Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)

Koko: px
Aloita esitys sivulta:

Download "Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)"

Transkriptio

1 J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 1 Markov-prosesst (Jatkuva-akaset Markov-ketut) Tarkastellaan (statonaarsa) Markov-prosessea, oden parametravaruus on atkuva (yleensä aka). Srtymät tlasta toseen vovat tapahtua melvaltasna aanhetknä. Markov-omnasuuden vuoks aka, onka ärestelmä vettää annetussa tlassa, on mustton: älelläolevan aan akauma rppuu van ko. tlasta, mutte stä, kauanko tlassa on o oltu aka on eksponentaalsest akautunut. Markov-prosessn X t määrttelee täydellsest ns. generaattormatrs l. srtymänopeusmatrs P{X t+ t = X t = } q, = lm t 0 t -todennäkösyys akaykskköä kohden srtyä tlasta tlaan - srtymänopeus l. srtymäntensteett Kokonassrtymänopeus pos tlasta on q = q, tlan elnaka Exp(q ) Tällä nopeudella tlan todennäkösyys penenee. Määrtellään q, = q

2 J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 2 Srtymänopeusmatrs a aasta rppuva tlatodennäkösyysvektor Srtymänopeusmatrs kokonasuudessaan on Q = q 0,0 q 0,1... q 1,0 q 1, = q 0 q 0,1... q 1,0 q rvsummat ovat nolla: tlasta postuva tn.massa srtyy muualle Tlatodennäkösyysvektor π(t) on nyt aan funkto, oka kehttyy seuraavast d π(t) =π(t) Q dt π(t + t) =π(t)+π(t) Q t + o( t) =π(t)(i + Q t)+o( t) Srtymätodennäkösyysmatrs akaväln t yl on I + Q t -lähenee dentteettmatrsa I, kun t 0 - Q on srtymätodennäkösyysmatrsn akadervaatta (srtymänopeusmatrs) Muodollnen ratkasu aasta rppuvalle tlatodennäkösyysvektorlle on π(t) =π(0) e Q t Matrseksponentt e A vodaan määrtellä - sarakehtelmän avulla: e A = I + A + 1 2! A2 + - omnasarvoen a -vektoren avulla: Au T = z u T a v A = z v A = z u T v a e A = e z u T v

3 J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 3 Globaalt tasapanoehdot Statonaarnen ratkasu π = lm t π(t) on aasta rppumaton a sten toteuttaa yhtälön π Q = 0 Globaal tasapanoehto, oka lmottaa todennäkösyysvrtoen tasapanon. Yhtälön :s rv on q }{{} q, π = π q, = π q, π q, π q, = todennäkösyysvrta tlasta tlaan (srtymäfrekvenss tlasta tlaan ) q, q, vrrat ulos = vrrat ssään

4 J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 4 Globaalt tasapanoehdot (atkoa) Yhtälöt ovat rppuva: mkä tahansa yhtälöstä on automaattsest vomassa, os muut ovat vomassa ( todennäkösyyden hävämättömyys ). Ratkasu on määrätty vakotekää valle. Ratkasu tulee ykskästtesest määrätyks normehdon kautta. π e T =1 el π =1 π on Q:n omnasarvoon 0 lttyvä (vasemmanpuolenen) omnasvektor. Globaal tasapanoehto pätee yhtä hyvn myös tlaoukolle. Statonaarsessa tlassa todennäkösyysvrrat kahteen oukkoon aettuen tloen välllä ovat tasapanossa: Olkoot Ω a Ω komplementaarset tlaoukot. Tällön Ω, Ω π q, = Ω, Ω π q, Ω _ Ω

5 J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 5 Tasapanoyhtälön ratkasemsesta Samalla tavalla kun Markovn ketun tapauksessa (homogeensen) tasapanoyhtälön π Q = 0 ratkasu, oka toteuttaa normehdon π e T = 1, saadaan käteväst krottamalla normehdosta n + 1 kopota π E = e mssä E on (n +1) (n + 1)-matrs, onka kakk alkot ovat ykkösä, E = laskemalla yhtälöt yhteen, π (Q + E) =e, a ratkasemalla nän saatu epähomogeennen yhtälö π = e (Q + E) 1

6 J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 6 Upotettu Markovn ketu (embedded Markov chan) Jokaseen atkuva-akaseen Markovn prosessn X t vodaan ltää dskreettakanen Markovn ketu, ns. upotettu Markovn ketu X n. Huomo knntetään X t :n tlasrtymn (sllon kun ne tapahtuvat) el X t :n läpkäymen tloen onoon. Tapahtukoot X t :n tlasrtymät hetkllä t 0,t 1,... Määrtellään X n :n arvoks X t:n arvo het hetkellä t n tapahtuneen tlasrtymän älkeen (hetk t + n ), el X t:n arvo välllä (t n,t n+1 ). X Koska X t on Markov-prosess, nn nän määrtelty n = X t + n ono X muodostaa Markovn ketun. n X 2 X 1 X 5 X 3 X 6 X 7 X t X 4 t 1 t 2 t 3 t 4 t 5 t 6 t 7

