Tchebycheff-menetelmä ja STEM
|
|
- Ismo Alanen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot estetään päätöksentekjälle yksnkertasessa muodossa Optmontopn semnaar - Kevät 2000 / 2 1
2 2. Tchebycheff-menetelmä Suunnteltu helpoks päätöksentekjän kannalta Tässä estetään menetelmä kohdefunktoden mnmontn Joka teraatolla päätöksentekjälle estetään joukko Paretoratkasuja, josta hän valtsee melestään parhaan Optmontopn semnaar - Kevät 2000 / 3 Valnnan perusteella penennetään mahdollsten ratkasujen joukkoa Paretoratkasuja luodaan käyttämällä panotettua Tchebycheff-metrkkaa er panokertomlla Ratkasujen luomsessa täytyy olla tedossa utopapste, johon ratkasuja verrataan Optmontopn semnaar - Kevät 2000 / 4 2
3 Oletuksa vähän Krteerfunktot mnmotava Krteerfunktot alhaalta rajotettuja käyvässä alueessa S Seuraavassa oletetaan lsäks että deaalpste ja utopapste tunnetaan metrkasta vodaan jättää tsesarvomerkt pos Optmontopn semnaar - Kevät 2000 / 5 Paretopstetä luodaan ratkasemalla panotettu Tchebycheff-tehtävä z ** :n suhteen er panokertomlla Panotettu Tchebycheff-tehtävä: mnmo w W = max = 1, K, k ** [ w ( f ( x) z )], { } k k w R 0 < w < 1, w = 1 = 1 Optmontopn semnaar - Kevät 2000 / 6 3
4 Ongelma: osa löydetystä pstestä hekkoja Paretopstetä Ratkasu: edellä kuvatun panotetun Tchebycheff- tehtävän sjasta käytetään lekskografsta panotettua Tchebycheff-tehtävää Optmontopn semnaar - Kevät 2000 / 7 Lekskografnen panotettu Tchebycheff-tehtävä lex mnmo k = 1 s.e. x ** ( f ( x) z ) S max = 1, K,k, [ w ], ** ( f ( x) z ) Optmontopn semnaar - Kevät 2000 / 8 4
5 Lekskografnen panotettu Tchebycheff-tehtävä Aluks ratkastaan tavallnen panotettu Tchebycheff-tehtävä Mkäl ratkasu on ykskästtenen on se Pareto-optmaalnen Mkäl ratkasuja on useamp, valtaan se joka on L 1 -normn mukaan lähmpänä utopapstettä Ykskästtesyyden toteamnen hankalaa, joten tonenkn vahe on suortettava Optmontopn semnaar - Kevät 2000 / 9 z 2 Z 2. mnmont 1. mnmont z 1 Lekskografnen panotettu Tchebycheff-tehtävä Optmontopn semnaar - Kevät 2000 / 10 5
6 Lause Lekskografsen Tchebycheff-ongelman ratkasu on Pareto-optmaalnen. Lause * Olkoon x Tällön w, (0 < w S Pareto - optmaalnen. ykskästtenen ratkasu lekskografselle R Tchebycheff - tehtävälle. k ) sten että x * on Optmontopn semnaar - Kevät 2000 / 11 Tchebycheff-menetelmän tomnta Paretoratkasuja luodaan muuttamalla panokerronvektora Tchebychefftehtävässä Panokerronavaruutta, josta panokertoma valtaan, penennetään teronnn edetessä Tällön penenee myös se Paretoratkasujen osajoukko, josta vahtoehtoja estellään päätöksentekjälle Optmontopn semnaar - Kevät 2000 / 12 6
7 1. teraatolla muodostetaan joukko Paretoratkasuja koko Paretoavaruudesta Tätä varten luodaan hyvn hajallaan oleva panokerronvektoren joukko Päätöksentekjä valtsee saadusta ratkasusta melestään parhaan Seuraavalla teraatolla otetaan valttua ratkasua vastaavan panokerronvektorn ympärstöstä joukko panokertoma ja luodaan uus ratkasujoukko Optmontopn semnaar - Kevät 2000 / 13 Nän saadaan joukko ratkasuja aemmn valtun ratkasun ympärstöstä Ratkasuvahtoehtojen määrä Yleensä päätöksentekjä päättää montako vahtoehtoa haluaa estettävän tselleen Vo muuttua teraatoden välllä Mtä suuremp, stä luotettavamp algortm on Ihmsen kyvyt rajottavat annettaven vahtoehtojen määrää Optmontopn semnaar - Kevät 2000 / 14 7
8 Reduktokerron Kertoo, mten paljon panokerronavaruutta penennetään Mtä suuremp, stä nopeammn panokerronavaruus penenee ja stä vähemmän mahdollsuuksa päätöksentekjällä on muuttaa meltään kesken prosessn Optmontopn semnaar - Kevät 2000 / 15 Kommentteja Tchebycheffmenetelmästä Laskennassa syytä käyttää normalsotuja tavotefunktota Vahtoehdot kutenkn kannattaa esttää alkuperäsessä muodossa Konvergensssta e vo sanoa mtään varmaa Mahdollsta käyttää myös laajennettua Tchebycheff-metrkkaa lekskografsen sjasta Optmontopn semnaar - Kevät 2000 / 16 8
9 Päätöksentekjän rool helppo Hattana että kerran hylättyjä osa panokerronavaruudesta e saada enää takasn jos päätöksentekjä muuttaa meltään Vaat runsaast laskentaa Tosaalta mahdollstaa rnnakkaslaskennan Suurssa ongelmssa vahtoehtojen vertalu hankalaa päätöksentekjälle Optmontopn semnaar - Kevät 2000 / STEM Yks ensmmässtä vuorovakuttessta menetelmstä Tyytyy etsmään tyydyttävän ratkasun ekä optmo taustalla olevaa arvofunktota Optmontopn semnaar - Kevät 2000 / 18 9
