ABTEKNILLINEN KORKEAKOULU

Koko: px
Aloita esitys sivulta:

Download "ABTEKNILLINEN KORKEAKOULU"

Transkriptio

1 ABTEKNILLINEN KORKEAKOULU Tetoverkkolaboratoro 6. Stokastset prosesst () Luento6.ppt S Lkenneteoran perusteet - Kevät 5

2 6. Stokastset prosesst () Ssältö Markov-prosesst Syntymä-kuolema-prosesst

3 6. Stokastset prosesst () Markov-prosess Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella S {,,,N} ta S {,,...} Määr. Prosess X(t) on Markov-prosess, os P{ X ( tn ) xn X ( t) x, K, X ( tn) xn} P X ( t ) x X ( t ) x } { n n n n kaklla n, t < < t n a x,, x n Tätä ehtoa sanotaan Markov-omnasuudeks Jos Markov-prosessn nykytla tunnetaan, prosessn tulevasuus e mtenkään rpu prosessn aemmasta mennesyydestä (el stä, mten nykytlaan on tultu) Nykytla ss ssältää kaken atkon kannalta tarpeellsen nformaaton 3

4 6. Stokastset prosesst () Esmerkk Rppumattomen lsäysten prosess X(t) on ana Markov-prosess: X ( tn) X ( tn) ( X ( tn) X ( tn)) Seuraus: Posson-prosess A(t) on Markov-prosess Määrtelmän 3 mukaan Posson-prosessn lsäykset ovat rppumattoma 4

5 6. Stokastset prosesst () Akahomogeensuus Määr. Markov-prosess X(t) on akahomogeennen, os P { X ( t ) y X ( t) x} P{ X ( ) y X () x} kaklla t, a x, y S Tn: t P{X(t ) y X(t) x} evät ss rpu t:stä 5

6 6. Stokastset prosesst () Tlasrtymäntensteett Tarkastellaan akahomogeensta Markov-prosessa X(t) Tlasrtymäntensteett q (state transton rate), mssä, S, määrtellään seuraavast: q lm P{ X ( h) X () : h h Tlatn:t P{X(t) }, S, määräytyvät ykskästtesest srtymäntensteetestä q, kunhan ns. alkuakauma (ntal dstrbuton) el tn:t P{X() }, S, on annettu } Huom. Jatkossa raotamme tarkastelumme pelkästään akahomogeensn Markov-prosessehn 6

7 6. Stokastset prosesst () Eksponentaalsest akautuneet tlassaoloaat Oletetaan, että Markov-prosess on tlassa hetkellä t. Lyhyellä akavälllä (t, th] prosess srtyy uuteen tlaan tn:llä q h o(h) (rppumatta stä, mtä tapahtu ennen hetkeä t) Merktään q :llä kokonasntensteettä srtyä pos tlasta, ts. q : Lyhyellä akavälllä (t, th] prosess srtyy pos tlasta tn:llä q h o(h) (rppumatta stä, mtä tapahtu ennen hetkeä t) Kyseessä on selvästkn ns. unohtavasuusomnasuus Tlassa vetetty aka noudattaa ss eksponenttakaumaa ntensteettnään q q 7

8 6. Stokastset prosesst () Tlasrtymätodennäkösyydet Merktään T :llä oloakaa tlassa a T :llä sellasta (potentaalsta) oloakaa tlassa, oka päättyy srtymään tlaan : T Exp( q Sm T vodaan aatella rppumattomen a eksponentaalsest akautuneden sm:en T mnmks (ks. luennon 5 kalvo 44): ), T Exp( q ) T mnt Merk. p :llä tn:ttä, että toteutunut srtymä on tlasta tlaan. Ko. tlasrtymätodennäkösyydet (state transton probabltes) saadaan kaavalla q p P{ T T} q 8

9 6. Stokastset prosesst () Tlasrtymäkaavo Akahomogeennen Markov-prosess estetään usen ns. tlasrtymäkaavon (state transton dagram) avulla. Kyseessä on suunnattu verkko, onka solmut vastaavat prosessn tloa a ykssuuntaset lnkt vastaavat mahdollsa tlasrtymä lnkk tlasta tlaan q > Esm. Kolmtlanen Markov-prosess (S {,,}): Q q q q q 9

10 6. Stokastset prosesst () Pelkstymättömyys Määr. Tlasta pääsee tlaan ( ), os tlasrtymäkaavosta löytyy suunnattu polku :stä :hn Jos nän on, nn lähdettäessä tlasta tlassa käydään (oskus tulevasuudessa) postvsella tn:llä Määr. Tlat a kommunkovat ( ), os a Määr. Markov-prosess on pelkstymätön (rreducble), os kakk tlat kommunkovat keskenään Esmerkks edellsellä kalvolla estetty Markov-prosess on pelkstymätön

11 6. Stokastset prosesst () Tasapanoakauma a globaalt tasapanoyhtälöt Tark. pelkstymätöntä Markov-prosessa X(t) srtymäntensteeten q Määr. Olkoon (, S) tla-avaruudessa S määrtelty akauma, ts. se toteuttaa ns. normeerausehdon S (N) Jakauma on prosessn X(t) tasapanoakauma (equlbrum dstrbuton), os seuraavat globaalt tasapanoehdot (global balance equatons) ovat vomassa kaklla S: q (GBE) On mahdollsta, ette prosesslla ole tasapanoakaumaa. Kutenkn, os esm. tla-avaruus on äärellnen, tasapanoakauma on ana olemassa. Valtsemalla tasapanoakauma alkuakaumaks (ts. P{X() } ), ko. Markov-prosesssta tulee statonaarnen (statonaarsena akaumanaan ) q

