Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat:

Koko: px
Aloita esitys sivulta:

Download "Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat:"

Transkriptio

1 Mat-1.60 Sovellettu todeäkösyyslasketa Mat-1.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Otos ja otosjakaumat Avasaat: Artmeette keskarvo, Beroull-jakauma, Beroull-koe, χ -jakauma, Frekvess, Frekvessjakauma, Keskee raja-arvolause, Normaaljakauma, Odotusarvo, Otos, Otoshajota, Otosjakauma, Otoskoko, Otosvarass, Rppumattomuus, Stadardotu ormaaljakauma, Suhteelle frekvess, Suhteelle osuus, Todeäkösyys, Ykskertae satuasotos, Varass Otos ja otosjakaumat Ykskertae satuasotos Olkoo X 1, X,, X ykskertae satuasotos jakaumasta, joka pstetodeäkösyys- ta theysfukto o f(x). Tällö havaot X 1, X,, X ovat rppumattoma, dettsest jakautueta satuasmuuttuja, jolla o sama pstetodeäkösyys- ta theysfukto f(x): X1, X,, X X f( x), = 1,,, Otostuusluku Olkoo X 1, X,, X ykskertae satuasotos jakaumasta, joka pstetodeäkösyys- ta theysfukto o f(x). Olkoo T = g(x 1, X,, X ) jok satuasmuuttuje X 1, X,, X (mtalle) fukto. Satuasmuuttujaa T kutsutaa (otos-) tuusluvuks. Oletetaa, että otokse pommse jälkee satuasmuuttujat X 1, X,, X saavat havatuks arvoksee havatoarvot x 1, x,, x : X 1 = x 1, X = x,, X = x Tällö tuusluku T = g(x 1, X,, X ) saa havatuks arvoksee t fukto g arvo psteessä (x 1, x,, x ): t = g(x 1, x,, x ) Ilkka Mell (006) 1/1

2 Mat-1.60 Sovellettu todeäkösyyslasketa Otosjakauma Oletetaa, että havaot X 1, X,, X muodostavat ykskertase satuasotokse jakaumasta f(x) ja olkoo T = g(x 1, X,, X ) jok otostuusluku. Koska tuusluku T o satuasmuuttuja, sllä o todeäkösyysjakauma, jota kutsutaa tuusluvu T otosjakaumaks. Tuusluvu T otosjakauma muodostaa tlastollse mall el todeäkösyysmall tuusluvu T arvoje satuasvahtelulle otoksesta tosee. Ilkka Mell (006) /

3 Mat-1.60 Sovellettu todeäkösyyslasketa Artmeettse keskarvo ja otosvarass otosjakaumat Artmeette keskarvo ja otosvarass Oletetaa, että havaot X 1, X,, X muodostavat ykskertase satuasotokse jakaumasta, joka odotusarvo o µ ja varass o σ. Tällö havaot X 1, X,, X ovat rppumattoma satuasmuuttuja, jolla kaklla o sama odotusarvo ja varass: X 1, X,, X E(X ) = µ, = 1,,, Var(X ) = D (X ) = σ, = 1,,, Otokse omasuuksa vodaa kuvata havatoarvoje artmeettsella keskarvolla ja varasslla. Määrtellää havatoje X 1, X,, X artmeette keskarvo kaavalla X 1 X = 1 = Määrtellää havatoje X 1, X,, X otosvarass kaavalla 1 s = ( X X) 1 = 1 Huomaa, että sekä artmeette keskarvo X että otosvarass s ovat havatoje X 1, X,, X fuktoa satuasmuuttuja, jode saamat arvot vahtelevat satuasest otoksesta tosee. Artmeettse keskarvo odotusarvo ja varass Havatoje X 1, X,, X artmeettsella keskarvolla X o em. oletuste pätessä seuraava odotusarvo ja varass: E( X ) = µ σ = = Var( X) D ( X) Huomaa, että havatoje X 1, X,, X artmeettse keskarvo X varass otoksessa o aa peemp ku havatoje varass, jos otoskoko > 1. Lsäks artmeettse keskarvo varass X peeee, jos otoskoo aetaa kasvaa. Artmeettse keskarvo X stadardpokkeamaa D( X ) = σ kutsutaa tavallsest keskarvo keskvrheeks ja se kuvaa artmeettse keskarvo otosvahtelua oma odotusarvosa µ ympärllä. Ilkka Mell (006) 3/3

4 Mat-1.60 Sovellettu todeäkösyyslasketa Otosvarass odotusarvo Havatoje X 1, X,, X otosvarasslla s o em. oletuste pätessä seuraava odotusarvo: E(s ) = σ Artmeettse keskarvo otosjakauma Oletetaa, että havaot X 1, X,, X muodostavat ykskertase satuasotokse ormaaljakaumasta N(µ,σ ). Tällö havaot X 1, X,, X ovat rppumattoma satuasmuuttuja, jotka oudattavat samaa ormaaljakaumaa N(µ,σ ): X 1, X,, X X ~ N(µ,σ ), = 1,,, Havatoje X 1, X,, X artmeette keskarvo X oudattaa em. oletuste pätessä ormaaljakaumaa parametre µ ja σ / : Ertysest σ X N µ, E( X ) = µ σ = = Var( X) D ( X) mkä pätee myös lma ormaalsuusoletusta. Artmeettse keskarvo approksmatve otosjakauma Oletetaa, että havaot X 1, X,, X muodostavat ykskertase satuasotokse jakaumasta, joka odotusarvo o µ ja varass o σ. Tällö keskesestä raja-arvolauseesta seuraa, että havatoje artmeette keskarvo X oudattaa suurssa otoksssa approksmatvsest (asymptoottsest) ormaaljakaumaa parametre µ ja σ / : X a σ N µ, Ilkka Mell (006) 4/4

5 Mat-1.60 Sovellettu todeäkösyyslasketa Otosvarass otosjakauma Oletetaa, että havaot X 1, X,, X muodostavat ykskertase satuasotokse ormaaljakaumasta N(µ,σ ). Tällö havaot X 1, X,, X ovat rppumattoma satuasmuuttuja, jotka oudattavat samaa ormaaljakaumaa N(µ,σ ): X 1, X,, X X ~ N(µ,σ ), = 1,,, Olkoo s havatoje X 1, X,, X otosvarass. Satuasmuuttuja ( 1)s /σ oudattaa em. oletuste pätessä χ -jakaumaa vapausaste ( 1): ( 1) s χ ( 1) σ Lsäks vodaa osottaa, että artmeette keskarvo X ja otosvarass s ovat satuasmuuttuja rppumattoma: X s Ste suoraa Studet t-jakauma määrtelmä mukaa X µ t = t( 1) s/ em. oletuste pätessä. Ilkka Mell (006) 5/5

