II, kevät 28 Harjotus 3A Ratkasuehdotuksa Tehtäväsarja I Olkoot Y,, Y ja Nθ, ) Osota, että T T Y) Y 2 o parametr gθ) θ 2 harhato estmaattor Laske

Lisätiedot

11. Vektorifunktion derivaatta. Ketjusääntö

11. Vektorifunktion derivaatta. Ketjusääntö 7 Vektorfunkton dervaatta Ketjusääntö Täydennämme ja kertaamme seuraavassa dfferentaallaskennan teoraa kursslta Laaja matematkka Palautetaan meln dervaatan määrtelmä reaalfunktolle: Funkton f : R R dervaatta

Lisätiedot

Painotetun metriikan ja NBI menetelmä

Painotetun metriikan ja NBI menetelmä Panotetun metrkan ja NBI menetelmä Optmontopn semnaar - Kevät / 1 Estelmän ssältö Paretopsteden generont panotetussa metrkossa Panotettu L p -metrkka Panotettu L -metrkka el panotettu Tchebycheff -metrkka

Lisätiedot

1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on

1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on HY MTO / Matemaattste tetede kadohjelma Tlastolle päättely II kevät 019 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I 1 Mostee teht 516 Eräde kuulalaakerede kestoa mljooaa kerrosta o totuttu kuvaamaa Webull-jakaumalla

Lisätiedot

LIITE 2 SUORAN SOVITTAMINEN HAVAINTOPISTEISIIN

LIITE 2 SUORAN SOVITTAMINEN HAVAINTOPISTEISIIN Oulun ylopsto Fyskan opetuslaboratoro Fyskan laboratorotyöt LIITE SUORA SOVITTAMIE HAVAITOPISTEISII Tarkastelemme fyskan tössä usen eteen tulevaa tlannetta, jossa olemme mtanneet kpl pstepareja ( X, Y

Lisätiedot

Reaaliarvoinen funktio f : on differentioituva pisteessä x, jos f:lle on siinä voimassa kehitelmä. h h. eli. Silloin

Reaaliarvoinen funktio f : on differentioituva pisteessä x, jos f:lle on siinä voimassa kehitelmä. h h. eli. Silloin MAT-3440 LAAJA MATEMATIIKKA 4 Tampereen teknllnen ylopsto Rsto Slvennonen Kevät 00 4. Vektorfunkton dervaatta. Ketjusääntö.. Reaalarvosen funkton dervaatta Tässä luvussa estetään dervaattakäste ensn reaalarvoselle

Lisätiedot

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,

Lisätiedot

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö: Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa

Lisätiedot

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0.

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0. BM20A5800 - Funktot, lneaaralgebra, vektort Tentt, 26.0.206. (a) Krjota yhtälöryhmä x + 2x 3 = a 2x + x 2 + 5x 3 = b x x 2 + x 3 = c matrsmuodossa Ax = b ja ratkase x snä erkostapauksessa kun b = 0. Mllä

Lisätiedot

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 6

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 6 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 6 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 6 Aheet: Tlastolle rppuvuus ja korrelaato Yhde selttäjä leaare regressomall Regressoaalyys

Lisätiedot

Pisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta

Pisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta Laskukarnevaali Matematiikka B. fx, y, z) = x sin z + x y, etsi f,, ) Osittaisderivaatat ovat f f x = sin z + xy, y = x, f z = x cos z Pisteessä,,) osittaisderivaatoilla on arvot 4, ja. Täten f,, ) = 4i

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.204 Tlastollsen analyysn perusteet, kevät 2007 5. luento: Tlastollnen rppuvuus ja korrelaato Ka Vrtanen Muuttujen välsten rppuvuuksen analysont Tlastollsssa analyysessä tutktaan usen muuttujen välsä

Lisätiedot

4. A priori menetelmät

4. A priori menetelmät 4. A pror menetelmät 4. Arvofunkto-menetelmä 4.2 Lekskografnen järjestämnen 4.3 Tavoteohjelmont Tom Bäckström Optmontopn semnaar - Kevät 2000 / 4. Arvofunkto-menetelmä Päätöksentekjä antaa eksplsttsen

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.340 Lneaarnen ohjelmont 3.9.2007 Luento Johdanto (krja.-.4) S ysteemanalyysn Laboratoro eknllnen korkeakoulu Eeva Vlkkumaa Lneaarnen ohjelmont - Syksy 2007 / Luentorunko Hstoraa Lneaarnen optmonttehtävä

Lisätiedot

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1). HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen

Lisätiedot

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet ifferentiaali- ja integraalilaskenta 2 (CHEM) MS-A27 Hakula/Vuojamo Kurssitentti, 2.2, 28, arvosteluperusteet T Moniosaisten tehtävien osien painoarvo on sama ellei muuta ole erikseen osoitettu. Kokeessa

Lisätiedot

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4 TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Johdatus regressioanalyysiin Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen vaihtelun avulla.

