Jaksolliset ja toistuvat suoritukset

Koko: px
Aloita esitys sivulta:

Download "Jaksolliset ja toistuvat suoritukset"

Transkriptio

1 Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e välttämättä korkojakson välen. Nyt kun osaamme laskea artmeettsten ja geometrsten sarjojen summa osaamme myös laskea tostuven suortusten loppuarvoja. Palataan johdattelevn esmerkkehn edellsestä osasta ja vedään laskuja loppuun ast. Esmerkk 1: Jokasen kuukauden lopussa alkaen tammkuusta tllle latetaan 100 euroa. Korkokanta on 6% ja se maksetaan vuoden lopussa. Korot määräytyvät saksalasen tavan mukaan. Paljonko tlllä on raha vuoden lopussa? Ratkasu: Kuten olemme akasemmn huomanneet yksttästen talletusten loppuarvot korkoneen muodostavat artmeettsen jonon a 1 a... a 1 jossa a 1 = 100( ) = on joulukuun talletus korkoneen a = 100( ) = 101 = on marraskuun talletus korkoneen jne. Tässä jonossa erotusvako on d = 0 5 joka on tse asassa yhden suortuksen (100 euroa) yhden kuukauden koron suuruus. Kokonassaldo vuoden lopussa on tämän artmeettsen jonon summa. Koska tunnemme arvoja a 1 = d = 0 5 ja n = 1 vodaan laskea S 1 = na 1 + n(n 1) d = Nän paljon rahaa tlllä on vuoden lopussa =

2 Tonen ratkasutapa - huomataan että suortusten korot muodostavat oman artmeettsen jononsa 0 5; 1; 1; 1 5;.... Tässä jonossa n = 1 d = 0 5 a 1 = 0 5. Nän olleen pelkät korot ovat yhdessä = 39. Talletuksa on 1 ja jokanen on sadan euron suurunen joten talletusten arvo = 100. Yhdessä = 139 saadaan sama lopputulos. Samalla tavalla vodaan artmeettsen jonon summan kaavan avulla laskea tostuven (samansuurusten) suortusten kokonaskorot ta loppuarvo kun korot maksetaan anoastaan kerran korkoajan lopussa (el kyseessä yksnkertanen korko) suortuksa tehdään tasavälen ja korkopäven laskutapa on 30/360. Tällön 1) sekä suortukset korkoneen että suortusten korot erkseen molemmat muodostavat artmeettsa jonoja ) kummankn jonon erotusvako on yhden suortuksen korko per yks akaväl. Edellä tarkastellussa esmerkssä kyse on tostuvasta suortuksesta mutta e jaksollsesta suortuksesta sllä suortusten akaväl e ole sama kun korkojakso (joka ol esmerkssä tasan yks vuos). Sen sjaan esmerkssä kyse on jaksollsesta suortuksesta. Sen kokonaskorko ja loppuarvo lasketaan geometrsen sarjan summana. Esmerkk Kasvutullle talletetaan euroa 10 vuoden akana ana jokasen vuoden alussa. Tln nettokorkokanta on %. Korko lsätään vuoden lopussa laskutavalla 30/360. Paljonko tlllä on rahaa 10 vuoden päästä (10.vuonna vuoden lopussa)? Ratkasu: Suortukset korkoneen muodostavat geometrsen jonon kääntesessä järjestyksessä - vmesen vuoden suortus kasvaa arvoon toseks vmesen - arvoon ja nn edelleen. Jonossa on n = 10 jäsentä ensm. jäsen a 1 = ja suhdeluku q = 1 0. Summaks saadaan

3 kaavalla S 10 = = Ylesest jaksollsten suortusten loppuarvo n kokonasen korkojakson jälkeen saadaan kaavalla S 1 = k (1 + ) (1 + )n 1 mssä on korkokanta k yksttäsen suortuksen arvo (joka edellytetään olevan vako) ja n on korkojaksojen lukumäärä. Jaksollsen suortuksen loppuarvo het vmesen suortuksen tapahduttua on S = (1 + )n 1 k Tässä ero edellseen on se että vmenen suortus e ehd kasvattaa korkoa. Edellsessä esmerkssä se vastas 10. vuoden tammkuun 1. pävän tlannetta jollon vmenen euron talletus on jo tehty mutta e velä ehtnyt kasvata mtään korkoa. Huomaa että krjassa tarkastellaan van tätä tapausta. Nämä kaavat tomvat van jaksollsten suortusten kohdalla el tapauksessa jossa suortuksa tehdään täsmälleen korkojakson välen. Esmerkssä 1 yllä nähtn mten hodetaan tapausta jossa korkoa ltetään van kerran suortusten lopussa. Tällön tarvtaan artmeettsten jonojen teoraa. Tarkastellaan velä kaksta ylesntä tapausta jossa joudutaan turvautumaan molempn menetelmn samassa laskussa. Esmerkk: Tllle talletetaan 100 euroa kerran kuukaudessa kuukauden lopussa neljän (kalenter)vuoden ajan. Nettokorkokanta on % vuodessa ja se maksetaan jokasen vuoden lopussa. Paljonko tlllä on raha vmesen suortuksen tapahduttua 4. vuoden joulukuun lopussa (koron lttämsen jälkeen)? Ratkasu: Tarkastellaan ensn erkseen yhden vuoden suortuksa ja lasketaan kunka 3

4 suureks ne kasvavat yhdessä saman vuoden lopussa. Koska nyt suortuksa tehdään kuukauden lopussa ensmmänen suortus kasvattaa korkoa van 11 kuukauden verran ja vmenen suortus e kasvattaa korkoa olleenkaan (huom tässä suhteessa esmerkk ss eroaa heman esmerkstä 1 jossa suortuksa tehtn kuukauden alussa). Jos suortuksa korkoneen tarkastellaan taas kääntesessä järjestyksessä saadaan artmeettnen jono a 1 = 100 (vmenen suortus e ehd kasvattaa korkoa ollenkaan) a = a 1 = (ensmmänen suortus korkoneen). 1 Jonossa ss 1 jäsentä ensmmänen jäsen 100 ja erotusvako on yhden kuukauden korko Artmeettsen jonon summan kaavalla saadaan S 1 = = 111. Nän paljon ss jokasen vuoden suortukset tuottavat vuoden lopussa korkoneen. Tämä pääoma kasvattaa stten seuraavna vuosna koronkorkoa Tlanne ss vastaa täydellsest jaksollsa suortuksa jossa jokasen vuoden lopussa tllle talletetaan 111 euroa 4 vuoden ajan nettokorkokannalla %. Tällasten suortusten loppuarvo het vmesen suortuksen tapahduttua saadaan kaavalla S = (1 + )n 1 mssä nyt k = 111 n = 4 ja = 0 0. Neljän vuoden päästä tlllä on S = k 111 = euroa. 4

5 Laskuja Jaksollsten suortusten loppuarvo kun vmenen suortuskn on ehtnyt kasvattaa korkoa saadaan kaavalla S 1 = k (1 + ) (1 + )n 1 ja het vmesen suortuksen tapahduttua kaavalla S = k (1 + )n 1 Edellsessä osossa nätä kaavoja sovellettn suoraan loppuarvon laskemseen. Jos kaavossa esntyvstä suuresta tunnetaan kakk pats n (suortusten lukumäärä) se vodaan ratkasta käyttämällä logartmeja ta tosen kaavan tapauksessa S 1 = k (1 + ) (1 + )n 1 (1 + ) n 1 = S 1 k(1 + ) (1 + ) n = S 1 k(1 + ) + 1 log(1 + ) n S 1 = log( k(1 + ) + 1) S 1 n log(1 + ) = log( k(1 + ) + 1) n = log( S 1 + 1) k(1+) log(1 + ) n = log( S 1 k + 1) log(1 + ). Jos tuntemattomana on k el jokasen suortuksen arvo se saadaan kaavalla k = S 1 (1 + ) (1+)n 1 5

6 ta k = S rppuen stä mstä tlanteesta on kyse. Jos kutenkn esm. yhtälöstä (1+) n 1 S 1 = k (1 + ) (1 + )n 1 (ta tosesta yhtälöstä jossa lasketaan S ) halutaan ratkasta el korkokanta se e onnstu lman numeersa menetelmä. Nykyään tällasa ongelma ratkastaan tetokoneella ta rttävän kehttyneellä laskmella - kyseessä on polynomyhtälö :n suhteen. Mtään valmta kaavoja ta analyyttsa menetelmä tällasen ongelmaan ratkasemseen e ole olemassa. Esmerkk: Säästäjä tallettaa 5000 euroa vuosttan tllle jonka korkokanta on 3 55%. Kunka monen talletuskerran jälkeen tlllä on vähntään euroa? Ratkasu: Ollaan knnostunesta stä mnkä suortuksen jälkeen tlllä on vähntään euroa joten käytetään kaavaa josta S = k (1 + )n 1 n = log( S 1 k + 1) log(1 + ). Sjottamalla kaavaan S 1 = k = 5000 = saadaan n joten ensmmästä kertaa sadantuhannen euron raja yltetään het 16 tallennuksen jälkeen. 6

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2 Kotitehtäviä 5. Ratkaisuehdotuksia. a) Jono a,..., a 500 on aritmeettinen, a = 5 ja erotusvakio d = 4. Laske jäsenet a, a 8 ja a 00 sekä koko jonon summa. b) Jono b,..., b 0 on geometrinen, b = ja suhdeluku

Lisätiedot

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10

Lisätiedot

10.5 Jaksolliset suoritukset

10.5 Jaksolliset suoritukset 4.5 Jaksollset suortukset Tarkastellaa tlaetta, jossa asakas tallettaa pakktllle tostuvast yhtäsuure rahasumma k aa korkojakso lopussa. Asakas suorttaa talletukse kertaa. Lasketaa tlllä oleva pääoma :e

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on Kotitehtävät 4 Ratkaisuehdotukset. 1. Kuinka suureksi 3500000 euroa kasvaa 8 vuodessa, kun lähdevero on 30% ja vuotuinen korkokanta on 10, 5%, kun korko lisätään a) kerran vuodessa b) kuukausittain c)

Lisätiedot

= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2

= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2 HY / Matematka ja tlastotetee latos Tlastolle päättely II, kevät 28 Harjotus 3A Ratkasuehdotuksa Tehtäväsarja I Olkoot Y,, Y ja Nθ, ) Osota, että T T Y) Y 2 o parametr gθ) θ 2 harhato estmaattor Laske