6 Mat-1.60 Sovellettu todeäkösyyslasketa Suhteellse frekvess otosjakauma Frekvess ja suhteelle frekvess Olkoo A S jok otosavaruude S tapahtuma ja olkoo p = Pr(A) q = 1 Pr(A) = 1 p Pomtaa otosavaruudesta S ykskertae satuasotos, joka koko o. Olkoo f A-tyyppste alkode frekvess el lukumäärä otoksessa ja f pˆ = vastaava suhteelle frekvess el osuus. Huomaa, että sekä frekvess f että suhteelle frekvess pˆ = f / ovat satuasmuuttuja, jode saamat arvot vahtelevat satuasest otoksesta tosee. Frekvess odotusarvo, varass ja otosjakauma Frekvess f odotusarvo ja varass: E( f) = p Var( f ) = D ( f ) = pq jossa q = 1 p. Frekvess f oudattaa otoksessa bomjakaumaa parametre ja Pr(A) = p: f B(, p) Suhteellse frekvess odotusarvo ja varass Suhteellse frekvess pˆ = f / odotusarvo ja varass: E( pˆ ) = p pˆ pq = pˆ = Var( ) D ( ) jossa q = 1 p. Huomaa, että suhteellse frekvess ˆp varass peeee, jos otoskoo aetaa kasvaa. Suhteellse frekvess pˆ = f / stadardpokkeamaa D( pˆ ) = pq kutsutaa tavallsest suhteellse frekvess keskvrheeks ja se kuvaa suhteellse frekvess otosvahtelua oma odotusarvosa p ympärllä. Ilkka Mell (006) 6/6

7 Mat-1.60 Sovellettu todeäkösyyslasketa Suhteellse frekvess otosjakauma Keskesestä raja-arvolauseesta seuraa, että suhteelle frekvess ˆp otoksessa oudattaa em. oletuste pätessä suurssa otoksssa approksmatvsest ormaaljakaumaa: p pq ˆ a N p, Ilkka Mell (006) 7/7

8 Mat-1.60 Sovellettu todeäkösyyslasketa Tehtävä 8.1. (a) (b) Koe valmstaa kuulalaaker kuula, jode halkasjat vahtelevat satuasest oudattae ormaaljakaumaa parametre µ = 10 mm, σ = 0.01 mm Pomtaa kuule joukosta ykskertae satuasotos, joka koko = 10. Olkoot X ja s kuule halkasjode artmeette keskarvo ja otosvarass otoksessa. Mtkä ovat artmeettse keskarvo X ja otosvarass s muuokse ( 1)s /σ jakaumat otoksessa? Ääestäjstä 5 % kaattaa puoluetta ABC. Pomtaa ääestäje joukosta ykskertae satuasotos, joka koko = Mkä o puoluee ABC kaattaje suhteellse osuude f/ approksmatve jakauma otoksessa? Tehtävä 8.1. Mtä opmme? Tehtävä (a)-kohdassa tarkastellaa artmeettse keskarvo ja otosvarass otosjakauma. Tehtävä (b)-kohdassa tarkastellaa suhteellse osuude (approksmatvsta) otosjakaumaa. Tehtävä 8.1. Ratkasu: (a) Oletukse mukaa havaot X 1, X,, X muodostavat ykskertase satuasotokse ormaaljakaumasta N(µ,σ ), jossa = 10 µ = 10 mm σ = 0.01 mm = mm Ste kuule halkasjode artmeette keskarvo X oudattaa otoksessa ormaaljakaumaa N(µ,σ /), jossa µ = E( X ) = 10 mm σ = Var( X) = D ( X) = = mm 10 Olkoo s kuule halkasjode varass otoksessa. Tällö satuasmuuttuja ( 1)s /σ oudattaa otoksessa χ -jakaumaa vapausaste 1 = 10 1 = 9 Ilkka Mell (006) 8/8

9 Mat-1.60 Sovellettu todeäkösyyslasketa (b) Olkoo A = satuasest valttu ääestäjä kaattaa puoluetta ABC Oletukse mukaa Pr(A) = p = 0.5 Pomtaa ääestäje joukosta ykskertae satuasotos, joka koko o = Puoluetta ABC kaattave ääestäje suhteelle frekvess pˆ = f / otoksessa oudattaa suurssa otoksssa approksmatvsest ormaaljakaumaa: p pq ˆ a N p, jossa ss p = Pr(A) = 0.5 q = Pr(A c ) = 1 Pr(A) = 1 p = 0.75 Ste puoluee ABC kaattaje suhteelle frekvess pˆ = f / otoksessa oudattaa suurssa otoksssa approksmatvsest ormaaljakaumaa parametre E( pˆ ) = p = 0.5 ˆ ˆ pq Var( p) = D ( p) = = = = Ilkka Mell (006) 9/9

10 Mat-1.60 Sovellettu todeäkösyyslasketa Tehtävä 8.. (a) (b) Meste ptuus eräässä maassa vahtelee satuasest oudattae ormaaljakaumaa parametre µ = 180 cm, σ = 5 cm Pomtaa meste joukosta ykskertae satuasotos, joka koko = 100. Olkoot X ja s ptuukse artmeette keskarvo ja otosvarass otoksessa. Mtkä ovat artmeettse keskarvo X ja otosvarass s muuokse ( 1)s /σ jakaumat otoksessa? Koee valmstamsta mutteresta 5 % o vallsa. Pomtaa mutterede joukosta ykskertae satuasotos, joka koko = 100. Mkä o vallste mutterede suhteellse osuude f/ approksmatve jakauma otoksessa? Tehtävä 8.. Mtä opmme? Tehtävä (a)-kohdassa tarkastellaa artmeettse keskarvo ja otosvarass otosjakauma. Tehtävä (b)-kohdassa tarkastellaa suhteellse osuude (approksmatvsta) otosjakaumaa. Tehtävä 8.. Ratkasu: (a) Oletukse mukaa havaot X 1, X,, X muodostavat ykskertase satuasotokse ormaaljakaumasta N(µ,σ ), jossa = 100 µ = 185 cm σ = 5 cm = 5 cm Ste meste ptuukse artmeette keskarvo X oudattaa otoksessa ormaaljakaumaa N(µ, σ /), jossa µ = E( X ) = 185 cm σ 5 = Var( X) = D ( X) = = 0.5 cm 100 Olkoo s meste ptuukse varass otoksessa. Tällö satuasmuuttuja ( 1)s /σ oudattaa otoksessa χ -jakaumaa vapausaste 1 = = 99 Ilkka Mell (006) 10/10

11 Mat-1.60 Sovellettu todeäkösyyslasketa (b) Olkoo A = satuasest valttu mutter o valle Oletukse mukaa Pr(A) = p = 0.05 Pomtaa muuterede joukosta ykskertae satuasotos, joka koko o = 100. Vallste mutterede suhteelle frekvess pˆ = f / otoksessa oudattaa suurssa otoksssa approksmatvsest ormaaljakaumaa: p pq ˆ a N p, jossa ss p = Pr(A) = 0.05 q = Pr(A c ) = 1 Pr(A) = 1 p = 0.95 Ste vallste mutterede suhteelle frekvess pˆ = f / otoksessa oudattaa suurssa otoksssa approksmatvsest ormaaljakaumaa parametre E( pˆ ) = p = 0.05 kasvaa. ˆ ˆ pq Var( p) = D ( p) = = = = Ilkka Mell (006) 11/11

