Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto
|
|
- Iivari Ahola
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kynä-paper -harjotukset Tana Lehtnen Tana I Lehtnen Helsngn ylopsto
2 Etelä-Suomen ja Lapn lään, 400 opettajaa a. Perusjoukon (populaaton) muodostvat kakk Etelä-Suomen ja Lapn läänn peruskoulun opettajat b = 43 jätt vastaamatta (43/400)*00 = 0.75 Kato ol % c. Kyseessä ol otos, koska 400 opettajaa valttn reksterstä satunnasest (satunnasotos) Tana I Lehtnen Helsngn ylopsto
3 k0 Työkokemus taulukotuna Työkokemus Frekvenss Laad frekvenssjakauma, jossa almman luokan luokka-alaraja on ja luokan yläraja on Tana I Lehtnen 3 Helsngn ylopsto
4 Almman luokan luokka-alaraja (= ) ja yläraja (= 4) annettu Suhteellset luokkarajat Luokkafrekvenss Tana I Lehtnen 4 Helsngn ylopsto
5 Kuvo : Työvuosen hstogramm Frekv Työvuosa c. Jakauma graafsest (laadttu manuaalsest) - Pylvään kannat vaaka-aksellla - Korkeus määräytyy luokan frekvenssn mukasest Tana I Lehtnen Helsngn 5 ylopsto
6 Kuvo : Työvuosen hstogramm SPSS-ohjelman Bar Tana I Lehtnen Helsngn 6 ylopsto
7 a Taulukko : Tutkmusryhmät Frekvenss Uus lääke Roh 8 Perntenen lääke 7 Kontrollryhmä Tana I Lehtnen 7 Helsngn ylopsto
8 b. ja c. Taulukko : Lääketutkmusryhmät sukupuolttan Mehet aset Yhteensä Uus lääke Roh 30 % 6 3 % 8 3 % Perntenen lääke 8 % 6 3 % 7 30 % Kontrollryhmä 7 4 % 9 38 % % n 40 n % 00 % 00 % Rstntaulukko (kaksulottenen frekvenssjakauma), jossa mesten ja nasten lääketutkmusryhmen frekvenssjakaumat Tana I Lehtnen 8 Helsngn ylopsto
9 Taulukko 3: Kpupotladen arvot Rohn tehokkuudesta % Frekvenss Erttän hyvä * Melko hyvä 3 Hekko teho 9 7 E osaa sanoa 6 00 % 4 * %-luku/00 * 48/00 * 4 = Tana I Lehtnen 9 Helsngn ylopsto
10 Kuvo 4: Kpupotladen arvot Rohn tehokkuudesta Frekv manuaalsest Erttän hyvä Melko hyvä Hekko teho E osaa sanoa Tana I Lehtnen 0 Helsngn ylopsto
11 Kuvo 4: Kpupotladen arvot Rohn tehokkuudesta - SPSS: hstogram Tana I Lehtnen Helsngn ylopsto
12 Elokuvateattern katsojamäärät 00, 47, 3, 8, 6, 8, 4, 3,, Ylesn pävttänen kävjämäärä (Mood) Mo = 8 Medaan,, 3, 4, 6, 8, 8, 3, 47, 00 Md = 6 ja 8 Artmeettnen keskarvo = 9 9/0 = 9. = 9., ~ keskmäärn 9 kävjää pävssä x x Tana I Lehtnen Helsngn ylopsto.
13 Tarkkaavasuustestn psteet: Testn psteet Frekvenss a. Mo = 5 b. Havantoja on 00, nstä keskmmänen on suuruusjärjestyksessä 50.(5.) henklö ja koska henklö numero 50(5) on saanut pstemäärän 6 Md = Tana I Lehtnen Helsngn 3 ylopsto
14 Muuttuja X a. W =, 6 (,,,,,, 3, 3, 5, 5, 6) b. Mo = (,,,,,, 3, 3, 5, 5, 6) c. Md = (,,,,,, 3, 3, 5, 5, 6) Tana I Lehtnen 4 Helsngn ylopsto
15 Vahteluväl: W = mn, max a. k7c Mesten tuls osallstua kottöden tekemseen nykystä enemmän -vättämä W =, 4 b. Md = (Samaa meltä) c. n aset = 9 aset =. d. s aset = Tana I Lehtnen 5 Helsngn ylopsto
16 Lasketaan keskhajonta naslle: x x (x ) s ( x x) s Tana I Lehtnen 6 Helsngn ylopsto
17 Mllä tavalla vakuttaa havantojen keskhajontaan, jos: a. Jokaseen havantoarvoon lsätään vako (= sama tetty luku, esm. 7)? E vakutusta, sllä havantojen kesknänen etäsyys pysyy ennallaan b. Jokanen havantoarvo kerrotaan vakolla? Keskhajonta kasvaa (jos vako = kaksnkertastuu; vako = 3 kolmnkertastuu; ) Tana I Lehtnen 7 Helsngn ylopsto
18 Ovatko vättämät ana tosa? a. 0 epätos, sllä vodaan laskea myös negatvssta luvusta b. s 0 tos, sllä s e vo olla negatvnen luku c. Mo 0 epätos, sllä jos kakk luvut ovat negatvsa, myös Mo on d. Md epätos, sllä jos jakauma on okealle vno, Md < e. Epätos, s e vo koskaan olla negatvnen luku Tana I Lehtnen 8 Helsngn ylopsto