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia. HY, MTO / Matemaattste tetede kadohjelma Tlastolle päättely II, kevät 208 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I Olkoo Y, Y rppumato otos Pareto jakaumasta, fy; θ θc θ y θ+ { y > c } tuetulla vakolla

Lisätiedot

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ TTKK/Fyskan latos FYS-1640 Klassnen mekankka syksy 2009 Laskuharjotus 5, 16102009 1 Ertysessä suhteellsuusteorassa Lagrangen funkto vodaan krjottaa muodossa v L = m 2 u t 1! ṙ 2 V (r) Osota, että tämä

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu Antti Rasilan luentomonisteeseen

Lisätiedot

FYSA220/2 (FYS222/2) VALON POLARISAATIO

FYSA220/2 (FYS222/2) VALON POLARISAATIO FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron

Lisätiedot

Tchebycheff-menetelmä ja STEM

Tchebycheff-menetelmä ja STEM Mat-2.142 Optmontopn semnaar K-2000 Montavoteopmont Semnaarestelmän tvstelmä Pentt Säynätjo 22.3.2000 Tchebycheff-menetelmä ja STEM 1. Johdanto Tchebycheff-menetelmä ja STEM ovat vuorovauttesa montavoteoptmontmenetelmä.

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaslukuotmont Robust dskreett otmont ysteemanalyysn Laboratoro Teknllnen korkeakoulu Ar-Pekka Perkkö ovelletun matematkan tutkasemnaar Kevät 28 sältö Robustn lneaarsen kokonasluku- sekä sekalukuotmontongelman

Lisätiedot

5. Datan käsittely lyhyt katsaus

5. Datan käsittely lyhyt katsaus 5. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 4..0 Thomas Hackman HTTPK I, kevät 0, luento 5 5. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus

Lisätiedot

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut) J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 1 Markov-prosesst (Jatkuva-akaset Markov-ketut) Tarkastellaan (statonaarsa) Markov-prosessea, oden parametravaruus on atkuva (yleensä aka). Srtymät

Lisätiedot

1. PARAMETRIEN ESTIMOINTI

1. PARAMETRIEN ESTIMOINTI Mat-.04 Tlastollse aalyys perusteet Mat-.04 Tlastollse aalyys perusteet / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Estmaatt, Estmaattor, Estmot, Jääöselösumma, Jääösterm, Jääösvarass,

Lisätiedot

Matematiikan peruskurssi (MATY020) Harjoitus 10 to

Matematiikan peruskurssi (MATY020) Harjoitus 10 to Matematiikan peruskurssi (MATY00) Harjoitus 10 to 6.3.009 1. Määrää funktion f(x, y) = x 3 y (x + 1) kaikki ensimmäisen ja toisen kertaluvun osittaisderivaatat. Ratkaisu. Koska f(x, y) = x 3 y x x 1, niin

Lisätiedot

Sähkön- ja lämmöntuotannon kustannussimulointi ja herkkyysanalyysi

Sähkön- ja lämmöntuotannon kustannussimulointi ja herkkyysanalyysi Sähkön- ja lämmöntuotannon kustannussmulont ja herkkyysanalyys Pekka Nettaanmäk Osmo Schroderus Jyväskylän ylopsto Tetoteknkan latos 2010 1 2 Tvstelmä Raportn tarkotuksena on esttää pelkstetyn matemaattsen

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekankan jatkokurss Fys102 Syksy 2009 Jukka Maalamp LUENTO 2 Alkuverryttelyä Vääntömomentt Oletus: Vomat tasossa, joka on kohtsuorassa pyörmsaksela vastaan. Oven kääntämseen tarvtaan er suurunen voma

Lisätiedot

Johdatus regressioanalyysiin. Heliövaara 1

Johdatus regressioanalyysiin. Heliövaara 1 Johdatus regressioanalyysiin Heliövaara 1 Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen

Lisätiedot

PUTKIKELLON SUUNNITTELU 1 JOHDANTO 2 VÄRÄHTELEVÄN PALKIN TEORIAA. dm Q dx = (1) Matti A Ranta

PUTKIKELLON SUUNNITTELU 1 JOHDANTO 2 VÄRÄHTELEVÄN PALKIN TEORIAA. dm Q dx = (1) Matti A Ranta Matt A Aaltoylopsto Perusteteden korkeakoulu Matematkan ja systeemanalyysn latos PL 1100, 02015 Espoo matt.ranta@tkk.f 1 JOHDANTO Putkkellot kuuluvat lyömäsotnten ryhmään. Putkkellot koostuvat erptussta