12 Mat-1.60 Sovellettu todeäkösyyslasketa Huomautuksa tehtäv 8.1. ja 8..: (1) Tehtäve 8.1. ja 8.. deaa o kertoa stä, mllasa ovat tavaomaste havaosta laskettave otostuuslukuje jakaumat perusjoukossa, jos havatoje jakauma perusjoukossa tuetaa. () Otostuuslukuje jakauma koskevat tulokset ovat kutek epäoperatoaalsa, koska jakaume parametreja e yleesä tueta. (3) Jos havatoje jakauma parametreja e tueta, e vodaa pyrkä estmomaa el arvomaa otoksesta saatuje tetoje perusteella; ks. lukua Tlastollste malle parametre estmot. (4) Perusjouko parametre arvosta tehtyjä oletuksa vodaa pyrkä testaamaa tlastollsest otoksesta saatuje tetoje perusteella; ks. lukua Tlastollste hypoteese testaus. (5) Myös perusjouko jakauma tyyppä koskeva oletuksa vodaa pyrkä testaamaa tlastollsest otoksesta saatuje tetoje perusteella; ks. lukua Yhteesopvuude, homogeesuude ja rppumattomuude testaame. Ilkka Mell (006) 1/1

13 Mat-1.60 Sovellettu todeäkösyyslasketa Tehtävä 8.3. Olkoot X, = 1,,, rppumattoma ormaaljakautueta satuasmuuttuja, jode odotusarvo E(X ) = µ ja varass Var(X ) = σ. Tarkastellaa seuraava todeäkösyyksä: (1) Pr(X > µ + σ) () Pr(X 1 + X + + X > (µ + σ)) (3) Pr( X > µ + σ) Tehtävät: (a) Määrää todeäkösyys (1). (b) Todsta, että todeäkösyys () o peemp ku todeäkösyys (1), jos >1. (c) Todsta, että todeäkösyys () peeee, ku +. (d) Todsta, että todeäkösyys (3) o sama ku todeäkösyys (). (e) Määrää todeäkösyys (), ku = 10. Tehtävä 8.3. Mtä opmme? Tehtävässä tarkastellaa rppumattoma satuasmuuttuja, jotka oudattavat samaa ormaaljakaumaa ja vertallaa yksttäse muuttuja, muuttuje summa ja muuttuje artmeettse keskarvo jakauma. Tehtävä 8.3. Ratkasu: Oletukse mukaa X1, X,, X X N( µσ, ), = 1,,, (a) Helpost ähdää, että X µ Pr( X > µ + σ) = Pr > 1= Pr( Z > 1) σ jossa stadardotu satuasmuuttuja Z = µ σ X oudattaa stadardotua ormaaljakaumaa: Z N(0,1) Ilkka Mell (006) 13/13

14 Mat-1.60 Sovellettu todeäkösyyslasketa Normaaljakauma taulukode mukaa Pr( Z 1) = jote komplemetttapahtuma todeäkösyyde kaava mukaa kysytty todeäkösyys o Pr( Z > 1) = 1 Pr( Z 1) = (b)&(c) Olkoo Tällö Y = X = 1 E(Y) = µ Koska satuasmuuttujat X, = 1,,, o lsäks oletettu rppumattomks, Var(Y) = σ Ste kaklle > 1 pätee Pr( ( )) Pr Y µ Y > µ + σ = > = Pr( Z > ) < Pr( Z > 1) σ jossa stadardotu satuasmuuttuja X µ Z = σ oudattaa stadardotua ormaaljakaumaa: Z N(0,1) Todeäkösyydet Pr( Z > ) muodostavat adost väheevä lukujoo, jos + (d) Tulos o trvaalst sama ku kohdassa (c), koska Pr( X > µ + σ ) = Pr( Y > ( µ + σ )) Ilkka Mell (006) 14/14

15 Mat-1.60 Sovellettu todeäkösyyslasketa (e) Jos = 10, (c)-kohdasta seuraa, että Pr( X1+ X + + X > ( µ + σ )) = Pr( X + X + + X > 10( µ + σ )) 1 10 = Pr( Z > 10) = Pr( Z > 3.16) jossa stadardotu satuasmuuttuja X µ X 10µ Z = = σ σ 10 oudattaa stadardotua ormaaljakaumaa: Z N(0,1) Normaaljakauma taulukode mukaa Pr( Z 3.16) = jote komplemetttapahtuma todeäkösyyde kaava mukaa kysytty todeäkösyys o Pr( Z > 3.16) = 1 Pr( Z 3.16) = Ilkka Mell (006) 15/15

16 Mat-1.60 Sovellettu todeäkösyyslasketa Tehtävä 8.4. Oletetaa, että havaot X, = 1,,, 100 muodostavat ykskertase satuasotokse ormaaljakaumasta N(1,4). Määrää todeäkösyys, että havatoje artmeette keskarvo X saa suurempa arvoja ku 1.1. Tehtävä 8.4. Mtä opmme? Tehtävässä tarkastellaa artmeettse keskarvo otosjakaumaa. Tehtävä 8.4. Ratkasu: Oletetaa, että havaot X, = 1,,, 100 muodostavat ykskertase satuasotokse ormaaljakaumasta N(µ,σ ), jossa µ = 1 σ = 4 Olkoo havatoje X, = 1,,, 100 artmeette keskarvo X = X = X = = 1 Oletukssta seuraa, että satuasmuuttuja X oudattaa ormaaljakaumaa parametre µ ja σ / : jossa ss σ X N µ, µ = 1 σ 4 1 = = = Tehtävää o määrätä todeäkösyys Pr( X > 1.1) Ilkka Mell (006) 16/16

17 Mat-1.60 Sovellettu todeäkösyyslasketa Selväst X µ 1.1 µ Pr( X > 1.1) = Pr > σ / σ / = Pr Z > / 100 = Pr > 0.5 ( Z ) jossa stadardotu satuasmuuttuja X µ Z = σ / oudattaa stadardotua ormaaljakaumaa: Z N(0,1) Normaaljakauma taulukode mukaa Pr(Z 0.5) = jote komplemetttapahtuma todeäkösyyde kaava mukaa kysytty todeäkösyys o Pr( X > 1.1) = Pr( Z > 0.5) = 1 Pr( Z 0.5) = = Ilkka Mell (006) 17/17

18 Mat-1.60 Sovellettu todeäkösyyslasketa Tehtävä 8.5. Oletetaa, että suomalaste meste ptuus o ormaaljakautuut parametre µ = 175 cm ja σ = 5 cm. Pomtaa meste joukosta ykskertae satuasotos, joka koko o 100. Määrää lukuarvo, jota suurempa arvoja havatoje artmeette keskarvoa saa todeäkösyydellä Tehtävä 8.5. Mtä opmme? Tehtävässä tarkastellaa artmeettse keskarvo otosjakaumaa. Tehtävä 8.5. Ratkasu: Oletetaa, että havaot X, = 1,,, 100 muodostavat ykskertase satuasotokse ormaaljakaumasta N(µ,σ ), jossa µ = 175 σ = 5 Olkoo havatoje X, = 1,,, 100 artmeette keskarvo X = X = X = = 1 Oletukssta seuraa, että satuasmuuttuja X oudattaa ormaaljakaumaa parametre µ ja σ / : jossa ss σ X N µ, µ = 175 σ 5 1 = = = Tehtävää o määrätä lukuarvo, jota suurempa arvoja havatoje artmeette keskarvo X saa todeäkösyydellä Koska σ X N µ, stadardotu satuasmuuttuja X µ Z = σ / oudattaa stadardotua ormaaljakaumaa: Z N(0,1) Ilkka Mell (006) 18/18

19 Mat-1.60 Sovellettu todeäkösyyslasketa Normaaljakauma taulukosta äemme, että Pr(Z.33) = Komplemetttapahtuma todeäkösyyde kaava mukaa Pr(Z >.33) = 1 Pr(Z.33) = 0.01 Saamme ste epäyhtälö X µ Z = >.33 σ / josta artmeettselle keskarvolle saadaa ehto σ 5 X > µ +.33 = = Ste Pr( X ) = 0.01 Ilkka Mell (006) 19/19