19 Ekstraversopsteet (x) euroottsuuspsteet (y)
20 xy y y x x y x y x r Pearson, koska x ja y ovat välmatka-astekkosa muuttuja
21 x y x y x y a a a a a a a 7 4 a a a
22 (x ) = 849 (y ) = 60 (0*86) ( 43*5) r (0*35 43 )*(0*349 5 ) r 50*889
23 333 r r Tulknta: Mtä enemmän henklö on ekstravertt, stä vähemmän hän on neuroottnen, el negatvnen yhteys (e tlastollsest merktsevä, koska pen) ta Mtä neuroottsemp henklö on, stä vähemmän ekstravertt hän on
24 SPSSohjelmalla Tana I Lehtnen Helsngn ylopsto 4
25 Vranhakuprosessssa arvotn vden opettajan opetustatoa. Arvojna tom kaks opettajanvalmstuslatoksen ohjaajaa (A ja B), jotka asettvat kumpkn tsenäsest opettajat paremmuusjärjestykseen Selvtä laskemalla korrelaatokerron, mllanen yksmelsyys arvojen välllä vallts
26 Spearman, koska x ja y (arvot) ovat järjestysastekkosa muuttuja 6 r s ( d )
27 A-arvoja B-arvoja x y ope ope ope 3 ope d (=x y ) d ope r s 6*8 68 5*(5 )
28 Arvojat evät olleet kovnkaan yksmelsä opettajen paremmuudesta B 5 * 4 * 3 * * * A
29 Tana I Lehtnen 9 Helsngn ylopsto
30 Muskaalsuus-testn ja Muskn arvosanan välstä yhteyttä vodaan tutka hajontakuvon avulla ja laskemalla korrelaatokerron (muuttujen astekko!) Postvnen yhteys, mtä enemmän pstetä testssä, stä korkeamp muskn arvosana Tana I Lehtnen 30 Helsngn ylopsto
31 xy y y x x y x y x r Muskaalsuus-test ja Muskn arvosana välmatka-astekollsa lasketaan r xy Tana I Lehtnen Helsngn ylopsto
32 Muskaal. test x Koulunumero y x * y x y d d d d d d d d Tana I Lehtnen Helsngn ylopsto
33 (x ) = 56 (y ) = 4489 (8*93) (34*67) r (8*58 34 )*(8* ) r 08* Tana I Lehtnen Helsngn 33 ylopsto
34 66 r 0.80 r Tulknta: Mtä paremmn suorutu testssä, stä korkeamp muskn arvosana ta Musk. arvosana Max Mtä korkeamp muskn arvosana, stä paremmn suorutu testssä Mn Mn Max Musk.test Tana I Lehtnen Helsngn 34 ylopsto
35 Sukupuol ja suosteltu sotn Sotn Yhteensä Vulu Alttovulu Sello Sukupuol Tyttö Poka Yhteensä Tytöstä (n=4) kahdelle suosteltn vulua ja kahdelle alttovulua yhdellekään e selloa, pojsta (n=4) yhdelle suosteltn alttovulua, kolmelle selloa yhdellekään e vulua Tana I Lehtnen Helsngn 35 ylopsto
36 Korrelaatokertomen arvot Vomakkan Hekon Tana I Lehtnen 36 Helsngn ylopsto
37 a Selkeä postvnen rppuvuus/ yhteys Tana I Lehtnen 37 Helsngn ylopsto
38 b. Selkeä negatvnen rppuvuus/ yhteys c. Hajontakuvo auttaa hahmottamaan onko muuttujlla yhteyttä, yhteyden suunnan ja pokkeavat havannot Tana I Lehtnen 38 Helsngn ylopsto
39 a
40 b. r xy = 0.95 c. Aneston yhden mehen pokkeavat arvot nostavat korrelaaton arvon korkeaks jos arvolle järjestyspsteet r s = 0.87
41 Tulktse kertomen arvo r xy = -0.8 x y Lkuntaharrastukset ( = Monpuolset,, 0 = E juurkaan lkuntaharrastuksa) Työssä jaksamnen ( = Hekkoa jaksamnen., 0 = Hyvä jaksamnen) Tana I Lehtnen 4 Helsngn ylopsto
42 Vahva negatvnen korrelaato: mtä monpuolsemmat lkuntatottumukset, stä paremmn jaksaa työssä SELKOKIELELLÄ: Monpuolsest lkkuvat jaksavat työssä TAI hekost työssä jaksavat evät juurkaan harrasta lkuntaa Tana I Lehtnen Helsngn ylopsto 4
43 Loput ratkasut (tehtävät 0-9) ens vkolla Tana I Lehtnen Helsngn ylopsto 43
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.204 Tlastollsen analyysn perusteet, kevät 2007 5. luento: Tlastollnen rppuvuus ja korrelaato Ka Vrtanen Muuttujen välsten rppuvuuksen analysont Tlastollsssa analyysessä tutktaan usen muuttujen välsä
Kuluttajahintojen muutokset
Kuluttajahntojen muutokset Samu Kurr, ekonomst, rahapoltkka- ja tutkmusosasto Tutkmuksen tausta ja tavotteet Tavaroden ja palveluden hnnat evät muutu jatkuvast, vaan ovat ana jossan määrn jäykkä lyhyellä