10 Oletetaan, että päätöksentekjä pystyy tetystä Paretoratkasusta sanomaan mtkä tavotefunktoden arvot ovat hyväksyttävä ja mtkä evät Jos osa arvosta on e-hyväksyttävä, on päätöksentekjän annettava jodenkn hyväksyttäven arvojen huonontua, jotta e-hyväksyttävstä saadaan hyväksyttävä Optmontopn semnaar - Kevät 2000 / 19 Oletukset Tavotefunktot mnmotava Tavotefunktot rajotettuja käyvässä alueessa Lsäks on tedettävä deaalpste z * approksmaato nadrpsteelle z nad Optmontopn semnaar - Kevät 2000 / 20 10
11 STEM-algortmn kulku 1) Laske z * ja z nad sekä panokertomet w seuraavlla kaavolla e w =, = 1, K, k, mssä k = e e e max j 1 1 z = * z = z nad nad z nad * * ta nad * [ z, z ] j z z analyytkon valnnan mukaan Optmontopn semnaar - Kevät 2000 / 21 1) (jatkuu) Aseta h=1. Ratkase panotettu Tchebycheff-tehtävä lasketulla panokertomlla. Ratkasu olkoon x h ja vastaava kohdevektor z h. 2) Pyydä päätöksentekjää jakamaan kohdefunktoden arvot z h :ssa hyväksyttävn (I > ) ja e-hyväksyttävn (I < ). Jos I < on tyhjä menee vaheeseen 4. Muuten pyydä häntä antamaan helpotetut ylärajat hyväksyttävlle funktolle. Optmontopn semnaar - Kevät 2000 / 22 11
12 3) Ratkase allaoleva tehtävä. Merktse ratkasua x h+1 :llä ja vastaavaa kohdevektora z h+1 :llä. Mene vaheeseen 2. mnmo max ehdolla f f ( x) [ w ] ** ( f ( x) z ), h < ( x) f ( x ), I, x S < I ε I > Optmontopn semnaar - Kevät 2000 / 23 4) Lopeta. Ratkasu on x h. Edelläoleva aputehtävä on laajennus panotetulle Tchebycheff-tehtävälle. ensmmäset rajotukset antavat hyväksyttäven tavotefunktoden huonontua jälkmmäset rajotukset estävät ehyväksyttävä tavotefunktota huonontumasta Menetelmästä olemassa erlasa varaatota Optmontopn semnaar - Kevät 2000 / 24 12
13 STEM e oleta päätöksenteon taustalla olevan arvofunktota Arvofunktosta e ols apua kysymyksn vastaamsessa Tuottaa vastauksen nopeast, jos rajotusten helpotukset tehdään sten, että lsähelpotuksa e enää sallta Optmontopn semnaar - Kevät 2000 / 25 Päätöksentekjälle selkeä menetelmä, ptää van päättää mtä rajotuksa asettaa tavotefunktolle Helpotusten suuruuden määrttämnen ongelma Myös hekot Paretoratkasut mahdollsa Optmontopn semnaar - Kevät 2000 / 26 13
14 4. Yhteenveto Tchebycheff-menetelmässä vahtoehdot ovat päätöksentekjälle helppoja ymmärtää, mutta valta vo olla vakeaa vahtoehtojen lukumäärän vuoks STEM on myös yksnkertanen ymmärtää, mutta sopven rajotusehtojen keksmnen vo olla ongelmallsta Optmontopn semnaar - Kevät 2000 / 27 Kottehtävä Suorta vähntään 2 teraatota STEM-algortmlla seuraavalle tehtävälle: f mnmo f f 1 ehdolla x S ( x) 2 3 ( x) = x = 2x + x 1 2 x1 + x x 4 x3 + x 2 4 ( x) = x1 + x2 2x3 x4 { = x R x1 + x2 + x3 + x4 1, x 0, = 1,...,4} Optmontopn semnaar - Kevät 2000 / 28 14
15 Ilmota vastauksessas anakn käyttämäs deaalpste z *, nadrpsteen approksmaato z nad ja optmonnssa käyttämäs panokertomet sekä tetyst optmonnn lopputulos x *. Vastauksesta tulee myös lmetä mten olet valnnut funktot, joden arvot ovat hyväksyttävä sekä nälle asetetut rajotukset kussakn vaheessa. Käytä optmontn esmerkks Exceln Solvera ja huomaa ratkasussas, että krjan kaavassa on vrhe. Okea kaava löytyy asaankuuluvasta kohdasta tästä estyksestä. Optmontopn semnaar - Kevät 2000 / 29 15
4. A priori menetelmät
4. A pror menetelmät 4. Arvofunkto-menetelmä 4.2 Lekskografnen järjestämnen 4.3 Tavoteohjelmont Tom Bäckström Optmontopn semnaar - Kevät 2000 / 4. Arvofunkto-menetelmä Päätöksentekjä antaa eksplsttsen
LisätiedotTavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä
Tavotteet skaalaavan funkton lähestymstapa el referensspste menetelmä Optmontopn semnaar - Kevät 2000 / 1 Estelmän ssältö Panotetun metrkan ongelmen havatsemnen Referensspste menetelmän dean esttely Referensspste
LisätiedotTchebycheff-menetelmä ja STEM
Mat-2.142 Optmontopn semnaar K-2000 Montavoteopmont Semnaarestelmän tvstelmä Pentt Säynätjo 22.3.2000 Tchebycheff-menetelmä ja STEM 1. Johdanto Tchebycheff-menetelmä ja STEM ovat vuorovauttesa montavoteoptmontmenetelmä.