20 Mat-1.60 Sovellettu todeäkösyyslasketa Tehtävä 8.6. Oletetaa, että havaot X, = 1,,, 101 muodostavat ykskertase satuasotokse ormaaljakaumasta N(1,4). Määrää lukuarvo, jota peempä arvoja havatoje otosvarass saa todeäkösyydellä Tehtävä 8.6. Mtä opmme? Tehtävässä tarkastellaa otosvarass otosjakaumaa. Tehtävä 8.6. Ratkasu: Oletetaa, että havaot X, = 1,,, 101 muodostavat ykskertase satuasotokse ormaaljakaumasta N(µ,σ ), jossa µ = 1 σ = 4 Olkoo havatoje X, = 1,,, 101 artmeette keskarvo X = X = X = = 1 ja otosvarass s 1 X X 1 X X 101 = ( ) = ( ) 1 = = 1 Oletukssta seuraa, että satuasmuuttuja jossa ( 1) s V = σ σ = 4 = 101 oudattaa χ -jakaumaa vapausaste ( 1): V χ (100) Tehtävää o määrätä lukuarvo, joka erottaa χ -jakauma vasemmalle häälle todeäkösyysmassa, joka koko o χ -jakauma taulukosta ähdää suoraa, että ku Pr(V ) = 0.01 V χ (100) Ilkka Mell (006) 0/0

21 Mat-1.60 Sovellettu todeäkösyyslasketa Koska ( 1) s 100s V = = = 5s σ 4 saamme epäyhtälö 5s josta otosvarasslle s saadaa ehto Ste s.803 Pr( s.803) = 0.01 Ilkka Mell (006) 1/1

22 Mat-1.60 Sovellettu todeäkösyyslasketa Tehtävä 8.7. Oletetaa, että suomalaste meste ptuus o ormaaljakautuut parametre µ = 175 cm ja σ = 5 cm. Pomtaa meste joukosta ykskertae satuasotos, joka koko o 101. Määrää lukuarvo, jota suurempa arvoja otosvarass saa todeäkösyydellä Tehtävä 8.7. Mtä opmme? Tehtävässä tarkastellaa otosvarass otosjakaumaa. Tehtävä 8.7. Ratkasu: Oletetaa, että havaot X, = 1,,, 101 muodostavat ykskertase satuasotokse ormaaljakaumasta N(µ,σ ), jossa µ = 175 σ = 5 Olkoo havatoje X, = 1,,, 101 artmeette keskarvo X = X = X = = 1 ja otosvarass s 1 X X 1 X X 101 = ( ) = ( ) 1 = = 1 Oletukssta seuraa, että satuasmuuttuja jossa ( 1) s V = σ σ = 5 = 101 oudattaa χ -jakaumaa vapausaste ( 1): V χ (100) Tehtävää o määrätä lukuarvo, joka erottaa χ -jakauma okealle häälle todeäkösyysmassa, joka koko o 0.01: χ -jakauma taulukosta ähdää suoraa, että ku Pr(V ) = 0.01 V χ (100) Ilkka Mell (006) /

23 Mat-1.60 Sovellettu todeäkösyyslasketa Koska ( 1) s 100s V = = = 4s σ 5 saamme epäyhtälö 4s josta otosvarasslle s saadaa ehto Ste s Pr( s ) = 0.01 Ilkka Mell (006) 3/3

24 Mat-1.60 Sovellettu todeäkösyyslasketa Tehtävä 8.8. Oletetetaa, että teemme 100 tosstaa rppumatota Beroull-koetta, jossa kostukse kohteea oleva tapahtuma A todeäkösyys o 0.. Määrää todeäkösyys, että tapahtuma A suhteelle frekvess tostoje joukossa o suuremp ku 10. Tehtävä 8.8. Mtä opmme? Tehtävässä tarkastellaa suhteellse frekvess (approksmatvsta) otosjakaumaa. Tehtävä 8.8. Ratkasu: Olkoo f = tapahtuma A frekvess tostoje joukossa f pˆ = = tapahtume A suhteelle frekvess tostoje joukossa = tostoje lukumäärä Koska tostoje lukumäärä = 100 o melko suur, vomme melko hyv approksmoda suhteellse frekvess ˆp otatajakaumaa ormaaljakaumalla: jossa p pq ˆ a N p, p = 0. q = 1 p = 0.8 = 100 Ste stadardotu satuasmuuttuja pˆ p Z = pq/ oudattaa approksmatvsest stadardotua ormaaljakaumaa: Z a N(0,1) Koska 10 1 = = tehtävää o määrätä todeäkösyys Pr ( p ˆ > 0.1) Ilkka Mell (006) 4/4

25 Mat-1.60 Sovellettu todeäkösyyslasketa Selväst pˆ p 0.1 p Pr( pˆ > 0.1) = Pr > pq/ pq/ = PrZ > /100 = Pr >.5 ( Z ) jossa stadardotu satuasmuuttuja pˆ p Z = pq/ oudattaa approksmatvsest stadardotua ormaaljakaumaa: Z a N(0,1) Normaaljakauma taulukode mukaa Pr(Z.5) = jote komplemetttapahtuma todeäkösyyde kaava mukaa kysytty todeäkösyys o Pr( pˆ > 0.1) = Pr( Z >.5) = 1 Pr( Z.5) = = Ilkka Mell (006) 5/5

26 Mat-1.60 Sovellettu todeäkösyyslasketa Tehtävä 8.9. Oletetaa, että 30 % suomalassta kaattaa NATO:o lttymstä. Pomtaa suomalaste joukosta ykskertae satuasotos, joka koko o 100. Määrää todeäkösyys, että NATO: kaattaje suhteelle osuus otoksessa o peemp ku 0 %. Tehtävä 8.9. Mtä opmme? Tehtävässä tarkastellaa suhteellse frekvess (approksmatvsta) otosjakaumaa. Tehtävä 8.9. Ratkasu: Olkoo f = NATO: kaattaje frekvess otoksessa f pˆ = = NATO: kaattaje suhteelle frekvess otoksessa = otoskoko Koska otoskoko = 100 o melko suur, vomme melko hyv approksmoda suhteellse frekvess ˆp otosjakaumaa ormaaljakaumalla: jossa p pq ˆ a N p, p = 0.3 q = 1 p = 0.7 = 100 Ste stadardotu satuasmuuttuja pˆ p Z = pq/ oudattaa approksmatvsest stadardotua ormaaljakaumaa: Z a N(0,1) Tehtävää o määrätä todeäkösyys Pr ( p ˆ < 0.0) Ilkka Mell (006) 6/6

27 Mat-1.60 Sovellettu todeäkösyyslasketa Selväst pˆ p 0.0 p Pr( pˆ < 0.0) = Pr < pq/ pq/ = PrZ < /100 = Pr <.18 ( Z ) jossa stadardotu satuasmuuttuja pˆ p Z = pq/ oudattaa approksmatvsest stadardotua ormaaljakaumaa: Z a N(0,1) Normaaljakauma taulukode mukaa kysytty todeäkösyys o Pr(Z.18) = Ilkka Mell (006) 7/7