12 6. Stokastset prosesst () Esmerkk Q (N) ) ( (GBE) 3 3 3,,

13 6. Stokastset prosesst () Lokaalt tasapanoyhtälöt a kääntyvyys Tarkastellaan edelleen pelkstymätöntä Markov-prosessa X(t) srtymäntensteeten q Väte. Olkoon (, S) tla-avaruudessa S määrtelty akauma, ts. S (N) Jos seuraavat lokaalt tasapanoehdot (local balance equatons) ovat vomassa kaklla, S: q nn on prosessn tasapanoakauma. Tod. (GBE):t seuravat (LBE):stä summaamalla Tässä tapauksessa ko. Markov-prosessa sanotaan kääntyväks (reversble) q (LBE) 3

14 6. Stokastset prosesst () Ssältö Markov-prosesst Syntymä-kuolema-prosesst 4

15 6. Stokastset prosesst () Syntymä-kuolema-prosess Tark. atkuva-akasta a dskreetttlasta Markov-prosessa X(t) oko tla-avaruudella S {,,,N} ta S {,,...} Määr. Markov-prosess X(t) on syntymä-kuolema-prosess (brthdeath process), os tlasrtymät ovat mahdollsa van verekkästen tloen välllä, ts. Tässä tapauksessa merktään > q q :, q :, Huom. a N (kun N < ) 5

16 6. Stokastset prosesst () Pelkstymättömyys Väte: Syntymä-kuolema-prosess on pelkstymätön, os a van os > kaklla S\{N} a > kaklla S\{} Ääretöntlasen pelkstymättömän sk-prosessn tlasrtymäkaavo: 3 Äärellstlasen pelkstymättömän sk-prosessn tlasrtymäkaavo: N N- N N N N 6

17 6. Stokastset prosesst () Tasapanoakauma () Tarkastellaan pelkstymätöntä syntymä-kuolema-prosessa X(t) Tarkotus on ohtaa tasapanoakauma ( S), mkäl sellanen on olemassa Lokaalt tasapanoyhtälöt: Nän ollen Jakaumaehto el normeerausehto: S S (LBE) (N) 7

18 8 6. Stokastset prosesst (), Tasapanoakauma () Tasapanoakauma on ss olemassa täsmälleen sllon, kun Äärellnen tla-avaruus: Ko. summa on ana äärellnen. Tasapanoakaumaks tulee Ääretön tla-avaruus: Jos ko. summa on äärellnen, nn tasapanoakaumaks tulee < S, N 8

19 9 6. Stokastset prosesst () Esmerkk Q (N) ) ( ρ ρ ρ ρ ρ (LBE) ) / : ( ρ ρ ρ 9

20 6. Stokastset prosesst () Puhdas syntymäprosess Määr. Syntymä-kuolema-prosess on puhdas syntymäprosess, os kaklla S Ääretöntlasen syntymäprosessn tlasrtymäkaavo: Äärellstlasen syntymäprosessn tlasrtymäkaavo: N N N- N Esmerkks Posson-prosess on ääretöntlanen puhdas syntymäprosess (ntensteeten kaklla S {,, }) Huom. Puhdas syntymäprosess e ole koskaan pelkstymätön (saat stten statonaarnen).

6. Stokastiset prosessit (2)

6. Stokastiset prosessit (2) Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella

Lisätiedot

6. Stokastiset prosessit

6. Stokastiset prosessit luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät Ssältö Peruskästtetä Posson-prosess Markov-prosesst Syntymä-kuolema-prosesst Stokastset prosesst () Tarkastellaan otakn (lkenneteoran kannalta ta stten

Lisätiedot

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut) J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 1 Markov-prosesst (Jatkuva-akaset Markov-ketut) Tarkastellaan (statonaarsa) Markov-prosessea, oden parametravaruus on atkuva (yleensä aka). Srtymät

Lisätiedot

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli Ssältö Kertausta: ykskertae lkeeteoreette mall M/M/-PS asakasta palvelja asakaspakkaa M/M/-PS asakasta palveljaa asakaspakkaa Sovellus elastse datalketee malltamsee vuotasolla M/M//k/k-PS k asakasta palvelja

Lisätiedot

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli lueto9.ppt S-38.45 Lkeeteora perusteet Kevät 5 Ykskertae lkeeteoreette mall Puhdas jakojärjestelmä Asakkata saapuu keskmäär opeudella asakasta per akayks. / keskmääräe asakkade välaka Asakkata palvellaa

Lisätiedot

3.5 Generoivat funktiot ja momentit

3.5 Generoivat funktiot ja momentit 3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä

Lisätiedot

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot

Lisätiedot

AB TEKNILLINEN KORKEAKOULU

AB TEKNILLINEN KORKEAKOULU B TEKNILLINEN KORKEKOULU Tetoverkkolaboratoro luento05.ppt S-38.45 - Lkenneteoran perusteet - Kevät 00 Ssältö eruskästteet Dskreett satunnasmuuttujat Dskreett jakaumat lkm-jakaumat Jatkuvat satunnasmuuttujat