LisätiedotPainotetun metriikan ja NBI menetelmä
Panotetun metrkan ja NBI menetelmä Optmontopn semnaar - Kevät / 1 Estelmän ssältö Paretopsteden generont panotetussa metrkossa Panotettu L p -metrkka Panotettu L -metrkka el panotettu Tchebycheff -metrkka
LisätiedotPainokerroin-, epsilon-rajoitusehtoja hybridimenetelmät
Panokerron-, epslon-rajotusehtoja hybrdmenetelmät Optmontopn semnaar - Kevät 000 / Estelmän ssältö Ylestä jälkkätespreferenssmenetelmstä Panokerronmenetelmä Epslon-rajotusehtomenetelmä Hybrdmenetelmä Esmerkkejä
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.
MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät 2016 1 Perustuu Antt
Lisätiedot3 Tilayhtälöiden numeerinen integrointi
3 Tlayhtälöden numeernen ntegront Alkuarvotehtävässä halutaan ratkasta lopputla xt f ) sten, että tlayhtälöt ẋ = fx,u, t) toteutuvat, kun alkutla x 0 on annettu Tlayhtälöden numeernen ntegront vodaan suorttaa
Lisätiedot1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä
Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10
LisätiedotMonte Carlo -menetelmä
Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla
LisätiedotTIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Montavoteoptmont ja teollsten prosessen hallnta Ylassstentt Juss Hakanen juss.hakanen@jyu.f syksy 2010 Interaktvset menetelmät Idea: päätöksentekjää hyödynnetään aktvsest ratkasuprosessn akana
LisätiedotMat Lineaarinen ohjelmointi
Mat-2.340 Lneaarnen ohjelmont 22..2007 Luento 0 Ssäpstemenetelmät ja kokonaslukuoptmont (krja 0.-0.4) Ssäpstemenetelmät luvut 8 ja 9, e tarvtse lukea Lneaarnen ohjelmont - Syksy 2007 / Luentorunko Sananen
LisätiedotVERKKOJEN MITOITUKSESTA
J. Vrtamo 38.3141 Telelkenneteora / Verkon mtotus 1 VERKKOJEN MITOITUKSESTA 1. Prkytkentäset verkot Lnkken kapasteetten (johtoja/lnkk) määräämnen sten, että verkon kokonaskustannukset mnmotuvat, kun päästä-päähän
LisätiedotEräs Vaikutuskaavioiden ratkaisumenetelmä
Mat-2.142 Optmontopn semnaar, s-99 28.9. 1999 Semnaarestelmän referaatt Joun Ikonen Lähde: Ross D. Schachter: Evaluatng nfluence dagrams, Operatons Research, Vol 34, No 6, 1986 Eräs Vakutuskaavoden ratkasumenetelmä
LisätiedotMat Lineaarinen ohjelmointi
Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot
LisätiedotMat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut
Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss
LisätiedotEpälineaaristen pienimmän neliösumman tehtävien ratkaiseminen numeerisilla optimointimenetelmillä (valmiin työn esittely)
Epälneaarsten penmmän nelösumman tehtäven ratkasemnen numeerslla optmontmenetelmllä valmn työn esttely Lar Pelkola 9.9.014 Ohjaaja/valvoja: Prof. Harr Ehtamo yön saa tallentaa ja julkstaa Aalto-ylopston
LisätiedotMoraalinen uhkapeli: N:n agentin tapaus eli moraalinen uhkapeli tiimeissä
Moraalnen uhkapel: N:n agentn tapaus el moraalnen uhkapel tmessä Mat-2.4142 Optmontopn semnaar Ismo Räsänen 4.3.2008 S ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 11 - Ismo Räsänen Optmontopn
LisätiedotUuden eläkelaitoslain vaikutus allokaatiovalintaan
TEKNILLINEN KORKEAKOULU Systeemanalyysn laboratoro Mat-2.108 Sovelletun matematkan erkostyö Uuden eläkelatoslan vakutus allokaatovalntaan Tmo Salmnen 58100V Espoo, 14. Toukokuuta 2007 Ssällysluettelo Johdanto...
LisätiedotTaustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon
Taustaa Sekventaalnen vakutuskaavo Sekventaalnen päätöskaavo on 1995 ovalun ja Olven esttämä menetelmä päätösongelmen mallntamseen, fomulontn ja atkasemseen. Päätöspuun omnasuukssta Hyvää: Esttää eksplsttsest
Lisätiedot3.5 Generoivat funktiot ja momentit
3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä
LisätiedotYrityksen teoria. Lari Hämäläinen S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu
Yrtyksen teora Lar Hämälänen.1.003 Yrtys Organsaato, joka muuttaa tuotantopanokset tuotteks ja tom tehokkaammn kun sen osat erllään Yrtys tenaa rahaa myynthnnan sekä ostohnnan ja aheutuneden kustannuksen
LisätiedotEpätäydelliset sopimukset
Eätäydellset somukset Matt Rantanen 15.4.008 ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008 Estelmän ssältö Eätäydellset somukset ja omstusokeus alanén
LisätiedotTyön tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt
FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-
Lisätiedot13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit
68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta
LisätiedotMittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa
Mttausteknkan perusteet / luento 6 Mttausepävarmuus ja shen lttyvää termnologaa Mttausepävarmuus = mttaustulokseen lttyvä parametr, joka kuvaa mttaussuureen arvojen odotettua vahtelua Mttauksn lttyvä kästtetä
LisätiedotYksikköoperaatiot ja teolliset prosessit
Ykskköoperaatot ja teollset prosesst 1 Ylestä... 2 2 Faasen välnen tasapano... 3 2.1 Neste/höyry-tasapano... 4 2.1.1 Puhtaan komponentn höyrynpane... 4 2.1.2 Ideaalnen seos... 5 2.1.3 Epädeaalnen nestefaas...
Lisätiedot1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0.
BM20A5800 - Funktot, lneaaralgebra, vektort Tentt, 26.0.206. (a) Krjota yhtälöryhmä x + 2x 3 = a 2x + x 2 + 5x 3 = b x x 2 + x 3 = c matrsmuodossa Ax = b ja ratkase x snä erkostapauksessa kun b = 0. Mllä
LisätiedotAamukatsaus 13.02.2002
Indekst & korot New Yorkn päätöskursst, euroa Muutos-% Päätös Muutos-% Helsnk New York (NY/Hel) Dow Jones 9863.7-0.21% Noka 26.21 26.05-0.6% S&P 500 1107.5-0.40% Sonera 5.05 4.99-1.1% Nasdaq 1834.2-0.67%
LisätiedotA = B = T = Merkkijonon A osamerkkijono A[i..j]: n merkkiä pitkä merkkijono A:
Merkkjonot (strngs) n merkkä ptkä merkkjono : T T T G T n = 18 kukn merkk [], mssä 0 < n, kuuluu aakkostoon Σ, jonka koko on Σ esm. bttjonot: Σ = {0,1} ja Σ = 2, DN: Σ = {,T,,G} ja Σ = 4 tetokoneen aakkosto
LisätiedotKanoniset muunnokset
Kanonset muunnokset Koordnaatstomuunnokset Lagrangen formalsmssa pstemuunnoksa: Q = Q (q, t) nopeudet saadaan nästä dervomalla Kanonnen formalsm: p:t ja q:t samanarvosa 2n-ulottesen faasavaruuden muuttuja
LisätiedotJaksolliset ja toistuvat suoritukset
Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e
LisätiedotJaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen
Tosakajärjestelmät Luento : Resurssen hallnta ja prorteett Tna Nklander Jaetut resursst Useat tapahtumat jakavat ohjelma-/lattesto-olota, jossa kesknänen possulkemnen on välttämätöntä. Ratkasuja: Ajonakanen
LisätiedotHASSEN-WEILIN LAUSE. Kertausta
HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten
LisätiedotGalerkin in menetelmä
hum.9.3 Galerkn n menetelmä Galerknn menetelmän soveltamnen e ole rajottunut van ongelmn, jotka vodaan pukea sellaseen varaatomuotoon, joka on seurauksena funktonaaln mnmomsesta, kuten potentaalenergan
LisätiedotS , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon
S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,
LisätiedotMittaustulosten käsittely
Mttaustulosten kästtely Vrhettä ja epävarmuutta lmasevat kästteet Tostokoe ja satunnasten vrheden tlastollnen kästtely. Mttaustulosten jakaumaa kuvaavat tunnusluvut. Normaaljakauma 7. Tostokoe ja suurmman
LisätiedotKansainvälisen konsernin verosuunnittelu ja tuloksenjärjestely
Kansanvälsen konsernn verosuunnttelu ja tuloksenjärjestely Kansantaloustede Pro gradu -tutkelma Talousteteden latos Tampereen ylopsto Toukokuu 2007 Pekka Kleemola TIIVISTELMÄ Tampereen ylopsto Talousteteden
LisätiedotMat Lineaarinen ohjelmointi
Mat-2.340 Lneaarnen ohjelmont 3.9.2007 Luento Johdanto (krja.-.4) S ysteemanalyysn Laboratoro eknllnen korkeakoulu Eeva Vlkkumaa Lneaarnen ohjelmont - Syksy 2007 / Luentorunko Hstoraa Lneaarnen optmonttehtävä
LisätiedotPuupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:
Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa
LisätiedotMat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat:
Mat-.36 Tlastollnen päättely 7. harjotukset Mat-.36 Tlastollnen päättely 7. harjotukset / Tehtävät Aheet: Avansanat: ypoteesen testaus. lajn vrhe,. lajn vrhe, arhaton test, ylkäysalue, ylkäysvrhe, ypotees,
LisätiedotPaperikoneiden tuotannonohjauksen optimointi ja tuotefokusointi
TEKNILLINEN KORKEAKOULU Teknllsen fyskan koulutusohjelma ERIKOISTYÖ MAT-2.108 Sovelletun matematkan erkostyöt 22.4.2003 Paperkoneden tuotannonohjauksen optmont ja tuotefokusont Jyrk Maaranen 38012p 1 Ssällysluettelo
LisätiedotYrityksen teoria ja sopimukset
Yrtyksen teora a sopmukset Mat-2.4142 Optmontopn semnaar Ilkka Leppänen 22.4.2008 Teemoa Yrtyksen teora: tee va osta? -kysymys Yrtys kannustnsysteemnä: ylenen mall Työsuhde vs. urakkasopmus -analyysä Perustuu
LisätiedotMittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?
Mttausteknkan perusteet / luento 7 Mttausepävarmuus Mttausepävarmuus Mttaustulos e ole koskaan täysn oken Mttaustulos on arvo mtattavasta arvosta Mttaustuloksen ja mtattavan arvon ero on mttausvrhe Mkäl
LisätiedotJohdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematkkaan Informaatoteknologan tedekunta Jyväskylän ylopsto 4. luento 24.11.2017 Neuroverkon opettamnen - gradenttmenetelmä Neuroverkkoa opetetaan syöte-tavote-parella
LisätiedotEsitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.
Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla
LisätiedotSähköstaattinen energia
ähköstaattnen enega Potentaalenegan a potentaaln suhde on samanlanen kun Coulomn voman a sähkökentän suhde: ähkökenttä vakuttaa vaattuun kappaleeseen nn, että se kokee Coulomn voman, mutta sähkökenttä
LisätiedotKuluttajahintojen muutokset
Kuluttajahntojen muutokset Samu Kurr, ekonomst, rahapoltkka- ja tutkmusosasto Tutkmuksen tausta ja tavotteet Tavaroden ja palveluden hnnat evät muutu jatkuvast, vaan ovat ana jossan määrn jäykkä lyhyellä
Lisätiedot6. Stokastiset prosessit (2)
Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella
LisätiedotNeuroHaku monikerroksisen perceptron-neuroverkon epälineaarinen optimointi
Arja Lavonen NeuroHaku monkerrokssen perceptron-neuroverkon epälneaarnen optmont Tetoteknkan pro gradu -tutkelma Teteellnen laskenta 4. syyskuuta 2005 Jyväskylän ylopsto Tetoteknkan latos Jyväskylä Tekjä:
LisätiedotTKK @ Ilkka Mellin (2008) 1/24
Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma,
Lisätiedot4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman
4. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7..008 Thomas Hackman 4. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 4. Tähtteteellsten
LisätiedotTyön tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt
FYSP103 / 1 KAASUTUTKIUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttausöytäkrjan ja työselostuksen laatmsta Luento-
LisätiedotSU/Vakuutusmatemaattinen yksikkö (5)
SU/Vakuutusmatemaattnen ykskkö 0..06 (5) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,
LisätiedotABTEKNILLINEN KORKEAKOULU
ABTEKNILLINEN KORKEAKOULU Tetoverkkolaboratoro 6. Stokastset prosesst () Luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 5 6. Stokastset prosesst () Ssältö Markov-prosesst Syntymä-kuolema-prosesst
LisätiedotFYSA220/2 (FYS222/2) VALON POLARISAATIO
FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron
LisätiedotBL20A0600 Sähkönsiirtotekniikka
BLA6 Sähkönsrtoteknkka Tehonaon laskenta Jarmo Partanen LT Energy Electrcty Energy Envronment Srtoverkkoen laskenta Verkon tehonaon laskemnen srron hävöt ännteolosuhteet ohtoen kuormttumnen verkon käyttäytymnen
LisätiedotSähkön- ja lämmöntuotannon kustannussimulointi ja herkkyysanalyysi
Sähkön- ja lämmöntuotannon kustannussmulont ja herkkyysanalyys Pekka Nettaanmäk Osmo Schroderus Jyväskylän ylopsto Tetoteknkan latos 2010 1 2 Tvstelmä Raportn tarkotuksena on esttää pelkstetyn matemaattsen
Lisätiedot1, x < 0 tai x > 2a.