1.4. Aritmeettisen keskiarvon otosjakauma: Suurten otosten tuloksia

1.4. Aritmeettisen keskiarvon otosjakauma: Suurten otosten tuloksia Tlastolle päättely. Otosjakaumat Tlastolle päättely. Otosjakaumat.. Otos, otostuusluvut ja de otosjakaumat Arvota, Havato, Havatoarvo, Otos, Otosjakauma, Otostuusluku, Rppumattomuus, Satuasmuuttuja, Satuasotos,

Lisätiedot

1.2. Aritmeettisen keskiarvon ja otosvarianssin otosjakaumat: Odotusarvot ja varianssit

1.2. Aritmeettisen keskiarvon ja otosvarianssin otosjakaumat: Odotusarvot ja varianssit Tlastolle päättely. Otosjakaumat Tlastolle päättely. Otosjakaumat.. Otos, otostuusluvut ja de otosjakaumat Arvota, Havato, Havatoarvo, Otos, Otosjakauma, Otostuusluku, Rppumattomuus, Satuasmuuttuja, Satuasotos,

Lisätiedot

2-suuntainen vaihtoehtoinen hypoteesi

2-suuntainen vaihtoehtoinen hypoteesi Mat-.6 Sovellettu todeäkösyyslasketa. harjotukset Mat-.6 Sovellettu todeäkösyyslasketa B. harjotukset / Ratkasut Aheet: Tlastollset testt Avasaat: Artmeette keskarvo, Beroull-jakauma, F-jakauma, F-test,

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 5 Aiheet: Tilastolliset testit Avainsanat:

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 5 Aiheet: Tilastolliset testit Avainsanat: MS-A5 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 5 MS-A5 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 5 Aheet: Tlastollset testt Avasaat: Artmeette keskarvo Beroull-jakauma

Lisätiedot

Tilastolliset menetelmät: Otokset, otosjakaumat ja estimointi. 4. Otokset ja otosjakaumat 5. Estimointi 6. Estimointimenetelmät 7.

Tilastolliset menetelmät: Otokset, otosjakaumat ja estimointi. 4. Otokset ja otosjakaumat 5. Estimointi 6. Estimointimenetelmät 7. Tlastollset meetelmät Otokset, otosjakaumat ja estmot Tlastollset meetelmät: Otokset, otosjakaumat ja estmot 4. Otokset ja otosjakaumat 5. Estmot 6. Estmotmeetelmät 7. Välestmot Ilkka Mell 5 Tlastollset

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemaalyys laboratoro Mat-.9 Sovellettu todeäkösyyslasku A Nordlud Harjotus 8 (vko 45/3) (Ahe: Raja-arvolauseta, otostuuslukuja, johdatusta estmot, Lae luvut 9.5,.-.6). Olkoo X ~ p(λ), mssä λ

Lisätiedot

Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet: Mitä opimme?

Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet: Mitä opimme? TKK (c) Ilkka Mell (004) Kovergesskästteet ja raja-arvolauseet Kovergesskästtetä Suurte lukuje lat Keskee raja-arvolause Keskese raja-arvolausee seurauksa Johdatus todeäkösyyslasketaa Kovergesskästteet

Lisätiedot

Mat Sovellettu todennäköisyyslaskenta B 9. harjoitukset / Ratkaisut Aiheet: Estimointi Estimointimenetelmät Väliestimointi Avainsanat:

Mat Sovellettu todennäköisyyslaskenta B 9. harjoitukset / Ratkaisut Aiheet: Estimointi Estimointimenetelmät Väliestimointi Avainsanat: Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Estmot Estmotmeetelmät Välestmot Avasaat: Artmeette keskarvo, Beroull-jakauma, Beroull-koe, Estmaatt, Estmaattor,

Lisätiedot

Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat:

Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat: Mt-1.60 Sovellettu todeäkösyyslsket 8. hrjotukset Mt-1.60 Sovellettu todeäkösyyslsket B 8. hrjotukset / Rtksut Aheet: Otos j otosjkumt Avst: Artmeette keskrvo, Beroull-jkum, Beroull-koe, χ -jkum, Frekvess,

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 4

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 4 MS-A Todeäkösyyslaskea ja tlastotetee peruskurss Vkko Tlastollste aestoje kerääme ja mttaame; tlastollste aestoje kuvaame; Otokset ja otosjakaumat; Estmot; Estmotmeetelmät; Vällestmot Mtä tlastotede o?

Lisätiedot

8. laskuharjoituskierros, vko 11, ratkaisut

8. laskuharjoituskierros, vko 11, ratkaisut Mat-2.091 Sovellettu todeäköisyyslasku, kevät -05 Heliövaara, Palo, Melli 8. laskuharjoituskierros, vko 11, ratkaisut D1. Oletetaa, että havaiot X i, i = 1, 2,..., 100 muodostavat yksikertaise satuaisotokse

Lisätiedot

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 2

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 2 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma Aheet: Satuasmuuttujat ja todeäkösyysjakaumat Kertymäfukto Jakaume tuusluvut Dskreettejä jakauma Jatkuva jakauma Avasaat: Bomjakauma Desl Dskreett

Lisätiedot

Tilastollisten aineistojen kerääminen ja mittaaminen Tilastolliset aineistot

Tilastollisten aineistojen kerääminen ja mittaaminen Tilastolliset aineistot Todeäkösyyslaskea ja talstotetee peruskurssesmerkkkokoelma 4 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 4 Aheet: Tlastollste aestoje kerääme ja mttaame Tlastollste aestoje kuvaame Otokset

Lisätiedot

Ilkka Mellin (2006) 1/1

Ilkka Mellin (2006) 1/1 Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma,

Lisätiedot

Tilastollinen päättely. 2. Datan redusoinnin periaatteet Tyhjentävyys Uskottavuus

Tilastollinen päättely. 2. Datan redusoinnin periaatteet Tyhjentävyys Uskottavuus Mat.36 Tlastolle päättely. Data reduso peraatteet Tlastolle päättely. Data reduso peraatteet.. Tyhjetävyys Asllaarsuus, Basu teoreema, Data redusot, Faktorotteoreema, Iformaato, Mmaale tyhjetävyys, Otos,

Lisätiedot

Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot

Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot Mat-.09 Sovellettu todeäkösyyslasku Systeemaalyys laboratoro Teklle korkeakoulu SYKSY 00 Ilkka Mell Sovellettu todeäkösyyslasku: Kaavat ja taulukot f XY x X x X y Y ( x, y) exp XY ( XY ) XY XY X X Y Tomttaut

Lisätiedot

Tilastollinen päättely. 2. Datan redusoinnin periaatteet Tyhjentävyys Uskottavuus

Tilastollinen päättely. 2. Datan redusoinnin periaatteet Tyhjentävyys Uskottavuus Mat-1.361 Tlastolle päättely. Data reduso peraatteet Tlastolle päättely. Data reduso peraatteet.1. Tyhjetävyys Asllaarsuus, Basu teoreema, Data redusot, Faktorotteoreema, Iformaato, Mmaale tyhjetävyys,

Lisätiedot

Tilastollinen päättely. 3. Piste estimointi Johdanto Estimointimenetelmät Estimaattoreiden ominaisuudet

Tilastollinen päättely. 3. Piste estimointi Johdanto Estimointimenetelmät Estimaattoreiden ominaisuudet Mat.36 Tlastolle päättely 3. Pste estmot Tlastolle päättely 3. Pste estmot 3.. Johdato Estmaattor, Estmaatt, Estmot, Havato, Havatopste, Otos, Otostuusluku, Parametr, Pste estmot, Pstetodeäkösyysfukto,