Lisätiedot

Jaksolliset ja toistuvat suoritukset

Jaksolliset ja toistuvat suoritukset Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu

Lisätiedot

7. Modulit Modulit ja lineaarikuvaukset.

7. Modulit Modulit ja lineaarikuvaukset. 7. Modult Vektoravaruudet ovat vahdannasa ryhmä, jossa on määrtelty jonkn kunnan skalaartomnta. Hyväksymällä kerronrakenteeks kunnan sjaan rengas saadaan rakenne nmeltä modul. Moduln käste on ss vektoravaruuden

Lisätiedot

1, x < 0 tai x > 2a.

1, x < 0 tai x > 2a. PHYS-C020 Kvanttmekankka Laskuharotus 2, vkko 45 Tarkastellaan ptkn x-aksela lkkuvaa hukkasta, onka tlafunkto on (x, t) Ae x e!t, mssä A, a! ovat reaalsa a postvsa vakota a) Määrtä vako A sten, että tlafunkto

Lisätiedot

Painotetun metriikan ja NBI menetelmä

Painotetun metriikan ja NBI menetelmä Panotetun metrkan ja NBI menetelmä Optmontopn semnaar - Kevät / 1 Estelmän ssältö Paretopsteden generont panotetussa metrkossa Panotettu L p -metrkka Panotettu L -metrkka el panotettu Tchebycheff -metrkka

Lisätiedot

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss

Lisätiedot

7. Menetysjärjestelmät

7. Menetysjärjestelmät lueto7.ppt S-38.45 Leeteora perusteet Kevät 25 Ssältö Kertausta: ysertae leeteoreette mall Posso-mall asaata, palvelota Sovellus vrtaava dataletee malltamsee vuotasolla Erlag-mall asaata, palvelota < Sovellus

Lisätiedot

4. Stokastiset prosessit. lect4.tex 1. Sisältö. Peruskäsitteitä. Poisson-prosessi. Markov-prosessit. Syntymä-kuolema-prosessit

4. Stokastiset prosessit. lect4.tex 1. Sisältö. Peruskäsitteitä. Poisson-prosessi. Markov-prosessit. Syntymä-kuolema-prosessit 4. Stokastiset prosessit lect4.tex 1 Sisältö Peruskäsitteitä Poisson-prosessi Markov-prosessit Syntymä-kuolema-prosessit 2 Stokastinen prosessi Tarkasteltavana oleva järjestelmä kehittyy ajan mukana ja

Lisätiedot

HASSEN-WEILIN LAUSE. Kertausta

HASSEN-WEILIN LAUSE. Kertausta HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten

Lisätiedot

Monte Carlo -menetelmä

Monte Carlo -menetelmä Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla

Lisätiedot

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto Ohelmen analsont Ohelmen kuvaamnen kaavolla ohelmen mmärtämnen kaavoden avulla kaavoden tuottamnen ohelmasta Erlasa kaavotppeä: ER-kaavot, tlakaavot, UML-kaavot tetohakemsto vuokaavot (tarkemmn) Vuoanals

Lisätiedot

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks

Lisätiedot

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä Tavotteet skaalaavan funkton lähestymstapa el referensspste menetelmä Optmontopn semnaar - Kevät 2000 / 1 Estelmän ssältö Panotetun metrkan ongelmen havatsemnen Referensspste menetelmän dean esttely Referensspste

Lisätiedot

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit 68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta

Lisätiedot

Lähdemateriaalina käytetty Pertti Louneston kirjaa Clifford Algebras and spinors [1]

Lähdemateriaalina käytetty Pertti Louneston kirjaa Clifford Algebras and spinors [1] Lähdmatraala kättt Prtt Lousto kraa Clfford Algbras ad spors [] Krtausta Clfford algbra määrtllää algbraks kvadraattsll vktoravaruudll (sm. skalaartulolla. Clfford algbra oka alko vodaa sttää algbra katavktord

Lisätiedot

= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2

= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2 HY / Matematka ja tlastotetee latos Tlastolle päättely II, kevät 28 Harjotus 3A Ratkasuehdotuksa Tehtäväsarja I Olkoot Y,, Y ja Nθ, ) Osota, että T T Y) Y 2 o parametr gθ) θ 2 harhato estmaattor Laske

Lisätiedot

Usean muuttujan funktioiden integraalilaskentaa

Usean muuttujan funktioiden integraalilaskentaa Usean muuttujan funktoden ntegraallaskentaa Pntantegraaln määrtelmä Yhden muuttujan tapaus (kertausta) Olkoon f() : [a, b] R jatkuva funkto Oletetaan tässä ksnkertasuuden vuoks, että f() Remann-ntegraal

Lisätiedot

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ TTKK/Fyskan latos FYS-1640 Klassnen mekankka syksy 2009 Laskuharjotus 5, 16102009 1 Ertysessä suhteellsuusteorassa Lagrangen funkto vodaan krjottaa muodossa v L = m 2 u t 1! ṙ 2 V (r) Osota, että tämä