Lisätiedot

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto Kynä-paper -harjotukset Tana Lehtnen 8.8.07 Tana I Lehtnen Helsngn ylopsto Etelä-Suomen ja Lapn lään, 400 opettajaa a. Perusjoukon (populaaton) muodostvat kakk Etelä-Suomen ja Lapn läänn peruskoulun opettajat

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi

Lisätiedot

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit 68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta

Lisätiedot

Luento 9: Yhtälörajoitukset optimoinnissa

Luento 9: Yhtälörajoitukset optimoinnissa Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.340 Lneaarnen ohjelmont 22..2007 Luento 0 Ssäpstemenetelmät ja kokonaslukuoptmont (krja 0.-0.4) Ssäpstemenetelmät luvut 8 ja 9, e tarvtse lukea Lneaarnen ohjelmont - Syksy 2007 / Luentorunko Sananen

Lisätiedot

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2 HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto

Lisätiedot

Muutoksen arviointi differentiaalin avulla

Muutoksen arviointi differentiaalin avulla Muutoksen arviointi differentiaalin avulla y y = f (x) y = f (x + x) f (x) dy y dy = f (x) x x x x x + x Luento 7 1 of 15 Matematiikan ja tilastotieteen laitos Turun yliopisto Muutoksen arviointi differentiaalin

Lisätiedot

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks

Lisätiedot

Yrityksen teoria. Lari Hämäläinen S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Yrityksen teoria. Lari Hämäläinen S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu Yrtyksen teora Lar Hämälänen.1.003 Yrtys Organsaato, joka muuttaa tuotantopanokset tuotteks ja tom tehokkaammn kun sen osat erllään Yrtys tenaa rahaa myynthnnan sekä ostohnnan ja aheutuneden kustannuksen

Lisätiedot

Maanhintojen vikasietoisesta mallintamisesta

Maanhintojen vikasietoisesta mallintamisesta Maanmttaus 8:-2 (2006) 5 Maanmttaus 8:-2 (2006) Saapunut 0.8.2005 ja tarkstettuna.4.2006 Hyväksytty 30.6.2006 Maanhntojen vkasetosesta mallntamsesta Marko Hannonen Teknllnen korkeakoulu, Kntestöopn laboratoro

Lisätiedot

Lineaarinen toisen kertaluvun yhtälö

Lineaarinen toisen kertaluvun yhtälö Lineaarinen toisen kertaluvun yhtälö Keijo Ruotsalainen Mathematics Division Lineaarinen toisen kertaluvun differentiaaliyhtälö Toisen kertaluvun täydellinen lineaarinen yhtälö muotoa p 2 (x)y + p 1 (x)y

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 5A Vastaukset alkuviikolla

Lisätiedot

12. Hessen matriisi. Ääriarvoteoriaa

12. Hessen matriisi. Ääriarvoteoriaa 179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä

Lisätiedot

1, x < 0 tai x > 2a.

1, x < 0 tai x > 2a. PHYS-C020 Kvanttmekankka Laskuharotus 2, vkko 45 Tarkastellaan ptkn x-aksela lkkuvaa hukkasta, onka tlafunkto on (x, t) Ae x e!t, mssä A, a! ovat reaalsa a postvsa vakota a) Määrtä vako A sten, että tlafunkto

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Vektorit, suorat ja tasot

Vektorit, suorat ja tasot , suorat ja tasot 1 / 22 Koulussa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä (x 1, x 2 ). Jos vektorin

Lisätiedot

Yksikköoperaatiot ja teolliset prosessit

Yksikköoperaatiot ja teolliset prosessit Ykskköoperaatot ja teollset prosesst 1 Ylestä... 2 2 Faasen välnen tasapano... 3 2.1 Neste/höyry-tasapano... 4 2.1.1 Puhtaan komponentn höyrynpane... 4 2.1.2 Ideaalnen seos... 5 2.1.3 Epädeaalnen nestefaas...

Lisätiedot

Matematiikan ja tilastotieteen laitos Johdatus diskreettiin matematiikkaan (Syksy 2008) 4. harjoitus Ratkaisuja (Jussi Martin)

Matematiikan ja tilastotieteen laitos Johdatus diskreettiin matematiikkaan (Syksy 2008) 4. harjoitus Ratkaisuja (Jussi Martin) Matematan ja tlastoteteen latos Johdatus dsreettn matemataan (Sysy 28 4. harjotus Ratasuja (Juss Martn 1. Kertomus Hotell Kosmosesta jatuu: Hotellyhtymän johdolta tul määräys laata luettelo asta mahdollssta

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.04 Tlastollsen analyysn perusteet, evät 007. luento: Johdatus varanssanalyysn S ysteemanalyysn Laboratoro Ka Vrtanen Kertaus: ahden rppumattoman otosen t-test () () Perusjouo oostuu ahdesta ryhmästä

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 17. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

Pro gradu -tutkielma. Whitneyn upotuslause. Teemu Saksala

Pro gradu -tutkielma. Whitneyn upotuslause. Teemu Saksala Pro gradu -tutkelma Whtneyn upotuslause Teemu Saksala Helsngn ylopsto Matematkan ja tlastoteteen latos 5. maalskuuta 2013 0.1 Johdanto Topologset monstot ovat melenkntosa, koska ne ovat määrtelmänsä nojalla

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 14 Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Luennolla 6 Tarkastelimme yhden muuttujan funktion f(x) rajoittamatonta optimointia

Lisätiedot

9. Muuttuva hiukkasluku

9. Muuttuva hiukkasluku Statstnen fyskka, osa B (FYSA242) Tuomas Lapp tuomas.v.v.lapp@jyu.f Huone: FL240. E kntetä vastaanottoakoja. kl 2016 9. Muuttuva hukkasluku 1 Kertaus: lämpökylpy Mustetaan kurssn A-osasta Mkrokanonnen

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

Avaruuden R n aliavaruus

Avaruuden R n aliavaruus Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla

Lisätiedot

OSSI HEINONEN VASTINPINTAMENETELMÄN SOVELTAMINEN LUJUUSLASKENNASSA

OSSI HEINONEN VASTINPINTAMENETELMÄN SOVELTAMINEN LUJUUSLASKENNASSA OSSI HEINONEN VASTINPINTAMENETELMÄN SOVELTAMINEN LUJUUSLASKENNASSA Dplomtyö Tarkastajat: professor Arto Lehtovaara ylopstonlehtor Sam Pajunen Tarkastajat ja ahe hyväksytty Automaato-, kone- ja materaalteknkan

Lisätiedot

Mittaustulosten käsittely

Mittaustulosten käsittely Mttaustulosten kästtely Vrhettä ja epävarmuutta lmasevat kästteet Tostokoe ja satunnasten vrheden tlastollnen kästtely. Mttaustulosten jakaumaa kuvaavat tunnusluvut. Normaaljakauma 7. Tostokoe ja suurmman

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

Vastaavasti, jos vektori kerrotaan positiivisella reaaliluvulla λ, niin

Vastaavasti, jos vektori kerrotaan positiivisella reaaliluvulla λ, niin 1 / 14 Lukiossa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Tarkastellaan aluksi tason vektoreita (R 2 ). Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä

Lisätiedot

Kvanttimekaanisten joukkojen yhteys termodynamiikkaan

Kvanttimekaanisten joukkojen yhteys termodynamiikkaan Kvanttmekaansten joukkojen yhteys termodynamkkaan Hukkaslukumäärän sälyttävä systeem vo vahtaa energaa ympärstönsä kanssa kahdella tavalla: työnä ta lämpönä. Termodynamkassa entropan muutos lttyy lämmön

Lisätiedot

HASSEN-WEILIN LAUSE. Kertausta

HASSEN-WEILIN LAUSE. Kertausta HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten

Lisätiedot

7. Modulit Modulit ja lineaarikuvaukset.

7. Modulit Modulit ja lineaarikuvaukset. 7. Modult Vektoravaruudet ovat vahdannasa ryhmä, jossa on määrtelty jonkn kunnan skalaartomnta. Hyväksymällä kerronrakenteeks kunnan sjaan rengas saadaan rakenne nmeltä modul. Moduln käste on ss vektoravaruuden

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu

Lisätiedot

Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat:

Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat: Mat-.36 Tlastollnen päättely 7. harjotukset Mat-.36 Tlastollnen päättely 7. harjotukset / Tehtävät Aheet: Avansanat: ypoteesen testaus. lajn vrhe,. lajn vrhe, arhaton test, ylkäysalue, ylkäysvrhe, ypotees,

Lisätiedot

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa Mttausteknkan perusteet / luento 6 Mttausepävarmuus ja shen lttyvää termnologaa Mttausepävarmuus = mttaustulokseen lttyvä parametr, joka kuvaa mttaussuureen arvojen odotettua vahtelua Mttauksn lttyvä kästtetä

Lisätiedot

on tavanomainen yhden selittäjän lineaarinen regressiomalli, jossa jäännöstermit ε i toteuttavat seuraavat oletukset:

on tavanomainen yhden selittäjän lineaarinen regressiomalli, jossa jäännöstermit ε i toteuttavat seuraavat oletukset: Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Ylee leaare mall Artmeette keskarvo,

Lisätiedot