Lisätiedot

Palkanlaskennan vuodenvaihdemuistio 2014

Palkanlaskennan vuodenvaihdemuistio 2014 Palkanlaskennan vuodenvahdemusto 2014 Pkaohje: Tarkstettavat asat ennen vuoden ensmmästä palkanmaksua Kopo uudet verokortt. Samat arvot kun joulukuussa käytetyssä, lman kumulatvsa tetoja. Mahdollsest muuttuneet

Lisätiedot

Matematiikkaa kauppatieteilijöille

Matematiikkaa kauppatieteilijöille Matematiikkaa kauppatieteilijöille Harjoitus 9, syksy 2018 1. 1. Ratkaisutapa (Yksinkertainen korkolaskenta) Olkoon alkupääoma K 0 ja korkokanta i = 10% pa. Koska korkokanta on 10 % pa., niin pääoma kasvaa

Lisätiedot

Hyrynsalmen kunta, jäljempänä kunta. Laskutie 1, 89400 HYRYNSALMI. Kohde sijaitsee Hallan Sauna- nimisessä kiinteistössä.

Hyrynsalmen kunta, jäljempänä kunta. Laskutie 1, 89400 HYRYNSALMI. Kohde sijaitsee Hallan Sauna- nimisessä kiinteistössä. VUOKRASOPIMUS 1.1 Sopjapuolet Hyrynsalmen kunta, jäljempänä kunta. Laskute 1, 89400 HYRYNSALMI Hallan Sauna Oy (y-tunnus: 18765087) CIO Tl- Tekno Oulu Oy Kauppurnkatu 12, 90100 OULU 1.2 Sopmuksen kohde

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematkkaan Informaatoteknologan tedekunta Jyväskylän ylopsto 4. luento 24.11.2017 Neuroverkon opettamnen - gradenttmenetelmä Neuroverkkoa opetetaan syöte-tavote-parella

Lisätiedot

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekankan jatkokurss Fys102 Syksy 2009 Jukka Maalamp LUENTO 2 Alkuverryttelyä Vääntömomentt Oletus: Vomat tasossa, joka on kohtsuorassa pyörmsaksela vastaan. Oven kääntämseen tarvtaan er suurunen voma

Lisätiedot

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö: Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa

Lisätiedot

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen Tosakajärjestelmät Luento : Resurssen hallnta ja prorteett Tna Nklander Jaetut resursst Useat tapahtumat jakavat ohjelma-/lattesto-olota, jossa kesknänen possulkemnen on välttämätöntä. Ratkasuja: Ajonakanen

Lisätiedot

6. Stokastiset prosessit (2)

6. Stokastiset prosessit (2) Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella

Lisätiedot

Uuden eläkelaitoslain vaikutus allokaatiovalintaan

Uuden eläkelaitoslain vaikutus allokaatiovalintaan TEKNILLINEN KORKEAKOULU Systeemanalyysn laboratoro Mat-2.108 Sovelletun matematkan erkostyö Uuden eläkelatoslan vakutus allokaatovalntaan Tmo Salmnen 58100V Espoo, 14. Toukokuuta 2007 Ssällysluettelo Johdanto...

Lisätiedot

Galerkin in menetelmä

Galerkin in menetelmä hum.9.3 Galerkn n menetelmä Galerknn menetelmän soveltamnen e ole rajottunut van ongelmn, jotka vodaan pukea sellaseen varaatomuotoon, joka on seurauksena funktonaaln mnmomsesta, kuten potentaalenergan

Lisätiedot

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos. Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla

Lisätiedot

Aamukatsaus 13.02.2002

Aamukatsaus 13.02.2002 Indekst & korot New Yorkn päätöskursst, euroa Muutos-% Päätös Muutos-% Helsnk New York (NY/Hel) Dow Jones 9863.7-0.21% Noka 26.21 26.05-0.6% S&P 500 1107.5-0.40% Sonera 5.05 4.99-1.1% Nasdaq 1834.2-0.67%

Lisätiedot

ABTEKNILLINEN KORKEAKOULU

ABTEKNILLINEN KORKEAKOULU ABTEKNILLINEN KORKEAKOULU Tetoverkkolaboratoro 6. Stokastset prosesst () Luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 5 6. Stokastset prosesst () Ssältö Markov-prosesst Syntymä-kuolema-prosesst

Lisätiedot

Diskonttaus. Diskonttaus. Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava. = K t. 1 + it. (3) missä

Diskonttaus. Diskonttaus. Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava. = K t. 1 + it. (3) missä Diskonttaus Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava K t 1 + it. (3) missä pääoman K t diskontattu arvo, eli nykyarvo(t = 0) i = korkokanta jaksosta kulunut aika t = korkojakson

Lisätiedot

Matematiikan ja tilastotieteen laitos Johdatus diskreettiin matematiikkaan (Syksy 2008) 4. harjoitus Ratkaisuja (Jussi Martin)

Matematiikan ja tilastotieteen laitos Johdatus diskreettiin matematiikkaan (Syksy 2008) 4. harjoitus Ratkaisuja (Jussi Martin) Matematan ja tlastoteteen latos Johdatus dsreettn matemataan (Sysy 28 4. harjotus Ratasuja (Juss Martn 1. Kertomus Hotell Kosmosesta jatuu: Hotellyhtymän johdolta tul määräys laata luettelo asta mahdollssta

Lisätiedot

Palkanlaskennan vuodenvaihdemuistio 2017

Palkanlaskennan vuodenvaihdemuistio 2017 Palkanlaskennan vuodenvahdemusto 2017 Tarkstuslsta Tarkstettavat asat ennen vuoden ensmmästä palkanmaksua Kopo uudet verokortt. Samat arvot kun joulukuussa käytetyssä, lman kumulatvsa tetoja. Mahdollsest

Lisätiedot

Painotetun metriikan ja NBI menetelmä

Painotetun metriikan ja NBI menetelmä Panotetun metrkan ja NBI menetelmä Optmontopn semnaar - Kevät / 1 Estelmän ssältö Paretopsteden generont panotetussa metrkossa Panotettu L p -metrkka Panotettu L -metrkka el panotettu Tchebycheff -metrkka

Lisätiedot

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä. MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät 2016 1 Perustuu Antt

Lisätiedot

On olemassa eri lainatyyppiä, jotka eroavat juuri sillä, miten lainaa lyhennetään. Tarkastelemme muutaman yleisesti käytössä olevan tyypin.

On olemassa eri lainatyyppiä, jotka eroavat juuri sillä, miten lainaa lyhennetään. Tarkastelemme muutaman yleisesti käytössä olevan tyypin. Rahoitusmuodot HUOM. Tässä esitetään vain teoriaa ja joitakin esimerkkejä. Enemmän esimerkkejä ja laskuja löytyy ratkaistuina EXCEL-tiedostosta "Rahoitusmuodot - laskut ja esimerkit", joka on MOODLESSA

Lisätiedot

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi Elementtmenetelmän erusteet 8. 8 D-SOLIDIRKEEE 8. ohdanto Kolmulottesa soldelementtejä tartaan kolmulottesten kaaleden mallntamseen. ällön tarkasteltaan kaaleen geometralla e ole ertsrtetä jotka teksät

Lisätiedot

Jaksolliset suoritukset, L13

Jaksolliset suoritukset, L13 , L13 1 Jaksollinen talletus Tarkastellaan tilannetta, jossa asiakas tallettaa pankkitilille toistuvasti yhtäsuuren rahasumman k aina korkojakson lopussa. Asiakas suorittaa talletuksen n kertaa. Lasketaan

Lisätiedot

Epätäydelliset sopimukset

Epätäydelliset sopimukset Eätäydellset somukset Matt Rantanen 15.4.008 ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008 Estelmän ssältö Eätäydellset somukset ja omstusokeus alanén

Lisätiedot

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä Tavotteet skaalaavan funkton lähestymstapa el referensspste menetelmä Optmontopn semnaar - Kevät 2000 / 1 Estelmän ssältö Panotetun metrkan ongelmen havatsemnen Referensspste menetelmän dean esttely Referensspste

Lisätiedot

Talousmatematiikka (3 op)

Talousmatematiikka (3 op) Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu

Lisätiedot

in 2/2012 6-7 4-5 8-9 InHelp palvelee aina kun apu on tarpeen INMICSIN ASIAKASLEHTI

in 2/2012 6-7 4-5 8-9 InHelp palvelee aina kun apu on tarpeen INMICSIN ASIAKASLEHTI n 2/2012 fo INMICSIN ASIAKASLEHTI 6-7 Dgtova kynä ja Joun Mutka: DgProfITn sovellukset pyörvät Inmcsn konesalssa. 4-5 HL-Rakentajen työmalle on vedettävä verkko 8-9 InHelp palvelee ana kun apu on tarpeen

Lisätiedot

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut) J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 1 Markov-prosesst (Jatkuva-akaset Markov-ketut) Tarkastellaan (statonaarsa) Markov-prosessea, oden parametravaruus on atkuva (yleensä aka). Srtymät

Lisätiedot

Yrityksellä on oikeus käyttää liketoimintaansa kunnan kanssa määriteltyä Hallan Saunan piha-aluetta.

Yrityksellä on oikeus käyttää liketoimintaansa kunnan kanssa määriteltyä Hallan Saunan piha-aluetta. VUOKRSOPMUS 1.1 Sopjapuolet Hyrynsalmen kunta, jäljempänä kunta. Laskute 1, 89400 HYRYNSALM Hallan Sauna Oy (y-tunnus: 18765087) CO Tl-Tekno Oulu Oy Kauppurnkatu 12, 90100 OULU 1.2 Sopmuksen kohde Hallan

Lisätiedot

3.5 Generoivat funktiot ja momentit

3.5 Generoivat funktiot ja momentit 3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

diskonttaus ja summamerkintä, L6

diskonttaus ja summamerkintä, L6 diskonttaus ja summamerkintä, L6 1 Edellä aina laskettiin kasvanut pääoma alkupääoman ja koron perusteella. Seuraavaksi pohdimme käänteistä ongelmaa: Miten suuri tulee alkupääoman K 0 olla, jotta n jakson

Lisätiedot

Monte Carlo -menetelmä

Monte Carlo -menetelmä Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla

Lisätiedot

Yksikköoperaatiot ja teolliset prosessit

Yksikköoperaatiot ja teolliset prosessit Ykskköoperaatot ja teollset prosesst 1 Ylestä... 2 2 Faasen välnen tasapano... 3 2.1 Neste/höyry-tasapano... 4 2.1.1 Puhtaan komponentn höyrynpane... 4 2.1.2 Ideaalnen seos... 5 2.1.3 Epädeaalnen nestefaas...

Lisätiedot

Harjoituksen pituus: 90min 3.10 klo 10 12

Harjoituksen pituus: 90min 3.10 klo 10 12 Pallollse puolustae: Sokea ja ta käspallo/ Lppupallo Tavote: aalteo estäe sjottue puolustavalle puolelle, potku ta heto estäe, syöttäse estäe rstäe taklaus, pae tla vottase estäe sjottue puolustavalle

Lisätiedot

Saatteeksi. Vantaalla vuoden 2000 syyskuussa. Hannu Kyttälä Tietopalvelupäällikkö

Saatteeksi. Vantaalla vuoden 2000 syyskuussa. Hannu Kyttälä Tietopalvelupäällikkö Saatteeks Tomtlojen rakentamsta seurattn velä vme vuoskymmenen lopulla säännöllsest vähntään kerran vuodessa tehtävllä raportella. Monsta tosstaan rppumattomsta ja rppuvsta systä johtuen raportont loppu

Lisätiedot

Kanoniset muunnokset

Kanoniset muunnokset Kanonset muunnokset Koordnaatstomuunnokset Lagrangen formalsmssa pstemuunnoksa: Q = Q (q, t) nopeudet saadaan nästä dervomalla Kanonnen formalsm: p:t ja q:t samanarvosa 2n-ulottesen faasavaruuden muuttuja

Lisätiedot

Kuluttajahintojen muutokset

Kuluttajahintojen muutokset Kuluttajahntojen muutokset Samu Kurr, ekonomst, rahapoltkka- ja tutkmusosasto Tutkmuksen tausta ja tavotteet Tavaroden ja palveluden hnnat evät muutu jatkuvast, vaan ovat ana jossan määrn jäykkä lyhyellä

Lisätiedot

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit 68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta

Lisätiedot

R 2. E tot. Lasketaan energialähde kerrallaan 10 Ω:n vastuksen läpi oleva virta.

R 2. E tot. Lasketaan energialähde kerrallaan 10 Ω:n vastuksen läpi oleva virta. D-000 Pranalyys Harjotus 3 / vkko 5 4.4 Laske kuvan vrta käyttäen energalähteden muunnoksa. Tarkotuksena on saada energalähteden muutokslla ja yhdstämsllä akaan yksnkertanen pr, josta vo Ohmn lan avulla

Lisätiedot

7. Modulit Modulit ja lineaarikuvaukset.

7. Modulit Modulit ja lineaarikuvaukset. 7. Modult Vektoravaruudet ovat vahdannasa ryhmä, jossa on määrtelty jonkn kunnan skalaartomnta. Hyväksymällä kerronrakenteeks kunnan sjaan rengas saadaan rakenne nmeltä modul. Moduln käste on ss vektoravaruuden

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemaalyys laboratoro Mat-.9 Sovellettu todeäkösyyslasku A Nordlud Harjotus 8 (vko 45/3) (Ahe: Raja-arvolauseta, otostuuslukuja, johdatusta estmot, Lae luvut 9.5,.-.6). Olkoo X ~ p(λ), mssä λ

Lisätiedot

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa URUN AMMAIKORKEAKOULU YÖOHJE (7) FYSIIKAN LABORAORIO V.2 2.2 38E. MEKAANISEN VÄRÄHELYN UKIMINEN. yön tavote 2. eoraa yössä tutustutaan harmonsen mekaansen värähdyslkkeen omnasuuksn seuraavssa tapauksssa:

Lisätiedot

2.3.1. Aritmeettinen jono

2.3.1. Aritmeettinen jono .3.1. Aritmeettie joo -joo, jossa seuraava termi saadaa edellisestä lisäämällä sama luku a, a + d, a+d, a +3d, Aritmeettisessa joossa kahde peräkkäise termi erotus o aia vakio: Siis a +1 a d (vakio Joo

Lisätiedot

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ TTKK/Fyskan latos FYS-1640 Klassnen mekankka syksy 2009 Laskuharjotus 5, 16102009 1 Ertysessä suhteellsuusteorassa Lagrangen funkto vodaan krjottaa muodossa v L = m 2 u t 1! ṙ 2 V (r) Osota, että tämä

Lisätiedot

3 Tilayhtälöiden numeerinen integrointi

3 Tilayhtälöiden numeerinen integrointi 3 Tlayhtälöden numeernen ntegront Alkuarvotehtävässä halutaan ratkasta lopputla xt f ) sten, että tlayhtälöt ẋ = fx,u, t) toteutuvat, kun alkutla x 0 on annettu Tlayhtälöden numeernen ntegront vodaan suorttaa

Lisätiedot

Kuntoilijan juoksumalli

Kuntoilijan juoksumalli Rakenteden Mekankka Vol. 42, Nro 2, 2009, s. 61 74 Kuntoljan juoksumall Matt A Ranta ja Lala Hosa Tvstelmä. Urhelututkmuksen melenknnon kohteena ovat yleensä huppu-urheljat. Tuokon yksnkertastettu juoksumall

Lisätiedot

9 VEROTUS, TALLETUKSET JA LAINAT

9 VEROTUS, TALLETUKSET JA LAINAT 9 VEROTUS, TALLETUKSET JA LAINAT ALOITA PERUSTEISTA 370A. Kunnallisveroprosentti oli 19,5, joten 31 200 tuloista oli maksettava kunnallisveroa 0,195 31 200 = 6084. Vastaus: 6084 euroa 371A. a) Hajuveden

Lisätiedot

Korkolasku, L6. Koronkorko. Korko-kaavat. Aiheet. Yksinkertainen korkolasku. Koronkorko. Jatkuva korkolasku. Korko-kaavat

Korkolasku, L6. Koronkorko. Korko-kaavat. Aiheet. Yksinkertainen korkolasku. Koronkorko. Jatkuva korkolasku. Korko-kaavat Korkolasku, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti i = p 100

Lisätiedot

Moraalinen uhkapeli: N:n agentin tapaus eli moraalinen uhkapeli tiimeissä

Moraalinen uhkapeli: N:n agentin tapaus eli moraalinen uhkapeli tiimeissä Moraalnen uhkapel: N:n agentn tapaus el moraalnen uhkapel tmessä Mat-2.4142 Optmontopn semnaar Ismo Räsänen 4.3.2008 S ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 11 - Ismo Räsänen Optmontopn

Lisätiedot

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC.

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC. Kotitehtäviä 6. Aihepiiri Rahoitusmuodot Ratkaisuehdotuksia 1. Pankki lainaa 100000 bullet-luoton. Laina-aika on 4kk ja luoton (vuotuinen) korkokanta 8% Luoton korot maksetaan kuukausittain ja laskutapa

Lisätiedot

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa Todellinen vuosikorko Huomioitavaa Edellinen keskimaksuhetkeen perustuva todellinen vuosikorko antaa vain arvion vuosikorosta. Tarkempi arvio todellisesta korosta saadaan ottamalla huomioon mm. koronkorko.

Lisätiedot

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks

Lisätiedot

Tchebycheff-menetelmä ja STEM

Tchebycheff-menetelmä ja STEM Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia. HY, MTO / Matemaattste tetede kadohjelma Tlastolle päättely II, kevät 208 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I Olkoo Y, Y rppumato otos Pareto jakaumasta, fy; θ θc θ y θ+ { y > c } tuetulla vakolla

Lisätiedot

Rahastoonsiirtovelvoitteeseen, perustekorkoon ja vakuutusmaksukorkoon liittyvät laskentakaavat ja periaatteet

Rahastoonsiirtovelvoitteeseen, perustekorkoon ja vakuutusmaksukorkoon liittyvät laskentakaavat ja periaatteet SU/Vakuutusmatemaattnen ykskkö 3..209 (7) Rahastoonsrtovelvotteeseen, perustekorkoon ja vakuutusmaksukorkoon lttyvät laskentakaavat ja peraatteet Soveltamnen. Rahastosrtovelvote RSV 2. Täydennyskerron

Lisätiedot

Talousmatematiikka (3 op)

Talousmatematiikka (3 op) Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu

Lisätiedot

JYVÄSKYLÄN YLIOPISTO Taloustieteiden tiedekunta

JYVÄSKYLÄN YLIOPISTO Taloustieteiden tiedekunta JYVÄSKYLÄN YLIOPISTO Talousteteden tedekunta AIKA- IKÄ- JA KOHORTTIVAIKUTUKSET KOTITALOUKSIEN RAHOITUSVARALLISUUDEN RAKENTEISIIN SUOMESSA VUOSINA 1994 2004 Kansantaloustede Pro gradu -tutkelma Maalskuu

Lisätiedot

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli lueto9.ppt S-38.45 Lkeeteora perusteet Kevät 5 Ykskertae lkeeteoreette mall Puhdas jakojärjestelmä Asakkata saapuu keskmäär opeudella asakasta per akayks. / keskmääräe asakkade välaka Asakkata palvellaa

Lisätiedot

Tilastollisen fysiikan luennot

Tilastollisen fysiikan luennot Tlastollsen fyskan luennot Tvstelmät luvuttan I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ Lämpö on systeemen mkroskooppsten osen satunnasta lkettä Lämpöenerga vrtaa kuumemmasta kappaleesta kylmempään Jos kaks kappaletta

Lisätiedot

AB TEKNILLINEN KORKEAKOULU

AB TEKNILLINEN KORKEAKOULU B TEKNILLINEN KORKEKOULU Tetoverkkolaboratoro luento05.ppt S-38.45 - Lkenneteoran perusteet - Kevät 00 Ssältö eruskästteet Dskreett satunnasmuuttujat Dskreett jakaumat lkm-jakaumat Jatkuvat satunnasmuuttujat

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.340 Lneaarnen ohjelmont 3.9.2007 Luento Johdanto (krja.-.4) S ysteemanalyysn Laboratoro eknllnen korkeakoulu Eeva Vlkkumaa Lneaarnen ohjelmont - Syksy 2007 / Luentorunko Hstoraa Lneaarnen optmonttehtävä

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttausöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

4. A priori menetelmät

4. A priori menetelmät 4. A pror menetelmät 4. Arvofunkto-menetelmä 4.2 Lekskografnen järjestämnen 4.3 Tavoteohjelmont Tom Bäckström Optmontopn semnaar - Kevät 2000 / 4. Arvofunkto-menetelmä Päätöksentekjä antaa eksplsttsen

Lisätiedot

Valmistelut INSTALLATION INFORMATION

Valmistelut INSTALLATION INFORMATION Valmstelut 1 Pergo-lamnaattlattan mukana tomtetaan kuvallset ohjeet. Alla olevssa tekstessä on seltykset kuvn. Ohjeet on jaettu kolmeen er osa-alueeseen, jotka ovat valmstelu, asennus ja svous. Suosttelemme,

Lisätiedot

Suurivaltaisin, Armollisin Keisari ja Suuriruhtinas!

Suurivaltaisin, Armollisin Keisari ja Suuriruhtinas! 1907. Edusk. Krj. Suomen Pankn vuosrahasääntö. Suomen Eduskunnan alamanen krjelmä uudesta Suomen Pankn vuosrahasäännöstä. Suurvaltasn, Armollsn Kesar ja Suurruhtnas! Suomen Eduskunnan pankkvaltuusmehet

Lisätiedot

AMMATTIMAISTA KIINTEISTÖPALVELUA JO 50 VUODEN AJAN

AMMATTIMAISTA KIINTEISTÖPALVELUA JO 50 VUODEN AJAN AMMATTIMAISTA KIINTEISTÖPALVELUA JO 50 VUODEN AJAN VUO-KIINTEISTÖPALVELUT 50 VUOTTA Vuosaarelaset asunto-osakeyhtöt perustvat vuonna 1965 Vuosaaren Isännötsjätomsto Oy:n, joka tuott omstajlleen kohtuuhntasa

Lisätiedot

Korkolasku ja diskonttaus, L6

Korkolasku ja diskonttaus, L6 Korkolasku ja diskonttaus, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti

Lisätiedot

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli Ssältö Kertausta: ykskertae lkeeteoreette mall M/M/-PS asakasta palvelja asakaspakkaa M/M/-PS asakasta palveljaa asakaspakkaa Sovellus elastse datalketee malltamsee vuotasolla M/M//k/k-PS k asakasta palvelja

Lisätiedot

FYSA220/2 (FYS222/2) VALON POLARISAATIO

FYSA220/2 (FYS222/2) VALON POLARISAATIO FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron

Lisätiedot

3.3 Hajontaluvuista. MAB5: Tunnusluvut

3.3 Hajontaluvuista. MAB5: Tunnusluvut MAB5: Tunnusluvut 3.3 Hajontaluvusta Esmerkk 7 Seuraavat kolme kuvaa osottavat, että jakaumlla vo olla sama keskarvo ja stä huolmatta ne vovat olla avan erlaset. Kakken kolmen keskarvo on 78,0! Frekvenss

Lisätiedot

SU/Vakuutusmatemaattinen yksikkö (5)

SU/Vakuutusmatemaattinen yksikkö (5) SU/Vakuutusmatemaattnen ykskkö 0..06 (5) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,

Lisätiedot

Mittaustulosten käsittely

Mittaustulosten käsittely Mttaustulosten kästtely Vrhettä ja epävarmuutta lmasevat kästteet Tostokoe ja satunnasten vrheden tlastollnen kästtely. Mttaustulosten jakaumaa kuvaavat tunnusluvut. Normaaljakauma 7. Tostokoe ja suurmman

Lisätiedot

Automaattinen 3D - mallinnus kalibroimattomilta kuvasekvensseiltä

Automaattinen 3D - mallinnus kalibroimattomilta kuvasekvensseiltä Maa-57.270 Fotogrammetran, kuvatulknnan ja kaukokartotuksen semnaar Automaattnen 3D - mallnnus kalbromattomlta kuvasekvensseltä Terh Ahola 2005 Ssällysluettelo 1 Johdanto...2 2 Perusteoraa...2 2.1 Kohteen

Lisätiedot

Nokian kaupunginkirjaston asiakaskysely 2010

Nokian kaupunginkirjaston asiakaskysely 2010 2011 2010 Nokan kaupungnkrjaston asakaskysely 2010 Nokan kaupungnkrjasto Päv Kar 2011 2 Ssältö Johdanto... 3 Kyselyn toteutus... 4 Vastaajat... 4 Mtä krjastoja käytät?... 6 Krjastojen aukoloajat... 7 Kunka

Lisätiedot

1, x < 0 tai x > 2a.

1, x < 0 tai x > 2a. PHYS-C020 Kvanttmekankka Laskuharotus 2, vkko 45 Tarkastellaan ptkn x-aksela lkkuvaa hukkasta, onka tlafunkto on (x, t) Ae x e!t, mssä A, a! ovat reaalsa a postvsa vakota a) Määrtä vako A sten, että tlafunkto

Lisätiedot

HASSEN-WEILIN LAUSE. Kertausta

HASSEN-WEILIN LAUSE. Kertausta HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten

Lisätiedot

Valtion hankintojen digitalisointi toteutusohjelma Työpaja ohjelmapäällikkö Seija Friman, VK

Valtion hankintojen digitalisointi toteutusohjelma Työpaja ohjelmapäällikkö Seija Friman, VK Valton hankntojen dgtalsont toteutusohjelma Työpaja 18.1.2018 15.1.2018 ohjelmapäällkkö Seja Frman, VK Ohjelman tlannekatsaus 12.12.2017-15.1.2018 Hallnnonalatlasuudet toteutettu. Jatkotomenpteet ja vastaukset

Lisätiedot

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28 Jyväskylän Aattkorkeakoulu, IT-nsttuutt IIF00 Sovellettu fyskka, Syksy 005, 4.5 ETS Opettaja Pas epo alln lö Laatja - Pas Vähäartt Vuoskurss - IST4SE Tekopävä 005-9-4 Palautuspävä 005-9-8 8.9.005 /7 LABOATOIOTYÖ

Lisätiedot

7. Keko. Tarkastellaan vielä yhtä tapaa toteuttaa sivulla 162 määritelty tietotyyppi joukko

7. Keko. Tarkastellaan vielä yhtä tapaa toteuttaa sivulla 162 määritelty tietotyyppi joukko 7. Keko Tarkastellaan velä yhtä tapaa toteuttaa svulla 6 määrtelty tetotyypp joukko Tällä kertaa emme kutenkaan toteuta normaala operaatovalkomaa, vaan olemme knnostuneta anoastaan kolmesta operaatosta:

Lisätiedot

OPASTESUUNNITELMA. Euroopan unioni Euroopan aluekehitysrahasto maaseuturahasto

OPASTESUUNNITELMA. Euroopan unioni Euroopan aluekehitysrahasto maaseuturahasto OPASTESUUNNITELMA Euroopan unon Euroopan aluekehtysrahasto maaseuturahasto opasteohjesto Pääopasteet Tenvarsopasteen mall Yleset peraatteet Opasteden värenä käytetään mahdollsuuksen mukaan graafsen ohjeston

Lisätiedot

Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon

Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon Taustaa Sekventaalnen vakutuskaavo Sekventaalnen päätöskaavo on 1995 ovalun ja Olven esttämä menetelmä päätösongelmen mallntamseen, fomulontn ja atkasemseen. Päätöspuun omnasuukssta Hyvää: Esttää eksplsttsest

Lisätiedot

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto Ohelmen analsont Ohelmen kuvaamnen kaavolla ohelmen mmärtämnen kaavoden avulla kaavoden tuottamnen ohelmasta Erlasa kaavotppeä: ER-kaavot, tlakaavot, UML-kaavot tetohakemsto vuokaavot (tarkemmn) Vuoanals

Lisätiedot

Epälineaaristen pienimmän neliösumman tehtävien ratkaiseminen numeerisilla optimointimenetelmillä (valmiin työn esittely)

Epälineaaristen pienimmän neliösumman tehtävien ratkaiseminen numeerisilla optimointimenetelmillä (valmiin työn esittely) Epälneaarsten penmmän nelösumman tehtäven ratkasemnen numeerslla optmontmenetelmllä valmn työn esttely Lar Pelkola 9.9.014 Ohjaaja/valvoja: Prof. Harr Ehtamo yön saa tallentaa ja julkstaa Aalto-ylopston

Lisätiedot

Geneettiset algoritmit ja luonnossa tapahtuva mikroevoluutio

Geneettiset algoritmit ja luonnossa tapahtuva mikroevoluutio Mat-2.108 Sovelletun matematkan erkostyöt Geneettset algortmt ja luonnossa tapahtuva mkroevoluuto 11.5.2005 Teknllnen korkeakoulu Systeemanalyysn laboratoro Oll Stenlund 47068f 1 Johdanto 3 2 Geneettset

Lisätiedot

PUTKIKELLON SUUNNITTELU 1 JOHDANTO 2 VÄRÄHTELEVÄN PALKIN TEORIAA. dm Q dx = (1) Matti A Ranta

PUTKIKELLON SUUNNITTELU 1 JOHDANTO 2 VÄRÄHTELEVÄN PALKIN TEORIAA. dm Q dx = (1) Matti A Ranta Matt A Aaltoylopsto Perusteteden korkeakoulu Matematkan ja systeemanalyysn latos PL 1100, 02015 Espoo matt.ranta@tkk.f 1 JOHDANTO Putkkellot kuuluvat lyömäsotnten ryhmään. Putkkellot koostuvat erptussta

Lisätiedot

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4 TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun

Lisätiedot

Pyörimisliike. Haarto & Karhunen.

Pyörimisliike. Haarto & Karhunen. Pyörmslke Haarto & Karhunen www.turkuamk.f Pyörmslke Lttyy jäykän kappaleen pyörmseen akselnsa ympär Pyörmsenerga on pyörmsakseln A ympär pyörvän kappaleen osasten lke-energoden summa E r Ek mv mr mr www.turkuamk.f

Lisätiedot

b g / / / / H G I K J =. S Fysiikka (ES) Tentti

b g / / / / H G I K J =. S Fysiikka (ES) Tentti S4.35 Fyskka (ES) Tntt 4.9. 3 6. Sälö, jonka tlavuus on,5 m, ssältää haa, jonka an on,5 Pa ja lämötla C. (a) Montako moola haa sälössä on? (b) Montako klogrammaa? (c) Mtn an muuttuu, jos lämötla kasvaa

Lisätiedot

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0.

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0. BM20A5800 - Funktot, lneaaralgebra, vektort Tentt, 26.0.206. (a) Krjota yhtälöryhmä x + 2x 3 = a 2x + x 2 + 5x 3 = b x x 2 + x 3 = c matrsmuodossa Ax = b ja ratkase x snä erkostapauksessa kun b = 0. Mllä

Lisätiedot

Kuorielementti hum

Kuorielementti hum Kuorelementt hum.. ämä estys e kuulu kurssvaatmuksn, vaan se on tarkottu asasta knnostunelle. arkastellaan tässä yhteydessä eaarsta -solmusta AIZ (Ahmad, Irons ja Zenkewcz, 970) kuorelementtä, jonka knematkka

Lisätiedot

on määritelty tarkemmin kohdassa 2.3 ja pi kohdassa 2.2.

on määritelty tarkemmin kohdassa 2.3 ja pi kohdassa 2.2. SU/Vakuutusmatemaattnen ykskkö 7.8.08 (7) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,

Lisätiedot