PHYS-C020 Kvanttmekankka Laskuharotus 2, vkko 45 Tarkastellaan ptkn x-aksela lkkuvaa hukkasta, onka tlafunkto on (x, t) Ae x e!t, mssä A, a! ovat reaalsa a postvsa vakota a) Määrtä vako A sten, että tlafunkto
LisätiedotMatematiikan ja tilastotieteen laitos Johdatus diskreettiin matematiikkaan (Syksy 2008) 4. harjoitus Ratkaisuja (Jussi Martin)
Matematan ja tlastoteteen latos Johdatus dsreettn matemataan (Sysy 28 4. harjotus Ratasuja (Juss Martn 1. Kertomus Hotell Kosmosesta jatuu: Hotellyhtymän johdolta tul määräys laata luettelo asta mahdollssta
LisätiedotER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto
Ohelmen analsont Ohelmen kuvaamnen kaavolla ohelmen mmärtämnen kaavoden avulla kaavoden tuottamnen ohelmasta Erlasa kaavotppeä: ER-kaavot, tlakaavot, UML-kaavot tetohakemsto vuokaavot (tarkemmn) Vuoanals
LisätiedotTuringin kone on kuin äärellinen automaatti, jolla on käytössään
4 TUINGIN KONEET Ala Turg 1935 36 auha Koe vo srtää auha: T U I N G auhapää: ohjausykskkö: Turg koe o ku äärelle automaatt, jolla o käytössää auhapäätä vasemmalle ta okealle; se vo myös lukea ta krjottaa
LisätiedotModerni portfolioteoria
Modern portfoloteora Helsngn Ylopsto Kansantalousteteen Kanddaatntutkelma 4.12.2006 Juho Kostanen (013297143) juho.kostanen@helsnk.f 2 1. Johdanto... 3 2. Sjotusmarkknat... 4 2.1. Osakemarkknat... 4 2.2.
LisätiedotLohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4
TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun
Lisätiedot3. Datan käsittely lyhyt katsaus
3. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento..0 Thomas Hackman HTTPK I, kevät 0, luento 3 3. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus
LisätiedotPPSS. Roolikäyttäytymisanalyysi 28.03.2011. Tämän raportin on tuottanut: MLP Modular Learning Processes Oy Äyritie 8 A FIN 01510 Vantaa info@mlp.
PP Roolkäyttäytymsanalyys Roolkäyttäytymsanalyys Rool: Krjanptäjä Asema: Laskentapäällkkö Organsaato: Mallyrtys Tekjä: Matt Vrtanen 8.0.0 Tämän raportn on tuottanut: MLP Modular Learnng Processes Oy Äyrte
LisätiedotMAOL-Pisteitysohjeet Fysiikka kevät 2009
MOL-Pstetysohjeet Fyskka kevät 9 Tyypllsten vrheden aheuttama pstemenetyksä (6 psteen skaalassa): - pen laskuvrhe -/3 p - laskuvrhe, epämelekäs tulos, vähntään - - vastauksessa yks merktsevä numero lkaa
LisätiedotMarkov-prosessit (Jatkuva-aikaiset Markov-ketjut)
J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 1 Markov-prosesst (Jatkuva-akaset Markov-ketut) Tarkastellaan (statonaarsa) Markov-prosessea, oden parametravaruus on atkuva (yleensä aka). Srtymät
Lisätiedoton määritelty tarkemmin kohdassa 2.3 ja pi kohdassa 2.2.
SU/Vakuutusmatemaattnen ykskkö 7.8.08 (7) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,
LisätiedotHY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia.
HY, MTO / Matemaattste tetede kadohjelma Tlastolle päättely II, kevät 208 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I Olkoo Y, Y rppumato otos Pareto jakaumasta, fy; θ θc θ y θ+ { y > c } tuetulla vakolla
LisätiedotTietojen laskentahetki λ α per ,15 0,18 per ,15 0,18 per tai myöhempi 0,20 0,18
SU/Vakuutusmatemaattnen ykskkö 6.3.07 (6) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,
LisätiedotSU/Vakuutusmatemaattinen yksikkö (6)
SU/Vakuutusmatemaattnen ykskkö 28.0.206 (6) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV 2. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan
LisätiedotNokian kaupunginkirjaston asiakaskysely 2010
2011 2010 Nokan kaupungnkrjaston asakaskysely 2010 Nokan kaupungnkrjasto Päv Kar 2011 2 Ssältö Johdanto... 3 Kyselyn toteutus... 4 Vastaajat... 4 Mtä krjastoja käytät?... 6 Krjastojen aukoloajat... 7 Kunka
LisätiedotTimo Tarvainen PUROSEDIMENTIIANALYYSIEN HAVAINNOLLISTAMINEN GEOSTATISTIIKAN KEINOIN. Outokumpu Oy Atk-osasto
Tmo Tarvanen PUROSEDMENTANALYYSEN HAVANNOLLSTAMNEN GEOSTATSTKAN KENON Outokumpu Oy Atk-osasto PUROSEDMENTTANALYYSEN HAVANNOLLSTAMNEN GEOSTATSSTKAN KENON 1. Johdanto Nn sanotulla SKALAn alueella (karttaleht
Lisätiedotin 2/2012 6-7 4-5 8-9 InHelp palvelee aina kun apu on tarpeen INMICSIN ASIAKASLEHTI
n 2/2012 fo INMICSIN ASIAKASLEHTI 6-7 Dgtova kynä ja Joun Mutka: DgProfITn sovellukset pyörvät Inmcsn konesalssa. 4-5 HL-Rakentajen työmalle on vedettävä verkko 8-9 InHelp palvelee ana kun apu on tarpeen
Lisätiedot1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on
HY MTO / Matemaattste tetede kadohjelma Tlastolle päättely II kevät 019 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I 1 Mostee teht 516 Eräde kuulalaakerede kestoa mljooaa kerrosta o totuttu kuvaamaa Webull-jakaumalla
LisätiedotTyössä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa
URUN AMMAIKORKEAKOULU YÖOHJE (7) FYSIIKAN LABORAORIO V.2 2.2 38E. MEKAANISEN VÄRÄHELYN UKIMINEN. yön tavote 2. eoraa yössä tutustutaan harmonsen mekaansen värähdyslkkeen omnasuuksn seuraavssa tapauksssa:
LisätiedotT p = 0. λ n i T i B = Käytetään kohdan (i) identiteetin todistamiseen induktiotodistusta. : Oletetaan, että väite on totta, kun n = k.