TKK @ Ilkka Mellin (2008) 1/24
Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma,
Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat:
Mat-.36 Tlastollnen päättely 7. harjotukset Mat-.36 Tlastollnen päättely 7. harjotukset / Tehtävät Aheet: Avansanat: ypoteesen testaus. lajn vrhe,. lajn vrhe, arhaton test, ylkäysalue, ylkäysvrhe, ypotees,
Leikkijunan kunto toimiva ei-toimiva Työvuoro aamuvuoro päivävuoro iltavuoro
Lsätehtävä 1. Erään yrtyksen satunnasest valttujen työntekjöden possaolopäven määrät olvat vuonna 003: 5, 3, 1, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4,, 1, 15, 4, 0,, 4, 3, 3, 8, 3, 9, 11, 19, 17, 14, 7 a)
Painotetun metriikan ja NBI menetelmä
Panotetun metrkan ja NBI menetelmä Optmontopn semnaar - Kevät / 1 Estelmän ssältö Paretopsteden generont panotetussa metrkossa Panotettu L p -metrkka Panotettu L -metrkka el panotettu Tchebycheff -metrkka
5. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman
5. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7.4.006 Thomas Hackman 5. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 5. Tähtteteellsten
3.5 Generoivat funktiot ja momentit
3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä
Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa
URUN AMMAIKORKEAKOULU YÖOHJE (7) FYSIIKAN LABORAORIO V.2 2.2 38E. MEKAANISEN VÄRÄHELYN UKIMINEN. yön tavote 2. eoraa yössä tutustutaan harmonsen mekaansen värähdyslkkeen omnasuuksn seuraavssa tapauksssa:
4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman
4. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7..008 Thomas Hackman 4. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 4. Tähtteteellsten
3. Datan käsittely lyhyt katsaus
3. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento..0 Thomas Hackman HTTPK I, kevät 0, luento 3 3. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus
Timo Tarvainen PUROSEDIMENTIIANALYYSIEN HAVAINNOLLISTAMINEN GEOSTATISTIIKAN KEINOIN. Outokumpu Oy Atk-osasto
Tmo Tarvanen PUROSEDMENTANALYYSEN HAVANNOLLSTAMNEN GEOSTATSTKAN KENON Outokumpu Oy Atk-osasto PUROSEDMENTTANALYYSEN HAVANNOLLSTAMNEN GEOSTATSSTKAN KENON 1. Johdanto Nn sanotulla SKALAn alueella (karttaleht
MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN
MTTTP SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN Aesto kaavoje () (3), (9) ja () esmerkkeh Lepakot pakallstavat hyötesä lähettämällä korkeataajusta äätä Ne pystyvät pakallstamaa hyöteset
Tutkimusmenetelmät I Määrällisen tutkimuksen osuus (2.5 op) "kynä-paperi"-harjoitukset/til
Tutkimusmenetelmät I Määrällisen tutkimuksen osuus (2.5 op) "kynä-paperi"-harjoitukset/til 1. Tutkija halusi selvittää, kuinka moni Etelä-Suomen läänin ja Lapin läänin peruskoulun opettajista käyttää säännöllisesti
Luento 6 Luotettavuus Koherentit järjestelmät
Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu
4. MARKKINOIDEN TASAPAINOTTUMINEN 4.1. Tasapainoperiaate Yritysten ja kuluttajien välinen tasapaino
4. MARKKINOIDEN TASAPAINOTTUMINEN 4.. Tasapanoperaate 4... Yrtysten ja kuluttajen välnen tasapano Näkymätön käs muodostuu kahdesta vakutuksesta: ) Yrtysten voton maksmont johtaa ne tuottamaan ntä hyödykketä,
SMG-1100: PIIRIANALYYSI I
SMG-1100: PIIRIANALYYSI I Vahtosähkön teho hetkellnen teho p(t) pätöteho P losteho Q näennästeho S kompleksnen teho S HETKELLINEN TEHO Kn veresen kvan mpedanssn Z jännte ja vrta (tehollsarvon osottmet)
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.
MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät 2016 1 Perustuu Antt
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.04 Tlastollsen analyysn perusteet, evät 007. luento: Johdatus varanssanalyysn S ysteemanalyysn Laboratoro Ka Vrtanen Kertaus: ahden rppumattoman otosen t-test () () Perusjouo oostuu ahdesta ryhmästä
COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT
COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks
Monte Carlo -menetelmä
Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla
Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4
TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun
1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä
Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10
Mat Lineaarinen ohjelmointi
Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot
FYSA220/2 (FYS222/2) VALON POLARISAATIO
FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron
Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä
Tavotteet skaalaavan funkton lähestymstapa el referensspste menetelmä Optmontopn semnaar - Kevät 2000 / 1 Estelmän ssältö Panotetun metrkan ongelmen havatsemnen Referensspste menetelmän dean esttely Referensspste
Base unweighted Base weighted TK2 - TK2. Kuinka usein luette kemikaalien varoitusmerkit ja käyttöohjeet?
17773 Telebus 48a-48b 2017 Taloustutkmus Oy Total Sukupuol All ntervews Nanen Mes Base unweghted 1006 498 508 Base weghted 4298 2155 2144 TK1 - TK1. Mssä määrn tetä huolestuttaa altstumnen kemkaalelle
Jaksolliset ja toistuvat suoritukset
Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e
Työllistääkö aktivointi?
Jyväskylän ylopsto Matemaatts-luonnonteteellnen tedekunta Työllstääkö aktvont? Vakuttavuusanalyys havannovassa tutkmuksessa Elna Kokkonen tlastoteteen pro gradu tutkelma 31. elokuuta 2007 Tlastoteteen
Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?
Mttausteknkan perusteet / luento 7 Mttausepävarmuus Mttausepävarmuus Mttaustulos e ole koskaan täysn oken Mttaustulos on arvo mtattavasta arvosta Mttaustuloksen ja mtattavan arvon ero on mttausvrhe Mkäl
3.3 Hajontaluvuista. MAB5: Tunnusluvut
MAB5: Tunnusluvut 3.3 Hajontaluvusta Esmerkk 7 Seuraavat kolme kuvaa osottavat, että jakaumlla vo olla sama keskarvo ja stä huolmatta ne vovat olla avan erlaset. Kakken kolmen keskarvo on 78,0! Frekvenss
Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28
Jyväskylän Aattkorkeakoulu, IT-nsttuutt IIF00 Sovellettu fyskka, Syksy 005, 4.5 ETS Opettaja Pas epo alln lö Laatja - Pas Vähäartt Vuoskurss - IST4SE Tekopävä 005-9-4 Palautuspävä 005-9-8 8.9.005 /7 LABOATOIOTYÖ
Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat:
Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Artmeette keskarvo, Estmaatt,
HASSEN-WEILIN LAUSE. Kertausta
HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten
Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:
Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa
5. Datan käsittely lyhyt katsaus
5. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 4..0 Thomas Hackman HTTPK I, kevät 0, luento 5 5. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus
PPSS. Roolikäyttäytymisanalyysi 28.03.2011. Tämän raportin on tuottanut: MLP Modular Learning Processes Oy Äyritie 8 A FIN 01510 Vantaa info@mlp.
PP Roolkäyttäytymsanalyys Roolkäyttäytymsanalyys Rool: Krjanptäjä Asema: Laskentapäällkkö Organsaato: Mallyrtys Tekjä: Matt Vrtanen 8.0.0 Tämän raportn on tuottanut: MLP Modular Learnng Processes Oy Äyrte
1. välikoe
Jan Loto TA7 Ekonometan johdantok Nm: Opkeljanmeo: välkoe 77 Vataa alla olevn kyymykn ympäömällä okea vahtoehto Kakn tehtävää on neljä vahtoehtoa, jota yk on oken Okeata vataketa aa pteen ja vääätä vataketa
Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut
Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss
Suoran sovittaminen pistejoukkoon
Suora sovttame pstejoukkoo Ku halutaa tutka kahde tlastollse muuttuja rppuvuutta tosstaa, käytetää use leaarsta regressota el suora sovttamsta havatojoukkoo. Sä o aettu joukko havatopareja (x, y ), ja
Uuden eläkelaitoslain vaikutus allokaatiovalintaan
TEKNILLINEN KORKEAKOULU Systeemanalyysn laboratoro Mat-2.108 Sovelletun matematkan erkostyö Uuden eläkelatoslan vakutus allokaatovalntaan Tmo Salmnen 58100V Espoo, 14. Toukokuuta 2007 Ssällysluettelo Johdanto...