Lisätiedot

= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2

= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2 HY / Matematka ja tlastotetee latos Tlastolle päättely II, kevät 28 Harjotus 3A Ratkasuehdotuksa Tehtäväsarja I Olkoot Y,, Y ja Nθ, ) Osota, että T T Y) Y 2 o parametr gθ) θ 2 harhato estmaattor Laske

Lisätiedot

Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat:

Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat: Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Artmeette keskarvo, Estmaatt,

Lisätiedot

Tilastollinen päättely. 3. Piste-estimointi Johdanto Estimointimenetelmät Estimaattoreiden ominaisuudet

Tilastollinen päättely. 3. Piste-estimointi Johdanto Estimointimenetelmät Estimaattoreiden ominaisuudet Mat-1.361 Tlastolle päättely 3. Pste-estmot Tlastolle päättely 3. Pste-estmot 3.1. Johdato Estmaattor, Estmaatt, Estmot, Havato, Havatopste, Otos, Otostuusluku, Parametr, Pste-estmot, Pstetodeäkösyysfukto,

Lisätiedot

Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot

Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot TKK (c) Ilkka Mell (2004) Kokoastodeäkösyys ja Kokoastodeäkösyys ja : Johdato Kokoastodeäkösyyde ja Bayes kaavoje systeemteoreette tulkta Johdatus todeäkösyyslasketaa Kokoastodeäkösyys ja TKK (c) Ilkka

Lisätiedot

Tilastolliset menetelmät: Otokset, otosjakaumat ja estimointi

Tilastolliset menetelmät: Otokset, otosjakaumat ja estimointi Tlastollset meetelmät Otokset, otosjakaumat ja estmot Tlastollset meetelmät: Otokset, otosjakaumat ja estmot 4. Otokset ja otosjakaumat 5. Estmot 6. Estmotmeetelmät 7. Välestmot TKK @ Ilkka Mell (006)

Lisätiedot

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (004) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo otosjakauma Otosvariassi otosjakauma

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Melli Tilastolliset meetelmät Osa : Otokset, otosjakaumat ja estimoiti Otokset ja otosjakaumat TKK (c) Ilkka Melli (007) 1 Otokset ja otosjakaumat >> Satuaisotata ja satuaisotokset Otostuusluvut

Lisätiedot

MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN

MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN MTTTP SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN Aesto kaavoje () (3), (9) ja () esmerkkeh Lepakot pakallstavat hyötesä lähettämällä korkeataajusta äätä Ne pystyvät pakallstamaa hyöteset

Lisätiedot

Tilastollinen päättely. 4. Hypoteesien testaus Johdanto Testien konstruointi Testien vertailu

Tilastollinen päättely. 4. Hypoteesien testaus Johdanto Testien konstruointi Testien vertailu Mat.36 Tlastolle päättely 4. Hypoteese testaus Tlastolle päättely 4. Hypoteese testaus 4.. Johdato Hylkäysalue, Hypotees, Hyväksymsalue, Krtte alue, Nollahypotees, Otos, Parametr, Parametravaruus, Perusjoukko,

Lisätiedot

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (005) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo ja otosvariassi otosjakaumat

Lisätiedot

Mat Koesuunnittelu ja tilastolliset mallit

Mat Koesuunnittelu ja tilastolliset mallit Mat-.03 Koeuuttelu tlatollet mallt. harjotuket Mat-.03 Koeuuttelu tlatollet mallt. harjotuket / Ratkaut Aheet: Avaaat: Tlatollte aetoje kuvaame Oto otokaumat Etmot Etmotmeetelmät Väletmot Artmeette kekarvo,

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/24

TKK @ Ilkka Mellin (2008) 1/24 Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma,

Lisätiedot

Tilastollinen päättely. 4. Hypoteesien testaus Johdanto Testien konstruointi Testien vertailu

Tilastollinen päättely. 4. Hypoteesien testaus Johdanto Testien konstruointi Testien vertailu Mat-1.361 Tlastolle päättely 4. Hypoteese testaus Tlastolle päättely 4. Hypoteese testaus 4.1. Johdato Hylkäysalue, Hypotees, Hyväksymsalue, Krtte alue, Nollahypotees, Otos, Parametr, Parametravaruus,

Lisätiedot

Generoidaan tiedostoon BINORM satunnaislukuja jakaumasta N(0,1) muuttujiksi U, V: (U, V): N 2 (0, 0, 1, 1, 0)

Generoidaan tiedostoon BINORM satunnaislukuja jakaumasta N(0,1) muuttujiksi U, V: (U, V): N 2 (0, 0, 1, 1, 0) Mat-2.04 Tlastollse aalyys perusteet / Ratkasut Aheet: Avasaat Korrelaato ja assosaato Hypotees, Järjestyskorrelaatokertomet, χ 2 -rppumattomuustest, Korrelaatokerro, Pstedagramm, Päätössäätö, Nollahypotees,

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia. HY, MTO / Matemaattste tetede kadohjelma Tlastolle päättely II, kevät 208 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I Olkoo Y, Y rppumato otos Pareto jakaumasta, fy; θ θc θ y θ+ { y > c } tuetulla vakolla

Lisätiedot

Muuttujien välisten riippuvuuksien analysointi

Muuttujien välisten riippuvuuksien analysointi Mat-.4 Tlastollse aalyys peusteet, kevät 7 5. lueto: Tlastolle ppuvuus ja koelaato Muuttuje välste ppuvuukse aalysot Tlastollsssa aalyysessä tutktaa use muuttuje välsä ppuvuuksa Työttömyysastee ppuvuus

Lisätiedot

Todennäköisyyden aksioomat. Todennäköisyyden aksioomat. Todennäköisyyden aksioomat: Mitä opimme? 2/2. Todennäköisyyden aksioomat: Mitä opimme?

Todennäköisyyden aksioomat. Todennäköisyyden aksioomat. Todennäköisyyden aksioomat: Mitä opimme? 2/2. Todennäköisyyden aksioomat: Mitä opimme? TKK () Ilkka Mell (2004) 1 Todeäkösyyde aksoomat Suhteelle rekvess, klasse todeäkösyys ja ehdolle todeäkösyys Johdatus todeäkösyyslasketaa Todeäkösyyde aksoomat TKK () Ilkka Mell (2004) 2 Todeäkösyyde

Lisätiedot

Todennäköisyyslaskennan kertausta

Todennäköisyyslaskennan kertausta Todeäkösyyslaskea kertausta Todeäkösyyslaskea kertausta 1. Joukko-opp Alko, Erotus, Joukko, Komplemett, Lekkaus, Perusjoukko, Psteveraus, Tyhjä joukko, Uo, Yhdste. Todeäkösyys ja se määrtteleme Alkestapahtuma,

Lisätiedot

1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on

1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on HY MTO / Matemaattste tetede kadohjelma Tlastolle päättely II kevät 019 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I 1 Mostee teht 516 Eräde kuulalaakerede kestoa mljooaa kerrosta o totuttu kuvaamaa Webull-jakaumalla

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat: Mat-.090 Sovellettu todeäköisyyslasku A Mat-.090 Sovellettu todeäköisyyslasku A / Ratkaisut Aiheet: Avaisaat: Otos- ja otosjakaumat Estimoiti Estimoitimeetelmät Väliestimoiti Aritmeettie keskiarvo, Beroulli-jakauma,

Lisätiedot

Jakaumien tunnusluvut. Jakaumien tunnusluvut. Jakaumien tunnusluvut: Mitä opimme? 2/2. Jakaumien tunnusluvut: Mitä opimme? 1/2

Jakaumien tunnusluvut. Jakaumien tunnusluvut. Jakaumien tunnusluvut: Mitä opimme? 2/2. Jakaumien tunnusluvut: Mitä opimme? 1/2 TKK (c) Ila Mell (4) Jaaume tuusluvut Johdatus todeäösyyslasetaa Jaaume tuusluvut Marov ja Tshebyshev epäyhtälöt Momett Vous ja hupuuus Suurte luuje la TKK (c) Ila Mell (4) Jaaume tuusluvut: Mtä opmme?