Olkoot A R n n ja T R n n sten, että on olemassa ndeks p N jolle T p = Tällästä matrsa kutsutaa nlpotentks Näytä, että () () () Olkoot Määrtä matrs B n (λi + A) n = (λi + T ) n = B = n mn n,p ( ) n λ n
Lisätiedot4. MARKKINOIDEN TASAPAINOTTUMINEN 4.1. Tasapainoperiaate Yritysten ja kuluttajien välinen tasapaino
4. MARKKINOIDEN TASAPAINOTTUMINEN 4.. Tasapanoperaate 4... Yrtysten ja kuluttajen välnen tasapano Näkymätön käs muodostuu kahdesta vakutuksesta: ) Yrtysten voton maksmont johtaa ne tuottamaan ntä hyödykketä,
LisätiedotRahastoonsiirtovelvoitteeseen ja perustekorkoon liittyvät laskentakaavat. Soveltaminen
SU/Vakuutusmatemaattnen ykskkö 0.4.05 Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä perusteta sovelletaan täydennyskertomen,
LisätiedotPOPULAATION MONIMUOTOISUUDEN MITTAAMINEN LIUKULUKUKOODATUISSA EVOLUUTIOALGORITMEISSA
LAPPEENRANNAN TEKNILLINEN YLIOPISTO Tetoteknkan osasto POPULAATION MONIMUOTOISUUDEN MITTAAMINEN LIUKULUKUKOODATUISSA EVOLUUTIOALGORITMEISSA Dplomtyön ahe on hyväksytty Tetoteknkan osaston osastoneuvostossa
LisätiedotSäilörehun korjuuajan vaikutus maitotilan talouteen -lyhyen aikavälin näkökulma
Sälörehun korjuuajan vakutus matotlan talouteen -lyhyen akaväln näkökulma Elna Vauhkonen Mastern tutkelma Helsngn Ylopsto Helsnk 13.5.2011 Tedekunta/Osasto Fakultet/Sekton Faculty Latos Insttuton Department
LisätiedotValmistelut INSTALLATION INFORMATION
Valmstelut 1 Pergo-lamnaattlattan mukana tomtetaan kuvallset ohjeet. Alla olevssa tekstessä on seltykset kuvn. Ohjeet on jaettu kolmeen er osa-alueeseen, jotka ovat valmstelu, asennus ja svous. Suosttelemme,
LisätiedotJYVÄSKYLÄN YLIOPISTO Taloustieteiden tiedekunta
JYVÄSKYLÄN YLIOPISTO Talousteteden tedekunta AIKA- IKÄ- JA KOHORTTIVAIKUTUKSET KOTITALOUKSIEN RAHOITUSVARALLISUUDEN RAKENTEISIIN SUOMESSA VUOSINA 1994 2004 Kansantaloustede Pro gradu -tutkelma Maalskuu
Lisätiedotr i m i v i = L i = vakio, (2)
4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään
LisätiedotKvanttimekaanisten joukkojen yhteys termodynamiikkaan
Kvanttmekaansten joukkojen yhteys termodynamkkaan Hukkaslukumäärän sälyttävä systeem vo vahtaa energaa ympärstönsä kanssa kahdella tavalla: työnä ta lämpönä. Termodynamkassa entropan muutos lttyy lämmön
LisätiedotESITYSLISTA 25/2002 vp PERUSTUSLAKIVALIOKUNTA
ESITYSLISTA 25/2002 vp PERUSTUSLAKIVALIOKUNTA Tsta 19.3.2002 kello 10.00 1. Nmenhuuto 2. Päätösvaltasuus 3. U 6/2002 vp ehdotuksesta neuvoston säädöksen antamseks Euroopan polsvraston perustamsesta tehdyn
LisätiedotTuotteiden erilaistuminen: hintakilpailu
Tuotteden erlastumnen: hntaklalu Lass Smlä 19.03.003 Otmonton semnaar - Kevät 003 / 1 Johdanto Yrtykset evät yleensä halua tuottaa saman tuoteavaruuden tlan täyttävä tuotteta (syynä Bertrandn aradoks)
Lisätiedot5. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman
5. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7.4.006 Thomas Hackman 5. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 5. Tähtteteellsten
LisätiedotKollektiivinen korvausvastuu
Kollektvnen korvausvastuu Sar Ropponen 4.9.00 pävtetty 3..03 Ssällysluettelo JOHDANTO... KORVAUSVASTUUSEEN LIITTYVÄT KÄSITTEET VAHINKOVAKUUTUKSESSA... 3. MERKINNÄT... 3. VAHINGON SELVIÄMINEN JA KORVAUSVASTUU...