Sähköstaattinen energia
ähköstaattnen enega Potentaalenegan a potentaaln suhde on samanlanen kun Coulomn voman a sähkökentän suhde: ähkökenttä vakuttaa vaattuun kappaleeseen nn, että se kokee Coulomn voman, mutta sähkökenttä
Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen
Tosakajärjestelmät Luento : Resurssen hallnta ja prorteett Tna Nklander Jaetut resursst Useat tapahtumat jakavat ohjelma-/lattesto-olota, jossa kesknänen possulkemnen on välttämätöntä. Ratkasuja: Ajonakanen
LIITE 2 SUORAN SOVITTAMINEN HAVAINTOPISTEISIIN
Oulun ylopsto Fyskan opetuslaboratoro Fyskan laboratorotyöt 1 1 LIITE SUORA SOVITTAMIE HAVAITOPISTEISII Tarkastelee fyskan tössä usen eteen tulevaa tlannetta, jossa olee tanneet kpl pstepareja X, Y. Arvot
= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2
HY / Matematka ja tlastotetee latos Tlastolle päättely II, kevät 28 Harjotus 3A Ratkasuehdotuksa Tehtäväsarja I Olkoot Y,, Y ja Nθ, ) Osota, että T T Y) Y 2 o parametr gθ) θ 2 harhato estmaattor Laske
Tilastollinen riippuvuus ja korrelaatio
Tlastollset meetelmät Osa 4: Leaare regressoaalyys Tlastolle rppuvuus ja korrelaato KE (204) Tlastolle rppuvuus ja korrelaato >> Tlastolle rppuvuus, korrelaato ja regresso Kahde muuttuja havatoaesto kuvaame
r i m i v i = L i = vakio, (2)
4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään
Suurivaltaisin, Armollisin Keisari ja Suuriruhtinas!
1907. Edusk. Krj. Suomen Pankn vuosrahasääntö. Suomen Eduskunnan alamanen krjelmä uudesta Suomen Pankn vuosrahasäännöstä. Suurvaltasn, Armollsn Kesar ja Suurruhtnas! Suomen Eduskunnan pankkvaltuusmehet
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Montavoteoptmont ja teollsten prosessen hallnta Ylassstentt Juss Hakanen juss.hakanen@jyu.f syksy 2010 Interaktvset menetelmät Idea: päätöksentekjää hyödynnetään aktvsest ratkasuprosessn akana
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemaalyys laboratoro Mat-.9 Sovellettu todeäkösyyslasku A Nordlud Harjotus 8 (vko 45/3) (Ahe: Raja-arvolauseta, otostuuslukuja, johdatusta estmot, Lae luvut 9.5,.-.6). Olkoo X ~ p(λ), mssä λ
Ilkka Mellin (2006) 1/1
Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma,
OUTOKUMPU OY 0 K MALMINETSINTA. talta.
9 OUTOKUMPU OY 0 K MALMNETSNTA Tutkmusalueen sjant Tutkmusalue sjatsee Hyvelässä, n. 6 km:ä Porsta pohjoseen, Vaasa-ten täpuolella. Tarkemp sjant lmenee raportn etulehtenä olevalta :20 000 karw' talta.
Harjoituksen pituus: 90min 3.10 klo 10 12
Pallollse puolustae: Sokea ja ta käspallo/ Lppupallo Tavote: aalteo estäe sjottue puolustavalle puolelle, potku ta heto estäe, syöttäse estäe rstäe taklaus, pae tla vottase estäe sjottue puolustavalle
BL20A0600 Sähkönsiirtotekniikka
BLA6 Sähkönsrtoteknkka Tehonaon laskenta Jarmo Partanen LT Energy Electrcty Energy Envronment Srtoverkkoen laskenta Verkon tehonaon laskemnen srron hävöt ännteolosuhteet ohtoen kuormttumnen verkon käyttäytymnen
Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot
TKK (c) Ilkka Mell (2004) Kokoastodeäkösyys ja Kokoastodeäkösyys ja : Johdato Kokoastodeäkösyyde ja Bayes kaavoje systeemteoreette tulkta Johdatus todeäkösyyslasketaa Kokoastodeäkösyys ja TKK (c) Ilkka
13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit
68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta
Ilmari Juva. Jalkapallo-ottelun lopputuloksen stokastinen mallintaminen
Ilmar Juva 45727R Mat-2.108 Sovelletun matematkan erkostyö Jalkaallo-ottelun loutuloksen stokastnen mallntamnen 1 Johdanto Jalkaallo-ottelun loutuloksen mallntamsesta tlastollsn ja todennäkösyyslaskun
Raja-arvot. Osittaisderivaatat.