7 J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 7 Upotettu Markovn ketu (atkoa) Markov-prosessn tlat luoktellaan vastaavast kun nän määrtellyn Markovn ketun tlat (transentt, absorbova, palautuva,...). Upotetun Markovn ketun tlasrtymätodennäkösyydet p, = lm P{X t+ t = X t+ t, X t = } t 0 P{X t+ t =, X t+ t X t = } = lm t 0 P{X t+ t X t = } = q, q, vrt. P{mn(X 1,...,X n )=X } = 0 = λ λ 1 + +λ n,kunx Exp(λ ) α α α+β β β α+β Markov-prosess, srtymänopeudet q, tasapanotodennäkösyydet π Upotettu Markovn ketu, srtymätodennäkösyydet p, tasapanotodennäkösyydet π

8 J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 8 Upotetun Markovn ketun tasapanotodennäkösyydet π = π E[T ] π E[T ] π = π q π q E[T ]=1/q, q = q, π = akaosuus, onka X t vettää tlassa (pano E[T ]) π = suhtellnen frekvenss, olla tla esntyy X n :n läpkäymen tloen onossa (pano 1) Huom. π q on frekvenss, olla Markovn ketu X t suorttaa hyppyä pos tlasta. Systeemn ollessa tasapanossa tämä on sama kun frekvenss, olla systeem suorttaa hyppyä tlaan. Nyt on tarkasteltu kakken X t :n läpkäymen tloen onoa X n Joskus tästä onosta vodaan sopvalla tavalla poma osaono, oka edelleen muodostaa erään upotetun Markovn ketun. myöhemmn tullaan ns. M/G/1-onosysteemn analyys perustamaan sopvast valtun upotetun Markovn ketun tarkasteluun

9 J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 9 Sem-Markov-prosesst Kääntäen okaseen Markovn ketuun Z n,n=1, 2,... vodaan lttää atkuva-akanen satunnasprosess X t valtsemalla aka T,onkaX t vettää tlassa ostakn akaumasta - oka kerta musta rppumatta - er tlolla akaumat vovat olla erlaset a arpomalla uus tla Z n :n tlasrtymätodennäkösyyksen mukasest. Nän saatua prosessa X t kutsutaan sem-markov-prosessks - e yleensä ole Markov-prosess - on Markov-prosess sllon a van sllon, kun T Exp(λ ) - sllä on sama statonaarnen akauma kun vastaavalla Markovn prosesslla

6. Stokastiset prosessit (2)

6. Stokastiset prosessit (2) Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella

Lisätiedot

ABTEKNILLINEN KORKEAKOULU

ABTEKNILLINEN KORKEAKOULU ABTEKNILLINEN KORKEAKOULU Tetoverkkolaboratoro 6. Stokastset prosesst () Luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 5 6. Stokastset prosesst () Ssältö Markov-prosesst Syntymä-kuolema-prosesst

Lisätiedot

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut) J. Virtamo 38.3143 Jonoteoria / Markov-prosessit 1 Markov-prosessit (Jatkuva-aikaiset Markov-ketut) Tarkastellaan (stationaarisia) Markov-prosessea, oiden parametriavaruus on atkuva (yleensä aika). Siirtymät

Lisätiedot

6. Stokastiset prosessit

6. Stokastiset prosessit luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät Ssältö Peruskästtetä Posson-prosess Markov-prosesst Syntymä-kuolema-prosesst Stokastset prosesst () Tarkastellaan otakn (lkenneteoran kannalta ta stten

Lisätiedot

3.5 Generoivat funktiot ja momentit

3.5 Generoivat funktiot ja momentit 3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä

Lisätiedot

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10

Lisätiedot

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0.

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0. BM20A5800 - Funktot, lneaaralgebra, vektort Tentt, 26.0.206. (a) Krjota yhtälöryhmä x + 2x 3 = a 2x + x 2 + 5x 3 = b x x 2 + x 3 = c matrsmuodossa Ax = b ja ratkase x snä erkostapauksessa kun b = 0. Mllä

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematkkaan Informaatoteknologan tedekunta Jyväskylän ylopsto 4. luento 24.11.2017 Neuroverkon opettamnen - gradenttmenetelmä Neuroverkkoa opetetaan syöte-tavote-parella

Lisätiedot

1, x < 0 tai x > 2a.

1, x < 0 tai x > 2a. PHYS-C020 Kvanttmekankka Laskuharotus 2, vkko 45 Tarkastellaan ptkn x-aksela lkkuvaa hukkasta, onka tlafunkto on (x, t) Ae x e!t, mssä A, a! ovat reaalsa a postvsa vakota a) Määrtä vako A sten, että tlafunkto

Lisätiedot

3 Tilayhtälöiden numeerinen integrointi

3 Tilayhtälöiden numeerinen integrointi 3 Tlayhtälöden numeernen ntegront Alkuarvotehtävässä halutaan ratkasta lopputla xt f ) sten, että tlayhtälöt ẋ = fx,u, t) toteutuvat, kun alkutla x 0 on annettu Tlayhtälöden numeernen ntegront vodaan suorttaa

Lisätiedot

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit 68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta

Lisätiedot

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss

Lisätiedot

Tilastollisen fysiikan luennot

Tilastollisen fysiikan luennot Tlastollsen fyskan luennot Tvstelmät luvuttan I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ Lämpö on systeemen mkroskooppsten osen satunnasta lkettä Lämpöenerga vrtaa kuumemmasta kappaleesta kylmempään Jos kaks kappaletta

Lisätiedot

T p = 0. λ n i T i B = Käytetään kohdan (i) identiteetin todistamiseen induktiotodistusta. : Oletetaan, että väite on totta, kun n = k.

T p = 0. λ n i T i B = Käytetään kohdan (i) identiteetin todistamiseen induktiotodistusta. : Oletetaan, että väite on totta, kun n = k. Olkoot A R n n ja T R n n sten, että on olemassa ndeks p N jolle T p = Tällästä matrsa kutsutaa nlpotentks Näytä, että () () () Olkoot Määrtä matrs B n (λi + A) n = (λi + T ) n = B = n mn n,p ( ) n λ n

Lisätiedot

Jaksolliset ja toistuvat suoritukset

Jaksolliset ja toistuvat suoritukset Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e

Lisätiedot

AB TEKNILLINEN KORKEAKOULU

AB TEKNILLINEN KORKEAKOULU B TEKNILLINEN KORKEKOULU Tetoverkkolaboratoro luento05.ppt S-38.45 - Lkenneteoran perusteet - Kevät 00 Ssältö eruskästteet Dskreett satunnasmuuttujat Dskreett jakaumat lkm-jakaumat Jatkuvat satunnasmuuttujat

Lisätiedot

Kuorielementti hum

Kuorielementti hum Kuorelementt hum.. ämä estys e kuulu kurssvaatmuksn, vaan se on tarkottu asasta knnostunelle. arkastellaan tässä yhteydessä eaarsta -solmusta AIZ (Ahmad, Irons ja Zenkewcz, 970) kuorelementtä, jonka knematkka

Lisätiedot

Monte Carlo -menetelmä

Monte Carlo -menetelmä Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu

Lisätiedot

5. KVANTTIMEKANIIKKAA

5. KVANTTIMEKANIIKKAA 5. KVANTTIMEKANIIKKAA Bohrn atommallsta samme jonknlasen kuvan atomn rakenteesta. Kutenkaan Bohrn atommall e pysty selttämään kakka kokeellsa havantoja spektrestä: Mks osa spektren vvosta on tosa vomakkaampa

Lisätiedot

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekankan jatkokurss Fys102 Syksy 2009 Jukka Maalamp LUENTO 2 Alkuverryttelyä Vääntömomentt Oletus: Vomat tasossa, joka on kohtsuorassa pyörmsaksela vastaan. Oven kääntämseen tarvtaan er suurunen voma

Lisätiedot

Painotetun metriikan ja NBI menetelmä

Painotetun metriikan ja NBI menetelmä Panotetun metrkan ja NBI menetelmä Optmontopn semnaar - Kevät / 1 Estelmän ssältö Paretopsteden generont panotetussa metrkossa Panotettu L p -metrkka Panotettu L -metrkka el panotettu Tchebycheff -metrkka

Lisätiedot

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä Tavotteet skaalaavan funkton lähestymstapa el referensspste menetelmä Optmontopn semnaar - Kevät 2000 / 1 Estelmän ssältö Panotetun metrkan ongelmen havatsemnen Referensspste menetelmän dean esttely Referensspste

Lisätiedot

Yksikköoperaatiot ja teolliset prosessit

Yksikköoperaatiot ja teolliset prosessit Ykskköoperaatot ja teollset prosesst 1 Ylestä... 2 2 Faasen välnen tasapano... 3 2.1 Neste/höyry-tasapano... 4 2.1.1 Puhtaan komponentn höyrynpane... 4 2.1.2 Ideaalnen seos... 5 2.1.3 Epädeaalnen nestefaas...

Lisätiedot

Kanoniset muunnokset

Kanoniset muunnokset Kanonset muunnokset Koordnaatstomuunnokset Lagrangen formalsmssa pstemuunnoksa: Q = Q (q, t) nopeudet saadaan nästä dervomalla Kanonnen formalsm: p:t ja q:t samanarvosa 2n-ulottesen faasavaruuden muuttuja

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot

Lisätiedot

Galerkin in menetelmä

Galerkin in menetelmä hum.9.3 Galerkn n menetelmä Galerknn menetelmän soveltamnen e ole rajottunut van ongelmn, jotka vodaan pukea sellaseen varaatomuotoon, joka on seurauksena funktonaaln mnmomsesta, kuten potentaalenergan

Lisätiedot

BL20A0600 Sähkönsiirtotekniikka

BL20A0600 Sähkönsiirtotekniikka BLA6 Sähkönsrtoteknkka Tehonaon laskenta Jarmo Partanen LT Energy Electrcty Energy Envronment Srtoverkkoen laskenta Verkon tehonaon laskemnen srron hävöt ännteolosuhteet ohtoen kuormttumnen verkon käyttäytymnen

Lisätiedot

r i m i v i = L i = vakio, (2)

r i m i v i = L i = vakio, (2) 4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään

Lisätiedot

Eräs Vaikutuskaavioiden ratkaisumenetelmä

Eräs Vaikutuskaavioiden ratkaisumenetelmä Mat-2.142 Optmontopn semnaar, s-99 28.9. 1999 Semnaarestelmän referaatt Joun Ikonen Lähde: Ross D. Schachter: Evaluatng nfluence dagrams, Operatons Research, Vol 34, No 6, 1986 Eräs Vakutuskaavoden ratkasumenetelmä

Lisätiedot

HASSEN-WEILIN LAUSE. Kertausta

HASSEN-WEILIN LAUSE. Kertausta HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on

1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on HY MTO / Matemaattste tetede kadohjelma Tlastolle päättely II kevät 019 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I 1 Mostee teht 516 Eräde kuulalaakerede kestoa mljooaa kerrosta o totuttu kuvaamaa Webull-jakaumalla

Lisätiedot

. g = 0,42g. Moolimassat ovat vastaavasti N 2 :lle 28, 02g/ mol ja typpiatomille puolet tästä 14, 01g/ mol.

. g = 0,42g. Moolimassat ovat vastaavasti N 2 :lle 28, 02g/ mol ja typpiatomille puolet tästä 14, 01g/ mol. LH-1 Kaasusälö ssältää 1, g typpeä 1800 K lämpötlassa Sälön tlavuus on 5,0 l Laske pane sälössä ottamalla huomoon, että tässä lämpötlassa 30 % typpmolekyylestä, on hajonnut atomeks Sovella Daltonn laka

Lisätiedot

Pyörimisliike. Haarto & Karhunen.

Pyörimisliike. Haarto & Karhunen. Pyörmslke Haarto & Karhunen www.turkuamk.f Pyörmslke Lttyy jäykän kappaleen pyörmseen akselnsa ympär Pyörmsenerga on pyörmsakseln A ympär pyörvän kappaleen osasten lke-energoden summa E r Ek mv mr mr www.turkuamk.f

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä. MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät 2016 1 Perustuu Antt

Lisätiedot

Rahastoonsiirtovelvoitteeseen, perustekorkoon ja vakuutusmaksukorkoon liittyvät laskentakaavat ja periaatteet

Rahastoonsiirtovelvoitteeseen, perustekorkoon ja vakuutusmaksukorkoon liittyvät laskentakaavat ja periaatteet SU/Vakuutusmatemaattnen ykskkö 3..209 (7) Rahastoonsrtovelvotteeseen, perustekorkoon ja vakuutusmaksukorkoon lttyvät laskentakaavat ja peraatteet Soveltamnen. Rahastosrtovelvote RSV 2. Täydennyskerron

Lisätiedot

VERKKOJEN MITOITUKSESTA

VERKKOJEN MITOITUKSESTA J. Vrtamo 38.3141 Telelkenneteora / Verkon mtotus 1 VERKKOJEN MITOITUKSESTA 1. Prkytkentäset verkot Lnkken kapasteetten (johtoja/lnkk) määräämnen sten, että verkon kokonaskustannukset mnmotuvat, kun päästä-päähän

Lisätiedot

9. Muuttuva hiukkasluku

9. Muuttuva hiukkasluku Statstnen fyskka, osa B (FYSA242) Tuomas Lapp tuomas.v.v.lapp@jyu.f Huone: FL240. E kntetä vastaanottoakoja. kl 2016 9. Muuttuva hukkasluku 1 Kertaus: lämpökylpy Mustetaan kurssn A-osasta Mkrokanonnen

Lisätiedot

on määritelty tarkemmin kohdassa 2.3 ja pi kohdassa 2.2.

on määritelty tarkemmin kohdassa 2.3 ja pi kohdassa 2.2. SU/Vakuutusmatemaattnen ykskkö 7.8.08 (7) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,

Lisätiedot

PUTKIKELLON SUUNNITTELU 1 JOHDANTO 2 VÄRÄHTELEVÄN PALKIN TEORIAA. dm Q dx = (1) Matti A Ranta

PUTKIKELLON SUUNNITTELU 1 JOHDANTO 2 VÄRÄHTELEVÄN PALKIN TEORIAA. dm Q dx = (1) Matti A Ranta Matt A Aaltoylopsto Perusteteden korkeakoulu Matematkan ja systeemanalyysn latos PL 1100, 02015 Espoo matt.ranta@tkk.f 1 JOHDANTO Putkkellot kuuluvat lyömäsotnten ryhmään. Putkkellot koostuvat erptussta

Lisätiedot

7. Modulit Modulit ja lineaarikuvaukset.

7. Modulit Modulit ja lineaarikuvaukset. 7. Modult Vektoravaruudet ovat vahdannasa ryhmä, jossa on määrtelty jonkn kunnan skalaartomnta. Hyväksymällä kerronrakenteeks kunnan sjaan rengas saadaan rakenne nmeltä modul. Moduln käste on ss vektoravaruuden

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia ähköstaattnen enega Potentaalenegan a potentaaln suhde on samanlanen kun Coulomn voman a sähkökentän suhde: ähkökenttä vakuttaa vaattuun kappaleeseen nn, että se kokee Coulomn voman, mutta sähkökenttä

Lisätiedot

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ TTKK/Fyskan latos FYS-1640 Klassnen mekankka syksy 2009 Laskuharjotus 5, 16102009 1 Ertysessä suhteellsuusteorassa Lagrangen funkto vodaan krjottaa muodossa v L = m 2 u t 1! ṙ 2 V (r) Osota, että tämä

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaslukuotmont Robust dskreett otmont ysteemanalyysn Laboratoro Teknllnen korkeakoulu Ar-Pekka Perkkö ovelletun matematkan tutkasemnaar Kevät 28 sältö Robustn lneaarsen kokonasluku- sekä sekalukuotmontongelman

Lisätiedot

Jäykän kappaleen liike

Jäykän kappaleen liike aananta 9.9.014 1/17 Jäykän kappaleen lke Tähän ast tarkasteltu massapstemekankkaa : m, r, v Okeast fyskaalset systeemt ovat äärellsen kokosa, esm. jäykät kappaleet r r j = c j =vako, j elastset kappaleet

Lisätiedot

Yrityksen teoria. Lari Hämäläinen S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Yrityksen teoria. Lari Hämäläinen S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu Yrtyksen teora Lar Hämälänen.1.003 Yrtys Organsaato, joka muuttaa tuotantopanokset tuotteks ja tom tehokkaammn kun sen osat erllään Yrtys tenaa rahaa myynthnnan sekä ostohnnan ja aheutuneden kustannuksen

Lisätiedot

Ilmari Juva. Jalkapallo-ottelun lopputuloksen stokastinen mallintaminen

Ilmari Juva. Jalkapallo-ottelun lopputuloksen stokastinen mallintaminen Ilmar Juva 45727R Mat-2.108 Sovelletun matematkan erkostyö Jalkaallo-ottelun loutuloksen stokastnen mallntamnen 1 Johdanto Jalkaallo-ottelun loutuloksen mallntamsesta tlastollsn ja todennäkösyyslaskun

Lisätiedot

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö: Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa

Lisätiedot

Raja-arvot. Osittaisderivaatat.

Raja-arvot. Osittaisderivaatat. 1 MAT-13440 LAAJA MATEMATIIKKA 4 Tamperee teklle ylopsto Rsto Slveoe Kevät 2010 Luku 3 Raja-arvot Osttasdervaatat 1 Fuktode raja-arvot Tarkastelemme fuktota f : A, jode määrttelyjoukko A T Muuttujat ovat

Lisätiedot

Turingin kone on kuin äärellinen automaatti, jolla on käytössään

Turingin kone on kuin äärellinen automaatti, jolla on käytössään 4 TUINGIN KONEET Ala Turg 1935 36 auha Koe vo srtää auha: T U I N G auhapää: ohjausykskkö: Turg koe o ku äärelle automaatt, jolla o käytössää auhapäätä vasemmalle ta okealle; se vo myös lukea ta krjottaa

Lisätiedot

SU/Vakuutusmatemaattinen yksikkö (6)

SU/Vakuutusmatemaattinen yksikkö (6) SU/Vakuutusmatemaattnen ykskkö 28.0.206 (6) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV 2. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan

Lisätiedot

Yrityksen teoria ja sopimukset

Yrityksen teoria ja sopimukset Yrtyksen teora a sopmukset Mat-2.4142 Optmontopn semnaar Ilkka Leppänen 22.4.2008 Teemoa Yrtyksen teora: tee va osta? -kysymys Yrtys kannustnsysteemnä: ylenen mall Työsuhde vs. urakkasopmus -analyysä Perustuu

Lisätiedot

Kollektiivinen korvausvastuu

Kollektiivinen korvausvastuu Kollektvnen korvausvastuu Sar Ropponen 4.9.00 pävtetty 3..03 Ssällysluettelo JOHDANTO... KORVAUSVASTUUSEEN LIITTYVÄT KÄSITTEET VAHINKOVAKUUTUKSESSA... 3. MERKINNÄT... 3. VAHINGON SELVIÄMINEN JA KORVAUSVASTUU...

Lisätiedot

Tietojen laskentahetki λ α per ,15 0,18 per ,15 0,18 per tai myöhempi 0,20 0,18

Tietojen laskentahetki λ α per ,15 0,18 per ,15 0,18 per tai myöhempi 0,20 0,18 SU/Vakuutusmatemaattnen ykskkö 6.3.07 (6) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,

Lisätiedot

11. Vektorifunktion derivaatta. Ketjusääntö

11. Vektorifunktion derivaatta. Ketjusääntö 7 Vektorfunkton dervaatta Ketjusääntö Täydennämme ja kertaamme seuraavassa dfferentaallaskennan teoraa kursslta Laaja matematkka Palautetaan meln dervaatan määrtelmä reaalfunktolle: Funkton f : R R dervaatta

Lisätiedot

MO-teoria ja symmetria

MO-teoria ja symmetria MO-teora ja symmetra () Kaks atomorbtaaa vovat muodostaa kaks moekyyorbtaaa - Stova orbtaa - ajottava orbtaa () Atomorbtaaen energoden otava keskenään samansuurusa () Atomorbtaaen symmetravaatmukset LCAO

Lisätiedot

FYSA220/2 (FYS222/2) VALON POLARISAATIO

FYSA220/2 (FYS222/2) VALON POLARISAATIO FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron

Lisätiedot

Täydennetään teoriaa seuraavilla tuloksilla tapauksista, joissa moninkertaisen ominaisarvon geometrinen kertaluku on yksi:

Täydennetään teoriaa seuraavilla tuloksilla tapauksista, joissa moninkertaisen ominaisarvon geometrinen kertaluku on yksi: 77 Aemmn oleen, eä mars A on dagonalsouva. Tällanen on lanne äsmälleen sllon, un joasen omnasarvon geomernen eraluu on sama un algebrallnen. Täydenneään eoraa seuraavlla uloslla apaussa, jossa monnerasen

Lisätiedot

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,

Lisätiedot

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,

Lisätiedot

TULEVAISUUDEN KILPAILUKYKY VAATII OSAAVAT TEKIJÄNSÄ. Suomen Ammattiin Opiskelevien Liitto - SAKKI ry

TULEVAISUUDEN KILPAILUKYKY VAATII OSAAVAT TEKIJÄNSÄ. Suomen Ammattiin Opiskelevien Liitto - SAKKI ry TULEVAISUUDEN KILPAILUKYKY VAATII OSAAVAT TEKIJÄNSÄ Suomen Ammattn Opskeleven Ltto - SAKKI ry AMMATILLINEN KOULUTUS MUUTOKSEN KOURISSA Suomalasen ammatllsen koulutuksen vahvuus on sen laaja-alasuudessa

Lisätiedot

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4 TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemaalyys laboratoro Mat-.9 Sovellettu todeäkösyyslasku A Nordlud Harjotus 8 (vko 45/3) (Ahe: Raja-arvolauseta, otostuuslukuja, johdatusta estmot, Lae luvut 9.5,.-.6). Olkoo X ~ p(λ), mssä λ

Lisätiedot

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli lueto9.ppt S-38.45 Lkeeteora perusteet Kevät 5 Ykskertae lkeeteoreette mall Puhdas jakojärjestelmä Asakkata saapuu keskmäär opeudella asakasta per akayks. / keskmääräe asakkade välaka Asakkata palvellaa

Lisätiedot

SU/Vakuutusmatemaattinen yksikkö (5)

SU/Vakuutusmatemaattinen yksikkö (5) SU/Vakuutusmatemaattnen ykskkö 0..06 (5) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Montavoteoptmont ja teollsten prosessen hallnta Ylassstentt Juss Hakanen juss.hakanen@jyu.f syksy 2010 Interaktvset menetelmät Idea: päätöksentekjää hyödynnetään aktvsest ratkasuprosessn akana

Lisätiedot

4. A priori menetelmät

4. A priori menetelmät 4. A pror menetelmät 4. Arvofunkto-menetelmä 4.2 Lekskografnen järjestämnen 4.3 Tavoteohjelmont Tom Bäckström Optmontopn semnaar - Kevät 2000 / 4. Arvofunkto-menetelmä Päätöksentekjä antaa eksplsttsen

Lisätiedot

Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon

Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon Taustaa Sekventaalnen vakutuskaavo Sekventaalnen päätöskaavo on 1995 ovalun ja Olven esttämä menetelmä päätösongelmen mallntamseen, fomulontn ja atkasemseen. Päätöspuun omnasuukssta Hyvää: Esttää eksplsttsest

Lisätiedot

Reaaliarvoinen funktio f : on differentioituva pisteessä x, jos f:lle on siinä voimassa kehitelmä. h h. eli. Silloin

Reaaliarvoinen funktio f : on differentioituva pisteessä x, jos f:lle on siinä voimassa kehitelmä. h h. eli. Silloin MAT-3440 LAAJA MATEMATIIKKA 4 Tampereen teknllnen ylopsto Rsto Slvennonen Kevät 00 4. Vektorfunkton dervaatta. Ketjusääntö.. Reaalarvosen funkton dervaatta Tässä luvussa estetään dervaattakäste ensn reaalarvoselle

Lisätiedot

U missä U A := {U R n : U avoin ja U A}; intuitiivisesti suurin avoin joukko, joka sisältyy A:han. Määritellään A:n sulkeuma A := F F A

U missä U A := {U R n : U avoin ja U A}; intuitiivisesti suurin avoin joukko, joka sisältyy A:han. Määritellään A:n sulkeuma A := F F A Mitta a integraali Kesä 2 4. tehtävät Malliratkaisut (LS). Olkoon a i R i =, 2,... ono. Sanotaan, että i a i = os kaikille M R on olemassa i, olle kaikille i i pätee a i M. Sanotaan, että i a i = os i

Lisätiedot

FYSI1162 Sähkö / Piirianalyysi syksy kevät /7 Laskuharjoitus 6: Vaihtovirta-analyysin perusteet

FYSI1162 Sähkö / Piirianalyysi syksy kevät /7 Laskuharjoitus 6: Vaihtovirta-analyysin perusteet FYSI116 Sähkö / Pranalyy yky 14 - kevät 15 1 /7 akharjot 6: ahtovrta-analyyn perteet Tehtävä 1. Olkoon nmotonen jännte (t) = 8 co(1t 6º). Tehtävä 1 / 1 8 6 4 - -4-6 -8-1,,4,6,8 1 1, 1,4 1,6 1,8,,4,6,8

Lisätiedot

Tchebycheff-menetelmä ja STEM

Tchebycheff-menetelmä ja STEM Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot

Lisätiedot

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli Ssältö Kertausta: ykskertae lkeeteoreette mall M/M/-PS asakasta palvelja asakaspakkaa M/M/-PS asakasta palveljaa asakaspakkaa Sovellus elastse datalketee malltamsee vuotasolla M/M//k/k-PS k asakasta palvelja

Lisätiedot

. C. C Kirjoitetaan sitten auki lineaarisuuden määritelmän oikea puoli: αt{i c1 } + βt{i c2 } = α

. C. C Kirjoitetaan sitten auki lineaarisuuden määritelmän oikea puoli: αt{i c1 } + βt{i c2 } = α SMG-00 Pranals II Ehdotuset harjotusen s ratasus Jotta järjestelmän lneaarsuutta psttään tarastelemaan, on ensn muodostettava htes järjestelmän ssäänmenon ja ulostulon vällle Tällä ertaa tuo htes saadaan

Lisätiedot

Käytetään säteille kompleksiesitystä. Tuleva säde on Ee 0 iw t ja peräkkäisiä heijastuneita säteitä kuvaaviksi esityksiksi saadaan kuvasta: 3 ( 2 )

Käytetään säteille kompleksiesitystä. Tuleva säde on Ee 0 iw t ja peräkkäisiä heijastuneita säteitä kuvaaviksi esityksiksi saadaan kuvasta: 3 ( 2 ) 58 Yhtälön (0.4.) mukaan peräkkästen hejastuneen säteen optnen matkaero on D= n tcosqt ja vahe-eroks tulee (kun r = 0) p = kd= D. (.3.) l ässä on huomattava, että hejastuksssa tapahtuvat mahollset p :

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

AMMATTIMAISTA KIINTEISTÖPALVELUA JO 50 VUODEN AJAN

AMMATTIMAISTA KIINTEISTÖPALVELUA JO 50 VUODEN AJAN AMMATTIMAISTA KIINTEISTÖPALVELUA JO 50 VUODEN AJAN VUO-KIINTEISTÖPALVELUT 50 VUOTTA Vuosaarelaset asunto-osakeyhtöt perustvat vuonna 1965 Vuosaaren Isännötsjätomsto Oy:n, joka tuott omstajlleen kohtuuhntasa

Lisätiedot

= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2

= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2 HY / Matematka ja tlastotetee latos Tlastolle päättely II, kevät 28 Harjotus 3A Ratkasuehdotuksa Tehtäväsarja I Olkoot Y,, Y ja Nθ, ) Osota, että T T Y) Y 2 o parametr gθ) θ 2 harhato estmaattor Laske

Lisätiedot

1. YLEISKATSAUS MYYNTIPAKKAUKSEN SISÄLTÖ. ZeFit USB -latausklipsi Käyttöohje. Painike

1. YLEISKATSAUS MYYNTIPAKKAUKSEN SISÄLTÖ. ZeFit USB -latausklipsi Käyttöohje. Painike Suom USER GUIDE YLEISKATSAUS LATAAMINEN KIINNITTÄMINEN KÄYTÖN ALOITTAMINEN TIETOJEN SYNKRONOINTI NÄYTTÖTILAT AKTIIVISUUSMITTARI UNITILA TAVOITTEET MUISTUTUKSET TEKNISET TIEDOT 6 8 10 12 16 18 20 21 22

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttausöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

Asennus- ja käyttöohjeet. Videoterminaali 2600..

Asennus- ja käyttöohjeet. Videoterminaali 2600.. Asennus- ja käyttöohjeet Vdeotermnaal 2600.. Ssällysluettelo Latekuvaus...3 Asennus...4 Lassuojuksen rrottamnen...5 Käyttö...5 Normaal puhekäyttö...6 Kutsun vastaanotto... 6 Puheen suunnan ohjaus... 7

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia. HY, MTO / Matemaattste tetede kadohjelma Tlastolle päättely II, kevät 208 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I Olkoo Y, Y rppumato otos Pareto jakaumasta, fy; θ θc θ y θ+ { y > c } tuetulla vakolla

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.340 Lneaarnen ohjelmont 22..2007 Luento 0 Ssäpstemenetelmät ja kokonaslukuoptmont (krja 0.-0.4) Ssäpstemenetelmät luvut 8 ja 9, e tarvtse lukea Lneaarnen ohjelmont - Syksy 2007 / Luentorunko Sananen

Lisätiedot

Kokonaislukutehtävien formulointeja ( ) 1.4) Mirko Ruokokoski S ysteemianalyysin. Laboratorio. Mirko Ruokokoski

Kokonaislukutehtävien formulointeja ( ) 1.4) Mirko Ruokokoski S ysteemianalyysin. Laboratorio. Mirko Ruokokoski Kokonaslukuthtävn formulonta (.-.4).4) 23..2008 Sovlltun matmatkan lsnsaattsmnaar Kvät 2008 / Ssälls Kokonaslukuthtävn formulonta Ertsst ärsttt oukot (spcal ordrd sts) Vahva formulont (strong formulaton)

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.340 Lneaarnen ohjelmont 3.9.2007 Luento Johdanto (krja.-.4) S ysteemanalyysn Laboratoro eknllnen korkeakoulu Eeva Vlkkumaa Lneaarnen ohjelmont - Syksy 2007 / Luentorunko Hstoraa Lneaarnen optmonttehtävä

Lisätiedot

Pro gradu -tutkielma. Whitneyn upotuslause. Teemu Saksala

Pro gradu -tutkielma. Whitneyn upotuslause. Teemu Saksala Pro gradu -tutkelma Whtneyn upotuslause Teemu Saksala Helsngn ylopsto Matematkan ja tlastoteteen latos 5. maalskuuta 2013 0.1 Johdanto Topologset monstot ovat melenkntosa, koska ne ovat määrtelmänsä nojalla

Lisätiedot

Lähdemateriaalina käytetty Pertti Louneston kirjaa Clifford Algebras and spinors [1]

Lähdemateriaalina käytetty Pertti Louneston kirjaa Clifford Algebras and spinors [1] Lähdmatraala kättt Prtt Lousto kraa Clfford Algbras ad spors [] Krtausta Clfford algbra määrtllää algbraks kvadraattsll vktoravaruudll (sm. skalaartulolla. Clfford algbra oka alko vodaa sttää algbra katavktord

Lisätiedot

SATE1140 Piirianalyysi, osa 1 kevät /8 Laskuharjoitus 7: Vaihtovirta-analyysin perusteet

SATE1140 Piirianalyysi, osa 1 kevät /8 Laskuharjoitus 7: Vaihtovirta-analyysin perusteet ,,4,6,8,,4,6,8,,4,6,8 SATE4 Pranalyy, oa kevät 8 /8 akharjot 7: ahtovrta-analyyn perteet Tehtävä. Olkoon nmotonen jännte (t) = 8 co(t 6º). Tehtävä / 8 6 4 - -4-6 -8 - t / m Kva. Jännte (t) = 8 co(t 6º).

Lisätiedot

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen Tosakajärjestelmät Luento : Resurssen hallnta ja prorteett Tna Nklander Jaetut resursst Useat tapahtumat jakavat ohjelma-/lattesto-olota, jossa kesknänen possulkemnen on välttämätöntä. Ratkasuja: Ajonakanen

Lisätiedot

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi Elementtmenetelmän erusteet 8. 8 D-SOLIDIRKEEE 8. ohdanto Kolmulottesa soldelementtejä tartaan kolmulottesten kaaleden mallntamseen. ällön tarkasteltaan kaaleen geometralla e ole ertsrtetä jotka teksät

Lisätiedot

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa URUN AMMAIKORKEAKOULU YÖOHJE (7) FYSIIKAN LABORAORIO V.2 2.2 38E. MEKAANISEN VÄRÄHELYN UKIMINEN. yön tavote 2. eoraa yössä tutustutaan harmonsen mekaansen värähdyslkkeen omnasuuksn seuraavssa tapauksssa:

Lisätiedot

Kvanttimekaanisten joukkojen yhteys termodynamiikkaan

Kvanttimekaanisten joukkojen yhteys termodynamiikkaan Kvanttmekaansten joukkojen yhteys termodynamkkaan Hukkaslukumäärän sälyttävä systeem vo vahtaa energaa ympärstönsä kanssa kahdella tavalla: työnä ta lämpönä. Termodynamkassa entropan muutos lttyy lämmön

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Hanna-Kaisa Hurme Teräksen tilastollinen rakenneanalyysi Diplomityö

Hanna-Kaisa Hurme Teräksen tilastollinen rakenneanalyysi Diplomityö Hanna-Kasa Hurme Teräksen tlastollnen rakenneanalyys Dplomtyö Tarkastajat: professor Kejo Ruohonen (TUT) ja dosentt Esko Turunen (TUT) Tarkastajat ja ahe hyväksytty Luonnonteteden ja ympärstöteknkan tedekuntaneuvoston

Lisätiedot

4. MARKKINOIDEN TASAPAINOTTUMINEN 4.1. Tasapainoperiaate Yritysten ja kuluttajien välinen tasapaino

4. MARKKINOIDEN TASAPAINOTTUMINEN 4.1. Tasapainoperiaate Yritysten ja kuluttajien välinen tasapaino 4. MARKKINOIDEN TASAPAINOTTUMINEN 4.. Tasapanoperaate 4... Yrtysten ja kuluttajen välnen tasapano Näkymätön käs muodostuu kahdesta vakutuksesta: ) Yrtysten voton maksmont johtaa ne tuottamaan ntä hyödykketä,

Lisätiedot

porsche design mobile navigation ß9611

porsche design mobile navigation ß9611 porsche desgn moble navgaton ß9611 [ FIN ] Ssällysluettelo 1 Johdanto ------------------------------------------------------------------------------------------------ 07 1.1 Tästä käskrjasta ---------------------------------------------------------------------------------------------

Lisätiedot

Hyrynsalmen kunta, jäljempänä kunta. Laskutie 1, 89400 HYRYNSALMI. Kohde sijaitsee Hallan Sauna- nimisessä kiinteistössä.

Hyrynsalmen kunta, jäljempänä kunta. Laskutie 1, 89400 HYRYNSALMI. Kohde sijaitsee Hallan Sauna- nimisessä kiinteistössä. VUOKRASOPIMUS 1.1 Sopjapuolet Hyrynsalmen kunta, jäljempänä kunta. Laskute 1, 89400 HYRYNSALMI Hallan Sauna Oy (y-tunnus: 18765087) CIO Tl- Tekno Oulu Oy Kauppurnkatu 12, 90100 OULU 1.2 Sopmuksen kohde

Lisätiedot

Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat:

Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat: Mat-.36 Tlastollnen päättely 7. harjotukset Mat-.36 Tlastollnen päättely 7. harjotukset / Tehtävät Aheet: Avansanat: ypoteesen testaus. lajn vrhe,. lajn vrhe, arhaton test, ylkäysalue, ylkäysvrhe, ypotees,

Lisätiedot