Lisätiedot

Ilmari Juva. Jalkapallo-ottelun lopputuloksen stokastinen mallintaminen

Ilmari Juva. Jalkapallo-ottelun lopputuloksen stokastinen mallintaminen Ilmar Juva 45727R Mat-2.108 Sovelletun matematkan erkostyö Jalkaallo-ottelun loutuloksen stokastnen mallntamnen 1 Johdanto Jalkaallo-ottelun loutuloksen mallntamsesta tlastollsn ja todennäkösyyslaskun

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaslukuotmont Robust dskreett otmont ysteemanalyysn Laboratoro Teknllnen korkeakoulu Ar-Pekka Perkkö ovelletun matematkan tutkasemnaar Kevät 28 sältö Robustn lneaarsen kokonasluku- sekä sekalukuotmontongelman

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemaalyys laboratoro Mat-.9 Sovellettu todeäkösyyslasku A Nordlud Harjotus 8 (vko 45/3) (Ahe: Raja-arvolauseta, otostuuslukuja, johdatusta estmot, Lae luvut 9.5,.-.6). Olkoo X ~ p(λ), mssä λ

Lisätiedot

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut) J. Virtamo 38.3143 Jonoteoria / Markov-prosessit 1 Markov-prosessit (Jatkuva-aikaiset Markov-ketut) Tarkastellaan (stationaarisia) Markov-prosessea, oiden parametriavaruus on atkuva (yleensä aika). Siirtymät

Lisätiedot

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0.

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0. BM20A5800 - Funktot, lneaaralgebra, vektort Tentt, 26.0.206. (a) Krjota yhtälöryhmä x + 2x 3 = a 2x + x 2 + 5x 3 = b x x 2 + x 3 = c matrsmuodossa Ax = b ja ratkase x snä erkostapauksessa kun b = 0. Mllä

Lisätiedot

3 Tilayhtälöiden numeerinen integrointi

3 Tilayhtälöiden numeerinen integrointi 3 Tlayhtälöden numeernen ntegront Alkuarvotehtävässä halutaan ratkasta lopputla xt f ) sten, että tlayhtälöt ẋ = fx,u, t) toteutuvat, kun alkutla x 0 on annettu Tlayhtälöden numeernen ntegront vodaan suorttaa

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.340 Lneaarnen ohjelmont 3.9.2007 Luento Johdanto (krja.-.4) S ysteemanalyysn Laboratoro eknllnen korkeakoulu Eeva Vlkkumaa Lneaarnen ohjelmont - Syksy 2007 / Luentorunko Hstoraa Lneaarnen optmonttehtävä

Lisätiedot

Turingin kone on kuin äärellinen automaatti, jolla on käytössään

Turingin kone on kuin äärellinen automaatti, jolla on käytössään 4 TUINGIN KONEET Ala Turg 1935 36 auha Koe vo srtää auha: T U I N G auhapää: ohjausykskkö: Turg koe o ku äärelle automaatt, jolla o käytössää auhapäätä vasemmalle ta okealle; se vo myös lukea ta krjottaa

Lisätiedot

A = B = T = Merkkijonon A osamerkkijono A[i..j]: n merkkiä pitkä merkkijono A:

A = B = T = Merkkijonon A osamerkkijono A[i..j]: n merkkiä pitkä merkkijono A: Merkkjonot (strngs) n merkkä ptkä merkkjono : T T T G T n = 18 kukn merkk [], mssä 0 < n, kuuluu aakkostoon Σ, jonka koko on Σ esm. bttjonot: Σ = {0,1} ja Σ = 2, DN: Σ = {,T,,G} ja Σ = 4 tetokoneen aakkosto

Lisätiedot

Epätäydelliset sopimukset

Epätäydelliset sopimukset Eätäydellset somukset Matt Rantanen 15.4.008 ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008 Estelmän ssältö Eätäydellset somukset ja omstusokeus alanén

Lisätiedot

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen Tosakajärjestelmät Luento : Resurssen hallnta ja prorteett Tna Nklander Jaetut resursst Useat tapahtumat jakavat ohjelma-/lattesto-olota, jossa kesknänen possulkemnen on välttämätöntä. Ratkasuja: Ajonakanen

Lisätiedot

Matematiikan ja tilastotieteen laitos Johdatus diskreettiin matematiikkaan (Syksy 2008) 4. harjoitus Ratkaisuja (Jussi Martin)

Matematiikan ja tilastotieteen laitos Johdatus diskreettiin matematiikkaan (Syksy 2008) 4. harjoitus Ratkaisuja (Jussi Martin) Matematan ja tlastoteteen latos Johdatus dsreettn matemataan (Sysy 28 4. harjotus Ratasuja (Juss Martn 1. Kertomus Hotell Kosmosesta jatuu: Hotellyhtymän johdolta tul määräys laata luettelo asta mahdollssta

Lisätiedot

r i m i v i = L i = vakio, (2)

r i m i v i = L i = vakio, (2) 4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään

Lisätiedot

Tilastollisen fysiikan luennot

Tilastollisen fysiikan luennot Tlastollsen fyskan luennot Tvstelmät luvuttan I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ Lämpö on systeemen mkroskooppsten osen satunnasta lkettä Lämpöenerga vrtaa kuumemmasta kappaleesta kylmempään Jos kaks kappaletta

Lisätiedot

Yrityksen teoria ja sopimukset

Yrityksen teoria ja sopimukset Yrtyksen teora a sopmukset Mat-2.4142 Optmontopn semnaar Ilkka Leppänen 22.4.2008 Teemoa Yrtyksen teora: tee va osta? -kysymys Yrtys kannustnsysteemnä: ylenen mall Työsuhde vs. urakkasopmus -analyysä Perustuu

Lisätiedot

Kanoniset muunnokset

Kanoniset muunnokset Kanonset muunnokset Koordnaatstomuunnokset Lagrangen formalsmssa pstemuunnoksa: Q = Q (q, t) nopeudet saadaan nästä dervomalla Kanonnen formalsm: p:t ja q:t samanarvosa 2n-ulottesen faasavaruuden muuttuja

Lisätiedot

Tchebycheff-menetelmä ja STEM

Tchebycheff-menetelmä ja STEM Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot

Lisätiedot

SU/Vakuutusmatemaattinen yksikkö (5)

SU/Vakuutusmatemaattinen yksikkö (5) SU/Vakuutusmatemaattnen ykskkö 0..06 (5) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,

Lisätiedot

ABTEKNILLINEN KORKEAKOULU

ABTEKNILLINEN KORKEAKOULU ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio Sisältö Peruskäsitteitä Poisson-prosessi Luento05.ppt S-38.45 - Liikenneteorian perusteet - Kevät 2005 2 Stokastiset prosessit () Stokastiset prosessit

Lisätiedot

9. Muuttuva hiukkasluku

9. Muuttuva hiukkasluku Statstnen fyskka, osa B (FYSA242) Tuomas Lapp tuomas.v.v.lapp@jyu.f Huone: FL240. E kntetä vastaanottoakoja. kl 2016 9. Muuttuva hukkasluku 1 Kertaus: lämpökylpy Mustetaan kurssn A-osasta Mkrokanonnen

Lisätiedot

4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman

4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman 4. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7..008 Thomas Hackman 4. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 4. Tähtteteellsten

Lisätiedot

Diskreettiaikainen dynaaminen optimointi

Diskreettiaikainen dynaaminen optimointi Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u

Lisätiedot

Käytetään säteille kompleksiesitystä. Tuleva säde on Ee 0 iw t ja peräkkäisiä heijastuneita säteitä kuvaaviksi esityksiksi saadaan kuvasta: 3 ( 2 )

Käytetään säteille kompleksiesitystä. Tuleva säde on Ee 0 iw t ja peräkkäisiä heijastuneita säteitä kuvaaviksi esityksiksi saadaan kuvasta: 3 ( 2 ) 58 Yhtälön (0.4.) mukaan peräkkästen hejastuneen säteen optnen matkaero on D= n tcosqt ja vahe-eroks tulee (kun r = 0) p = kd= D. (.3.) l ässä on huomattava, että hejastuksssa tapahtuvat mahollset p :

Lisätiedot

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka IMA- Exurso: Kompleksluvu ja radosgnaal / KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT Tausaa IMA- Exurso: Kompleksluvu ja radosgnaal / Kakk langaon vesnä ja radoeolkenne (makapuhelme, WLAN, ylesrado

Lisätiedot

Rahastoonsiirtovelvoitteeseen ja perustekorkoon liittyvät laskentakaavat. Soveltaminen

Rahastoonsiirtovelvoitteeseen ja perustekorkoon liittyvät laskentakaavat. Soveltaminen SU/Vakuutusmatemaattnen ykskkö 0.4.05 Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä perusteta sovelletaan täydennyskertomen,

Lisätiedot

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos. Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla

Lisätiedot

Kollektiivinen korvausvastuu

Kollektiivinen korvausvastuu Kollektvnen korvausvastuu Sar Ropponen 4.9.00 pävtetty 3..03 Ssällysluettelo JOHDANTO... KORVAUSVASTUUSEEN LIITTYVÄT KÄSITTEET VAHINKOVAKUUTUKSESSA... 3. MERKINNÄT... 3. VAHINGON SELVIÄMINEN JA KORVAUSVASTUU...

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-1100: PIIRIANALYYSI I Vahtosähkön teho hetkellnen teho p(t) pätöteho P losteho Q näennästeho S kompleksnen teho S HETKELLINEN TEHO Kn veresen kvan mpedanssn Z jännte ja vrta (tehollsarvon osottmet)

Lisätiedot

3. Datan käsittely lyhyt katsaus

3. Datan käsittely lyhyt katsaus 3. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento..0 Thomas Hackman HTTPK I, kevät 0, luento 3 3. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus

Lisätiedot

Tasapainojen määrittäminen tasapainovakiomenetelmällä

Tasapainojen määrittäminen tasapainovakiomenetelmällä Luento 6: sutspnot eskvkko 3.1. klo 8-1 771 - Termodynmset tspnot (Syksy 18) http://www.oulu.f/pyomet/771/ Tspnojen määrttämnen tspnovkomenetelmällä Trkstel homogeenst ksufsrektot. Esm.: (g) + (g) = (g)