LisätiedotUsean muuttujan funktioiden integraalilaskentaa
Usean muuttujan funktoden ntegraallaskentaa Pntantegraaln määrtelmä Yhden muuttujan tapaus (kertausta) Olkoon f() : [a, b] R jatkuva funkto Oletetaan tässä ksnkertasuuden vuoks, että f() Remann-ntegraal
LisätiedotREILUUS, SOSIAALISET PREFERENSSIT JA PELITEORIA
TAMPEREEN YLIOPISTO Talousteteden latos REILUUS, SOSIAALISET PREFERENSSIT JA PELITEORIA Kansantaloustede Pro gradu -tutkelma Marraskuu 2009 Ohaaat: Snkka Hämälänen Matt Tuomala Lsa Ekman TIIVISTELMÄ Tampereen
LisätiedotSähkökiukaan kivimassan vaikutus saunan energiankulutukseen
LAPPEENRANNAN ENILLINEN YLIOPISO eknllnen tedekunta LU Energa Sähkökukaan kvmassan vakutus saunan energankulutukseen Lappeenrannassa 3.6.009 Lass arvonen Lappeenrannan teknllnen ylopsto eknllnen tedekunta
Lisätiedotasettamia ehtoja veroluonteisesta suhdannetasausjärjestelmästä. komitean mietintöön. Esityksessä on muutama ratkaisevan heikko kohta.
-112- asettama ehtoja veroluontesesta suhdannetasausjärjestelmästä. Estetty hntasäännöstelyjärjestelmä perustuu nk. Wahlroosn komtean metntöön. Estyksessä on muutama ratkasevan hekko kohta. 15 :ssä todetaan:
LisätiedotSisällysluettelo Laitteen asennus Toiminnot Tekniset tiedot Asetukset Viestikoodit Huolto Takuu Turvallisuusohjeet Toiminnot
DEWALT DW03201 Ssällysluettelo Latteen asennus - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 Johdanto- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 Yleskuva -
Lisätiedotd L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ
TTKK/Fyskan latos FYS-1640 Klassnen mekankka syksy 2009 Laskuharjotus 5, 16102009 1 Ertysessä suhteellsuusteorassa Lagrangen funkto vodaan krjottaa muodossa v L = m 2 u t 1! ṙ 2 V (r) Osota, että tämä
LisätiedotRahastoonsiirtovelvoitteeseen, perustekorkoon ja vakuutusmaksukorkoon liittyvät laskentakaavat ja periaatteet
SU/Vakuutusmatemaattnen ykskkö 3..209 (7) Rahastoonsrtovelvotteeseen, perustekorkoon ja vakuutusmaksukorkoon lttyvät laskentakaavat ja peraatteet Soveltamnen. Rahastosrtovelvote RSV 2. Täydennyskerron
LisätiedotLuento 6 Luotettavuus Koherentit järjestelmät
Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu
LisätiedotMaanhintojen vikasietoisesta mallintamisesta
Maanmttaus 8:-2 (2006) 5 Maanmttaus 8:-2 (2006) Saapunut 0.8.2005 ja tarkstettuna.4.2006 Hyväksytty 30.6.2006 Maanhntojen vkasetosesta mallntamsesta Marko Hannonen Teknllnen korkeakoulu, Kntestöopn laboratoro
LisätiedotLIGNIININ RAKENNE JA OMINAISUUDET
16006 LIGNIININ RAKENNE JA INAISUUDET Hlatomen nmeämnen γ 16006 6 α 1 β 5 3 4 e Lgnnn prekursort (monomeert) Lgnnn bosyntees e e e Peroksdaasn ja vetyperoksdn läsnäollessa prekursorsta muodostuu resonanssstablotu
LisätiedotAquaPro 3-10 11-18 19-26 27-34. Bedienungsanleitung Operating instructions Gebruiksaanwijzing Käyttöohje FIN. 046.01.00 Rev.0607
046.01.00 Rev.0607 D GB NL FIN Bedenungsanletung Operatng nstructons Gebruksaanwjzng Käyttöohje 3-10 11-18 19-26 27-34 120 Automaattnen pyörvä laser kallstustomnnolla: Itsetasaus vaakasuorassa tasossa
Lisätiedot