1 MAT-13440 LAAJA MATEMATIIKKA 4 Tamperee teklle ylopsto Rsto Slveoe Kevät 2010 Luku 3 Raja-arvot Osttasdervaatat 1 Fuktode raja-arvot Tarkastelemme fuktota f : A, jode määrttelyjoukko A T Muuttujat ovat
Tchebycheff-menetelmä ja STEM
Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot
Aamukatsaus 13.02.2002
Indekst & korot New Yorkn päätöskursst, euroa Muutos-% Päätös Muutos-% Helsnk New York (NY/Hel) Dow Jones 9863.7-0.21% Noka 26.21 26.05-0.6% S&P 500 1107.5-0.40% Sonera 5.05 4.99-1.1% Nasdaq 1834.2-0.67%
Mittaustulosten käsittely
Mttaustulosten kästtely Vrhettä ja epävarmuutta lmasevat kästteet Tostokoe ja satunnasten vrheden tlastollnen kästtely. Mttaustulosten jakaumaa kuvaavat tunnusluvut. Normaaljakauma 7. Tostokoe ja suurmman
Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat:
Mat-1.60 Sovellettu todeäkösyyslasketa Mat-1.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Otos ja otosjakaumat Avasaat: Artmeette keskarvo, Beroull-jakauma, Beroull-koe, χ -jakauma, Frekvess, Frekvessjakauma,
A250A0100 Finanssi-investoinnit Harjoitukset 24.03.15
A50A000 Fnanss-nvestonnt Hajotukset 4.03.5 ehtävä. akknapotolon keskhajonta on 9 %. Laske alla annettujen osakkeden ja makknapotolon kovaanssen peusteella osakkeden betat. Osake Kovaanss A 40 B 340 C 60
1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on
HY MTO / Matemaattste tetede kadohjelma Tlastolle päättely II kevät 019 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I 1 Mostee teht 516 Eräde kuulalaakerede kestoa mljooaa kerrosta o totuttu kuvaamaa Webull-jakaumalla
Tilastollisen fysiikan luennot
Tlastollsen fyskan luennot Tvstelmät luvuttan I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ Lämpö on systeemen mkroskooppsten osen satunnasta lkettä Lämpöenerga vrtaa kuumemmasta kappaleesta kylmempään Jos kaks kappaletta
Generoidaan tiedostoon BINORM satunnaislukuja jakaumasta N(0,1) muuttujiksi U, V: (U, V): N 2 (0, 0, 1, 1, 0)
Mat-2.04 Tlastollse aalyys perusteet / Ratkasut Aheet: Avasaat Korrelaato ja assosaato Hypotees, Järjestyskorrelaatokertomet, χ 2 -rppumattomuustest, Korrelaatokerro, Pstedagramm, Päätössäätö, Nollahypotees,
Painokerroin-, epsilon-rajoitusehtoja hybridimenetelmät
Panokerron-, epslon-rajotusehtoja hybrdmenetelmät Optmontopn semnaar - Kevät 000 / Estelmän ssältö Ylestä jälkkätespreferenssmenetelmstä Panokerronmenetelmä Epslon-rajotusehtomenetelmä Hybrdmenetelmä Esmerkkejä
S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon
S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,
Palkanlaskennan vuodenvaihdemuistio 2014
Palkanlaskennan vuodenvahdemusto 2014 Pkaohje: Tarkstettavat asat ennen vuoden ensmmästä palkanmaksua Kopo uudet verokortt. Samat arvot kun joulukuussa käytetyssä, lman kumulatvsa tetoja. Mahdollsest muuttuneet
Tilastolliset menetelmät: Lineaarinen regressioanalyysi
Tlastollset meetelmät Leaare regressoaalyys Tlastollset meetelmät: Leaare regressoaalyys 3. Tlastolle rppuvuus ja korrelaato 4. Johdatus regressoaalyys 5. Yhde selttäjä leaare regressomall 6. Ylee leaare
1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0.
BM20A5800 - Funktot, lneaaralgebra, vektort Tentt, 26.0.206. (a) Krjota yhtälöryhmä x + 2x 3 = a 2x + x 2 + 5x 3 = b x x 2 + x 3 = c matrsmuodossa Ax = b ja ratkase x snä erkostapauksessa kun b = 0. Mllä
Epälineaaristen pienimmän neliösumman tehtävien ratkaiseminen numeerisilla optimointimenetelmillä (valmiin työn esittely)
Epälneaarsten penmmän nelösumman tehtäven ratkasemnen numeerslla optmontmenetelmllä valmn työn esttely Lar Pelkola 9.9.014 Ohjaaja/valvoja: Prof. Harr Ehtamo yön saa tallentaa ja julkstaa Aalto-ylopston
Äidinkielen valtakunnallinen koe 9.luokka
Keväällä 2013 Puumalan yhtenäiskoulussa järjestettiin valtakunnalliset kokeet englannista ja matematiikasta 6.luokkalaisille ja heille tehtiin myös äidinkielen lukemisen ja kirjoittamisen testit. 9.luokkalaisille
Tilastollinen riippuvuus ja korrelaatio. Tilastollinen riippuvuus ja korrelaatio. Tilastollinen riippuvuus ja korrelaatio: Esitiedot
TKK (c) Ilkka Mell (4) Tlastolle rppuvuus ja korrelaato Tlastolle rppuvuus, korrelaato ja regresso Kahde muuttuja havatoaesto kuvaame Pearso korrelaatokertome estmot ja testaus Järjestyskorrelaatokertomet
4. A priori menetelmät
4. A pror menetelmät 4. Arvofunkto-menetelmä 4.2 Lekskografnen järjestämnen 4.3 Tavoteohjelmont Tom Bäckström Optmontopn semnaar - Kevät 2000 / 4. Arvofunkto-menetelmä Päätöksentekjä antaa eksplsttsen
Segmentointimenetelmien käyttökelpoisuus
Metsäteteen akakauskrja t e d o n a n t o Rasa Sell Segmentontmenetelmen käyttökelposuus ennakkokuvonnssa Rasa Sell Sell, R. 00. Segmentontmenetelmen käyttökelposuus ennakkokuvonnssa. Metsäteteen akakauskrja
TYÖVOIMAKOULUTUKSEN VAIKUTUS TYÖTTÖMIEN TYÖLLISTYMISEEN
VATT-TUTKIMUKSIA 85 VATT-RESEARCH REPORTS Juha Tuomala TYÖVOIMAKOULUTUKSEN VAIKUTUS TYÖTTÖMIEN TYÖLLISTYMISEEN Valton taloudellnen tutkmuskeskus Government Insttute for Economc Research Helsnk 2002 ISBN
Johdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematkkaan Informaatoteknologan tedekunta Jyväskylän ylopsto 4. luento 24.11.2017 Neuroverkon opettamnen - gradenttmenetelmä Neuroverkkoa opetetaan syöte-tavote-parella
2-suuntainen vaihtoehtoinen hypoteesi
Mat-.6 Sovellettu todeäkösyyslasketa. harjotukset Mat-.6 Sovellettu todeäkösyyslasketa B. harjotukset / Ratkasut Aheet: Tlastollset testt Avasaat: Artmeette keskarvo, Beroull-jakauma, F-jakauma, F-test,
Matin alkuvuoden budjetti
1 TILASTOJEN TULKINTAA 1. euroa Matin alkuvuoden budjetti 600 500 400 300 200 100 0 tammikuu helmikuu maaliskuu huhtikuu a) Milloin Matti on kuluttanut eniten rahaa ostoksiin? Arvioi, kuinka paljon vaatteisiin
Käsityön Tutkimushanke Vanhempien käsityksiä 7.-luokkalaisten käsityön opiskelusta
Käsityön Tutkimushanke 2013-2014 Vanhempien käsityksiä 7.-luokkalaisten käsityön opiskelusta www.helsinki.fi/yliopisto 21.11.2014 1 Tutkimuksen lähtökohtia Käsityön kansallinen arviointi 2010 Arviointitulosten
Moderni portfolioteoria
Modern portfoloteora Helsngn Ylopsto Kansantalousteteen Kanddaatntutkelma 4.12.2006 Juho Kostanen (013297143) juho.kostanen@helsnk.f 2 1. Johdanto... 3 2. Sjotusmarkknat... 4 2.1. Osakemarkknat... 4 2.2.
9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli
lueto9.ppt S-38.45 Lkeeteora perusteet Kevät 5 Ykskertae lkeeteoreette mall Puhdas jakojärjestelmä Asakkata saapuu keskmäär opeudella asakasta per akayks. / keskmääräe asakkade välaka Asakkata palvellaa
LAPPEENRANNAN TEKNILLINEN YLIOPISTO Kauppatieteiden tiedekunta Rahoitus VALUUTTAKURSSIRISKIN VAIKUTUS ARGENTIINAN OSAKEMARKKINOILLA
LAPPEENRANNAN TEKNILLINEN YLIOPISTO Kauppateteden tedekunta Rahotus VALUUTTAKURSSIRISKIN VAIKUTUS ARGENTIINAN OSAKEMARKKINOILLA Kanddaatntutkelma Matt Jääskelänen 18.5.2007 SISÄLLYSLUETTELO 1 JOHDANTO...
7. Modulit Modulit ja lineaarikuvaukset.
7. Modult Vektoravaruudet ovat vahdannasa ryhmä, jossa on määrtelty jonkn kunnan skalaartomnta. Hyväksymällä kerronrakenteeks kunnan sjaan rengas saadaan rakenne nmeltä modul. Moduln käste on ss vektoravaruuden
REILUUS, SOSIAALISET PREFERENSSIT JA PELITEORIA
TAMPEREEN YLIOPISTO Talousteteden latos REILUUS, SOSIAALISET PREFERENSSIT JA PELITEORIA Kansantaloustede Pro gradu -tutkelma Marraskuu 2009 Ohaaat: Snkka Hämälänen Matt Tuomala Lsa Ekman TIIVISTELMÄ Tampereen
3 Tilayhtälöiden numeerinen integrointi
3 Tlayhtälöden numeernen ntegront Alkuarvotehtävässä halutaan ratkasta lopputla xt f ) sten, että tlayhtälöt ẋ = fx,u, t) toteutuvat, kun alkutla x 0 on annettu Tlayhtälöden numeernen ntegront vodaan suorttaa
KUVIEN LAADUN ANALYSOINTI
KUVIEN LAADUN ANALYSOINTI Lasse Makkonen 1.7.2003 Joensuun Ylopsto Tetojenkästtelytede Pro gradu tutkelma Tvstelmä Tutkelmassa luodaan katsaus krjallsuudessa esntyvn dgtaalsten kuven laadullsen analysonnn
LIITE 2 SUORAN SOVITTAMINEN HAVAINTOPISTEISIIN
Oulun ylopsto Fyskan opetuslaboratoro Fyskan laboratorotyöt LIITE SUORA SOVITTAMIE HAVAITOPISTEISII Tarkastelemme fyskan tössä usen eteen tulevaa tlannetta, jossa olemme mtanneet kpl pstepareja ( X, Y
HIFI-KOMPONENTTIJÄRJESTELMÄ
HUOMIO: Kauttmes (e tomteta latteen mukana) vovat erota tässä ohjekrjassa estetystä. mall RNV70 HIFI-KOMPONENTTIJÄRJESTELMÄ Huolto ja teknset tedot LUE käyttöohjeet, ennen kun yrtät käyttää latetta. VARMISTA,
Hanna-Kaisa Hurme Teräksen tilastollinen rakenneanalyysi Diplomityö
Hanna-Kasa Hurme Teräksen tlastollnen rakenneanalyys Dplomtyö Tarkastajat: professor Kejo Ruohonen (TUT) ja dosentt Esko Turunen (TUT) Tarkastajat ja ahe hyväksytty Luonnonteteden ja ympärstöteknkan tedekuntaneuvoston
AMMATTIMAISTA KIINTEISTÖPALVELUA JO 50 VUODEN AJAN
AMMATTIMAISTA KIINTEISTÖPALVELUA JO 50 VUODEN AJAN VUO-KIINTEISTÖPALVELUT 50 VUOTTA Vuosaarelaset asunto-osakeyhtöt perustvat vuonna 1965 Vuosaaren Isännötsjätomsto Oy:n, joka tuott omstajlleen kohtuuhntasa
9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli
Ssältö Kertausta: ykskertae lkeeteoreette mall M/M/-PS asakasta palvelja asakaspakkaa M/M/-PS asakasta palveljaa asakaspakkaa Sovellus elastse datalketee malltamsee vuotasolla M/M//k/k-PS k asakasta palvelja
1. PARAMETRIEN ESTIMOINTI
Mat-.04 Tlastollse aalyys perusteet Mat-.04 Tlastollse aalyys perusteet / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Estmaatt, Estmaattor, Estmot, Jääöselösumma, Jääösterm, Jääösvarass,
Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.
Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla
Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt
FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-
1, x < 0 tai x > 2a.
PHYS-C020 Kvanttmekankka Laskuharotus 2, vkko 45 Tarkastellaan ptkn x-aksela lkkuvaa hukkasta, onka tlafunkto on (x, t) Ae x e!t, mssä A, a! ovat reaalsa a postvsa vakota a) Määrtä vako A sten, että tlafunkto
JYVÄSKYLÄN YLIOPISTO Taloustieteiden tiedekunta
JYVÄSKYLÄN YLIOPISTO Talousteteden tedekunta AIKA- IKÄ- JA KOHORTTIVAIKUTUKSET KOTITALOUKSIEN RAHOITUSVARALLISUUDEN RAKENTEISIIN SUOMESSA VUOSINA 1994 2004 Kansantaloustede Pro gradu -tutkelma Maalskuu
Reaaliarvoinen funktio f : on differentioituva pisteessä x, jos f:lle on siinä voimassa kehitelmä. h h. eli. Silloin
MAT-3440 LAAJA MATEMATIIKKA 4 Tampereen teknllnen ylopsto Rsto Slvennonen Kevät 00 4. Vektorfunkton dervaatta. Ketjusääntö.. Reaalarvosen funkton dervaatta Tässä luvussa estetään dervaattakäste ensn reaalarvoselle
T p = 0. λ n i T i B = Käytetään kohdan (i) identiteetin todistamiseen induktiotodistusta. : Oletetaan, että väite on totta, kun n = k.
Olkoot A R n n ja T R n n sten, että on olemassa ndeks p N jolle T p = Tällästä matrsa kutsutaa nlpotentks Näytä, että () () () Olkoot Määrtä matrs B n (λi + A) n = (λi + T ) n = B = n mn n,p ( ) n λ n