Lisätiedot

Satunnaismuuttujat ja todennäköisyysjakaumat

Satunnaismuuttujat ja todennäköisyysjakaumat Satuasmuuttujat ja todeäkösyysjakaumat Todeäkösyyslasketa: Satuasmuuttujat ja todeäkösyysjakaumat 9. Satuasmuuttujat ja todeäkösyysjakaumat 0. Kertymäfukto. Jakaume tuusluvut. Moulotteset satuasmuuttujat

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

Tilastollinen riippuvuus ja korrelaatio. Tilastollinen riippuvuus ja korrelaatio. Tilastollinen riippuvuus ja korrelaatio: Esitiedot

Tilastollinen riippuvuus ja korrelaatio. Tilastollinen riippuvuus ja korrelaatio. Tilastollinen riippuvuus ja korrelaatio: Esitiedot TKK (c) Ilkka Mell (4) Tlastolle rppuvuus ja korrelaato Tlastolle rppuvuus, korrelaato ja regresso Kahde muuttuja havatoaesto kuvaame Pearso korrelaatokertome estmot ja testaus Järjestyskorrelaatokertomet

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemaalyys laboratoro Mat-.090 Sovellettu todeäkösyyslasku A Nordlud Harotus (vko 49/003) (Ahe: Tlastollsa testeä, regressoaalyysä Lae luvut 5.5, 6) HUOM! Laskarede palautukse takaraa o pokkeuksellsest

Lisätiedot

Moniulotteiset jakaumat ja havaintoaineistot

Moniulotteiset jakaumat ja havaintoaineistot Momuuttujameetelmät: Ilkka Mell. Moulotteset jakaumat.. Satuasmuuttujat ja todeäkösyysjakaumat.. Yhtesjakaumat.3. Reuajakaumat ja satuasmuuttuje rumattomuus.4. Ehdollset jakaumat.5. Yhtesjakaume tuusluvut.6.

Lisätiedot

on tavanomainen yhden selittäjän lineaarinen regressiomalli, jossa jäännöstermit ε i toteuttavat seuraavat oletukset:

on tavanomainen yhden selittäjän lineaarinen regressiomalli, jossa jäännöstermit ε i toteuttavat seuraavat oletukset: Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Ylee leaare mall Artmeette keskarvo,

Lisätiedot

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (004) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden

Lisätiedot

Tilastollinen riippuvuus ja korrelaatio

Tilastollinen riippuvuus ja korrelaatio Tlastollset meetelmät Osa 4: Leaare regressoaalyys Tlastolle rppuvuus ja korrelaato KE (204) Tlastolle rppuvuus ja korrelaato >> Tlastolle rppuvuus, korrelaato ja regresso Kahde muuttuja havatoaesto kuvaame

Lisätiedot

Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme?

Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme? TKK (c) Ilkka Melli (4) Johdato Johdatus todeäköisyyslasketaa TKK (c) Ilkka Melli (4) : Mitä opimme? / Tutustumme tässä luvussa seuraavii ormaalijakaumasta (ks. lukua Jatkuvia jakaumia) johdettuihi jakaumii:

Lisätiedot

Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Konvergenssikäsitteet ja raja arvolauseet

Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Konvergenssikäsitteet ja raja arvolauseet Ilkka Melli Todeäköisyyslasketa Osa 2: Satuaismuuttujat ja todeäköisyysjakaumat Kovergessikäsitteet ja raja arvolauseet TKK (c) Ilkka Melli (2006) 1 Kovergessikäsitteet ja raja arvolauseet >> Kovergessikäsitteitä

Lisätiedot

Varianssianalyysi. Varianssianalyysi. Varianssianalyysi. Varianssianalyysi: Mitä opimme? Varianssianalyysi: Johdanto

Varianssianalyysi. Varianssianalyysi. Varianssianalyysi. Varianssianalyysi: Mitä opimme? Varianssianalyysi: Johdanto TKK (c Ila Mell (004 Varassaalyys Varassaalyys: Johdato Johdatus tlastoteteesee Varassaalyys TKK (c Ila Mell (004 Varassaalyys: Mtä opmme? Tarastelemme tässä luvussa seuraavaa ysymystä: Mte tavaomae ahde

Lisätiedot

Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Väliestimointi TKK (c) Ilkka Mellin (2005) 1 Väliestimointi Todennäköisyysjakaumien parametrien estimointi Luottamusväli Normaalijakauman odotusarvon luottamusväli Normaalijakauman

Lisätiedot

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 6

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 6 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 6 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 6 Aheet: Tlastolle rppuvuus ja korrelaato Yhde selttäjä leaare regressomall Regressoaalyys

Lisätiedot

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (005) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle

Lisätiedot

2-suuntainen vaihtoehtoinen hypoteesi

2-suuntainen vaihtoehtoinen hypoteesi Mat-.6 Sovellettu todeäköisyyslasketa. harjoitukset Mat-.6 Sovellettu todeäköisyyslasketa B. harjoitukset / Ratkaisut Aiheet: Tilastolliset testit Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, F-jakauma,

Lisätiedot

3.5 Generoivat funktiot ja momentit

3.5 Generoivat funktiot ja momentit 3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä

Lisätiedot

TILASTOMATEMATIIKKA I

TILASTOMATEMATIIKKA I TILASTOMATEMATIIKKA I Srkku Parvae 1. JOHDANTO MIHIN TILASTOTIEDETTÄ TARVITAAN? suure havatomäärä (data) keräämsee, tetoje tvstämsee ja kuvaluu (deskrptvset meetelmät, data-aalyys) johtopäätöste tekemsee

Lisätiedot

Satunnaismuuttujat ja todennäköisyysjakaumat

Satunnaismuuttujat ja todennäköisyysjakaumat Satuasmuuttujat ja todeäkösyysjakaumat Todeäkösyyslasketa: Satuasmuuttujat ja todeäkösyysjakaumat 9. Satuasmuuttujat ja todeäkösyysjakaumat 0. Kertymäfukto. Jakaume tuusluvut. Moulotteset satuasmuuttujat

Lisätiedot

Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat:

Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat: Mat-.36 Tlastollnen päättely 7. harjotukset Mat-.36 Tlastollnen päättely 7. harjotukset / Tehtävät Aheet: Avansanat: ypoteesen testaus. lajn vrhe,. lajn vrhe, arhaton test, ylkäysalue, ylkäysvrhe, ypotees,