Lisätiedot

5. Stokastiset prosessit (1)

5. Stokastiset prosessit (1) luento05.ppt S-38.45 - Liikenneteorian perusteet - Kevät 2006 Sisältö Peruskäsitteitä Poisson-prosessi 2 Stokastiset prosessit () Tarkastellaan jotakin (liikenneteorian kannalta tai sitten muuten) kiinnostavaa

Lisätiedot

Pro gradu -tutkielma. Whitneyn upotuslause. Teemu Saksala

Pro gradu -tutkielma. Whitneyn upotuslause. Teemu Saksala Pro gradu -tutkelma Whtneyn upotuslause Teemu Saksala Helsngn ylopsto Matematkan ja tlastoteteen latos 5. maalskuuta 2013 0.1 Johdanto Topologset monstot ovat melenkntosa, koska ne ovat määrtelmänsä nojalla

Lisätiedot

FYSA220/2 (FYS222/2) VALON POLARISAATIO

FYSA220/2 (FYS222/2) VALON POLARISAATIO FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron

Lisätiedot

Demonstraatiot Luento 7 D7/1 D7/2 D7/3

Demonstraatiot Luento 7 D7/1 D7/2 D7/3 TEKNILLINEN KORKEAKOULU Tietoliikenne- ja tietoverkkotekniikan laitos S-8.45 Liikenneteorian perusteet, Kevät 2008 Demonstraatiot Luento 7 7.2.2008 D7/ Tarkastellaan piirikytkentäisen järjestelmän n-kanavaista

Lisätiedot

5. KVANTTIMEKANIIKKAA

5. KVANTTIMEKANIIKKAA 5. KVANTTIMEKANIIKKAA Bohrn atommallsta samme jonknlasen kuvan atomn rakenteesta. Kutenkaan Bohrn atommall e pysty selttämään kakka kokeellsa havantoja spektrestä: Mks osa spektren vvosta on tosa vomakkaampa

Lisätiedot

Eräs Vaikutuskaavioiden ratkaisumenetelmä

Eräs Vaikutuskaavioiden ratkaisumenetelmä Mat-2.142 Optmontopn semnaar, s-99 28.9. 1999 Semnaarestelmän referaatt Joun Ikonen Lähde: Ross D. Schachter: Evaluatng nfluence dagrams, Operatons Research, Vol 34, No 6, 1986 Eräs Vakutuskaavoden ratkasumenetelmä

Lisätiedot

SU/Vakuutusmatemaattinen yksikkö (6)

SU/Vakuutusmatemaattinen yksikkö (6) SU/Vakuutusmatemaattnen ykskkö 28.0.206 (6) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV 2. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

BL20A0600 Sähkönsiirtotekniikka

BL20A0600 Sähkönsiirtotekniikka BLA6 Sähkönsrtoteknkka Tehonaon laskenta Jarmo Partanen LT Energy Electrcty Energy Envronment Srtoverkkoen laskenta Verkon tehonaon laskemnen srron hävöt ännteolosuhteet ohtoen kuormttumnen verkon käyttäytymnen

Lisätiedot

Äärellisten ryhmien hajotelmat suoriksi tuloiksi

Äärellisten ryhmien hajotelmat suoriksi tuloiksi TAMPEREEN YLIOPISTO Pro gradu -tutkelma Vel-Matt Nemnen Äärellsten ryhmen hajotelmat suorks tuloks Informaatoteteden ykskkö Matematkka Kesäkuu 2016 Tampereen ylopsto Informaatoteteden ykskkö NIEMINEN,

Lisätiedot

Galerkin in menetelmä

Galerkin in menetelmä hum.9.3 Galerkn n menetelmä Galerknn menetelmän soveltamnen e ole rajottunut van ongelmn, jotka vodaan pukea sellaseen varaatomuotoon, joka on seurauksena funktonaaln mnmomsesta, kuten potentaalenergan

Lisätiedot

Reaaliarvoinen funktio f : on differentioituva pisteessä x, jos f:lle on siinä voimassa kehitelmä. h h. eli. Silloin

Reaaliarvoinen funktio f : on differentioituva pisteessä x, jos f:lle on siinä voimassa kehitelmä. h h. eli. Silloin MAT-3440 LAAJA MATEMATIIKKA 4 Tampereen teknllnen ylopsto Rsto Slvennonen Kevät 00 4. Vektorfunkton dervaatta. Ketjusääntö.. Reaalarvosen funkton dervaatta Tässä luvussa estetään dervaattakäste ensn reaalarvoselle

Lisätiedot

7. Menetysjärjestelmät

7. Menetysjärjestelmät Ssältö Kertust: ykskerte lkeeteoreette mll Posso-mll (skkt, plvelot ) Sovellus vrtv dtlketee mlltmsee vuotsoll Erlg-mll (skkt, plvelot < ) Sovellus puhellketee mlltmsee rukoverkoss Bommll (skkt k

Lisätiedot

Tietojen laskentahetki λ α per ,15 0,18 per ,15 0,18 per tai myöhempi 0,20 0,18

Tietojen laskentahetki λ α per ,15 0,18 per ,15 0,18 per tai myöhempi 0,20 0,18 SU/Vakuutusmatemaattnen ykskkö 6.3.07 (6) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,

Lisätiedot

VIHDIN KUNTA TOIMEENTULOTUKIHAKEMUS 1(5) PERUSTURVAKESKUS Perhehuolto

VIHDIN KUNTA TOIMEENTULOTUKIHAKEMUS 1(5) PERUSTURVAKESKUS Perhehuolto VIHDIN KUNTA TOIMEENTULOTUKIHAKEMUS 1(5) PERUSTURVAKESKUS Perhehuolto Hakemus kuulle 200 (Vranomanen täyttää) Hakemus saapunut/jätetty / 200 Henklötedot hakjasta ja hänen perheenjäsenstä Sukunm ja etunmet

Lisätiedot

Rahastoonsiirtovelvoitteeseen, perustekorkoon ja vakuutusmaksukorkoon liittyvät laskentakaavat ja periaatteet

Rahastoonsiirtovelvoitteeseen, perustekorkoon ja vakuutusmaksukorkoon liittyvät laskentakaavat ja periaatteet SU/Vakuutusmatemaattnen ykskkö 3..209 (7) Rahastoonsrtovelvotteeseen, perustekorkoon ja vakuutusmaksukorkoon lttyvät laskentakaavat ja peraatteet Soveltamnen. Rahastosrtovelvote RSV 2. Täydennyskerron

Lisätiedot

Aamukatsaus 13.02.2002

Aamukatsaus 13.02.2002 Indekst & korot New Yorkn päätöskursst, euroa Muutos-% Päätös Muutos-% Helsnk New York (NY/Hel) Dow Jones 9863.7-0.21% Noka 26.21 26.05-0.6% S&P 500 1107.5-0.40% Sonera 5.05 4.99-1.1% Nasdaq 1834.2-0.67%

Lisätiedot

Raja-arvot. Osittaisderivaatat.

Raja-arvot. Osittaisderivaatat. 1 MAT-13440 LAAJA MATEMATIIKKA 4 Tamperee teklle ylopsto Rsto Slveoe Kevät 2010 Luku 3 Raja-arvot Osttasdervaatat 1 Fuktode raja-arvot Tarkastelemme fuktota f : A, jode määrttelyjoukko A T Muuttujat ovat

Lisätiedot

T p = 0. λ n i T i B = Käytetään kohdan (i) identiteetin todistamiseen induktiotodistusta. : Oletetaan, että väite on totta, kun n = k.

T p = 0. λ n i T i B = Käytetään kohdan (i) identiteetin todistamiseen induktiotodistusta. : Oletetaan, että väite on totta, kun n = k. Olkoot A R n n ja T R n n sten, että on olemassa ndeks p N jolle T p = Tällästä matrsa kutsutaa nlpotentks Näytä, että () () () Olkoot Määrtä matrs B n (λi + A) n = (λi + T ) n = B = n mn n,p ( ) n λ n

Lisätiedot

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa Mttausteknkan perusteet / luento 6 Mttausepävarmuus ja shen lttyvää termnologaa Mttausepävarmuus = mttaustulokseen lttyvä parametr, joka kuvaa mttaussuureen arvojen odotettua vahtelua Mttauksn lttyvä kästtetä

Lisätiedot

Riskienhallinnan peruskäsitteitä

Riskienhallinnan peruskäsitteitä Rskenhallnnan peruskäseä Juss Kangaspuna 7. Syyskuua 2011 Työn saa allenaa ja julksaa Aalo-ylopson avomlla verkkosvulla. Mula osn kakk okeude pdäeään. Esyksen ssälö Todennäkösyyspohjanen vekehys aloudellsen

Lisätiedot

Epälineaaristen pienimmän neliösumman tehtävien ratkaiseminen numeerisilla optimointimenetelmillä (valmiin työn esittely)

Epälineaaristen pienimmän neliösumman tehtävien ratkaiseminen numeerisilla optimointimenetelmillä (valmiin työn esittely) Epälneaarsten penmmän nelösumman tehtäven ratkasemnen numeerslla optmontmenetelmllä valmn työn esttely Lar Pelkola 9.9.014 Ohjaaja/valvoja: Prof. Harr Ehtamo yön saa tallentaa ja julkstaa Aalto-ylopston

Lisätiedot

Ilmanvaihdon lämmöntalteenotto lämpöhäviöiden tasauslaskennassa

Ilmanvaihdon lämmöntalteenotto lämpöhäviöiden tasauslaskennassa Y m ä r s t ö m n s t e r ö n m o n s t e 122 Ilmanvahdon lämmöntalteenotto lämöhävöden tasauslaskennassa HELINKI 2003 Ymärstömnsterön monste 122 Ymärstömnsterö Asunto- ja rakennusosasto Tatto: Lela Haavasoja

Lisätiedot

Yhdistä kodinkoneesi tulevaisuuteen. Pikaopas

Yhdistä kodinkoneesi tulevaisuuteen. Pikaopas Yhdstä kodnkonees tulevasuuteen. Pkaopas Kots tulevasuus alkaa nyt! Henoa, että käytät Home onnect -sovellusta * Onneks olkoon käytät tulevasuuden kodnkonetta, joka helpottaa arkeas jo tänään. Mukavamp.

Lisätiedot

Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet: Mitä opimme?

Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet: Mitä opimme? TKK (c) Ilkka Mell (004) Kovergesskästteet ja raja-arvolauseet Kovergesskästtetä Suurte lukuje lat Keskee raja-arvolause Keskese raja-arvolausee seurauksa Johdatus todeäkösyyslasketaa Kovergesskästteet

Lisätiedot

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4 TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun

Lisätiedot

DEE-53000 Sähkömagneettisten järjestelmien lämmönsiirto

DEE-53000 Sähkömagneettisten järjestelmien lämmönsiirto DEE-53000 Sähkömageese järjeselme lämmösro Lueo 8 1 Sähkömageese järjeselme lämmösro Rso Mkkoe Dfferessmeeelmä Numeersa rakasua haeaa aluee dskreeesä psesä. Muodoseaa verkko ja eseää dervaaa erousosamäärä.

Lisätiedot

Markov-ketjut pitkällä aikavälillä

Markov-ketjut pitkällä aikavälillä 2A Markov-ketjut pitkällä aikavälillä Tämän harjoituksen tavoitteena on oppia lukemaan siirtymämatriisista tai siirtymäkaaviosta, milloin Markov-ketju on yhtenäinen ja jaksoton; oppia tunnistamaan, milloin

Lisätiedot

on määritelty tarkemmin kohdassa 2.3 ja pi kohdassa 2.2.

on määritelty tarkemmin kohdassa 2.3 ja pi kohdassa 2.2. SU/Vakuutusmatemaattnen ykskkö 7.8.08 (7) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,

Lisätiedot

Demonstraatiot Luento

Demonstraatiot Luento TEKNILLINEN KORKEAKOULU Tietoliikenne- ja tietoverkkotekniikan laitos S-8.45 Liikenneteorian perusteet, Kevät 8 Demonstraatiot Luento 8..8 D/ Tarkastellaan seuraavaa yksinkertaista piirikytkentäistä (runko)verkkoa.

Lisätiedot

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,

Lisätiedot

Yksikköoperaatiot ja teolliset prosessit

Yksikköoperaatiot ja teolliset prosessit Ykskköoperaatot ja teollset prosesst 1 Ylestä... 2 2 Faasen välnen tasapano... 3 2.1 Neste/höyry-tasapano... 4 2.1.1 Puhtaan komponentn höyrynpane... 4 2.1.2 Ideaalnen seos... 5 2.1.3 Epädeaalnen nestefaas...

Lisätiedot

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita

Lisätiedot

Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat:

Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat: Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Artmeette keskarvo, Estmaatt,

Lisätiedot

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio? Mttausteknkan perusteet / luento 7 Mttausepävarmuus Mttausepävarmuus Mttaustulos e ole koskaan täysn oken Mttaustulos on arvo mtattavasta arvosta Mttaustuloksen ja mtattavan arvon ero on mttausvrhe Mkäl

Lisätiedot

menetelmän laskennalliset tekniikat Epäkäyvän kantaratkaisun parantaminen

menetelmän laskennalliset tekniikat Epäkäyvän kantaratkaisun parantaminen Smpex-menetemän menetemän askennaset teknkat 8. ento: Prmaa-smpex S ysteemanayysn Laboratoro Teknnen korkeako Matemaattsten agortmen ohemont Kevät 8 / Epäkäyvän kantaratkasn parantamnen. vaheen yenen smpex-menetemä

Lisätiedot

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö: Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa

Lisätiedot

Luento 5 Riippuvuudet vikapuissa Esimerkkejä PSA:sta

Luento 5 Riippuvuudet vikapuissa Esimerkkejä PSA:sta Luento 5 Riippuvuudet vikapuissa Esimerkkejä S:sta hti Salo Teknillinen korkeakoulu L 1100, 0015 TKK 1 Toisistaan riippuvat vikaantumiset Riippuvuuksien huomiointi erustapahtumien taustalla voi olla yhteisiä

Lisätiedot

11. Vektorifunktion derivaatta. Ketjusääntö

11. Vektorifunktion derivaatta. Ketjusääntö 7 Vektorfunkton dervaatta Ketjusääntö Täydennämme ja kertaamme seuraavassa dfferentaallaskennan teoraa kursslta Laaja matematkka Palautetaan meln dervaatan määrtelmä reaalfunktolle: Funkton f : R R dervaatta

Lisätiedot

MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN

MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN MTTTP SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN Aesto kaavoje () (3), (9) ja () esmerkkeh Lepakot pakallstavat hyötesä lähettämällä korkeataajusta äätä Ne pystyvät pakallstamaa hyöteset

Lisätiedot

10.5 Jaksolliset suoritukset

10.5 Jaksolliset suoritukset 4.5 Jaksollset suortukset Tarkastellaa tlaetta, jossa asakas tallettaa pakktllle tostuvast yhtäsuure rahasumma k aa korkojakso lopussa. Asakas suorttaa talletukse kertaa. Lasketaa tlllä oleva pääoma :e

Lisätiedot

5. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman

5. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman 5. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7.4.006 Thomas Hackman 5. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 5. Tähtteteellsten

Lisätiedot

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi Elementtmenetelmän erusteet 8. 8 D-SOLIDIRKEEE 8. ohdanto Kolmulottesa soldelementtejä tartaan kolmulottesten kaaleden mallntamseen. ällön tarkasteltaan kaaleen geometralla e ole ertsrtetä jotka teksät

Lisätiedot