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Melli Tilastolliset meetelmät Osa 2: Otokset, otosjakaumat ja estimoiti Estimoitimeetelmät TKK (c) Ilkka Melli (2007) Estimoitimeetelmät >> Todeäköisyysjakaumie parametrie estimoiti Suurimma uskottavuude

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

Johdatus todennäköisyyslaskentaan Konvergenssikäsitteet ja raja-arvolauseet. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Konvergenssikäsitteet ja raja-arvolauseet. TKK (c) Ilkka Mellin (2004) 1 Johdatus todeäköisyyslasketaa Kovergessikäsitteet ja raja-arvolauseet TKK (c) Ilkka Melli (2004) 1 Kovergessikäsitteet ja raja-arvolauseet Kovergessikäsitteitä Suurte lukuje lait Keskeie raja-arvolause

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

TILASTOMATEMATIIKKA I

TILASTOMATEMATIIKKA I TILASTOMATEMATIIKKA I Srkku Parvae 1. JOHDANTO MIHIN TILASTOTIEDETTÄ TARVITAAN? suure havatomäärä (data) keräämsee, tetoje tvstämsee ja kuvaluu (deskrptvset meetelmät, data-aalyys) johtopäätöste tekemsee

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Mat-2.090 Sovellettu todennäköisyyslasku A

Mat-2.090 Sovellettu todennäköisyyslasku A Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 15. marraskuuta 2007 Antti Rasila () TodB 15. marraskuuta 2007 1 / 19 1 Tilastollisia testejä (jatkoa) Yhden otoksen χ 2 -testi varianssille Kahden riippumattoman

Lisätiedot

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli lueto9.ppt S-38.45 Lkeeteora perusteet Kevät 5 Ykskertae lkeeteoreette mall Puhdas jakojärjestelmä Asakkata saapuu keskmäär opeudella asakasta per akayks. / keskmääräe asakkade välaka Asakkata palvellaa

Lisätiedot

Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille: Esitiedot

Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille: Esitiedot TKK (c) Ilkka Melli (4) Testit suhdeasteikollisille muuttujille Johdatus tilastotieteesee Testit suhdeasteikollisille muuttujille Testit ormaalikauma parametreille Yhde otokse t-testi Kahde otokse t-testi

Lisätiedot

Johdatus tilastotieteeseen Estimointimenetelmät. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointimenetelmät. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Estimoitimeetelmät TKK (c) Ilkka Melli (2005) 1 Estimoitimeetelmät Todeäköisyysjakaumie parametrie estimoiti Momettimeetelmä Normaalijakauma parametrie estimoiti Ekspoettijakauma

Lisätiedot

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli Ssältö Kertausta: ykskertae lkeeteoreette mall M/M/-PS asakasta palvelja asakaspakkaa M/M/-PS asakasta palveljaa asakaspakkaa Sovellus elastse datalketee malltamsee vuotasolla M/M//k/k-PS k asakasta palvelja

Lisätiedot

7.5. Yleinen lineaarinen malli ja suurimman uskottavuuden menetelmä

7.5. Yleinen lineaarinen malli ja suurimman uskottavuuden menetelmä Mat.36 Tlastolle päättely 7. Suurmma uskottavuude meetelmä ja asymptootte teora Tlastolle päättely 7. Suurmma uskottavuude meetelmä ja asymptootte teora 7.. Suurmma uskottavuude estmotmeetelmä Akasarja,

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Melli (4) Satuaismuuttujie muuokset ja iide jakaumat Satuaismuuttujie muuoste jakaumat Kaksiulotteiste satuaismuuttujie muuoste jakaumat Riippumattomie satuaismuuttujie summa jakauma Riippumattomie

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut

Lisätiedot

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1 Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen

Lisätiedot

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit 68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta

Lisätiedot

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4 TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun

Lisätiedot

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

Tilastotieteen kertaus. Kuusinen/Heliövaara 1 Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa

Lisätiedot

Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen. Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen

Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen. Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen TKK () Ila Mell (004) Yhteesopvuude, hoogeesuude a rppuattouude testaae Johdatus tlastoteteesee Yhteesopvuude, hoogeesuude a rppuattouude testaae TKK () Ila Mell (004) Yhteesopvuude, hoogeesuude a rppuattouude

Lisätiedot

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu

Lisätiedot

Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1

Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1 Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus KE (2014) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet

Lisätiedot

Tilastolliset menetelmät: Lineaarinen regressioanalyysi

Tilastolliset menetelmät: Lineaarinen regressioanalyysi Tlastollset meetelmät Leaare regressoaalyys Tlastollset meetelmät: Leaare regressoaalyys 3. Tlastolle rppuvuus ja korrelaato 4. Johdatus regressoaalyys 5. Yhde selttäjä leaare regressomall 6. Ylee leaare

Lisätiedot

Tilastolliset menetelmät: Tilastolliset testit

Tilastolliset menetelmät: Tilastolliset testit Tilastolliset meetelmät Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille. Testejä järjestysasteikollisille muuttujille.

Lisätiedot

5. laskuharjoituskierros, vko 8, ratkaisut

5. laskuharjoituskierros, vko 8, ratkaisut Mat-.09 Sovellettu todennäköisyyslasku, kevät -05 5. laskuharjoituskierros, vko 8, ratkaisut D. Eräässä maata kiertävällä radalla olevassa satelliitissa on ilmaisin, jonka elinikä X yksikkönä vuosi noudattaa

Lisätiedot

Normaalijakaumasta johdettuja jakaumia

Normaalijakaumasta johdettuja jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti

Lisätiedot

Mat Sovellettu todennäköisyyslaskenta B 9. harjoitukset / Ratkaisut Aiheet: Estimointi Estimointimenetelmät Väliestimointi Avainsanat:

Mat Sovellettu todennäköisyyslaskenta B 9. harjoitukset / Ratkaisut Aiheet: Estimointi Estimointimenetelmät Väliestimointi Avainsanat: Mat-.60 Sovellettu todeäköisyyslasketa B Mat-.60 Sovellettu todeäköisyyslasketa B / Ratkaisut Aiheet: Estimoiti Estimoitimeetelmät Väliestimoiti Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, Beroulli-koe,

Lisätiedot

2-suuntainen vaihtoehtoinen hypoteesi

2-suuntainen vaihtoehtoinen hypoteesi MS-A53 Todeäköisyyslaskea ja tilastotietee peruskurssi Esimerkkikokoelma 5 Aiheet: Tilastolliset testit Yhde otokse t-testi Testausasetelma yhde otokse t-testissä odotusarvolle Olkoo X i, i =,,, riippumato

Lisätiedot

6. laskuharjoitusten vastaukset (viikot 10 11)

6. laskuharjoitusten vastaukset (viikot 10 11) 6. laskuharjoitusten vastaukset (viikot 10 11) 1. a) Sivun 102 hypergeometrisen jakauman määritelmästä saadaan µ µ 13 39 13! 13 12 11 10 9 µ 0! 8! 1! 2 2! 2 1 0 49 48! 47!! 14440 120 31187200 120 1287

Lisätiedot

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi. Mat-2.090 Sovellettu todeäköisyyslasku A Mat-2.090 Sovellettu todeäköisyyslasku A / Pistetehtävät 2, 4, 6, 8, 0 Aiheet: Avaisaat: Momettiemäfuktio Satuaismuuttujie muuokset ja iide jakaumat Kovergessikäsitteet

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Diskreettejä jakaumia TKK (c) Ilkka Mellin (2007) 1 Diskreettejä jakaumia >> Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot